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STRONG MEMORYLESS TIMES AND RARE EVENTS IN
MARKOV RENEWAL POINT PROCESSES

BY TORKEL ERHARDSSON

Royal Institute of Technology

LetW be the number of points in(0, t] of a stationary finite-state Markov
renewal point process. We derive a bound for the total variation distance
between the distribution ofW and a compound Poisson distribution. For any
nonnegative random variableζ , we construct a “strong memoryless time”ζ̂

such thatζ − t is exponentially distributed conditional on{ζ̂ ≤ t, ζ > t},
for eacht . This is used to embed the Markov renewal point process into
another such process whose state space contains a frequently observed state
which represents loss of memory in the original process. We then writeW

as the accumulated reward of an embedded renewal reward process, and
use a compound Poisson approximation error bound for this quantity by
Erhardsson. For a renewal process, the bound depends in a simple way
on the first two moments of the interrenewal time distribution, and on two
constants obtained from the Radon–Nikodym derivative of the interrenewal
time distribution with respect to an exponential distribution. For a Poisson
process, the bound is 0.

1. Introduction. In this paper, we are concerned with rare events in stationary
finite-state Markov renewal point processes (MRPPs). An MRPP is a marked point
process onR or Z (continuous or discrete time). Each point of an MRPP has an
associated mark, or state. The distance in time between two successive points and
the state of the second point are jointly conditionally independent of the past given
the state of the first point. A renewal process is a special case of an MRPP, and any
finite-state Markov or semi-Markov process can be constructed using a suitable
MRPP, simply by defining the state of the process at timet to be the state of the
most recently observed point of the MRPP.

The number of points of a stationary MRPP in(0, t] with states in a certain
subsetB of the state space is an important quantity in many applications. For
example, the number of visits toB in (0, t] by a stationary Markov chain can be
expressed in this way. If points with states inB are rare, this quantity should be
approximately compound Poisson distributed. Heuristically, the set of such points
can be partitioned into disjoint clumps, the sizes of which are approximately i.i.d.,
and the number of which are approximately Poisson distributed. For a further
discussion, see Aldous (1989).
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In this paper, the main result is an upper bound for the total variation distance
between the distribution of this quantity and a particular compound Poisson
distribution. The bound can be expressed in terms of the first two moments of the
interrenewal time conditional distributions, and on two constants obtained from
each Radon–Nikodym derivative of an interrenewal time conditional distribution
with respect to an exponential distribution, by solving a small number of systems
of linear equations of dimension at most the total number of states. This is explicit
often enough to be of considerable interest.

We briefly describe the ideas in the proof. If a single statea ∈ Bc is chosen, we
can construct a bound of the desired kind by expressing the quantity of interest
as the accumulated reward of an embedded renewal reward process, for which the
points with statea serve as renewals. We then use Theorem 5.1 in Erhardsson
(2000b) which gives a compound Poisson approximation error bound for the
accumulated reward. However, the bound is small only if points with statea are
frequently observed. For many Markov chains, there exists a frequently observed
statea [see Erhardsson (1999, 2000a, 2001a, b)], but in many other cases no such
a exists.

To solve this problem, we study the pair of random variables(ζ,V ), whereζ is
the distance between two successive points andV is the state of the second point.
We construct a probability space containing(ζ,V ) and a third random variablêζ
such that, for allt , conditional on{ζ̂ ≤ t, ζ > t}, the pair (ζ − t, V ) has the
distributionνγ × µ, whereνγ is an exponential (or geometric) distribution with
meanγ −1, andµ is a fixed distribution. One might say that the event{ζ̂ ≤ t, ζ > t}
indicates a loss of memory at or beforet . For this reason, we call̂ζ a “strong
memoryless time.”

Using strong memoryless times, we embed the stationary MRPP into another
stationary MRPP whose state space contains an additional state 0. The points with
states different from 0 also belong to the original MRPP. The points with state 0
represent losses of memory in the original MRPP, and are frequently observed if
the original MRPP loses its memory quickly enough. The bound is then derived by
an application of Theorem 5.1 in Erhardsson (2000b) to the accumulated reward
of a renewal reward process embedded into the new MRPP, for which the points
with state 0 serve as renewals.

In the last section, we compute the bound explicitly for an important special
case: the number of points in(0, t] of a stationary renewal process in continuous
time. The bound is 0 if the interrenewal times are exponentially distributed, that
is, if the renewal process is Poisson. We intend to present other applications of our
results in the future.

It should be emphasized that the results in this paper are not limit theorems,
but total variation distance error bounds which are valid for all finite parameter
values. If desired, they can be used to derive limit theorems for various kinds of
asymptotics, by showing that the bound converges to 0 under these asymptotics.
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They can also be used to bound the rate of convergence in limit theorems, by
bounding the rate of convergence of the error bound.

It should also be mentioned that the literature contains a number of results
concerning weak convergence to a compound Poisson point process, for special
kinds of point processes (e.g., thinned point processes, or point processes
generated by extreme values). Most of these are pure limit theorems without error
bounds; see, for example, Serfozo (1984) and Leadbetter and Rootzén (1988).
A few error bounds also exist, but not intended for processes of the kind studied in
this paper, and derived using methods very different from ours; see, for example,
Barbour and Månsson (2002).

The rest of the paper is organized as follows. In Section 2, some basic notation is
given. In Section 3, we give necessary and sufficient conditions for the existence of
strong memoryless times, and derive some of their relevant properties. In Section 4,
we derive bounds for the total variation distance between the distribution of the
number of points of an MRPP in(0, t] with states inB and a compound Poisson
distribution. In Section 5, we consider the number of points in(0, t] of a stationary
renewal process, and obtain a more explicit expression for the bound.

2. Basic notation. Sets of numbers are denoted as follows:R = the real
numbers,Z = the integers,R+ = [0,∞), R

′+ = (0,∞), Z+ = {0,1,2, . . .} and
Z

′+ = {1,2, . . .}. The distribution of any random elementX in any measurable
space(S,S ) is denoted byL (X). The Borelσ -algebra of any topological spaceS

is denoted byBS .
A compound Poisson distribution is a probability distribution with a character-

istic function of the formφ(t) = exp(− ∫
R

′+(1 − eitx) dπ(x)), whereπ is a mea-
sure on(R′+,BR

′+) such that
∫
R

′+(1 ∧ x) dπ(x) < ∞. It is denoted by POIS(π ).

If ‖π‖ = π(R′+) < ∞, then POIS(π) = L (
∑U

i=1 Ti), whereL (Ti) = π/‖π‖ for
eachi ∈ Z

′+, U ∼ Po(‖π‖), and all random variables are independent.
The total variation distance is a metric on the space of probability measures on

any measurable space(S,S ). It is defined for two such measuresν1 andν2 by

dTV(ν1, ν2) = sup
A∈S

|ν1(A) − ν2(A)|.

3. Strong memoryless times. In Theorems 3.1–3.3, we define strong memo-
ryless times, give necessary and sufficient conditions for their existence, and derive
some of their relevant properties. Note that Theorem 3.1 holds under more general
conditions than are needed in Section 4. This will facilitate other applications in
the future.

By νγ we mean the exponential distribution with meanγ −1.

THEOREM 3.1. Let (ζ,V ) be a random variable taking values in (R+ × S,

BR+ × S ), where (S,S ) is a measurable space. Let µ be a probability measure
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on (S,S ). Assume that σ :R+ → [0,1] satisfies

σ(t) ≤ inf
C∈B

R
′+×S

(νγ ×µ)(C)>0

P((ζ − t, V ) ∈ C)

(νγ × µ)(C)
∀ t ∈ R+,(3.1)

and that G :R+ → R+, defined by G(t) = σ(t)eγ t , is nondecreasing and right-
continuous. In particular, these conditions are satisfied if equality holds in (3.1).
Then we can define, on the same probability space as (ζ,V ), a nonnegative random
variable ζ̂ (called a strong memoryless time)such that

P(ζ̂ ≤ t, ζ ≤ u,V ∈ A)

= P(ζ ≤ t ∧ u,V ∈ A) + σ(t)
(
1− e−γ [u−t]+)

µ(A)(3.2)

∀ (t, u,A) ∈ R+ × R+ × S ,

and such that P(ζ̂ ≤ ζ ) = 1 and L ((ζ − t, V )|ζ̂ ≤ t, ζ > t) = νγ × µ for each
t ∈ R+. Conversely, assume that the nonnegative random variable ζ̂ , defined on the
same probability space as (ζ,V ), satisfies P(ζ̂ ≤ ζ ) = 1 and L ((ζ − t, V )|ζ̂ ≤ t,

ζ > t) = νγ × µ for each t ∈ R+. Then σ :R+ → [0,1], defined by σ(t) =
P(ζ̂ ≤ t, ζ > t), satisfies (3.1), and G :R+ → R+, defined by G(t) = σ(t)eγ t , is
nondecreasing and right-continuous.

PROOF. For notational convenience, extendσ to a functionσ :R → [0,1]
by definingσ(t) = 0 for eacht < 0, and defineF :R × R × S → [0,1] by
F(t, u,A) = P(ζ ≤ t ∧u,V ∈ A)+σ(t)(1− e−γ [u−t]+)µ(A). It is easy to see that
if we can define a random variable(ζ̂ , ζ,V ) taking values in(R × R × S,BR ×
BR × S ) such that

P(ζ̂ ≤ t, ζ ≤ u,V ∈ A) = F(t, u,A) ∀ (t, u,A) ∈ R × R × S ,

thenP(ζ̂ ≤ ζ ) = 1 andL ((ζ − t, V )|ζ̂ ≤ t, ζ > t) = νγ × µ for eacht ∈ R+.
Hence, for the first part of the theorem it suffices to prove that there exists a
probability distributionλF on (R × R × S,BR × BR × S ) such that

λF

(
(−∞, t] × (−∞, u] × A

) = F(t, u,A) ∀ (t, u,A) ∈ R × R × S .

To do this, we use Theorem 11.3 in Billingsley (1986). DefineH by

H = {(a, b] × (c, d] × A;−∞ < a ≤ b < ∞,−∞ < c ≤ d < ∞,A ∈ S }.
Clearly, H is a semiring generatingBR × BR × S . Define a set function
λF :H → R by

λF

(
(a, b] × (c, d] × A

)
= F(b, d,A) − F(a, d,A) − F(b, c,A) + F(a, c,A)

= P
(
ζ ∈ (a, b] ∩ (c, d],V ∈ A

) + σ(b)
(
e−γ [c−b]+ − e−γ [d−b]+)

µ(A)

− σ(a)
(
e−γ [c−a]+ − e−γ [d−a]+)

µ(A) ∀ (a, b] × (c, d] × A ∈ H .



2450 T. ERHARDSSON

Using the facts thatσ satisfies (3.1) and thatG is nondecreasing, it can be shown
thatλF is nonnegative. For example, ifa < b ≤ c < d , we get

λF

(
(a, b] × (c, d] × A

)
= σ(b)

(
e−γ (c−b) − e−γ (d−b))µ(A)

− σ(a)
(
e−γ (c−a) − e−γ (d−a))µ(A)

= (e−γ c − e−γ d)
(
σ(b)eγ b − σ(a)eγ a)

µ(A) ≥ 0,

while if a ≤ c < b ≤ d we get

λF

(
(a, b] × (c, d] × A

)
= P

(
ζ ∈ (c, b],V ∈ A

) + σ(b)
(
1− e−γ (d−b))µ(A)

− σ(a)
(
e−γ (c−a) − e−γ (d−a))µ(A)

= P
(
ζ ∈ (c, b],V ∈ A

) + σ(b)eγ b(e−γ b − e−γ d)µ(A)

− σ(a)eγ a(e−γ c − e−γ d)µ(A)

≥ P
(
ζ ∈ (c, b],V ∈ A

) − σ(a)eγ a(e−γ c − e−γ b)µ(A) ≥ 0.

We now show thatλF is countably additive onH . In other words, we assume that
(a, b]× (c, d]× A = ⋃∞

i=1(ai, bi]× (ci, di]× Ai , where(a, b]× (c, d]× A ∈ H ,
(ai, bi] × (ci, di] × Ai ∈ H for eachi ∈ Z

′+, and the sets{(ai, bi] × (ci, di] ×
Ai; i ∈ Z

′+} are disjoint, and show that

λF

(
(a, b] × (c, d] × A

) =
∞∑
i=1

λF

(
(ai, bi] × (ci, di] × Ai

)
.(3.3)

DefineFA :R × R → [0,1] by FA(t, u) = F(t, u,A) [whereA is the same set as
in (3.3)]. Define also the semiringH ∗ and the set functionλFA

:H ∗ → R by

H ∗ = {(a, b] × (c, d];−∞ < a ≤ b < ∞,−∞ < c ≤ d < ∞};
λFA

(
(a, b] × (c, d]) = λF

(
(a, b] × (c, d] × A

) ∀ (a, b] × (c, d] ∈ H ∗.

Clearly, FA is continuous from above, and it was shown earlier thatλFA
is

nonnegative. It therefore follows from Theorem 12.5 in Billingsley (1986) that
λFA

can be uniquely extended to a measure on(R × R,BR × BR), which in turn
implies thatλFA

× µ is a measure on(R × R × S,BR × BR × S ). Hence,

λFA

(
(a, b] × (c, d])µ(A) =

∞∑
i=1

λFA

(
(ai, bi] × (ci, di])µ(Ai),
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from which (3.3) will follow if we can show that

∞∑
i=1

P
(
ζ ∈ (ai, bi] ∩ (ci, di],V ∈ A

)
µ(Ai)

=
∞∑
i=1

P
(
ζ ∈ (ai, bi] ∩ (ci, di],V ∈ Ai

)
µ(A).

But this follows from the facts that

P
(
ζ ∈ (a, b] ∩ (c, d],V ∈ A

)
µ(A) =

∞∑
i=1

P
(
ζ ∈ (ai, bi] ∩ (ci, di],V ∈ A

)
µ(Ai)

and

P
(
ζ ∈ (a, b] ∩ (c, d],V ∈ A

) =
∞∑
i=1

P
(
ζ ∈ (ai, bi] ∩ (ci, di],V ∈ Ai

)
.

This concludes the proof of the first part of the theorem.
We next show that ifσ is chosen so that equality holds in (3.1), thenG is

nondecreasing and right-continuous. LetC ∈ BR
′+ × S and define, for each

t ∈ R+, Ct = {(x + t, y); (x, y) ∈ C}. It is easy to show that(νγ × µ)(Ct ) =
e−γ t (νγ × µ)(C) for eacht ∈ R+. Hence, for each 0≤ s < t < ∞,

P((ζ − t, V ) ∈ C)

(νγ × µ)(C)
= P((ζ − s,V ) ∈ Ct−s )e−γ (t−s)

(νγ × µ)(Ct−s)
,

implying that

G(t) = inf
C∈B

R
′+×S

(νγ ×µ)(C)>0

P((ζ − t, V ) ∈ C)eγ t

(νγ × µ)(C)

= inf
C∈B

R
′+×S

(νγ ×µ)(C)>0

P((ζ − s,V ) ∈ Ct−s)eγ s

(νγ × µ)(Ct−s )
≥ G(s),

so G is nondecreasing. Next, fixt ∈ R+ and choose a sequence{Ck ∈ BR
′+ ×

S ; k ∈ Z
′+} such that(νγ × µ)(Ck) > 0 for eachk ∈ Z

′+ and

lim
k→∞

P((ζ − t, V ) ∈ Ck)

(νγ × µ)(Ck)
= inf

C∈B
R

′+×S

(νγ ×µ)(C)>0

P((ζ − t, V ) ∈ C)

(νγ × µ)(C)
.

For each k ∈ Z
′+ and u ∈ R+, define Ck,u = Ck ∩ ((u,∞) × S) and

C−u
k,u = {(x − u,y); (x, y) ∈ Ck,u}. Then, for eachk ∈ Z

′+ and eachu ∈ R+ such
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that(νγ × µ)(Ck,u) > 0,

G(t + u) = inf
C∈B

R
′+×S

(νγ ×µ)(C)>0

P((ζ − t − u,V ) ∈ C)eγ (t+u)

(νγ × µ)(C)

≤ P((ζ − t − u,V ) ∈ C−u
k,u)eγ (t+u)

(νγ × µ)(C−u
k,u)

= P((ζ − t, V ) ∈ Ck,u)e
γ t

(νγ × µ)(Ck,u)
.

This implies that lim supu↓0G(t + u) ≤ G(t), and sinceG is nondecreasing, it
must be right-continuous.

For the last part of the theorem, assume that a nonnegative random variableζ̂

can be defined on the same probability space as(ζ,V ), such thatP(ζ̂ ≤ ζ ) = 1 and
L ((ζ − t, V )|ζ̂ ≤ t, ζ > t) = νγ × µ for eacht ∈ R+. Then,

P
(
(ζ − t, V ) ∈ C

) = (νγ × µ)(C)P(ζ̂ ≤ t, ζ > t)

+ P
(
(ζ − t, V ) ∈ C|ζ̂ > t, ζ > t

)
P(ζ̂ > t, ζ > t)

∀ (t,C) ∈ R+ × (
BR

′+ × S
)
,

which implies thatσ :R+ → [0,1], defined byσ(t) = P(ζ̂ ≤ t, ζ > t), satis-
fies (3.1). Moreover, (3.2) holds withσ defined in this way, which implies that
if a < b ≤ c < d , then

P
(
ζ̂ ∈ (a, b], ζ ∈ (c, d])

= σ(b)
(
e−γ (c−b) − e−γ (d−b)

) − σ(a)
(
e−γ (c−a) − e−γ (d−a)

)
= (e−γ c − e−γ d)

(
σ(b)eγ b − σ(a)eγ a

) ≥ 0,

soG is nondecreasing, and clearly also right-continuous.�

THEOREM 3.2. Let (ζ̂ , ζ,V ) be a random variable taking values in (R+ ×
R+ × S,BR+ × BR+ × S ), where (S,S ) is a measurable space. Let µ be a
probability measure on (S,S ). Define σ :R+ → [0,1] by σ(t) = P(ζ̂ ≤ t, ζ > t).
If P(ζ̂ ≤ ζ ) = 1 and L ((ζ − t, V )|ζ̂ ≤ t, ζ > t) = νγ × µ for each t ∈ R+, then
L ((ζ̂ , ζ − ζ̂ , V )|ζ̂ < ζ ) = L (ζ̂ |ζ̂ < ζ ) × νγ × µ, where

P(ζ̂ ≤ t, ζ̂ < ζ ) = σ(t) + γ

∫ t

0
σ(x) dx ∀ t ∈ R+

and

P(ζ̂ = ζ ≤ t, V ∈ A)

= P(ζ ≤ t, V ∈ A) − µ(A)γ

∫ t

0
σ(x) dx ∀ (t,A) ∈ R+ × S .

Conversely, if P(ζ̂ ≤ ζ ) = 1 and L ((ζ̂ , ζ − ζ̂ , V )|ζ̂ < ζ ) = L (ζ̂ |ζ̂ < ζ )×νγ ×µ,
then L ((ζ − t, V )|ζ̂ ≤ t, ζ > t) = νγ × µ for each t ∈ R+.
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PROOF. From (3.2), and using bounded convergence, we get

P
(
ζ̂ ∈ (0, t], ζ − ζ̂ ∈ (0, u],V ∈ A

)
= lim

N→∞

N∑
i=1

P

(
ζ̂ ∈

(
(i − 1)t

N
,
it

N

]
, ζ ∈

(
it

N
,
it

N
+ u

]
,V ∈ A

)

= µ(A) lim
N→∞

(
(1− e−γ u)

N∑
i=1

σ

(
it

N

)

− (
e−γ (t/N) − e−γ (t/N+u)

) N∑
i=1

σ

(
(i − 1)t

N

))

= µ(A)(1− e−γ u) lim
N→∞

N∑
i=1

(
σ

(
it

N

)
− σ

(
(i − 1)t

N

))

+ µ(A)(1− e−γ u) lim
N→∞

(
1− e−γ (t/N)) N∑

i=1

σ

(
(i − 1)t

N

)
∀ (t, u,A) ∈ R+ × R+ × S .

The first sum telescopes. For the second sum, we note thatσ is Riemann integrable
on [0, t]. This holds since the functionG :R+ → R+, defined byG(t) = σ(t)eγ t ,
is nondecreasing, hence Riemann–Stieltjes integrable on[0, t] with respect to
α :R+ → [0,1], defined byα(t) = 1− e−γ t ; see Theorems 6.9 and 6.17 in Rudin
(1976). This gives

P
(
ζ̂ ∈ (0, t], ζ − ζ̂ ∈ (0, u],V ∈ A

)
= µ(A)(1− e−γ u)

(
σ(t) − σ(0) + γ

∫ t

0
σ(x) dx

)
∀ (t, u,A) ∈ R+ × R+ × S .

To complete the proof of the first part of the theorem, note that

P
(
ζ̂ = 0, ζ ∈ (0, u],V ∈ A

) = µ(A)(1− e−γ u)σ (0),

and thatP(ζ̂ = ζ ≤ t, V ∈ A) = P(ζ̂ ≤ t, V ∈ A) − P(ζ̂ ≤ t, ζ̂ < ζ,V ∈ A). For
the second part of the theorem,

P(ζ − t ≤ u,V ∈ A, ζ̂ ≤ t, ζ > t)

= E
(
eγ ζ̂ I {ζ̂ ≤ t, ζ̂ < ζ })(e−γ t − e−γ (t+u)

)
µ(A)

= P(ζ̂ ≤ t, ζ > t)(1− e−γ u)µ(A) ∀ (t, u,A) ∈ R+ × R+ × S . �
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THEOREM 3.3. Let the conditions of Theorem 3.1hold with S a finite set, and
let f :R+ × S → R+ be the Radon–Nikodym derivative with respect to νγ × µ of
the part of L (ζ,V ) which is absolutely continuous with respect to νγ × µ. Then,

inf
C∈B

R
′+×S

(νγ ×µ)(C)>0

P((ζ − t, V ) ∈ C)

(νγ × µ)(C)
= e−γ t ess inf

x∈(t,∞)×S
f (x) ∀ t ∈ R+.

PROOF. The “≥” part is easy. For the “≤” part, we use Theorem 35.8 in
Billingsley (1986). For eachn ∈ Z+, letFn be theσ -algebra generated by the sets
{(k2−n, (k + 1)2−n] × {s}; k ∈ Z+, s ∈ S}. It is well known thatσ(

⋃∞
n=0 Fn) =

BR
′+ × BS . Therefore, forνγ × µ–almost everyx ∈ R+ × S, f (x) is the limit of

ratios of the kind appearing on the left-hand side.�

REMARK 3.1. The strong memoryless timeζ̂ for which equality holds in (3.1)
is optimal in the sense thatP(ζ̂ ≤ t|ζ > t) is maximized uniformly over allt ∈ R+.

REMARK 3.2. Theorems 3.1 and 3.2 imply thatζ̂ is a strong memoryless time
for (ζ,V ) if and only if (ζ̂ , ζ − ζ̂ , V ) = χ(η0, η1,V1) + (1− χ)(η2,0,V2), where
the random variablesχ , η0, η1, V1 and(η2,V2) are independent,χ takes values
in {0,1}, η1 is exponentially distributed with meanγ −1 andL (V1) = µ. Clearly,
σ(t) = P(ζ̂ ≤ t, ζ > t) = P(χ = 1)E(e−γ (t−η0)I {η0 ≤ t}).

REMARK 3.3. LetS = {1}, and letf be the Radon–Nikodym derivative of
L (ζ ) with respect to the exponential distribution with meanγ −1.

1. Assume thatf (t) ≥ limu→∞ f (u) = c > 0 for all t ∈ R+. Then, the optimal
choice ofσ is σ(t) = ce−γ t which, by Theorem 3.2, implies thatP(χ = 1) = c

andη0 ≡ 0.
2. Assume thatf is nondecreasing. Then, the optimal choice ofσ is σ(t) =

f (t)e−γ t which, again by Theorem 3.2, implies thatχ ≡ 1 andP(η0 ≤ t) =
f (t)e−γ t + P(ζ ≤ t) for eacht ∈ R+.

REMARK 3.4. The strong memoryless times were originally inspired by
another construction, the strong stationary times used in Aldous and Diaconis
(1986, 1987) and Diaconis and Fill (1990) to bound the rate of convergence
of a finite-state discrete-time Markov chain{ηi; i ∈ Z+} to the stationary
distribution µ. A strong stationary timeT is a randomized stopping time such
that L (ηi |T ≤ i) = µ for eachi ∈ Z+. It seems unlikely that strong stationary
times could be used (even in the restricted setting of discrete-time Markov
chains) to solve the problem considered in the present paper, without significant
modifications leading in the end to the construction of strong memoryless times.

Strong memoryless times are also related to a construction due to Athreya and
Ney (1978) and Nummelin (1978), known as splitting. This is an embedding of a
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discrete-time Markov chain on a general state space (satisfying an irreducibility
condition) into another Markov chain on a larger state space which contains
a recurrent single state. In general, this recurrent state need not be frequently
observed, so splitting does not suffice (even in the discrete-time Markov chain
setting) to solve the problem considered in the present paper.

We end this section with lattice versions of the preceding theorems. The proofs
are analogous to those above, but simpler, since right-continuity is trivial in the
lattice case.

THEOREM 3.4. Let the conditions of Theorem 3.1 hold, with the following
changes: R+ is replaced by Z+, νγ is the geometric distribution with mean γ −1,
and e−γ is replaced by 1 − γ in the definition of G and in (3.2). Then, all the
assertions of Theorem 3.1remain valid.

THEOREM 3.5. Let the conditions of Theorem 3.2 hold, with the following
changes: R+ is replaced by Z+, and νγ is the geometric distribution with
mean γ −1. Then, all the assertions of Theorem 3.2 remain valid, with

∫ t
0 σ(x) dx

replaced by
∑t−1

i=0 σ(i).

4. Markov renewal point processes. In this section we use the results in
Section 3 to address the problem described in Section 1. Recall that we wish to
find a bound for the total variation distance between the distribution of the number
of points of an MRPP in(0, t] with states inB, and a suitable compound Poisson
distribution. We assume that the reader is familiar with the basic theory of marked
point processes. Good references are Rolski (1981), Franken, König, Arndt and
Schmidt (1982) and Port and Stone (1973).

We begin with the definition of an MRPP. LetS = {1, . . . ,N}, and let
{(ζ S

i ,V S
i+1); i ∈ Z} be a stationary discrete-time Markov chain taking values in

(R+ × S,BR+×S), with a transition probabilityp such thatp((t, s), ·) = p(s, ·)
for each(t, s) ∈ R+ × S. Assume that{V S

i ; i ∈ Z} is irreducible, and that 0<
E(ζ S

0 ) < ∞. (We collectively denote these conditions by C0.)
For eachA ⊂ S, let {(ζA

i ,V A
i+1); i ∈ Z} have the distributionL ((ζ S

i ,V S
i+1); i ∈

Z|V S
0 ∈ A), and define{UA

i ; i ∈ Z} byUA
0 = 0,UA

i = ∑i−1
j=0 ζA

j for eachi ≥ 1, and

UA
i = −∑−1

j=i ζ
A
j for eachi ≤ −1. Define the point process�A on(R×S,BR×S)

by �A(·) = ∑
i∈Z I {(UA

i ,V A
i ) ∈ ·}. �A is a Palm version (with respect to marks

in A) of an MRPP.
Next, define the point process� on (R × S,BR×S) by

E(g(�)) = E(
∫ UA

τA
1

0 g(θt (�
A)) dt)

E(UA
τA
1
)

∀g ∈ F +
N (R×S),(4.1)
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whereF +
N (R×S) are the nonnegative Borel functions on the space of counting

measures on(R×S,BR×S), τA
1 = min{i ≥ 1;V A

i ∈ A} andθ is the shift operator,
defined byθt (�)((a, b]× ·) = �((a + t, b + t]× ·). This definition is independent
of the choice ofA, and� is a stationary marked point process. There exist random
variables{(Ui,Vi); i ∈ Z} (where · · · ≤ U−1 ≤ U0 ≤ 0 < U1 ≤ · · ·) such that
�(·) = ∑

i∈Z I {(Ui,Vi) ∈ ·}. � is a stationary MRPP.
The quantity that we are interested in can be expressed as�((0, t] × B). We

assume without loss of generality thatB = S, since otherwise we can replace�

by its restriction to(R × B,BR×B), which is also a stationary MRPP.
Analogously, we may define, using a stationary discrete-time Markov chain

{(ζ S
i ,V S

i+1); i ∈ Z} taking values in(Z+ × S,BZ+×S), a stationary MRPP in
discrete time. In this case, for eachA ⊂ S, the distribution of� is given by a
discrete version of(4.1), where the integral is replaced by a sum over the integers
{0, . . . ,UA

τA
1

− 1}.
We now explain how to use strong memoryless times to embed a stationary

MRPP into another stationary MRPP which has favorable properties from the
point of view of compound Poisson approximation. Consider a stationary discrete-
time Markov chain{(ζ S

i ,V S
i+1); i ∈ Z} on the state space(R+ × S,BR+×S) with

transition probabilityp, satisfying condition C0. Denote byνγ the exponential
distribution with meanγ −1, and letµ be a probability measure on(S,BS). For
eachs ∈ S, assume thatσs :R+ → [0,1] satisfies

σs(t) ≤ inf
C∈B

R
′+×BS

(νγ ×µ)(C)>0

P((ζ S
0 − t, V S

1 ) ∈ C|V S
0 = s)

(νγ × µ)(C)
∀ t ∈ R+,(4.2)

and thatGs :R+ → R+, defined byGs(t) = σs(t)e
γ t , is nondecreasing and

right-continuous. Assume also that
∫ ∞
0 σs(t) dt > 0 for at least ones ∈ S.

(We collectively denote these conditions by C1.) LetS̃ = S ∪ {0}, and let
{(ζ̃ S̃

i , Ṽ S̃
i+1); i ∈ Z} be a stationary discrete-time Markov chain on the state space

(R+ × S̃,B
R+×S̃ ), with a transition probabilitỹp defined for each(s, s′) ∈ S × S

by

p̃(s, [0, u] × {0}) = σs(u) + γ

∫ u

0
σs(t) dt,

p̃(s, [0, u] × {s′}) = p(s, [0, u] × {s′}) − µ(s′)γ
∫ u

0
σs(t) dt,

p̃(0, [0, u] × {0}) = (1− ε)
(
1− e−(γ /ε)u

)
,

p̃(0, [0, u] × {s′}) = µ(s′)ε
(
1− e−(γ /ε)u

)
,

whereε ∈ (0,1). For eachA ⊂ S̃, let �̃A(·) = ∑
i∈Z I {(ŨA

i , Ṽ A
i ) ∈ ·} be the Palm

version (with respect to marks inA) of the MRPP associated with{(ζ̃ S̃
i , Ṽ S̃

i+1);
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i ∈ Z}, and let�0 = �{0}. �̃A is a point process on(R × S̃,B
R×S̃ ). Heuristically,

0 is a frequently observed state for�̃A if ε is small enough, and if the MRPP�A

loses its memory quickly enough after each occurrence of a point. Let also�̃(·) =∑
i∈Z I {(Ũi, Ṽi) ∈ ·} be the stationary MRPP associated with{(ζ̃ S̃

i , Ṽ S̃
i+1); i ∈ Z}.

The following fact is now crucial, since it implies that we have constructed an
embedding: the restriction of̃� to (R × S,BR×S) has the same distribution as
�. To see this, letC1, . . . ,Ck be disjoint subsets ofR × S, let Ct

i = {(x + t, y);
(x, y) ∈ Ci} for each t ∈ R+ and let n1, . . . , nk be nonnegative integers.
Applying (4.1) withA = S gives

E

(
k∏

i=1

I {�̃(Ci) = ni}
)

= E(
∫ ŨS

τS
1

0
∏k

i=1 I {�̃S(Ct
i ) = ni}dt)

E(ŨS

τS
1
)

.

Clearly, we may replacẽ�S(·) by
∑

i∈Z I {(ŨS

τS
i

, Ṽ S

τS
i

) ∈ ·}, where · · · ≤ τS−1 ≤
τS

0 = 0 < τS
1 ≤ · · · are the random integers{i ∈ Z; Ṽ S

i ∈ S}. It is straightforward
to show, using Theorems 3.1 and 3.2 and the strong Markov property, that the
random sequence{(ŨS

τS
i+1

− ŨS

τS
i

, Ṽ S

τS
i+1

); i ∈ Z} is a stationary Markov chain with

transition probabilityp, that is, it has the same distribution as{(ζ S
i ,V S

i+1); i ∈ Z}.
Hence,{(ŨS

τS
i

, Ṽ S

τS
i

); i ∈ Z} has the same distribution as{(US
i ,V S

i ); i ∈ Z}, and

since�S(·) = ∑
i∈Z I {(US

i ,V S
i ) ∈ ·}, the proof is complete.

Finally, we need the following tools. Define{(X0
i , Y

0
i ); i ∈ Z} by (X0

i , Y
0
i ) =

(Ũ0
τ0
i

, τ0
i+1−τ0

i −1), where· · · < τ0−1 < τ0
0 = 0 < τ0

1 < · · · are the random integers

{i ∈ Z; Ṽ 0
i = 0}. The strong Markov property implies that{(X0

i+1 − X0
i , Y

0
i );

i ∈ Z} is an i.i.d. sequence. Letξ0(·) = ∑
i∈Z I {(X0

i , Y
0
i ) ∈ ·} be a point process

on (R × Z+,BR×Z+). By definition, this is a Palm version of a renewal reward
process. Similarly, define{(Xi, Yi); i ∈ Z} by (Xi, Yi) = (Ũτi

, τi+1 − τi − 1),
where · · · < τ−1 < τ0 ≤ 0 < τ1 < · · · are the random integers{i ∈ Z; Ṽi = 0},
and let ξ(·) = ∑

i∈Z I {(Xi, Yi) ∈ ·} be a point process on(R × Z+,BR×Z+).
It is straightforward to show thatξ is the stationary renewal reward process
corresponding toξ0.

It is now easy to state and prove the main result of this section. It will be
demonstrated in Section 5 that the bound given below can be expressed in terms of
a small number of parameters obtained from the functions{σs; s ∈ S}, by solving
a small number of systems of linear equations.

THEOREM 4.1. Let � be a stationary MRPP with state space S = {1, . . . ,N},
satisfying condition C0 above. Let γ > 0, let µ be a probability measure on
(S,BS) and assume that the functions {σs :R+ → [0,1]; s ∈ S} satisfy condition
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C1 above. Then,

dTV
(
L

(
�

(
(0, t] × S

))
,POIS(π)

)
(4.3)

≤
2E(Ũ0

τ0
1−1

)

E(X0
1)

+ H1(π)
3tE(Y 0

0 )

E(X0
1)

(
E(X0

1Y
0
0 )

E(X0
1)

+ E((X0
1)

2)E(Y 0
0 )

E(X0
1)

2

)
,

where πi = t

E(X0
1)

P(Y 0
0 = i) for i ≥ 1, and

H1(π) ≤



(
1∧ 1

π1

)
e‖π‖, always,

1∧ 1

π1 − 2π2

(
1

4(π1 − 2π2)
+ log+(

2(π1 − 2π2)
))

,

if iπi ≥ (i + 1)πi+1 ∀ i ≥ 1,
1

(1− 2θ)λ
, if θ < 1

2,

where λ = ∑∞
i=1 iπi and θ = 1

λ

∑∞
i=2 i(i − 1)πi .

PROOF. The fact thatL (�((0, t] × S)) = L (�̃((0, t] × S)) and the triangle
inequality imply that

dTV
(
L

(
�

(
(0, t] × S

))
,POIS(π)

)
≤ dTV

(
L

(
�̃

(
(0, t] × S

))
,L

(∫
(0,t]×Z

′+
v dξ(u, v)

))

+ dTV

(
L

(∫
(0,t]×Z

′+
v dξ(u, v)

)
,POIS(π)

)
.

For the first term on the right-hand side, the basic coupling inequality and (4.1)
give

dTV

(
L

(
�̃

(
(0, t] × S

))
,L

(∫
(0,t]×Z

′+
v dξ(u, v)

))
≤ 2P(Ṽ1 ∈ S) =

2E(Ũ0
τ0
1−1

)

E(X0
1)

.

For the second term, sinceξ is a stationary renewal reward process, Theorem 5.1 in
Erhardsson (2000b) gives a bound which equals the second term on the right-hand
side in (4.3). The proof of Theorem 5.1 in Erhardsson (2000b) uses the coupling
version of Stein’s method for compound Poisson approximation. The last of the
three bounds for the Stein constantH1(π) is due to Barbour and Xia (1999).�

We finally give, without proof, the lattice version of the preceding theorem.

THEOREM 4.2. Let the conditions of Theorem 4.1 hold, with the following
changes: R+ is replaced by Z+, νγ is the geometric distribution with mean γ −1,
and e−γ is replaced by 1 − γ in the definition of Gs for each s ∈ S. Then, the
bound (4.3)remains valid, with E((X0

1)
2) replaced by E(X0

1(X
0
1 − 1)).
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5. Application to renewal counts. The bound (4.3) does not at first sight
seem explicit. However, by using the Markov property and solving a small
number of systems of linear equations of dimension at mostN , it is possible
to express all quantities appearing in (4.3) in terms ofγ , µ, {E(ζ S

0 I {V S
1 =

s′}|V S
0 = s); (s, s′) ∈ S × S}, {E((ζ S

0 )2|V S
0 = s); s ∈ S}, {∫ ∞

0 σs(t) dt; s ∈ S} and
{∫ ∞

0
∫ ∞
u σs(t) dt du; s ∈ S}.

Below, we consider an important special case. We give a bound for the total
variation distance between the distribution of the number of points in(0, t]
of a stationary renewal process in continuous time and a compound Poisson
distribution.

By νγ we mean the exponential distribution with meanγ −1.

THEOREM 5.1. Let � be a stationary renewal point process on (R,BR)

with generic interrenewal time ζ . Let f be the Radon–Nikodym derivative of the
absolutely continuous part of L (ζ ) with respect to νγ . Assume that σ :R+ →
[0,1] satisfies

σ(t) ≤ e−γ t inf
x∈(t,∞)

f (x) ∀ t ∈ R+,(5.1)

and that G :R+ → [0,1], defined by G(t) = σ(t)eγ t , is nondecreasing and right-
continuous; these conditions are satisfied if equality holds in (5.1). Let c0 =
γ

∫ ∞
0 σ(t) dt and c1 = γ

∫ ∞
0

∫ ∞
u σ (t) dt du. Assume that c0 > 0. Then,

dTV
(
L

(
�((0, t])),POIS(π)

)
≤ H1(π)

3t

E(ζ )2

(
E(ζ ) − γ −1c0

c0
+ E(ζ ) − c1

c0
+ E(ζ 2) − 2γ −1c1

E(ζ )

+ 2(E(ζ ) − c1)(E(ζ ) − γ −1c0)

c0E(ζ )

)

+ 2(E(ζ ) − γ −1c0)

E(ζ )
,

where πi = ‖π‖(1 − c0)
i−1c0 for i ≥ 1, ‖π‖ = tc0/E(ζ ), and

H1(π) ≤



(
1

‖π‖c0
∧ 1

)
exp(‖π‖), if c0 ∈ (0,1],

1

‖π‖c0(2c0 − 1)

(
1

4‖π‖c0(2c0 − 1)
+ log+(

2‖π‖c0(2c0 − 1)
)) ∧ 1,

if c0 ∈ [1
2,1

]
,

c2
0

‖π‖(5c0 − 4)
, if c0 ∈ (4

5,1
]
.



2460 T. ERHARDSSON

PROOF. We shall compute the bound (4.3) in the caseS = {1} for a fixedε, and
let ε → 0. All quantities appearing in (4.3) can be expressed in terms ofγ , E(ζ ),
E(ζ 2), c0 andc1, by solving a small number of systems of linear equations. To do

this, recall from Section 4 the definitions of the Markov chain{(ζ̃ S̃
i , Ṽ S̃

i+1); i ∈ Z}
and the random sequences{(ζ̃ 0

i , Ṽ 0
i+1); i ∈ Z} and {(X0

i , Y
0
i ); i ∈ Z}. Also, let

τ1 = min{i ∈ Z
′+; Ṽ S̃

i = 0} andτ0
1 = min{i ∈ Z

′+; Ṽ 0
i = 0}.

1. Clearly,P(Y 0
0 = k) = P(τ0

1 = k + 1) = ε(1 − c0)
k−1c0 for eachk ∈ Z

′+. In
particular,E(Y 0

0 ) = ε/c0.

2. Defineh0 : {0,1} → R+ by h0(s) = E(
∑τ1−1

i=0 ζ̃ S̃
i |Ṽ S̃

0 = s). Conditioning on

(ζ̃ S̃
0 , Ṽ S̃

1 ) and using the Markov property, we see thatE(X0
1) = h0(0) = εγ −1 +

εh0(1) andh0(1) = E(ζ̃ S̃
0 |Ṽ S̃

0 = 1) + (1 − c0)h0(1). From the definition of̃p

we see thatE(ζ̃ S̃
0 |Ṽ S̃

0 = 1) = E(ζ ) − γ −1c0. It follows thath0(1) = (E(ζ ) −
γ −1c0)/c0 andE(X0

1) = εE(ζ )/c0.

3. Define h1 : {0,1} → R+ and h2 : {0,1} → R+ by h1(s) = E(
∑τ1−1

i=0 (ζ̃ S̃
i )2|

Ṽ S̃
0 = s) and h2(s) = E(

∑τ1−1
i=0 ζ̃ S̃

i

∑τ1−1
j=i+1 ζ̃ S̃

j |Ṽ S̃
0 = s), respectively. Again

conditioning on (ζ̃ S̃
0 , Ṽ S̃

1 ) and using the Markov property, we see that

E((X0
1)

2) = E((
∑τ1−1

i=0 ζ̃ S̃
i )2|Ṽ S̃

0 = 0) = 2ε2γ −2 + εE((
∑τ1−1

i=0 ζ̃ S̃
i )2|Ṽ S̃

0 = 1) +
2ε2γ −1h0(1) = 2ε2γ −2 + εh1(1) + 2εh2(1) + 2ε2γ −1h0(1). Also, h1(1) =
E((ζ̃ S̃

0 )2|Ṽ S̃
0 = 1) + (1 − c0)h1(1), andh2(1) = E(ζ̃ S̃

0 I {Ṽ S̃
1 = 1}|Ṽ S̃

0 = 1) ×
h0(1) + (1 − c0)h2(1). Again, from the definition of̃p we see thatE((ζ̃ S̃

0 )2|
Ṽ S̃

0 = 1) = E(ζ 2) − 2γ −1c1, and E(ζ̃ S̃
0 I {Ṽ S̃

1 = 1}|Ṽ S̃
0 = 1) = E(ζ ) − c1. It

follows thath1(1) = (E(ζ 2) − 2γ −1c1)/c0 andh2(1) = (E(ζ ) − c1)(E(ζ ) −
γ −1c0)/c

2
0. Hence,

E
(
(X0

1)
2) = 2ε2γ −2 + 2(ε2γ −1

E(ζ ) − ε2γ −2c0)

c0
+ εE(ζ 2) − 2εγ −1c1

c0

+ 2(E(ζ ) − c1)(εE(ζ ) − εγ −1c0)

c2
0

.

4. Defineh3 : {0,1} → R+ andh4 : {0,1} → R+ by h3(s) = E(
∑τ1−1

i=0
∑τ1−1

j=i ζ̃ S̃
j |

Ṽ S̃
0 = s) andh4(s) = E(

∑τ1−1
i=0 ζ̃ S̃

i (τ1 − 1 − i)|Ṽ S̃
0 = s). Yet again condition-

ing on (ζ̃ S̃
0 , Ṽ S̃

1 ) and using the Markov property, we see thatE(X0
1Y

0
0 ) =

E(
∑τ1−1

i=0 ζ̃ S̃
i (τ1 − 1)|Ṽ S̃

0 = 0) = ε2γ −1
E(τ1|Ṽ S̃

0 = 1) + εE(τ1
∑τ1−1

i=0 ζ̃ S̃
i |Ṽ S̃

0 =
1) = ε2γ −1

E(τ1|Ṽ S̃
0 = 1) + εh3(1) + εh4(1). Likewise,h3(1) = h0(1) + (1 −

c0)h3(1), andh4(1) = E(ζ̃ S̃
0 I {Ṽ S̃

1 = 1}|Ṽ S̃
0 = 1)E(τ1|Ṽ S̃

0 = 1)+ (1− c0)h4(1).
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It follows thath3(1) = (E(ζ )−γ −1c0)/c
2
0 andh4(1) = (E(ζ )− c1)/c

2
0. Hence,

E(X0
1Y

0
0 ) = ε2γ −1

c0
+ εE(ζ ) − εγ −1c0

c2
0

+ εE(ζ ) − εc1

c2
0

.

5. It holds thatE(Ũ0
τ0
1−1

) = E(
∑τ1−2

i=0 ζ̃ S̃
i |Ṽ S̃

0 = 0) ≤ E(ζ̃ S̃
0 I {Ṽ S̃

1 = 1}|Ṽ S̃
0 = 0) +

εh0(1) = ε2γ −1 + (εE(ζ ) − εγ −1c0)/c0.

We finally letε → 0 in (4.3). �

REMARK 5.1. In order to clarify what is needed to make the bound in
Theorem 5.1 small, recall from Remark 3.2 the representationζ = χ(η0 + η1) +
(1− χ)η2, where the random variablesχ , η0, η1 andη2 are independent,χ takes
values in{0,1} andη1 is exponentially distributed with meanγ −1. It is easy to
see thatP(χ = 1) = c0 andE(χ(η0 + η1)) = c1, implying thatE(ζ ) − γ −1c0 =
c0E(η0) + (1 − c0)E(η2), E(ζ ) − c1 = (1 − c0)E(η2) and E(ζ 2) − 2γ −1c1 =
c0E(η2

0) + (1− c0)E(η2
2).

As a consequence, assume thatc0 ≥ c > 0 and 0< a ≤ t/E(ζ ) ≤ b < ∞ (if
c > 4

5, the second condition is not needed). Then, the bound in Theorem 5.1 is
bounded above and below by a positive constant times the expression

max
{

E(η0)

E(ζ )
,
E(η2

0)

E(ζ )2
,
(1− c0)E(η2)

E(ζ )
,
(1− c0)E(η2

2)

E(ζ )2

}
.

REMARK 5.2. The bound given in Theorem 5.1 simplifies further ifL (ζ )

has a Radon–Nikodym derivativef with respect toνγ for someγ > 0, and
infx∈(t,∞) f (x) = c > 0 for eacht ∈ R+. It is then clear that we may choosec0 = c

andc1 = γ −1c.
For example, assume thatL (ζ ) is DFR (decreasing failure rate), and the failure

rate has a strictly positive limitγ > 0. It then follows from Remark 4.9 in Brown
(1983) thatf (x) decreases monotonically asx → ∞ to a limit c ≥ 0. If c > 0, we
are in the case just described.

REMARK 5.3. Assume that� is a Poisson process, that is, thatL (ζ ) = νγ

for someγ > 0. Then, from Remark 5.2,c0 = 1 andc1 = γ −1, so the bound given
in Theorem 5.1 is 0. The approximating distribution POIS(π) is Po(tγ ).

REFERENCES

ALDOUS, D. (1989).Probability Approximations via the Poisson Clumping Heuristic. Springer, New
York.

ALDOUS, D. and DIACONIS, P. (1986). Shuffling cards and stopping times.Amer. Math. Monthly
93 333–348.



2462 T. ERHARDSSON

ALDOUS, D. and DIACONIS, P. (1987). Strong uniform times and finite random walks.Adv. in Appl.
Math. 8 69–97.

ATHREYA, K. B. and NEY, P. (1978). A new approach to the limit theory of recurrent Markov chains.
Trans. Amer. Math. Soc. 245 493–501.

BARBOUR, A. D. and MÅNSSON, M. (2002). Compound Poisson process approximation.Ann.
Probab. 30 1492–1537.

BARBOUR, A. D. and XIA , A. (1999). Poisson perturbations.ESAIM Probab. Statist. 3 131–150.
BILLINGSLEY, P. (1986).Probability and Measure, 2nd ed. Wiley, New York.
BROWN, M. (1983). Approximating IMRL distributions by exponential distributions, with applica-

tions to first passage times.Ann. Probab. 11 419–427.
DIACONIS, P. and FILL , J. A. (1990). Strong stationarytimes via a new form of duality.Ann. Probab.

18 1483–1522.
ERHARDSSON, T. (1999). Compound Poisson approximation for Markov chains using Stein’s

method.Ann. Probab. 27 565–596.
ERHARDSSON, T. (2000a). Compound Poisson approximation for counts of rare patterns in Markov

chains and extreme sojourns in birth–death chains.Ann. Appl. Probab. 10 573–591.
ERHARDSSON, T. (2000b). On stationary renewal reward processes where most rewards are zero.

Probab. Theory Related Fields 117 145–161.
ERHARDSSON, T. (2001a). On the number of lost customers in stationary loss systems in the light

traffic case.Queueing Systems Theory Appl. 38 25–47.
ERHARDSSON, T. (2001b). Refined distributional approximations for the uncovered set in the

Johnson–Mehl model.Stochastic Process. Appl. 96 243–259.
FRANKEN, P., KÖNIG, D., ARNDT, U. and SCHMIDT, V. (1982). Queues and Point Processes.

Wiley, Chichester.
LEADBETTER, M. R. and ROOTZÉN, H. (1988). Extremal theory for stochastic processes.Ann.

Probab. 16 431–478.
NUMMELIN , E. (1978). A splitting technique for Harris recurrent chains.Z. Wahrsch. Verw. Gebiete

43 309–318.
PORT, S. C. and STONE, C. J. (1973). Infinite particle systems.Trans. Amer. Math. Soc. 178

307–340.
ROLSKI, T. (1981).Stationary Random Processes Associated with Point Processes. Lecture Notes in

Statist. 5. Springer, New York.
RUDIN, W. (1976).Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, Singapore.
SERFOZO, R. F. (1984). Rarefactions of compound point processes.J. Appl. Probab. 21 710–719.

DEPARTMENT OFMATHEMATICS

ROYAL INSTITUTE OFTECHNOLOGY

S-100 44 STOCKHOLM

SWEDEN

E-MAIL : torkele@math.kth.se


