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TRIMMED TREES AND EMBEDDED PARTICLE SYSTEMS!

By KLAUS FLEISCHMANN AND JAN M. SWART
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In a supercritical branching particle system, the trimmed tree consists of
those particles which have descendants at all times. We develop this concept
in the superprocess setting. For a class of continuous superprocesses with
Feller underlying motion on compact spaces, we identify the trimmed tree,
which turns out to be a bary splitting particle system with a new underlying
motion that is a compensatddtransform of the old one. We show how
trimmed trees may be estimated from above by embedded binary branching
particle systems.
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1. Introduction and main results.

1.1. Introduction. It frequently happens that a superprocéss= (X;);>o,
taking values in the spac#((E) of finite measures on some spage and a
branching particle process = (X;);>o are related by the formula

(1.1) pLPOMIX .= PHPOISX,) €], >0, ueM(E).

Here Poi$X;) denotes a Poisson point measure with random interdjtyand
P£(Poidw) denotes the law of the proceds started with initial law.£(Xo) =
L(Poigu)). For example, (1.1) holds wheXi is the standard, critical, continuous
super-Brownian motion inR¢, which corresponds to the evolution equation
%u; = %Au, — utz, and X is a system of binary branching Brownian motions
with branching rate 1 and death rate 1. Loosely speakihgan be obtained
from X by PoissonizationPoissonization relations of the form (1.1) have been
exploited by various authors, for example, Gorostiza, Roelly-Coppoletta and
Wakolbinger ([17], formula (8)), Klenke ([19], formula (4.19)) and Winter ([26],
formula (1.23)).

In the present paper, we investigate Poissonization relations for a class of
continuous superprocesses on compacta with Feller underlying motion. We give
conditions that imply that a superprocelsand a branching particle systekn
can be coupleds processesuch that

(L2)  PIX, €-[(X)ozs=i] = P[POISAX,) €-|X,]  asvi=0,

whereh is a sufficiently smooth density. Formula (1.2) says that the conditional
law of X;, given (X;)o<s<s, IS the law of a Poisson point measure with
intensity 2,. For certain critical and subcritical superprocesses, a coupling of
the form (1.2) has occurred before in [20], Theorem 3.1 and Section 3.2.

The weighted superproces& X,),>o that occurs in (1.2) is a superprocess
itself, which compared t& has a new branching mechanism and a new underlying
motion, the latter being a “compensatekFtransform of the old one. For the
special case tha¥X is a superdiffusion, this fact was proved and exploited by
Englander and Pinsky [7].

Let X andX be related by (1.2), lett := {3t < oo such thatX; =0V¢ > 1}
denote the event thaki becomes extinct after some random timeand set
A:={3d1t <oosuchthatX;, =0Vt > t}. SinceP[X, =0|X; =0]=1,r >0,
we clearly haveP (A \ A) = 0. We investigate whef; andX can be coupled such
that P(A \ 4A) = 0 also holds, that is, the extinction &f implies the extinction
of X.

In particular, for a supercritical superproceéswe construct a binary splitting
particle systenX, such thatX and X are related by a formula of the form (1.2),
and, moreovelX corresponds, loosely speaking, to those infinitesimal bits of mass
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of X which have descendants at all times. More precisely, we couple the historical
processes¢ and X associated witl and X such that

(1.3) Vr>03r <ocostVr>t  supfX,) =supp(X,omgy)  as.

Here o ;) denotes projection on the spagk:[0, t] of cadlag paths fronfO, ¢]
into E. Informally, X, is a random measure on paths of lengthmeasuring
how much eacHine of descentontributes to the population at time likewise,
X, counts how often each line of descent contributeX toThus, (1.3) says that
eventually all mass of the superprocéssdescends from finitely many lines of
descent, which are given by sugp). In this special case, the functignthat
occurrs in (1.2) ist = p, theinfinitesimal survival probabilityf X, given by

(1.4) p(x):iPssx[Xt>OVtZO] : x€eE.
de e=0

We call X the trimmed treeof X. The reduced treeof a branching process
describes the family relations between all particles alive at a fixed time and their
ancestors (neglecting those lines of descent that died earlier). Thus, our trimmed
tree can be viewed as the limit of reduced trees as time tends to infinity. Reduced
trees have been studied intensively in the branching literature. For historical
background, see, for example, the last paragraph in Section 12.1 of [2], page 201.

It is worth mentioning that the weighted superprocéss(;);>o with p as
in (1.4) played an important role in the work of Englander and Pinsky [7], who
investigated support properties (such as recurrence) of superdiffusions by analytic
tools. Weighted superprocesses and embedded particle systems also played a
central role in [14], which motivated our present article.

The paper is organized as follows. In Sections 1.2-1.4, we introduce our objects
of interest together with some of their elementary properties in more detail.
Sections 1.5 and 1.6 contain our main results, while Section 1.7 is devoted to
discussion. In Section 2, we collect some necessary facts on historical processes
and weighted superprocesses. The final proofs are deferred to Section 3.

1.2. Poissonization of superprocesse&et E be a compact metrizable space,
and letB(E) and C(E) denote the spaces of bounded measurable real functions
and continuous real functions oR, respectively. We setB, (E) := {f €
B(E): f >0}, Bioy(E) :={f € B(E):0< f <1} and defineC. (E), Cjo,1)(E)
similarly. Let M(E) denote the space of finite measures Bnequipped with
the topology of weak convergence. if is a measure andg’ is measurable,
then (u, f) := [ fdun denotes the integral of with respect tou, whenever
it exists. By & (E) C M(E) we denote the space of finite point measures, that
is, measures of the form)_"_; §,, with x; € E andn > 0. We interpret such a
point measure as a collection efparticles, situated at positions, ..., x,. For
f € Bpy(E) andv =37 18, € N(E) we use the notatiorf” := ['"_; f(x;)
(where f¥:=1). If u is a random variable taking values # (FE), then Poigu)
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denotes anV (E)-valued random variable such that, conditioned.griPoig ) is
a Poisson point measure with intensitylf v is a random variable taking values in
N (E)andf € Bjo,1)(E), then Thiry(v) denotes a random point measure obtained
by thinningv with f. That is, conditioned om, a particles, in v is kept with
probability f(x), independently of the other particlesinNote that

(i) P[POIS(f11) =0lu] =€~/ feB.(E),

(i) P[Thing(v) =0p]1= 1~ f)", fe€BpoyE).
It is well known that

(1.6) Thins(Thin,(v)) 2 Thins(v) and Thiry (Poisw)) 2 Pois f ),

(1.5)

where2 denotes equality in distribution.

Let G be the generator of a Feller procéss (§;);>0 on E and lete € C(E),
B € C(E). Then, for eaclty € B, (E), an appropriate integrated version [see (2.8)]
of the semilinear Cauchy problem

0
Eu, = Gu; + Bu; —ozu,z, t >0,

uo= f,

has a unique solutiom, =: U, f, ¢ > 0, in B4 (E). Moreover, there exists a unique
(in law) Markov processS in M (E) with continuous sample paths, defined by its
Laplace functionals

(1.8) EM[em XN =Wl >0, ue M(E), f € BL(E).

The processx is called thesuperprocessn E with underlying motion gener-
ator G, (local) activity « and (local)growth parameterg (the last two terms
are our terminology) or, for short, th&G, «, B8)-superprocessThe semigroup
(U)o = U = U(G, a, B) is called thelog-Laplace semigroupf X. In fact,
U, f can be defined unambiguously for any measurabi& — [0, oo] such
that (1.8) holds (where~°° := 0). The proces$¢ can be constructed in several
ways and is nowadays standard (see, e.g., [10-12]). We can thixikasfdescrib-
ing a population where mass flows with generatoend during a time interval
dt a bit of massim at positionx produces offspring with meafl + B(x) dt) dm
and finite variance &(x) dtdm. For basic facts on superprocesses, we refer to
[2] and [8].

Similarly, whenG is (again) the generator of a Feller process in a compact
metrizable spac& andb, d € C(E), then, for anyf € Bjo 1j(E), an integrated
version of the semilinear Cauchy problem

(1.7)

a
Eut:Gu,+but(l—u,)—du,, [20,

uo = f,

(1.9)
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has a unique solution; =: U, f, t > 0, in B 1j(E). Moreover, there exists a
unique Markov procesX with cadlag sample paths iV (E), defined by its
generating functionals

(1.10) E'[1- H¥*]=Q-Uf)", t>0,veN(E), f € Bpo1(E).

We call X the binary branching particle systenm E with underlying motion
generatoiG, branching raté and death ratéd, or, for short the G, b, d)-particle
system The semigroup(U;);>0 = U = U(G,b,d) is called thegenerating
semigrouf X. The particles inX perform independent motions with generator
and, additionally, a particle branches with local ratéento two new particles,
created at the position of the old one, and patrticles die with localdatethe
death rate is zero, we also speak abmnary splittinginstead of binary branching.
Because of (1.5), formulas (3.8nd (1.10) came rewritten as

(i) P*[Poig(f X;) = 0] = P[PoIS(U, f)) =01, u e M(E), f € B+ (E),
i) PY[Thin;(X,) = 0] = P[Thiny, ;(v) =01, v €N (E), f € B 1;(E),

t > 0. The following lemma is now an easy observation.

CREDRp

LEMMA 1 (Poissonization of superprocessed)et X be the(G, «, 8)-super-
processassume thak > 8 and letX be the(G, o, @ — B)-particle systemThen

(1.12) pLPOW) X, € .]= PH[PoIIX;) € ], t>0,ue ME).

PROOF Let U = U(G,a,B8) and U = U(G,a,a — B) denote the log-
Laplace semigroup dk and the moment generating semigrougXotespectively.
Comparing the Cauchy problems (1.7) and (1.9), we seelthdt= U, f for all
f € Bjo,j(E) andr > 0. It follows that for anyf € Bjo.1;(E), n € M(E) and
t >0,

pEPOUD[Thin, (X,) = 0]
(1.13) = P[Thiny, s (Poigw)) = 0] = P[Poi(U; f)n) = O]
= P*[PoiS(f %) = 0] = P*[Thin;(Poig( %)) = 0].

Since this holds for arbitrary € Bjg 1;(E), the law ofX;, whenX is started with
initial law £(Xg) = £L(Poig1t)), coincides with the law of Poi&¢;), whenX is
started inXg=pn. O

REMARK 2 (Locally compact spaces). With the help of a suitable compacti-
fication, the results in this paper can be applied to superprocesses on some non-
compact spaces as well. LEtbe a locally compact but not compact, separable,
metrizable space, le& be the generator of a Feller process= (&);>0 On E,
whose semigroup maps the spa@g E) of continuous real functions vanishing
at infinity into itself and letw, 8 be bounded continuous functions @h « > 0.
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Then the(G, «, 8)-superprocess may be defined as follows. FiEstnay be em-
bedded in a compact metrizable spaesuch thatE is an open dense subset of
E and such that the functiors 8 can be extended to continuous functi@hs8

on E. [To construct such a compactification, take forthe closure of the graph

of (a, B) in E, x R2, whereE, is the one-point compactification df.] Sec-
ond,& may be extended to a Feller processEin(with generator denoted by )

by putting P*[§;, =x V¢t > 0] := 1 for x € E \ E. By identifying M(E) with

the spacdu € M(E):u(E \ E) =0}, the (G, @, B)-superproces satisfies
PH[X; e M(E)VYt>0]=1forall u e M(E). The(G, «, B)-superprocess may
then be defined as the restriction ¥fto M (E). In this way, the results in this
paper can be applied, for example, to the usual super-Brownian motion (with finite
initial mass). To keep notation simple, we formulate our results in the rest of this
paper for superprocesses in a compact sgace

1.3. Historical superprocesses and branching particle systerhst E be a
compact metrizable space as before, anddef{0, co) and Dg[0, ¢] denote the
spaces of cadlag paths: [0, c0) — E andw: [0, t] - E, respectively, equipped
with the Skorohod topology. Lef be a Feller process i£. Then thepath
processt associated witl§ is a time-inhomogeneous Markov process with time-
dependent state spader[0, ], defined as follows. Let* denote the process
started ing§ = x € E. Then(§"")>,, the path process started at time > 0 in
w € Dg[0, s] and evaluated at times> s, is defined as

(1.14) és’w(r) . w(r), ifO<r<s,
' ! ) ,w_(j), ifs<r<t.

Forz > 0, we identify the spac®r[0, ¢] with the spacdw € Dg[0, co) : w(u) =
w(r) Yu > 1} of paths stopped at time With this identification &5 : [, co) —
D0, o) has cadlag sample paths. Note tf}%f , the path process started at time
zero inx € Dp{0} = E and evaluated at time> 0, records the path followed by
&% up to timer.

If X isa(G, «, B)-superprocess i as defined in the last section, then by defi-
nition thehistorical superprocesX associated with is the time-inhomogeneous
superprocess with time-dependent state spd¢®£[0, ¢]), with underlying mo-
tion &, time-dependent activit§; (w) := a(w(r)) and time-dependent growth pa-
rameter; (w) := B(w(r)). We call X the historical (G, «, B)-superprocessAs
before, we identifyDg[0, ¢] with the subspace aDg[0, co) consisting of paths
stopped at time, and in this identificatior’ : [0, co) — M (Dg[0, 0o)) has con-
tinuous sample paths. For the technical details needed to deal with the facts that the
underlying motion is time-inhomogeneous and the spagg0, co) is not locally
compact, we refer to Section 2.2; see also [3], Chapter X: i§ started at time
zero inXo = p € M(DE{0}) = M(E) andr; (w) := w(r) denotes the projection
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on the endpoint of a patlv € Dg[0, 7], then (a proof can be found in Section
2.2.3) the projection

(1.15) X=X, 0mt,  1>0,

gives back the originalG, «, 8)-superproces; started inXo =

Likewise, if X is a(G, b, d)-particle system irE as defined in the last section,
then thehistorical binary branching particle systeiassociated witfx is defined
as the time-inhomogeneous binary branching particle system with time-dependent
state spaceV (Dg[0, 1]), with underlying motioné, time-dependent branching
rateb(t w) := b(w(z)) and time-dependent death rate, w) :=d(w(t)). We call
X the historical (G, b, d)-particle systemFor a historical setting in the case of
spatial Markov branching processes in discrete time, see, for instance, [13] or [18],
Chapter 10. Viewed as a processA(Dg[0, o0)), X has cadlag sample paths.
If X is started at time zero iXg = v € N (Dg{0}) = N (E), then the analogue
of (1.15) gives back the (nonhistoricalls, b, d)-particle systemX started in
Xo=v.

1.4. Weighted superprocesses and compengaiteansforms. We continue to
assume that is a Feller process in a compact metrizable spacket G be the
generator of, thatis,Gf :=lim,_ot (P, f — f), whereP,; f (x) := EX[f(&)]
is the semigroup associated with and the domainD(G) of G consists of
all functions f € C(E) for which the limit exists in the supremum norm. The
following lemma, the proof of which can be found in Section 2.3.3, introduces
compensated-transformsof Feller processes.

LEMMA 3 (Compensated-transform of a Feller process)Let G be the
generator of a Feller processin a compact metrizable spadeand assume that
h € D(G) satisfiesh > 0. Then the operator

1
(1.16) G'f:= F(G(f) = (Gh) f).

with domainD(G") := {f € C(E):hf € D(G)}, is the generator of a Feller
processs” on E. The laws ot” and¢ are related by

P*[(EMseion € dw]

(2.17) B o
w
= h(xt) eXp( - 0 T(ws)) Px[(gs)se[o,z] S dw], t>0,xekE.

REMARK 4 (h-transforms). Doob'si-transform of a Feller process is the
process with generatag” f := %G(hf) (see, e.g., [4], Section 2.VI.13, [24],
formula (62.23) and [5], Section 1X.4). Heveis superharmonic (i.eGh < 0)
and thek-transformed process has an additional local killing @&t/ 4. In our
setup, it is natural to compensate for this killing by adding the tei@h/ 4 in the
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definition of G". In this case, we can allow to be any positive function in the
domain ofG. A variant of the transformation in (1.16) appeared before in [15],
Section 4. At least for diffusion processes, their transformation is equivalent
to (1.16) if one chooses the logarithm/ofor their functiong.

The following lemma, which was proved in a nonhistorical setting for su-
perdiffusions in [7], describes the relation between weighted histofieat, 8)-
superprocesses and compensatensforms.

LEMMA 5 (Weighted superprocess)Let X be the historical (G, «, B)-
superprocess and assume that D(G), h > 0. Then the weighted proces$”,
defined by

(1.18) XM dw) == h(w) X, (dw), >0,

is the historical(G", ha, B + %)—superprocess

In particular, by formula (1.15), ifX is the (G, «, 8)-superprocess, then
x? (dx) = h(x)X;(dx), t > 0, is the(G", ha, B + %)—superprocess. The proof
of Lemma 5 is deferred to Section 2.3.4.

1.5. Main results. We are ready to state our first main result.

THEOREM 6 (Embedded patrticle system)Let E be a compact metrizable
spacelet G be the generator of a Feller processhanda € C,(E), 8 € C(E).
Assume thak € D (G) satisfiesh > 0 and, for somey € C,(E),

(1.19) Gh+ Bh —ah?>=—yh.

Then the historicalG, «, ﬂ)—superproAcessAC startgd inXo= € M(E) and the
historical (G", ha, y)-particle systenX started inXo = Poig/hu) can be coupled
as processes such that

(1.20) P[X, € -|(Xy)o<s</] = P[Poi{(hom)X,) €-|X,] as.Vi=>0.

It follows from (1.15) that the associated nonhistorical proce$sesnd X
are related by (1.2). The phrase “coupled as processes” mear(@?l})ago and
(X,),zo can be defined on the same probability space in such a way that (1.20)
holds.

If X andX are related by (1.20), then clearly the extinctiondéfimplies the
extinction of X a.s. We now investigate when the converse conclusion can be
drawn, that is, wherf¢ and X can be coupled such that in addition to (1.20),
eventually all mass of the superprocéséslescends from particles iXi. Set

(1.21) p(x) :=—log P*[X, =0t-eventually, xecE.
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Here,—log0:= oo and we writet-eventuallybehind an event, depending on
to denote the existence of a (random) time< co such that the event holds
for all r > 7. If no ambiguity is possible, we simply write eventually. It is not
hard to check thap, defined by (1.21), satisfies (1.4). Therefore, we gathe
infinitesimal survival probabilityf X. Note that

(1.22) P*[X,=0]=E*[e X =g h>® >0 xeE.

The following proposition is proved in Section 3.1.3.

ProPOSITION 7 (Properties of the infinitesimal survival probability)Con-
siderU = U(G, «a, B), whereG, « and g are as in Theorer, and letp be given
by (1.21). Assume thasup, .z U;00(x) < oo for somer > 0. Then we have the
following properties

(a) PointwiseU,00 | p ast 1 oo andlim,_., U, f = p for all f € C+(E)
with f > 0.

(b) Forallt >0, U;p=p.

(c) A function f € C.(F) satisfiesU,f = f for all + > 0 if and only if
f e D(G) and f solves

(1.23) Gf +Bf —af?=0.

(d) If infycg p(x) > 0, then p is continuous andp is the unique positive
solution to(1.23).

We now formulate our main theorem, which gives sufficient conditions for
all mass of the superprocess to descend eventually from particles in an
embedded particle system. We write g ) to denote projection ofDg|[O, s].

By definition, the support supgp) of a measurg: is the smallest closed set such

that u(suppgp)©) =0.

THEOREM 8 (Eventual descent from an embedded particle systebdt X,
X and h be as in Theoren6, and assume thatl = U(G, «, B) satisfies
SUp.cz U;00(x) < oo for somer > 0. Thenp < h. Moreover X, and X may be
coupled as processes such tiiar20)holds and such thaadditionally,

(1.24)  suppX,) Dsupp(X, om;)  r-eventuallyvs >0as.

If, moreover, infcg p(x) > 0, then by Proposition 7 we may take= p in
Theorem 6. In this case we have the following theorem:

THEOREM 9 (Trimmed tree of a superprocess).et E be a compact metriz-
able spacelet G be the generator of a Feller process i and o € C(E),
B € C(E). Assume thall = U(G, «, B) satisfiesup,.x U;00(x) < oo for some
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t > 0andinfycg p(x) > 0. Then the historicalG, «, B)- superproceséc started
in Xo = u € M(E) and the historical(G”, pa, 0)-particle systemX started in
Xo = Poig pp) can be coupled as processes such that

(1.25) P[X; € |(X5)o<s<i] = P[POi{(p o) X;) €-|X;] asVi>0
and
(1.26)  suppX,) =supp(X,omg}).  r-eventuallyv:>O0as.

If X andX are coupled as in Theorem 9, then we say tkids the trimmed
treeof X. If X, = X, o b andX, X, 0 T 1 are the associated nonhistorical
processes, then we also cElithe trimmed tree of¢. Note that the death rate af
is zero, that isX is a binary splitting particle system.

REMARK 10 (Checking the assumptions @fyoo and p). Upper bounds on
U,00 and lower bounds o can be found, in practical situations, by finding
solutions to an appropriate differential inequality; see Lemmas 12 and 25.

1.6. Finite ancestry. In this section, we investigate the assumption in Theo-
rems 8 and 9 that syp; U;0o(x) < oo for somer > 0. In particular, we show
that this assumption is equivalent to the statement that all mass of the superprocess
X descends eventually from finitely many ancestors, in some sense.

To do this, we need to equip the histori¢él, «, 8)-superproces& with some
additional structure that makes it possible to distinguish different ancestors. To
this aim, set’ := E x [0, 1]. Define a Feller process = (&£, n) on E’, where for
given initial conditions(x, y) € E x [0, 1], £ is the Feller process with generator
G started inx, andn; :=y, t > 0. Puta/(x, y) ;== a(x) andB’(x, y) := B(x). Let
X’ denote the historicalG’, o', ’)-superprocess. Then the formula

(1.27) X=X, oy L, t>0,

gives back the original historicaG, a, B)-superprocess;, wherey, denotes the
projection from Dg«0,13[0, t] to De[0,7]. The following lemma is proved in
Section 3.2.3. Hererg(w) := w(0) denotes the projection on the starting point
of a pathw in Dg[0, ] or Dg[0, ¢].

LEMMA 11 (Finite ancestry). Let X be the historicalG, «, 8)-superprocess
let X’ be the extended historicalG’, «’, B)-superprocess just defined and
U = U(G, a, B). Let £ denote Lebesgue measure @) 1]. Then we have the
relations(i) < (ii) = (iii), where

(i) supU;oco(x) < o0 for somer > 0O,
xekE

(1.28) (i) PO ®[supp X, o gt is finite eventually=1 Ve M(E),
(i)  POF[suppX; oyt is finite eventually=1 Ve M(E).
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We interpret sup(dfcg o no‘l) as the ancestors at time 0 of the populatiorXof
at timet. We have extended the underlying spdceéo make sure that different
ancestors live a.s. on different positions. Note that i§ finite, then (iii) is always
trivially fulfilled even when (i) fails.

For many superprocesses, it is actually the case that

(2.29) SUpU;00(x) < 0o Vi>0.

xeE
A sufficient, but not necessary condition for (1.29) is thats bounded away
from zero. The sufficiency follows from the following bound (see, e.g., [14],
Lemma 11).

LEMMA 12 (Extinction estimate). Setx := inf,cga(x) andB := sup,c g B(x).
If « > 0,then

p = 1 _
( ) utoofg(l—e—ﬁf)’ B # an ‘u,oosgt, B

On the other hand, it is possible for(&, «, 8)-superprocess to satisfy (1.29)
while ¢ = 0 (see [14], Lemmas 5 and 6).
The following consequence of (1.29) is proved in Section 3.2.3.

LEmMA 13 (Finite ancestry and preserved past propertyf) X satisfieg1.29),
then

(i) supp(X;, o 77[_0,1;]) is finite  YO<t <ras,

(1.31) N 1 N 4
(i) supp(X; o mg,;1) D SUPP(X, o g,)  YO<t<r<r'as

In view of Lemma 11 and (1.31)(i) we say that a superprocéses thefinite
ancestry propertif X satisfies (1.29). Note that (1.31)(ii) says that lines of descent
(up to a given times) can become extinct, but no new ones are created. This
statement may seem obvious, but some care is needed regarding the ordéf of the
and the a.s. in the statements. In (1.31)(ii), we claim that the same zero set works
for all timest, r, ¥’ such that O< r < r <r’. One cannot simply argue by continuity
here, because the support of a meagurig not a continuous function gf. Note
that if the superproceSK in Theorem 9 has the finite ancestry property, then a.s.
the sets supc; o 0, t]) in (1.26) are finite for all- > + and decrease to sugp,)
asr 1 oo.

1.7. Methods discussion and outline of the proofsOur results have obvious
applications in the study of (local) extinction and survival of superprocesses. For
superdiffusions, extinction properties were studied by Englander and Pinsky [7].
Parallel to the present paper, Engléander and Kyprianou [6] investigated local
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survival and local exponential growth of superdiffusions. The first paper uses more
analytic tools, while the second is more probabilistic in nature.

While our methods are more probabilistic, some of our results are close in spirit
to the work in [7]. As we already mentioned, the weighted superprdge¥s);>o
with p as in (1.4) plays an important role in [7]. Also, their Theorem 4.4(a) is
not surprising in view of our Theorem 9, although their setup and ours do not
completely overlap. Their Theorem 3.1 describes properties of the funption
similar (but not identical) to our Proposition 7. Since our underlying motion is
a general Feller process which does not have the good smoothing properties of
uniformly elliptic diffusions, we have todmore careful about the sense in which
p solves equation (1.23).

The main tool in [6] is an expression [their Theorem 5(i)] that says (in
the language of log-Laplace functionals) that a certain change of measure of a
superdiffusion yields back the same superdiffusion with an additional immigration
term coming from a single particle. In their introduction, Englander and Kyprianou
discussed the possible use of Poissonization relations for their aims, but rejected
them on the ground that relation between the lawX pandX; at fixed timeg are
not enough to relate the long-time behaviobdandX. A central aim of our work
is to overcome such shortcomings of the usual Poissonization formulas. Another
aim, of course, is to allow more general underlying motions than diffusions.

The main ideas behind our proofs of Theorems 6, 8 and 9 are the simple
observations about Poissonization and weighting of superprocesses in Lemmas
1 and 5, respectively. Our strategy is to construct a version of the superprocess with
so much additional structure that we can distinguish all ancestors of the population
alive at a given time. For such a sufficiently enriched process, we then explicitly
identify the trimmed tree and check that it is a binary splitting particle system. This
is done in Proposition 39 and Lemma 40 in Sections 3.3.1 and 3.3.2, respectively.
The essential step, where a couplingX6f and X, for fixed r is improved to a
coupling of X and X as processes, occurs in the proof of Lemma 40. Forgetting
step by step some of the added structure, we then arrive at Theorems 6, 8 and 9.

Interesting side results of this approach are a number of lemmas about the lines
of descent of a superprocess, notably Lemma 13, which may seem intuitively
obvious, but to our knowledge has not been proved before. On the other hand,
our approach does not make any statements about the transition probabilities of
the joint processX;, X;);>0, whenX and X (and their historical counterparts)
are coupled as in Theorem 6. Another possible approach to our Theorem 6 (not
followed in this paper) would be to specify a joint Markov evolution {6¢, X)
and then show that if the process is started in a state suclXghatPoigh Xo),
then X, = PoighX,) for all + > 0. Here, X would be an autonomous binary
branching particle system, whil® would be a superprocess with an additional
mass creation on the positions of the particleXin

Our results can be generalized in several directions. If the spa¢e not
compact bulocally compactthen generalizations of our results can be derived
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using the compactification technique from Remark 2. This requires, however, that
the functionsh in Theorems 6 and 8 gp in Theorem 9 are uniformly bounded
away from zero, and hence can be extended to positive continuous functions on
some compactification af. Truly local versions of our results, whekieand p are

only required to be locally bounded away from zero, are somewhat more subtle.
We hope to handle these in a forthcoming paper.

A lot of our proofs work for superprocesses whose underlying motion is a
general Hunt process on a Polish space, and whose activity and growth parameter
are bounded and measurable, but we do not know how to treat compensated
h-transforms and weighted superprocesses (Lemmas 3 and 5) in this context.

The proofs are organized as follows. After settling some notational and
topological issues in Section 2.1, we introduce formally historical processes in
Section 2.2 and collect some of their elementary properties. Section 2.3 treats
compensated-transforms and weighted superprocesses. Section 3.1 is devoted
to the infinitesimal survival probability. Section 3.2 collects some basic facts
about surviving lines of descent. In Section 3.3, finally, we prove our main results.

2. Prerequisiteson superprocesses.

2.1. Topological preliminaries. Let E be a Polish space (i.€, is a separable
topological space and there exists a complete metric generating the topology).
We always equipE with the Borelo-field 8(E). We let B(E), By (E) and
Byo,11(E) denote the spaces of bounded, bounded nonnegativi)ahdvalued,
real measurable functions @ respectively. If a countable collection of functions
{fi:i = 1} C B(E) separates points, theB(E) = o(f;:i > 1) (see [23],
Lemma 11.18). We remind the reader of the fact that a subsgacé a Polish
spacek is itself Polish in the induced topology if and only i is a Gs-subset
of E, thatis, a countable intersection of open sets ([1], Section 6, Theorem 1).

Let C»(E) denote the space of bounded continuous real functiong.owe
write M (E) for the space of finite measures énequipped with the topology of
weak convergence (with weak convergence denoteg-pyunder whichM (E) is
a Polish space ([9], Theorem 3.1.7). Recall that by definitipn= w if and only
if {un, f)— (u, ) forall f e Cy(E). Note that the topology om( (E) does not
depend on the choice of the metric n The Borelo -field on M (E) is generated
by the mappingst — u(A), A € B(E) (cf. [21], Lemma 3.2.3). IfF C E is
measurable, we identif( (F) with the spacgu € M(E):u(E\ F) =0}. In
particular, whenF is a Gs-subset of E (and therefore Polish in the induced
topology), then the topology of weak convergenceMF) coincides with the
induced topology from its embedding i (E). By M1(E) C M(E) we denote
the space of probability measuregé|{ E) C M (E) denotes the space of finite point
measures Ol .

We denote byD£ [0, co) the space of cadlag (i.e., right-continuous with existing
left limits) functions w: [0, c0) — E, equipped with the Skorohod topology.
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This is the J; topology defined in [25]. The spac®g[0, o) is Polish ([9],
Theorem 3.5.6). One has, — w in Dg[0, oo) if and only if for eachT > 0
there exists a sequence of strictly increasing, continaQug0, 7] — [0, co) with
A, (0) =0, such that

(2.1) lim sup |A,(¢) —t|=0
=00 +c[0,T] "

and such that (cf. [9], Proposition 3.5.3)

2.2) i) {w(z), whenever, | 1, o1 e[0.T]
. — , , T].
W s w(t—), whenever, 11, "
Note that the topology ofD£[0, co) does not depend on the choice of the metric

onkE.
2.2. Historical processes.

2.2.1. Hunt processes.Let E be a Polish space and lgtP),>0 be a
measurable transition probability ofi. That is, (¢, x) — P;(x,-) is a (Borel)
measurable map frorf0, o) x E into M1(E), Po(x,-) = g for all x € E and
the operators

(2.3) Ptf<x>:=/EP,<x,dy>f<y>, t>0,x ek, feB(E),

form a semigroup?, P; f = P, f forall s,t >0, f € B(E).

Assume that P;);>o is the transition probability (equivalently the semigroup)
of a Markov process with cadlag sample path&irthat is, for everyc € E there
exists aDg[0, co)-valued random variable*, unique in distribution, such that
&y =x and

(2.4) E[fEDIF)= (P )  as.,0<s =1, feB(E),

where (¥;);>0 denotes the filtration generated by. By definition, the Markov
process with transition probability?;),>o is aHunt processf, for everyx € E,
the following statements hold (see [24], Theorem 1.7.4 and Definition V.47.3):

(i) Right property For everyr > 0 andf € B(E),
the map(0,¢) > s — P;— f(£) is a.s. right-continuous.

(2.5)

(i) Quasi left-continuityFor every increasing sequence of
¥.+ stopping times,, 1 7, we haves; — &7 a.s. onf{t < oo}.

Here ¥.. = (¥:4+):>0 denotes the right-continuous modification f;);>o.

The right property implies the strong Markov property ([24], Theorem 1.7.4).
Conditions (2.5)(i) and (2.5)(ii) are properties of the |&% := L(£*) of £* only

and, therefore, being a Hunt process is a property of the transition probability.
It suffices to check (2.5)(i) for alf € C,(F) ([24], Theorem 1.7.4). We identify a
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Hunt process with the collection of probability measutB$)*<£. If (¢¥)*<E is a
collection of Dg[0, co)-valued random variables with lawé(é*) = P*, x € E,
then with a slight abuse of terminology we say tli&t)*<£ is a Hunt process
(regardless of a possible dependence structure betweén)the

We also need time-inhomogeneous Hunt processes with a time-dependent state
spaceE;. We assume that the, are (or can be identified with) subsets of some
Polish space and that the sef := {(r, x) € [0, 00) x E : x € E,} is aGs-subset
of [0, o0) x E (and therefore Polish in the induced topology). V&t ) := {w €
Dels,0):w; € E; Vt > s} denote the space of all possible paths the process can
follow after times. Generalizing our previous definition, we say that a collection
of random variablegz**)-9¢E  where&** takes values iV, ), is atime-

inhomogeneous Hunt procei§she collection of random variableg )€k
defined by

(2.6) EOV = (s +1,E7), (s,x)€E,1>0,

is a (time-homogeneous) Hunt procesinlf (55”‘)(5’*)65 is a time-inhomoge-
neous Hunt process, then we wrig ;(x,-) := P[§;" € -] and we letP;,:
B(E;) — B(E,) denote the operator

@7) Puf) = /E Po,Ge.dy)f(y).  x€Es f€B(E).

By a slight abuse of terminology, we c&lP; ;);>s>0 the (time-inhomogeneous)

semigroup associated ngs,x)(s,x)eE'_ (Such time-inhomogeneous semigroups
are sometimes called transition functions.)

2.2.2. Superprocesses with Hunt underlying motiohet & be a (time-
homogeneous) Hunt process in a Polish spAcwith semigroup(?;);>o and
assume tha&r € B, (E), B € B(E). Then, for everyf € B, (E), there exists a
uniqueB([0, o) x E)-measurable nonnegative functisrwhich is bounded on
[0,T] x E for all T > 0, solving the Cauchy integral equation

'
(2.8) ur=FP f +/ P_s(Bus — ausz) ds, t>0
0

([10], Proposition 2.3). Moreover, it wasiewn ([10], Corollary 3.6) that there
exists a unique (in law) Hunt proce€k*)*<M(E) with continuous sample paths,
such that

(2.9) Ete*eN=e W) >0 ue M(E), f € B4(E),

where U, f := u,;, t > 0, andu solves (2.8). We callX the superprocess with
underlying motioné&, activity « and growth parameteg, or, for short, the
(&, a, B)-superprocessand we calll = U, «, B) its log-Laplace semigroup.
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By monotone convergencé/; f can be defined unambiguously such that (2.9)
holds for any measurablg: E — [0, oo] ([14], Lemma 9).

We list some elementary properties @f, o, 8)-superprocesses that we need
later. The following lemma is an easy consequence of (2.9).

LEMMA 14 (Branching property). Let i1, u2 € M(E), and letX#t and X2
be independent copies of th&, «, 8)-superprocess started im1 and o,
respectivelyThen

(2.10) R, Y )

is the (&, a, B) superprocess started jmy + 2.
The following lemma was proved in [10], Proposition 2.7.

LEMMA 15 (Moment formulas). For every f € B(E), there exists a unique
B([0, 00) x E)-measurable functiom which is bounded o0, 7] x E for all
T > 0, such that

t
(2.11) w=Pf+ / Pry(Bup)ds, 120,
0

The formulaV; f := v; defines &linear) semigroup(V;);>0 on B(E). We have

t
(2.12) V,f(x) = E* [f(so exp(/O ﬂ@s)ds)}, 1>0.xcE. f ¢ B(E).
Moreoverfor all t > 0, f, g € B(E),

() E"[(Xs, 1= (1, Vi f),

t
E iy covt (11, 1), 10, g =2 [ dslie, VelVies NOV-0))

The following lemma is an easy consequence of Lemma 15 and the fact that
0<V f <elfltp, f| for all f e B.(E) (where|| -| denotes the supremum
norm).

LEMMA 16 (Absolute continuity of moment measures).etu be a probability
measure orE andm > 0. Thenfor ¢ > 0,

(i) E™H[X,] < PH& €],

2.14
( ) (i) EMM[X; ® Xl K Pu[fte']®PM[§t€‘]+Q#’

whereQ/ is the measure off x E defined as

t
(215  Qf = /o ds fE PHLE, € dx](P (&, € 1® P&y € ]).
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A measureu € M(E) is atomless [i.eu({x}) =0 for all x € E] if and only if
(2.16) ;L(X),u({(xl,xz)EE X E:1=x2}):0.
The following lemma follows from formulas (2.14)(ii) and (2.16).

LEMMA 17 (Atomless superprocess)Assume thaP*[&; € -] is atomless for

everyt > 0 andx € E. ThenX;, is atomless a&. for everyr > 0 and initial state
we M(E).

Our next lemma is the following:

LEMMA 18 (Image property). Let E, F be Polish spacedet ¢ : E — F be
continuous and lef = (£*)*<F andn = (”)”<F be Hunt processes if and F,
respectivelysatisfying

(2.17) yEH=n'Y,  xeE.r>0.

Assume thaky € B, (F) andBr € B(F),and letag € B.(E) andBg € B(E) be
given by

(2.18) ap :=apoy and Bg:=PBro.
Let X be the(&, ag, Bg)-superprocess with initial state € M(E). Then
(2.19) Y, =X, 0L, t>0,

is the (i, ar, Br)-superprocess with initial state o v 1.

ProOF Let PE andP’ denote the semigroups associated with the processes
£ and n, respectively. Formula (2.17) implies th&~ (f o ¥) = (P f) o
for all f € B(F). Using this fact and (2.18), it is not hard to show that also
UE(f o) = UL f) oy for all fe Bi(F), whereU? = U(E, ag, Br) and
UF = U, ar, Br) are the log-Laplace semigroups &f and Y, respectively.
Let (#7):>0 be the filtration generated Y. Then, for all O< s <1,

Elexp(—(X; oy, )]
= E[exp(— (X1, f o ¥)|F]1=exp(— (X, UL (f o))
= exp(— (X, (U, ) o))
=exp(—(Xs 0y L UL ). feBy(F).

This shows that(X, o ¥~1),50 is a Markov process and that its transition
probabilities coincide with those of the;, ar, Br)-superprocess. Sincg is
continuous X; o ¥ ! has continuous sample paths]

(2.20)

The following simple observation will be useful later.
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LEMMA 19 (Preserved sets).Let X be the(§, o, 8)-superprocess

(@) If F C E is measurable an®*[&, € F]=1Vt >0 (x € F), then
(2.21) PHX, e M(F)]=1 V:>0,ue M(F).

(b) If FC EisaGgs-setandP*[&, e FVt>0,§_e€e FVt>0l=1,x€eF,
then

(2.22) PHX, e M(F)Vt>0]=1, e M(F).

PROOF Statement (a) follows from (2.14)(i), while (b) follows by applying
Lemma 18 to the inclusion map C E, where we use that the restrictionffo F
is again a Hunt process. The assumption thas a G s-set guarantees that is a
Polish space and that the evép; € M(F) V¢ > 0} is Borel measurable.[J

We conclude this section by constructing superprocesses with time-inhomoge-
neous underlying motion. Let = (£%%)-Y<E pe a time-inhomogeneous Hunt
process as defined at the end of the last section, and assuniedHat (E) and
B € B(E). Let£ be the time-homogeneous Hunt process in (2.6) an# ldenote
the (¢, &, ) superprocess. Using Lemma 16 we see 84" is concentrated on
{s +1} x Eg4, a.5.Vt > 0. SinceX%®" has continuous sample paths and since
(& @ u:t >0, e ME)} C ME)is closed, there exists a proce¥s* with
continuous sample paths i (E) such thatX;:l, € M(E,,) forallt >0 and

(2.23) X =5, @ XL

SetM = {(r, n) € [0, 00) x M(E): € M(E,)}. Itis not hard to check thax, =

(X‘*“)(S’H)EM is a time-inhomogeneous Hunt process with continuous sample
paths, and

(2.24) ESH[em XS] = o= Ut /), t>5>0,ueME;), f€B(E),
where(Us,; f)sero.n=:u € BL({(s,x) € [0, 7] x E:x € E}) solves the equation
t
(2.25) us =P f +/ Py (Bru, — oz,urz) dr, s €0, t].
S

Here a;(x) := a(t,x), Bi(x) := B(t,x) ((t,x) € E) and (P, )50 IS the
(time-inhomogeneous) semigroup associated withWe call X the (time-
inhomogeneous¥, o, B;)-superprocesand call(U; ;);>s>0 the (time-inhomoge-
neous)og-Laplace semigroupssociated witti.
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2.2.3. Historical superprocesseslLet & = (¢¥)*<£ be a Hunt process in a
Polish spaceE and leté = (£5:w)s=0.weDel0s] he the associated path process,
defined as in (1.14). Identify, as usu@g[0, s] with the subspace aDg[0, co)
consisting of paths stopped at timand definet c [0, c0) x Dg[0, oo) by

(2.26) E:={(s,w):s>0,we Dg[O,s]}.

Then (§5»)s-w€E s 3 time-inhomogeneous Hunt process (see [3], Proposi-
tion 2.1.2). If X is a (&, «, B)-superprocess, then by definition théstorical

(£, o, B)-superprocessX is the (time-inhomogeneous§, &;, A;)-superprocess,
whered; (w) := a(w(t)) and B, (w) := B(w(t)), (t, w) € E. We are now in a sit-
uation where we can prove some of the elementary properties of historical super-
processes mentioned in Section 1.

PROOF OF(1.15). If£ is the path process associated with a Hunt progess
started attime > 0 in w € Dg[O0, 5], theng; := 734, (§S+,), t > 0, gives back the
original Hunt proces$§ started in, (£,). Moreover, the majl¢, w) — w(t) from
E into E is continuous. (Note that this is true even though the map w(r)
from Dg[0, o) into E is in general discontinuous.) Therefore, Lemma 18 (the
image property of superprocesses) shows tr(aft”,if),zs is the historicalé, «, 8)-
superprocess started at time 0 in i € Dg[O0, s], then

(2.27) X i=Xspromy, >0,

is the (nonhistorical}, «, 8)-superprocess started o 7. O

One of the driving ideas behind the development of historical superprocesses
has been the desire to have a means to distinguish those parts of the population that
descend from different ancestors. However, all that a patD 0, ¢] tells us is
where in space these ancestors have lived in the past. Let us say that the underlying
motion & has thedistinct path propertyf the law of (&,)s¢(0.1] (cOnsidered as a
DElO, t]-valued random variable) is atomless for every 0 and for every initial
statetp = x € E. This is called Property S in [2], Definition 12.2.2.6, and occurs
as formula (3.18) in [3]. In this case, the idea is that different ancestors follow a.s.
different paths, and therefore it should be possible to recover the genealogy from
the paths. As an immediate consequence of Lemma 17, we have the following
lemma. (An analogue of this result in a spatially homogeneous setting, but for
more general branching mechanisms, can be found in [3], Proposition 4.1.8(b).)

LEmmA 20 (Atomless historical superprocessedy. £ has the distinct path
property thenX; is atomless &. V¢ > 0.

The following characterization of historical superprocesses will be convenient
more than once.
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LEmMMA 21 (Finite-dimensional projections).Let X be a(§, «, B)-superprocess
with log-Laplace semigroufil = U(E, «, B) and let X be the associated his-
torical (&, «, B)-superprocessThen forall n >0,0=1 <11 <--- < t,41 and
f € BL(E"?),

E’"”l|:ex (—/ X, . (dw) fwy, ..., w )]
p Dr(01p11] tn+1( )f( o tn+1)

(2.28)
= eXp( - /@E[O’tn] ﬁ(dw)u;n+1_,nf(wto, cee, Wy, )(w;n))

Conversely any Markov processX with time-dependent state space
M(DEg[0,¢]) and continuous sample pathsatisfying (2.28), is the historical
(&, a, B)-superprocess

PROOF The fact thatX satisfies (2.28) can be found in [3], Theorem 2.2.5(b)
or [2], Theorem 12.3.4. Conversely, if a Markov procéssatisfies (2.28), then,
forall0<k <n,

E”‘”l[ex (—/ X dw) f(ws, ..., w )i|
p Drl0ity 1] ln+1( )f( fo ln+1)

(2.29)
= eXp( - /D‘Z)E[O,[k] ﬁ’(dw)fk(wtov cee wtk))’

where we have inductively defined functiofise B (E'*1) by
Jnt1(x0, - ooy Xpy1) == f (X0, -+, Xnt1),
(2.30)
.f[(-x07 ) xl) = <z'll‘H_]_—l‘l ﬁ-‘rl('xo’ s Xl ')(xl)v k = ) =n.

The expectations in (2.29) clearly determine the transition probabilitie& of
uniquely. O

Note that formula (2.29) says that #l denotes the (time-inhomogeneous)
log-Laplace semigroup dk and F(w) := f(wy,, ..., wy,.,), then

(231) ‘lj(,k,;nHF(w) =fk(w;0, ...,w,k).

LEMMA 22 (Mean of historical superprocesslet X be the historical
(&, a, B)-superprocessihen foranyu € M1 (E) andm > 0,

(2.32) Emﬂ[fc,](dw):mexp(/otﬁ(ws)ds)P#[(ss)se[o,,]edw], t>0.

In particular, if « = 0, then X, is deterministic and given by the right-hand side
of (2.32).
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PrROOF By Lemma 15, the mean of a superprocess does not depend on the
activity. Therefore, it suffices to prove that the histori¢al0, 8)-superprocess is
deterministic and given by the right-hand side of (2.32). Def{)édw), ¢ > 0,
by the right-hand side of (2.32). L&t = U(&, 0, B) denote the log-Laplace
semigroup of the (nonhistoricaly, 0, 8)-superprocess. Sinee= 0, U coincides
with the linear semigroufy in formula (2.12). It follows that, for > 0, 0=1p <
f<---<typrandf e BL(E"?),

DACn (dw) f(wiy, ..., wy,
/JDE[O,th] Int1 f( 1o t+1)
([ pawoas) s )
= mex wy) ds Wros -« s Wi,
Detomal P ! 0 et

X P“[(gs)se[o,t] € dw]

—m E“[exp( /O " BE) ds)f(sto, . ézm)}

(2.33) t

- mE“[exp( [ ﬂ(%‘s)dS)

Iny1
X X ] s)as 05+ ++ 5 Styg1 s)s€[0,1,]
E| exp ! B(&)ds | f(& &) (&)
tn ~

=mE“[exp(/o ﬁ(ss)ds)f(sto,...,s,n)}

= DelOn] “)Z"tn (dw)f(wto, ey wtn),
where
(2.34) F 0,y xn) i= Upy gty FXOs -+ Xy ) ().

Thus, X satisfies (2.28). Sincé is a Markov process with continuous sample
paths, it follows from Lemma 21 tha{X,);>o is the historical (¢, 0, B)-
superprocess started at time Ospe. [

Although the next result may appear obvious, be aware of the fact that since the
functions involved are not continuous, parts (b) and (c) are not trivial consequences
of part (a). We will need (c) in the proof of Lemma 13.

LEMMA 23 (Preserved past property)Let X be the historical (¢, «, 8)-
superprocess started at time> 0in i € M(Dg[O, s]).
(@) If F c D0, s]is measurablegthen

(2.35) PSMXomgh e M) =1 Vi>s e M(F).
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(b) If F C D0, s]isaGs-setthen
(2.36) PSMX ompgl e M)V =5]=1, i€ M(F).
(c) If F, F€ C Dg[0, s] are Gs-setsthen

(2.37) PS1 Vi'>t>s]=1

(Kol (F)>0p = ]lp%ton[*oi](FpO}

PrROOF  Recall the definition oft in (2.26) and sef := {(t,w) € E:t > s,
mo.s)(w) € F}. If F is measurable, the¥ is measurable. Moreover, since
mo,s] IS the pointwise limit of a sequence of continuous functions (cf. [9],

Proposition 3.7.1)F is aGs-set whenF is aGs-set. The path procegssatisfies
(2.38) P U[(t,E) e FVt>s, (1,6 ) e FVYt>s1=1, (s',w)eF.

Therefore (a) follows from Lemma 19(a) and (b) follows from Lemma 19(b). To
prove (c), use the branching property (Lemma 14) to write

(2.39) Xoh = gk g8l v s s as.
Then, applying (b) taF and F¢,

~ A

(2.40) K o i (F) = KM o gk (F) + Ky o gt ()

= (%" o J+0  Vizsas.
By applying the strong Markov property to the stopping time(sing s : ;17"
=0}, it is not hard to see that

. o5 o5 ">t>g5a.s.
(2.41) ]l{xﬂ,lwoﬂ[o g = ]l{xt]l”on[ai]w} Vt'>t>sa.s.,

which proves (c). [

2.2.4. Historical binary branching particle systemsHistorical binary branch-
ing particle systems can be introduced in much the same way as historical su-
perprocesses. First, binary branching particle systems, the underlying motion of
which is a Hunt process with cadlag sample paths in a Polish spdteare de-
fined through their generating semigroup, which in turn is defined via the unique
solution to a Cauchy integral equation of the form (2.8§. i§ such a Hunt process
andb,d € B+(E) then the historicalé, b, d)- particle systemf( is the (time-
mhomogeneous()é b,d)- particle system, where is the path process associated
with & andb(t, w) := b(w(z)), d(t, w) := d(w(t)). Because this is very similar to
what we have already seen (but easier), we skip the details.

Many of the elementary properties of historical superprocesses have analogues
for historical binary branching particle systems. For example, if the underlying
motion has the distinct path property, then the historical binary branching particle
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system at time > 0 is a.s. a simple point measure. (One way to prove this is to

use Poissonization and Lemma 20.) Also the formula for the finite-dimensional
projections of a historical superprocess (Lemma 21) has a straightforward
analogue for particle systems.

2.3. Compensated-transforms and weighted superprocesses.

2.3.1. Preliminaries from semigroup theorylLet E be a compact metrizable
space and le?(E) be the Banach space of continuous real functionskon
equipped with the supremum norm, denoted [py||. Let S = (S;);>0 be a
semigroup of bounded linear operators 6GE). By definition, S is strongly
continuousf lim,_o||S; f — f|l =0 for all f € €(E) andS is positiveif f >0
implies S; f > 0,t > 0. Fori € R, let us say thaf§ is A-contractiveif ||S; f|| <
M| £, t > 0. The following version of the Hille-Yosida theorem can easily be
derived from [9], Theorem 4.2.2 and Proposition 1.1.5(b). (Sefing: ¢~ 5; and
G := G — A, we can restrict ourselves to contraction semigroups and operators
that satisfy the positive maximum principle. To see that for contraction semigroups
our condition (iv) implies condition (c) from [9], Theorem 4.2.2, note that
Jo  ure “"dr solves(c — G)v = f. By [9], Proposition 1.1.5(b), our condition (iv)
is also necessary.)

LEMMA 24 (Hille-Yosida theorem). A linear operator G on C(E) with
domainD(G) is the generator of a strongly continugysositive A-contractive
semigroups on C(E), with A € R, if and only if

() G isclosed
(i) D(G)isdenseimC(E);
(2.42) (i) Gf(x) <Arf(x) wheneverf € D(G) assumes its maximum over
E in apointx € E with f(x) > 0;
(iv) for all f e D(G) there exists a continuously differentiable
[0, 00) — C(E) such thatuo = f, u; € D(G) and Lu, = Gu,, t > 0.

The functior in (iv) is unique and given by, f = u;,t > 0, f € D(G).

Let G be the generator of a strongly continuous, positi¥e;ontractive
semigroup or€(E) and lete € C(E), B € C(E). By definition, amild solution to
the Cauchy problem (1.7) is a continuous functiaO, co) — C(E) that satisfies

t
(2.43) =S f+ /0 Si_s(Bus —audyds, 10,

[cf. (2.8)]. By definition,u is aclassicalsolution to (1.7) ift — u, is continuously
differentiable inC(E), u; € H(G) for all + > 0 and (1.7) holds. Every classical
solution is a mild solution. For classical solutions, we have the following
comparison result.
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LEMMA 25 (Sub- and supersolutions)Fix T > 0 and assume that is a
classical solution to(1.7) on [0, T] for someug = f € D(G). Assume that
u:[0, T] — C(E) is continuously differentiablei, € D(G) forall t € [0, T] and

3
a—ﬁt < Giiy + Bii; — ait?, tel0,T],
(2.44) !
ug < f.

Theniiy < ur. The same holds with all inequality signs reversed

ProOOF This is a standard application of the maximum principle (see,
e.g. [14], Lemma 10). O

Existence of solutions to (1.7) is guaranteed by the following lemma.

LEMMA 26 (Classical and mild solutions to a semilinear Cauchy problem).
For each f € G(FE) there exists a unique mild solutiom of (1.7) up to an
“explosion timeé 7'(f), with lim 47 ¢y lus|l = oo if T(f) is finite. For eachr > 0,

f = U; f :=u,; defines a continuous map frdrfi € C(E): T (f) < t},into C(E).
If f e D(G),thenthe mild solution t¢l.7)is a classical solutionThe timeT (f)
is infinite if £ > 0, in which case alsa >0, or if « = 0.

PrROOF The statements about mild solutions follow from [22], Theorems
6.1.2 and 6.1.4, and the statement about classical solutions follows from [22],
Theorem 6.1.5. Iff € D(G) N C4+(E), then using Lemma 25 it is easy to prove
that the classical solution to (1.7) satisfies@ < e*+lI8D?| £|. SinceD(G) is
dense (FE) is the closure of its interior antl, is continuous, the same bounds
hold for mild solutions. The fact that solutions do not explode in the linear case
a = 0 follows from [22], Theorem 6.1.2.01

2.3.2. Superprocesses with Feller underlying motiohet £ be a locally
compact metrizable space and (&t)*<f be a Markov process i with cadlag
sample paths. Thef*)*<F is called aFeller processf the map(z, x) — LEY)
from [0,00) x E into M(E) is continuous and (in casg& is not compact)
the semigroup of&¥)*€f maps the spac€y(E) of continuous real functions
vanishing at infinity into itself. A Feller process on a locally compact but not
compact spacé& can always be extended to a Feller process on the one-point
compactification of£' by putting&° := oo, t > 0.

If E is compact, therié*)*<f is a Feller process if and only if its semigroup
is strongly continuous, positive, and satisfigd = 1, r > 0. Such semigroups
are called Feller semigroups. Note that a Feller semigroup is contractive, that is,
A-contractive withh, = 0. To every Feller semigroup there exists a unique (in law)
Feller process it with cadlag sample paths ([9], Theorem 4.2.7). A Feller process
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on a compact metrizable space is a Hunt process (see [24], Theorem 1.9.26 and
Exercise 1.9.27 or [16], (9.11)).

Let E be compact and metrizable, 6tbe the generator of a Feller semigroup
(P1)i=0 ONC(E),a € C4+(E), andp € C(E). Then we have the following lemma:

LEmMmA 27 (Feller property of superprocessyet X be the (G, «, 8)-
superprocess with log-Laplace semigroup= U(G, «, 8). ThenX is a Feller
processFor each f € C,(E), the map(t, x) — U, f(x) from [0, c0) x E into
[0, 00) is continuous

PROOFE SinceE is compact, the spac#((E) is locally compact. By [22],
Theorem 6.1.4(¢,x) — U, f(x) is jointly continuous int and x whenever
f € CL(E). Therefore, and by (1.8),

(2.45) EFr[e=XmN] 5 EH[e~ X0 asu, = .ty — 1, f € CL(E).

If f e C.(E) satisfiesf > 0, then the function — ¢~ “/) is continuous

on M(E) and vanishes at infinity, and by the Stone—Weierstrass theorem, the
linear span of all such functions is densedg(.M (E)). Thus, (2.45) implies that

LFn (X)) = LH(X,) wheneveru, = u, t, — t. It is not hard to see that the
semigroup ofX; maps functions that vanish at infinity into functions that vanish at
infinity; therefore,X is a Feller process.

2.3.3. Compensated-transforms of Feller processesin this section we prove
Lemma 3. We start with two simple observations.

LEmmA 28 (h-transformed semigroup).Let S be a strongly continuoys
positive A-contractive semigroup o®(E) with generatorG and assume that
h € D(G) satisfiesh > 0. Then

(2.46) Sfi= S0, feCE),iz0

defines a strongly continuoupositive A-contractive semigroup o@(E), with
A=/ and generator

(2.47) Gf:= %G(hf) with D(G) := { f € C(E) : hf € D(G)}.

PROOFE Sinceh is bounded away from zero ads strongly continuous, it is
easy to see that alsbis strongly continuous. Moreoverl(S,f /) converges
in C(E) ifand only if 1f € D(G), and the limit is given byG 1. Obviously,S is
positive. Slnce—he“ = |G lhe* > Ghe™, Lemma 25 shows tha,h < he™.
Since fh < ||f||h and S is positive, it follows that 3 St(hf) < lS,(||f||h) <

I £lle*. Similarly —|| flle* < S, f and, therefores is X—contractive. O
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LEMMA 29 (Linear perturbation). Let G be the generator of a strongly
continuouspositive A-contractive semigroup ofi (E) and assume that e C(E).
Then

(2.48) G:=G+g WwithD(G):=D(G)

is the generator of a strongly continugysositive A-contractive semigroup on
C(E)with A := A+ |g]l.

PROOF The operatoG satisfies conditions (i)—(iv) from Lemma 24, where
condition (iv) follows from Lemma 26. O

PROOF OFLEMMA 3. It follows from the previous two lemmas that" is
the generator of a strongly continuous, positiveontractive semigroup oi(E)
(for somex). Obviously 1e H(G") andG"1 = 0, and therefor&s” generates a
Feller semigroup.

To see that the law of the corresponding Feller progéss given by (1.17), we
proceed as follows. By [9], Lemma 4.3.2, the process

— h(&) ex <_ " Gh(&s) a,s>’
h(x) o h()

is a martingale with respect to the filtratiaF;),>0 generated by ; therefore,

PX(A) := EX[M,14], A € ¥, defines a legitimate change of measure. Put

Pf‘f(x) = E*[f(&)], x € E, f € C(E). We need to show that under the changed

measure¢ is a Feller process with semigroup and thatG” is the generator
of P, By the Markov property oP*, forO<s <1,
7]

] e[ )

= ES[f(5—)M,1= P f(£)).
Therefore, for any € F;,

(2.49) M; t >0,

(2.50)

- M
E*Lf(E)1a] = E*Lf (5)M,14] = E* [E [f(&)ﬁt f;]MsﬂA]

(2.51) i -
=E* [P, f(E)MsLal = E7 [P, f(&)1al,
which shows thaE*[ f (£,)|F;]1 = P!, f(&). Itis not hard to see thak/" f (x) is
jointly continuous int andx, and thereforeP” is a Feller semigroup. Finally, if
fh e D(G), then
h(o) lim =P f = ()
t—

" Gh(&)
h(&s)

@52 =lm (B[ reoneexs( - [
= G(fI) () — F()Gh()

ds)} — h(x)f(x))
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uniformly in x € E, which shows thaG” is the generator oP”. [

An alternative proof of formula (1.17), using historical superprocesses, is given
at the end of the next section.

2.3.4. Weighted superprocesses.

PROOF OFLEMMA 5. Write U := U(G, a, B) and U" := U(G", ha, B +
GTh). By Lemma 26, for everyf € D(G") N €, (E), the functions — u; :=
U, (hf) is a classical solution to the Cauchy problem

0
Eu, = Guy + Bu; — ozutz, t >0,

ug = hf.
1

A little calculation shows that— u]' := $u, is a classical solution to the Cauchy
problem

(2.53)

0 Gh
gu? =GMul + (/3 + T)Mf’ — ha(u?)z, t >0,
(2.54)

up = f.
Therefore U’ f = 2, (hf) for all f € D(G") N C(E). SinceD(G") is dense
in C(E), C4(E) is the closure of its interior ant, U" are continuous, it follows
that
1
(2.55) Uy f = Whf). 120 €C(E).

It is clear that the process’ defined in (1.18) is a Markov process with
continuous sample paths. To see tiél is the historical(G", ha, B + S%)-

superprocess, by Lemma 21, it suffices to check Kiatsatisfies (2.28) for the
log-Laplace semigrouf!”. This is easily done, since we have

E| ex —/ X' (dw) f(wy, ..., w )Dﬁh:}
|: p( Del0.tps1] tn+1( )f( o tn+l) t 7

=FE|ex —/ h(w x dw
|: p( @E[O,tn+1] ( tn+l) tn+l( )

x f(wlo’ e wtn+l))’(h o ntn):x’\:tn = /’Li|
= FE| expl — / x dw)h
o= [ o Fuaunu,)

A

X, = (ho rr,n)_l,u]

(256) X f(wl‘o’ RN wl‘n+l))
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= exp( - / h(wy, ) (dw)
D(0.1,]
X U,y 1—ty {hO) f (wrgs - Wy, ')}(wtn)>

h
= exp( — /:DE[O,tn] u(dw)‘ll,n+l_tnf(w,o, ey Wy )(w,n)) 0

ALTERNATIVE PROOF OF (1.17). Let X be the (deterministic) historical
(G, 0, 0)-superprocess started g = §, and set

(2.57) XMdw) == h(w) X, (dw),  t>0.

By Lemma 5, X" is the historical(G", 0, $)-superprocess started o =
h(x)s, and, therefore, by Lemma 22,

(i) X;(dw) = P*[(&)sef0.) € dw],

ae A h t Gh x h

(i) % (dw) = hoyexp( [ 5w ds ) PEseron € dul
Combining (2.57) and (2.58), we arrive at (1.17).]

(2.58)

3. Proof of the main results.
3.1. The infinitesimal survival probability.
3.1.1. Extinction versus unbounded growth.

LEmMMA 30 (Eventual extinction). We havell,co | p ast 1 co. Moreover

e (w.p), if (i, U;00) < oo for somer > 0,

(3.1) PH[X, =0eventually= _
0, otherwise

If sup.cx U;00(x) < oo for somer > 0,thenU; p = p forall ¢t > 0.

If (i, Us;00) = oo for all + > 0, then possiblye™*7) = 0, but this need not
always be the case; see Example 34.

ProOF oF LEMMA 30. Since the zero measure is an absorbing state,

T(x,=0; = I{x,=ovr=ry @.S. and, thereforefl;x, —o; 1 Tix,=0 eventually as
t, 1 oo a.s. Thus, taking the limit in (1.22), we see thgtco | p. If (u, U;00) <
oo for somer > 0, then{u, U;00) | (i, p). Taking the limit in P*[X; = 0] =
e~ U) “we arrive at (3.1). Formula (1.8) shows thdt is continuous with
respect to bounded decreasing sequences. Therefore, if;sUpoo(x) < oo for
somet > 0, thenU; p = U;(liMs100 Us00) = liMgpo0 U500 = p for all ¢ > 0.

O
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LEMMA 31 (Extinction versus unbounded growth)f sup, .z U;00(x) < oo
for somer > 0, then

(3.2) pP* [X, = 0 eventually ortingo(xt, 1) = oo] =1, e M(E),

and
(3.3) tﬂ)moo‘u,f(x):p(x) VxeE, feC(E), f>0.

PROOF Let (¥;);>0 denote the filtration generated bg. It follows from the
right property of the procesk [see (2.5)(i)] that — e~ (X+-7) is right-continuous.
By Lemma 30 and convergence of bounded right-continuous martingales,

(3.4) e XeP =prx,=0 eventually#;] — 1(x a.s.
—00

s=0 eventually}

It follows that (X;, p) — oo a.s. on{X; = 0 eventually“. Since| p|| < oo, the
same conclusion holds f@¢G,, 1). O

3.1.2. Continuity of the infinitesimal survival probabilityEven though the
underlying motion has the Feller property aadg are continuous functions,
p need not be continuous in general, as is illustrated by the following examples,
which we give without proof.

ExAMPLE 32 (Discontinuous infinitesimal survival probability)Let & be the
deterministic Feller process i1, 1] given by the differential equation

(3.5) %st =1-(&)?>  1=0

Let X be the superprocess [r-1, 1] with underlying motiorg, activity «(x) :=1
and growth parametef (x) := —x. Then

1, if x =-—1,

0, if x € (—1,1].

Let Y be the superprocess ir1, 1] with underlying motiorg, activity «(x) :=
x Vv 0 and growth parametef (x) :=x v 0. Then

00, if x =—1,

1, if x € (—1,1].

(3.6) —log P%*[X; =0 eventually = {

(3.7) —log P [Y, = Oeventually:{

Nevertheless, we have the following lemma.

LEmMMA 33 (Continuity of the infinitesimal survival probability).If

SUpU;o00(x) < co
xekE

for somer > O andinf,cg p(x) > 0, thenp is continuous
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PrROOF Our strategy is to prove that the event tabecomes extinct depends
in a continuous way on the path &f and, therefore, by the Feller property, on the
initial condition. To do this, we show that by observiXgfor a finite time, we can
be almost certain whethé&¢ becomes extinct.

Set
(3.8) pi= )jggp(x) and p:= feubpp(x).
Note that by (3.1),
(3.9) e w7 < prx;, =0 eventually < e br, we M(E).

Fix xo € E. We will show thatp is continuous atxg. Let 0 < ¢ < C < o0
ande¢’, ¢” > 0 be arbitrary. Choose continuous functiofgs f1, foo from [0, c0)
into [0, 1], summing up to 1, such thatg./2] < fo < Ljo,c], Lie,c] < f1 <
Lic/2,2c1, @and Lo 00) < foo < Lic,00)- By Lemma 31, there existsA > 0 such
that

(3.10) EMo[f1((X7, 1] <€

Letd be a metric that generates the topologyrarBy Lemma 27, we can choose
8 > 0 such that for alk € E with d(x, xg) <4,

(3.11) IE‘S*O Lf (X7, W] — E[f,((Xr, )] <&, d(x,xg) <68,r =0, 1.
Write

P%[%; = 0 eventually
(312) = E8X|: Z fr((xT’ 1))]1{9(;,:0 eventually}i|
r=0,1,00

= Y EM[£((Xr,1)P*T[X, =0 eventually].

r=0,1,00

Using (3.12) to get lower and upper estimateslefh[xt = 0 eventually, and
applying (3.9), we find that
E*[fo((Xr,1)]— (1 — e P)
< E*[fo({Xr,1)1e"”
(3.13) < P¥[X, =0 eventually
< E¥[fo({%r, 1+ E*[ (X7, W]+ E*[ foo (X7, 1)) 1672
< EX[fo((Xr, )]+ (' +&") + €L, d(x,x0) <8.
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Therefore, for allkk € E with d(x, xg) <6,
| P2x0[X;, = 0 eventually — P%[X, = 0 eventually|
< [P¥o[X, =0 eventually — E%o[ fo((X7, 1))]|
+|E*o[ fo((X7, D] — E> [fo((X 7, 1]
+|E*[fo((X7, 1))] — P*[X, = 0 eventually
< (A= D)+ (' +&"+e7D))
e+ (L—e Py + (' +&"+e D).

(3.14)

Since O< ¢ < C < oo ande’, ¢” > 0 are arbitrary, the last line of (3.14) can be
made arbitrarily small. Thus, we have shown that for eachO there exists a
§ > 0 such that

(3.15) ler0) e PW| <g  VxeE withd(x, xp) < 6.

This shows thap is continuous atg. O
3.1.3. Properties of the infinitesimal survival probability.

PROOF OFPROPOSITION7. Parts (a) and (b) follow from Lemmas 30 and 31.
To prove part (c), note that if € C(F) satisfiesU, f = f for all > 0, then
u; ;= f,t>0,is amild solution to (1.7), that is,

(3.16) f:P,f+/otPs(ﬂf—af2)ds, t>0.
Thus,

(3.17) lim: P f - f)=—lim t_I/t Py(Bf —af?)ds=—Bf +af?
t—0 t—0 0

which proves thatf € D(G) and that (1.23) holds. Conversely, ffe D(G) N
C+(FE) solves (1.23), them, := f is a classical solution to (1.7) and, therefore,
U, f = fforallt >0.

To prove (d), note that if ink g p(x) > 0, thenp is continuous by Lemma 33
and, thereforep solves (1.23) by parts (b) and (c). Moreover, part (a) shows that
in this case there exists only one positive fixed pointiof [

3.1.4. Nonuniform convergence @,co. Lemma 11 shows that the assump-
tion that sup.r U,00(x) < oo for somer > 0 cannot be dropped from Theo-
rems 8 and 9. However, the reader may wonder if this condition is not implied by
the simpler-looking condition sypz p(x) < co. To show that this is not the case,
we include the following example.
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ExamMpPLE 34 (Nonuniform convergence @ff;00). There exists a generator
G of a Feller process in a compact metrizable sp&canda € G (E) such that
U = U(G, a, 0) satisfies
(i) Uy00(x) < 00 VxeE,t>0,
(3.18) (i) U;00 | 0O, ast 1 oo,
(iii) sup.c g U;00(x) = 00 vt >0.

PROOF TakeE := [0, 1]. Define a Feller procegs= (§*)*<£ in E by

(3.19) St(x’y) = (x,ye "), (x,y) €[0,1] x [0, 1),
- wy . | & D, t<Tt,,
gt T (_x’ e_(t_.[x))’ t > tx, X € [0’ 1]7

wheret,, x € (0,1] is an exponentially distributed random variable with mean
x andtg:= 0. It is not hard to see thdt is a Feller process. Laf denote its
generator. Choose € C (E) such that (0, 1) = 0 anda > 0 elsewhere. Set

(3.20) a(x, ) =infla(x,y):y €0, 1]}, x €10, 1].
For fixedx € [0, 1], the process§ restricted tgx} x [0, 1] is an autonomous Feller
process and (x, -) > 0 for x > 0. Therefore, using (1.30), we have

(3.21) U,00(x,y) <

; t>0,(x,y) € (0,1] x [0, 1].

a(x, )t
The superprocesX started ind(o,y) (v € [0, 1]) is concentrated oK0, ye™) at
time ¢, if it survives. Therefore, applying (1.30) to the procé$s),-., we have
for eache > O that

3.22) U 0,y) < ,
(3.22) U;o0( V=505
This proves (3.18)(i) and (3.18)(ii). Now consider the proce€ss(- N ((0, 1] x
{1}))):>0. Itis not too hard to see that this is an autonomous superprocess without
(i.e., with constant) underlying motion, activity(-, 1) and growth parameter
B(x) := —2. Therefore [see (1.30)],

t > ¢, wheres :=inf{a(0,e™"):t €[, 00]}.

B(x) x71

(3.28) Wieoto ) D = o a5 = ate D@k 1

t > 0,x € (0, 1]. We can additionally choose(x, 1) := e~¥**, x € (0, 1]. Then
(3.24) Iimo U,y (001(0,1]x{1})(X, 1) = o0, t > 0.
x—

It follows that sup.p U;00(x) > sup.p Us;(00L(0,15x(1))(x) = oo, which
proves (3.18)(iii)). O
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3.2. Surviving lines of descent.

3.2.1. Poisson point measuresLet E be a Polish space. By definition, a
Poisson point measure with intensity € M(E) is an & (E)-valued random
variable Poigu) with

(3.25) E[(1— f)Posw] =g /) f € BL(E).

If u is atomless, then Pdig) a.s. takes values in the spagé*(E) := {v €
N(E):v({x}) <1 Vx e E} of simple point measures oA. Note thatN*(E)

is an open subset of (E) and, therefore, a Polish space in the induced topology.
We identify & *(E) with the space of finite subsets Bf If u € M(E) is atomless,
then anV*(E)-valued random variableis a Poisson point measure with intensity
w if and only if (see [21], Proposition 1.4.7)

(3.26) P[v(A) =0] = e #@A), A€ B(E).

It is not hard to see that the evept € M(E) : supgw) is finite} ¢ M(E) is mea-
surable and that — suppu) is a measurable map frofw € M(E) : supgu) is
finite} into N *(E).

We need a criterion to decide whether the support of a random measure is a
Poisson point measure.

LEmMmmA 35 (Random measures with Poisson supportet E be a Polish
spacelet u be an atomless measure éhand letZ be anM (E)-valued random
variable such that

(3.27) P[Z(A) =0] = e+, A€ B(E).
Then

L 1, if w(E) < oo,
(3.28) P[supfZ) is finite] = {0’ it W (E) =

Moreoverif u(E) < oo, thensupfZ) is a Poisson point measure with intengity

PROOF Assume thaj(E) < co. Choose finite measurable partitioA§) =
{AE”)}Z-E,(") such thatd™*?D is a refinement oA ™ and such that intersections of

the formN Ag’) are empty or consist of one point. Since

(329)  E[{ie1™:z(A")>0)[]= Y (1-e A7) < u(E),

iel™
the increasing limit of{i € 1 : Z(A(”)) > 0}] is a.s. finite, that is, there are a.s.
finitely many decreasing sequences of partition eIemﬂtﬁJﬂsa A(z) - such

thatZ(A(”)) > 0 for all n. The limit points of these sequences glve the support
of Z and by formula (3.26), sugg) is a Poisson point measure with intengity
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Assume, on the other hand, thatE) = oo. Sincepu is atomless, there exist
measurable disjoint set8;);>0 such thatu(B;) > 1. Formula (3.27) shows that
the event§Z(B;) > 0} are independent and that

(3.30) S PIZ(B)>01=) (1—e"B)) = o,
i=1 i=1

Therefore, by the Borel-Cantelli lemni&(B;) > 0 for infinitely manyi, which
proves that sup(®) is infinite a.s. [

3.2.2. Poissonization of historical superprocesseshe following lemma
gives a historical variant of formula (1.11)(i). Moreover, it shows that the particles
in Poig (U, f)r) from (1.11)(i) are, in a sense, the ancestors of the particles in
Poig 1 X;).

LEMMA 36 (Poissonization of historical superprocesseset X be the
historical (G, «, B)-superprocess started at time> 0 in g € M(DEg[O, s]).
Assume thafi is atomlesslf ¥ is an N (Dg[0, s + ¢])-valued random variable
such thatfor a givenf € B (F) andt > 0,

(8:31) P[D € [(X))s<r=s+1] = P[POI{(f 0 ms11) Ks1r) € | Xs1s] @S,

thensupp? o T[[B,]:v]) is a Poisson point measure with intensity, f o ) 1.

PrROOF Sincep is atomless, by Lemma 35, it suffices to show that for all
A € B(Dgl0, s]),

(3.32) P[b o w5, (A) = 0] = exp( — (U f o o) i(A)).
By (3.31),
(3.33) P[iomgh(A)=0]=E"*[exp(— (f o mspr) Xsss 0 g5 (A)].

By the branching property (Lemma 14) and by Lemma 23(a), we can rewrite the
right-hand side of this equation as

ES AR exp(— (f 0 ott) Kisr 0 T 5 (A)]
(3.34) X ES’]lACﬂ[eXp( —(fo ”s—i—t)jz;s-&-t o n[?)ls](A))]

= ES’]lAﬂ[eXp( —((fo 7Ts+t)565+tv 1>)] -1

From the relation (2.27) between a historical superprocess and its associated
superprocess it is obvious that

(3.35) E“M[exp(— (X 0wy £))] = exp(— ((@ap) oy L Us f)).
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It follows that
(3.36) ES[exp(— (f o Tyys) Xyys 0 g5 (A))] = €Xp(— (U f o T)A(A)).
Combining this with (3.33), we see that (3.32) holds]

The proof of Lemma 36 has the following corollary.

COROLLARY 37 (Surviving lines of descent).Let X be the historical
(G, a, B)-superprocess started at time> 0 in 4 € M(Dg[O0, s]). Assume that
i is atomlessThen for anyr > 0,

A

(3.37) P[supp(Xiompgy) isfinite =1 = (fom, ™t Uso0) <o

Moreoverif ({1 o ns‘l, U,00) < 00, then supE X4 o ”E),ls]) is a Poisson point
measure with intensityU, 00 o 7).

PROOF Letting f 1 oo in (3.36) we see that

P Xyy o g (A) = 0]
(3.38)
=exp(— (Us00 o 7r5) 1 (A)), A € B(DglO, s]).

Now the statements follow from Lemma 350
3.2.3. Finite ancestry property.

PROOF OF LEMMA 11. |If sup.g Us00(x) < oo for somet > 0, then
(1, Us00) < oo for all w € M(E). On the other hand, if sypy U;00(x) = oo
for all r > 0, then we can findqu € M(E) such that{u, U;00) = co for all
t > 0. To see this, choose strictly positiw,),~0 such thaty,-oe, = 1. Choose
tn T oo andx, € E such thati,, co(x,) > en—l and choos@: := 3}, ~g€ndx,. Then
(u, ut,, 00) > Zmzn Em cutn (Xm) = Zmzn Em cutm (Xp) = 00.

The log-Laplace semigroud’ = U(G’, o', B’) satisfiesU;(f o ) = (U f) o
¥, whereys denotes the projection fror’ to E (see Lemma 18). Therefore (i)
implies that{x ® £, U;00) < oo for somer > 0, which by Corollary 37 implies (ii).
On the other hand, if (i) does not hold, then there exists@ M (E) such that
(L ® ¢, U00) = oo forall r > 0, and in this case Corollary 37 shows that (ii) does
not hold. Finally, sinceX, = X/ o v, 2, (ii) implies (iii). O

PROOF OFLEMMA 13. We prove the following, slightly more general result.

LEmMMA 38 (Immortal lines of descent).LetD% be the historical G, «, 8)-su-
perprocess started at tintein © € M(E). Assume thasup, .z U;00(x) < oo for
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all t > g, for someg > 0, whereU = U(G, «, B). Then
(i) supp(X, o g’ is finite
Vt,r >0suchthat + g <r as.
(i) Supp(X; 0 71) O supp(%, o o)
Vi, r,r’ >0suchthat +¢g <r <r’ as.

(3.39)

PrRoOF Let us introduce the shorthand
(3.40) Xipi=Xrompgh,  0<t=r

Let D C [0, oo) be countable and dense. The implicatienin (3.37) also holds if
[ is not atomless; this can be proved by extending the spaas in Lemma 11.
Therefore,

(3.41) SUppX; ) isfinite  Vr,reD,r+q <ra.s.

Let @ be a countable basis for the topology H3: [0, #]. Conditioning onX, and
applying Lemma 23(c), we see that

(3.42) 1, Vr,r'>0,teD,0e€0,t<r<r'as.

%,.(0)>0) = L%, ,(0)>0)
It follows that
(3.43) supX;,) CsuppX;,) Vrr'=0reD,t<r<ras.

Combining this with (3.41), we see that sif /) C Supa X, ) and suppX;.,)
is finite V' > 0,t,r € D,t +q < r <r’ a.s., and therefore (3.41) can be
sharpened to

(3.44) SUPEX, ) isfinite Vi’ >0,reD,t+q<r as.

If X, is finitely supported for some r’, then suppX,,’ ) = 70, (SUPA X))
forall ' <t. Thus, (3.44) can be further sharpened to

(3.45) SUpPE X, ) isfinite Vi, >0,/ +q<r as.

This proves (3.39)(i). Moreover, by (3.43) and (3.45),

(346) Supﬂfct’,r’) = n[O,t’](Supﬂxt,r’)) C n[O,t’](SupF(xt,r)) = SUp[:(DAC;r,,)
Vi',r,r'>0,teD,i' +q<t+qg<r<r’as,

which proves (3.39)(ii). [

The proof of Lemma 13 is complete[]



TRIMMED TREES AND EMBEDDED SYSTEMS 2215

3.3. Embedded trees.Our first and crucial proposition in this section shows
that it is possible to embed a collectidrof immortal lines of descent in certain
historical superprocesses. We then identify these immortal lines of descent as a
historical binary branching particle system. Finally, we generalize our results in a
number of steps, until we arrive at the statements in Section 1.5.

3.3.1. Construction of the embedded tredRecall the definition of the distinct
path property before Lemma 20.

PropPoOsSITION 39 (Embedded tree).Let X be the historical (G, a,a)-
superprocess started at tin@in u € M(E). Assume thaj is atomless and
that the Feller process with generat@r has the distinct path propertyrhen
X may be coupled to a random setc Dg[0, co) such that the random sets
I; :=={m0,n(w) : w € I} are finite for allz > 0 and satisfy
(3.47)  P[I € -|(Xs)o<s<i] = P[P0OISX;) €-|X;] as.Vt=>D0.

If, in addition U = U(G, o, ) satisfiessup,.; U;00(x) < oo for somer > 0,
thenp :=lim;;o U;00 =1 and/ may be chosen such thatoreovey

(3.48) I =supp(X, omjg}),  r-eventually: >Oas.
PROOF Identify, as usual, finite subsets and simple point measures. For each
T >0, let7M) be a random finite subset @ [0, 7] such that
(3.49) P[I'D € |(X))o<i<1] = P[POISXT) € | X7].
Put
(3.50) I/ :={moqw):we D} =suppl™ o n[_o’lt]), 0<r<T.

Using the fact that, by Lemma 2, is a.s. atomless, conditioning QDES)OSSS,,
applying Lemma 36 and the fact that the function 1 is a fixed poilt @F, «, o),
we find that

(3.51) P[I" € -[(Xs)o<s</] = P[PoigX;) € -|X;]  asVO0<i<T.

Thus, we can satisfy (3.47) up to a finite time horizbnTo letT 1 oo, we need
to take a projective limit. For & § < T, define a map/s 7 : N*(Dg[0, T]) —
N*(DEgl0, 1) by

(352) lﬂS’T(J) = {n[o,s](w) W e J}, J e N*(@E[O, T])
Then (3.51) shows that the random varialile, )o<,<7, I 7))~ satisfy the con-
sistency relationf ((X,)o</<s. ¥s,r(I'1)) = L(X)o<i=s, ID) (0< 5 < T).

Note that((%,)o<;<7, I7) takes values in the Polish spa@g (o, [0.00))[0, T] x
N*(Dg[0, T]). Let N be the space of all countable subsgts Dg[0, co)
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such thatyr o (1) := {mj0,71(w) : w € I} is finite for all 7 > 0. EquipV ) with
the o -field generated by the mappings oo : ;N ) — N*(Dg[0,T]), T > 0.
Taking the projective limit of the variable§X;)o</<7., ") 7r=0, we can con-
struct a random variableX;, 1) with values inC (0,00 [0, 00) x N () such
that ((X;)o</<7. ¥r.00(I)) is equal in distribution to((X;)o<;<7, ") for all

T > 0. It follows thatX is the historical(G, «, «)-superprocess started at time 0
in u € M(E) and thatl is a random set that satisfies (3.47).

Assume that sup z U,;00(x) < oo for somer > 0. We must show that we can
choosel such that, moreover, (3.48) holds. First note that the function 1 is a
positive solution to (1.23) and, therefore, by Proposition 7fa}, 1. Choose > 0
such that su;gE U,00(x) < oo forallt > g. Then, by Lemma 38, the random sets

SUpp X, o 7rg [0.1] Ly are finite and nonincreasingin> ¢ + g for all t > 0 a.s. Define
random flnlte subsets C De[0, t] by

(3.53) L= () supp(X,omgy) VizOas.
r>t4q

Then (3.48) is fulfilled. Defing C Dx[0, 00) by

(3.54) I :={w € DEl[0, 00) :7j0,1)(w) € I; Vi > 0}.

Then

(3.55) I ={m0(w):wel} Vt>0a.s.

By Corollary 37,
P[supp(X;, o mjgh)) € |(Xs)ozs</]
= P[Poi(U,_;000m)X;) €-|X;]  as.
Vt,r>0,t+q <r. Taking the limitr 4 oo, we see that also (3.47) holdd]

(3.56)

3.3.2. Identification of the embedded treeQur next step is to identify the
embedded treé in Proposition 39 as a binary splitting particle system. #ar0,

define equivalence relatiér and~ on 1 by

t— . .
(3.57) w~v ifandonly if 7o, (w) = 70,1 (v),

w if and only if 70 ;-1 (w) = 710,141 (v) fOr somee > 0,

and let/;,_ and I, denote the coIIectiAons oF §md’ir equivalence classes ih
respectively. Define counting measupgs and X, on Dg[0, ¢] by

)A(t_ = Z Sn[ov,](w)’ t >0,

wel;_

)A(t = Z Sn[ov,](w)’ t>0.

w€1[+

(3.58)
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It is not hard to see that = (}?,)tzo has right-continuous sample paths with left
limits given by X,_ and that
(3.59) =X, asVt>D0.

Note that the a.s. and thér > 0 cannot be interchanged here, sin¢eis not
a simple point measure at those (random) times wlign< |/, |, that is, when
splitting occurs.

LEMMA 40 (Identification of the embedded tree)The processX is the
(G, o, 0)-particle system started at tinfin Poig(u).

PROOE By (3.59) and (3.47),
(3.60)  P[X; €-[(Xy)o<s<t] = P[POILX,) €-|X;]  asVr>0.
Let X’ denote the&G, «, 0)-particle system started at time O in Rgi$. The time-
inhomogeneous log-Laplace semigro(¥; ;)o<s<; Of the historical(G, «, a)-
superproces and the time-inhomogeneous generating semig(ﬁ@p)oisf, of

the historical G, «, 0)-particle systenX’ are defined by the same Cauchy integral
equation. Hence

(3.61) Usf=Ussf.  0=<s=t, feBoy(Del0.1).

Therefore, we may reason exactly as in the proof of Lemma 1 to see that
(3.62) POPOSWIX! 1= POL[POISX;) €],  t>0,ueM(E).

Combining (3.60) and (3.62), we see that

(3.63) P[X,e-]=P[X,e-], t>0.

It follows from our definition ofX that

(3.64) X, =supp(X,omgt)  asvO<s<t.

By a straightforward analogue of Lemma 23(a) for historical particle systems,
supp(X; o gt ) C SUpHX;) a.s.Y0 <s <. Since the death rate df' is zero,
particles cannot become extinct and, therefore, in fact@ﬁ;ppr[_o,ls]) = supp(f(;)
a.s.v0<s <r. SinceX; is a.s. a simple point measure [which follows from (3.63)

and the fact thatX, is a.s. a simple point measurey; satisfies, in analogy
with (3.64),

(3.65) X, =supp(Xjomgt) asvO<s<r.
It follows from (3.63)—(3.65) that
(3.66) P[(X.....X,)e-]=P[(X]

eeenXi)e], 0sn<p<o <ty

Since X and X’ have right-continuous sample path®, and X’ are equal in
distribution. [J
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3.3.3. Proof of the main theorems.Theorems 6, 8 and 9 can be combined into
the following theorem.

THEOREM 41 (Main results). Let X be the historical G, «, 8)-superprocess
started at time0 in € M(E). Assume that € D(G) satisfiesh > 0 and for
somey € C(E),

(3.67) Gh + Bh — ah®=—yh.

'[henfc can be coupled to the historicéGG", ha, y)-particle systenX started in
Xo = Poighu) such that

(3.68) P[X, € -|(Xy)o<s<] = P[Poi{(hom)X;) €-|X,] as.Vr=>0,

If, in addition U = U(G, a, B) satisfiessup, .z U;00(x) < oo for somer > 0,
thenp :=1lim;yo U,00 < h and the coupling may be chosen such thadreover

(3.69)  suppX,) Dsupp(X,omg}),  r-eventuallyv:>0as.

If, in addition, y = 0, then p = h and the coupling may be chosen such that
equality holds--eventually in(3.69).

PrRooF Under the additional assumptions thati)s atomless and the Feller
process with generatar has the distinct path property, (%) =0 and (iii) 2 = 1,
the statement follows from Proposition 39 and Lemma 40. We now remove these
assumptions one by one.

() Generalization to measures with atomst n be a Feller process in a
compact metrizable spacg such thatn has the distinct path property (e.g.,
Brownian motion on the unit circle). Le%’ denote the generator of the Feller
process(&,n) in E x F, where for given initial conditionsé and n evolve
independently. Put/(x, y) := a(x) and B/(x, y) := B(x). Let v, denote the
projection from Dg« [0, 1] to Dg[0,7]. Let 4 and p be finite measures on
Del0, s] and Dr[0, s], respectively, and assume thais atomless. I£X is the
historical(G’, ', B’)-superprocess started at timen 1 ® p, then, by Lemma 18,

(3.70) X=X, oy, L, t>s

is the historical(G, «, B)-superprocess started at timen /. Moreover,fcg is
atomless a.s7¢ > s and its underlying motion has the distinct path property. The
statements fof now follow from the statements foX’ by projection.

(i) Generalization tos # 0. Note that since we are still assumihg= 1, (3.67)
reduces tax — 8 = y. SetET := E U {1}, where 1 is an isolated cemetery point
that does not belong t8. Define a linear operatag ' on @(ET) by

GTf(x):=Gf@) +y@(f(H— f(x). xeE,

(3.71)
G'f(h =0,
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whereD (GT) consists of thos¢ e C(E™) such that the restriction of to Eisin
D(G). Set, moreover,

aT(x) =a(x), xekFE,
(3.72)
at(h) =1

Let X' denote the historicalG™, «, aT)-superprocess started at time 0 in

u e M(E) and letXT denote the historicalGT, o T, 0)-particle system started

at time 0 in Poigw). For 7 > 0, let X, and X, denote the restrictions of

DAC,T and)?’;r to Dg[0, ¢], respectively. Elementary considerations involving the log-

Laplace semigroups ofs,* andf(;r show that(fct)tzo, so defined, is the historical

(G, o, B)-superprocess, and tr(aﬁ‘,)tzo is the historical G, «, y)-particle system.
By what we have already proveti;” and X may be coupled such that

(3.73)  PIX] € [(XDoss<i] = P[POigX) € |X]]  asvi=0,

which implies (3.68). If, in addition, syp, U,o0(x) < oo for somer > 0, then

using the fact that T (t) = 1, it is not hard to show that also sug+ U oo (x) < 00
for somer > 0 and, therefore, by what we have already proved,

pli=limU/co=1
ttoo
and the coupling betweeX ™ and X' may be chosen such that, moreover,
(3.74)  suppX)) =supp(X]omgl),  r-eventuallyyr>Oa.s.

By Lemma 19(b) and the fact that t is a trap for the underlying moti6h,is
concentrated on paths that are trapped in T, once they reach T and, therefore,

suppX,) = suppX,) N D£[0, ]
(3.75) t 1 .
= Supp(X,; o 7yg1) N DElO, 1] D supp(X, o 7g;)
V0 <t <ra.s.Formulas (3.74) and (3.75) imply (3.69). Finally, forxadl E,
p(x) = —log P**[X,; = 0 eventually
(3.76) .
< —log P [X] =0 eventually= p'(x) = 1.

(i) Generalization toh # 1. Set X!(dw) := h(w;)X,(dw), t > 0. By
Lemma 5,X" is the historical(G", o, g")-superprocess, wher@” is defined
in (1.16) andx” := ha, B" := B + S Formula (3.67) implies that

(3.77) —y=p"—a" <.

Therefore the statements follow from what we have already provied.
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