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TRIMMED TREES AND EMBEDDED PARTICLE SYSTEMS1

BY KLAUS FLEISCHMANN AND JAN M. SWART

Weierstrass Institute and University Erlangen–Nuremberg

In a supercritical branching particle system, the trimmed tree consists of
those particles which have descendants at all times. We develop this concept
in the superprocess setting. For a class of continuous superprocesses with
Feller underlying motion on compact spaces, we identify the trimmed tree,
which turns out to be a binary splitting particle system with a new underlying
motion that is a compensatedh-transform of the old one. We show how
trimmed trees may be estimated from above by embedded binary branching
particle systems.
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1. Introduction and main results.

1.1. Introduction. It frequently happens that a superprocessX = (Xt )t≥0,
taking values in the spaceM(E) of finite measures on some spaceE, and a
branching particle processX = (Xt )t≥0 are related by the formula

P L(Pois(µ))[Xt ∈ ·] = P µ[Pois(Xt ) ∈ ·], t ≥ 0,µ ∈M(E).(1.1)

Here Pois(Xt ) denotes a Poisson point measure with random intensityXt and
P L(Pois(µ)) denotes the law of the processX, started with initial lawL(X0) =
L(Pois(µ)). For example, (1.1) holds whenX is the standard, critical, continuous
super-Brownian motion inRd , which corresponds to the evolution equation
∂
∂t

ut = 1
2�ut − u2

t , andX is a system of binary branching Brownian motions
with branching rate 1 and death rate 1. Loosely speaking,X can be obtained
from X by Poissonization. Poissonization relations of the form (1.1) have been
exploited by various authors, for example, Gorostiza, Roelly-Coppoletta and
Wakolbinger ([17], formula (8)), Klenke ([19], formula (4.19)) and Winter ([26],
formula (1.23)).

In the present paper, we investigate Poissonization relations for a class of
continuous superprocesses on compacta with Feller underlying motion. We give
conditions that imply that a superprocessX and a branching particle systemX
can be coupledas processes, such that

P [Xt ∈ ·|(Xs)0≤s≤t ] = P [Pois(hXt ) ∈ ·|Xt ] a.s.∀ t ≥ 0,(1.2)

whereh is a sufficiently smooth density. Formula (1.2) says that the conditional
law of Xt , given (Xs)0≤s≤t , is the law of a Poisson point measure with
intensity hXt . For certain critical and subcritical superprocesses, a coupling of
the form (1.2) has occurred before in [20], Theorem 3.1 and Section 3.2.

The weighted superprocess(hXt )t≥0 that occurs in (1.2) is a superprocess
itself, which compared toX has a new branching mechanism and a new underlying
motion, the latter being a “compensated”h-transform of the old one. For the
special case thatX is a superdiffusion, this fact was proved and exploited by
Engländer and Pinsky [7].

Let X andX be related by (1.2), letA := {∃ τ <∞ such thatXt = 0 ∀ t ≥ τ }
denote the event thatX becomes extinct after some random timeτ and set
A := {∃ τ < ∞ such thatXt = 0 ∀ t ≥ τ }. SinceP [Xt = 0|Xt = 0] = 1, t ≥ 0,
we clearly haveP (A\A)= 0. We investigate whenX andX can be coupled such
that P (A \A) = 0 also holds, that is, the extinction ofX implies the extinction
of X.

In particular, for a supercritical superprocessX, we construct a binary splitting
particle systemX, such thatX andX are related by a formula of the form (1.2),
and, moreover,X corresponds, loosely speaking, to those infinitesimal bits of mass
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of X which have descendants at all times. More precisely, we couple the historical
processeŝX andX̂ associated withX andX such that

∀ t ≥ 0∃ τ <∞ s.t.∀ r ≥ τ supp(X̂t )= supp
(
X̂r ◦ π−1

[0,t]
)

a.s.(1.3)

Hereπ[0,t] denotes projection on the spaceDE[0, t] of cadlag paths from[0, t]
into E. Informally, X̂t is a random measure on paths of lengtht , measuring
how much eachline of descentcontributes to the population at timet ; likewise,
X̂t counts how often each line of descent contributes toXt . Thus, (1.3) says that
eventually all mass of the superprocessX descends from finitely many lines of
descent, which are given by supp(X̂t ). In this special case, the functionh that
occurrs in (1.2) ish= p, theinfinitesimal survival probabilityof X, given by

p(x)= ∂

∂ε
P εδx [Xt > 0 ∀ t ≥ 0]

∣∣∣∣
ε=0

, x ∈E.(1.4)

We call X the trimmed treeof X. The reduced treeof a branching process
describes the family relations between all particles alive at a fixed time and their
ancestors (neglecting those lines of descent that died earlier). Thus, our trimmed
tree can be viewed as the limit of reduced trees as time tends to infinity. Reduced
trees have been studied intensively in the branching literature. For historical
background, see, for example, the last paragraph in Section 12.1 of [2], page 201.

It is worth mentioning that the weighted superprocess(pXt )t≥0 with p as
in (1.4) played an important role in the work of Engländer and Pinsky [7], who
investigated support properties (such as recurrence) of superdiffusions by analytic
tools. Weighted superprocesses and embedded particle systems also played a
central role in [14], which motivated our present article.

The paper is organized as follows. In Sections 1.2–1.4, we introduce our objects
of interest together with some of their elementary properties in more detail.
Sections 1.5 and 1.6 contain our main results, while Section 1.7 is devoted to
discussion. In Section 2, we collect some necessary facts on historical processes
and weighted superprocesses. The final proofs are deferred to Section 3.

1.2. Poissonization of superprocesses.Let E be a compact metrizable space,
and letB(E) andC(E) denote the spaces of bounded measurable real functions
and continuous real functions onE, respectively. We setB+(E) := {f ∈
B(E) :f ≥ 0}, B[0,1](E) := {f ∈ B(E) : 0≤ f ≤ 1} and defineC+(E), C[0,1](E)

similarly. Let M(E) denote the space of finite measures onE, equipped with
the topology of weak convergence. Ifµ is a measure andf is measurable,
then 〈µ,f 〉 := ∫

E f dµ denotes the integral off with respect toµ, whenever
it exists. ByN (E) ⊂ M(E) we denote the space of finite point measures, that
is, measuresν of the form

∑n
i=1 δxi

with xi ∈ E andn ≥ 0. We interpret such a
point measure as a collection ofn particles, situated at positionsx1, . . . , xn. For
f ∈ B[0,1](E) andν = ∑n

i=1 δxi
∈ N (E) we use the notationf ν := ∏n

i=1 f (xi)

(wheref 0 := 1). If µ is a random variable taking values inM(E), then Pois(µ)
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denotes anN (E)-valued random variable such that, conditioned onµ, Pois(µ) is
a Poisson point measure with intensityµ. If ν is a random variable taking values in
N (E) andf ∈ B[0,1](E), then Thinf (ν) denotes a random point measure obtained
by thinningν with f . That is, conditioned onν, a particleδx in ν is kept with
probabilityf (x), independently of the other particles inν. Note that

(i) P [Pois(f µ)= 0|µ] = e−〈µ,f 〉, f ∈B+(E),

(ii) P [Thinf (ν)= 0|ν] = (1− f )ν, f ∈B[0,1](E).
(1.5)

It is well known that

Thinf

(
Thing(ν)

) D= Thinfg(ν) and Thinf (Pois(µ))
D= Pois(fµ),(1.6)

whereD= denotes equality in distribution.
Let G be the generator of a Feller processξ = (ξt )t≥0 onE and letα ∈ C+(E),

β ∈ C(E). Then, for eachf ∈ B+(E), an appropriate integrated version [see (2.8)]
of the semilinear Cauchy problem

∂

∂t
ut =Gut + βut − αu2

t , t ≥ 0,

(1.7)
u0= f,

has a unique solutionut =:Ut f , t ≥ 0, inB+(E). Moreover, there exists a unique
(in law) Markov processX in M(E) with continuous sample paths, defined by its
Laplace functionals

Eµ
[
e−〈Xt ,f 〉]= e−〈µ,Utf 〉, t ≥ 0,µ ∈M(E), f ∈B+(E).(1.8)

The processX is called thesuperprocessin E with underlying motion gener-
ator G, (local) activity α and (local)growth parameterβ (the last two terms
are our terminology) or, for short, the(G,α,β)-superprocess. The semigroup
(Ut )t≥0 = U = U(G,α,β) is called thelog-Laplace semigroupof X. In fact,
Ut f can be defined unambiguously for any measurablef :E → [0,∞] such
that (1.8) holds (wheree−∞ := 0). The processX can be constructed in several
ways and is nowadays standard (see, e.g., [10–12]). We can think ofX as describ-
ing a population where mass flows with generatorG and during a time interval
dt a bit of massdm at positionx produces offspring with mean(1+ β(x) dt) dm

and finite variance 2α(x) dt dm. For basic facts on superprocesses, we refer to
[2] and [8].

Similarly, whenG is (again) the generator of a Feller process in a compact
metrizable spaceE andb, d ∈ C+(E), then, for anyf ∈ B[0,1](E), an integrated
version of the semilinear Cauchy problem

∂

∂t
ut =Gut + but(1− ut)− dut, t ≥ 0,

(1.9)
u0= f,
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has a unique solutionut =: Utf , t ≥ 0, in B[0,1](E). Moreover, there exists a
unique Markov processX with cadlag sample paths inN (E), defined by its
generating functionals

Eν[
(1− f )Xt

]= (1−Utf )ν, t ≥ 0, ν ∈N (E), f ∈B[0,1](E).(1.10)

We call X the binary branching particle systemin E with underlying motion
generatorG, branching rateb and death rated , or, for short the(G,b, d)-particle
system. The semigroup(Ut )t≥0 = U = U(G,b, d) is called thegenerating
semigroupof X. The particles inX perform independent motions with generatorG

and, additionally, a particle branches with local rateb into two new particles,
created at the position of the old one, and particles die with local rated . If the
death rate is zero, we also speak aboutbinary splittinginstead of binary branching.

Because of (1.5), formulas (1.8) and (1.10) canbe rewritten as

(i) P µ[Pois(fXt )= 0] = P [Pois((Ut f )µ)= 0],µ ∈M(E), f ∈B+(E),

(ii) P ν[Thinf (Xt )= 0] = P [ThinUtf (ν)= 0], ν ∈N (E), f ∈B[0,1](E),
(1.11)

t ≥ 0. The following lemma is now an easy observation.

LEMMA 1 (Poissonization of superprocesses).Let X be the(G,α,β)-super-
process, assume thatα ≥ β and letX be the(G,α,α− β)-particle system. Then

P L(Pois(µ))[Xt ∈ ·] = P µ[Pois(Xt ) ∈ ·], t ≥ 0,µ ∈M(E).(1.12)

PROOF. Let U = U(G,α,β) and U = U(G,α,α − β) denote the log-
Laplace semigroup ofX and the moment generating semigroup ofX, respectively.
Comparing the Cauchy problems (1.7) and (1.9), we see thatUt f = Utf for all
f ∈ B[0,1](E) and t ≥ 0. It follows that for anyf ∈ B[0,1](E), µ ∈ M(E) and
t ≥ 0,

P L(Pois(µ))[Thinf (Xt )= 0]
= P [ThinUtf (Pois(µ))= 0] = P [Pois((Utf )µ)= 0](1.13)

= P µ[Pois(fXt )= 0] = P µ[Thinf (Pois(Xt ))= 0].
Since this holds for arbitraryf ∈ B[0,1](E), the law ofXt , whenX is started with
initial law L(X0)=L(Pois(µ)), coincides with the law of Pois(Xt ), whenX is
started inX0= µ. �

REMARK 2 (Locally compact spaces). With the help of a suitable compacti-
fication, the results in this paper can be applied to superprocesses on some non-
compact spaces as well. LetE be a locally compact but not compact, separable,
metrizable space, letG be the generator of a Feller processξ = (ξt )t≥0 on E,
whose semigroup maps the spaceC0(E) of continuous real functions vanishing
at infinity into itself and letα,β be bounded continuous functions onE, α ≥ 0.
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Then the(G,α,β)-superprocess may be defined as follows. First,E may be em-
bedded in a compact metrizable spaceE such thatE is an open dense subset of
E and such that the functionsα,β can be extended to continuous functionsα,β

on E. [To construct such a compactification, take forE the closure of the graph
of (α,β) in Eσ × R

2, whereEσ is the one-point compactification ofE.] Sec-
ond,ξ may be extended to a Feller process inE (with generator denoted byG )
by putting P x[ξt = x ∀ t ≥ 0] := 1 for x ∈ E \ E. By identifying M(E) with
the space{µ ∈ M(E ) :µ(E \ E) = 0}, the (G,α,β )-superprocessX satisfies
P µ[Xt ∈M(E) ∀ t ≥ 0] = 1 for all µ ∈M(E). The(G,α,β)-superprocess may
then be defined as the restriction ofX to M(E). In this way, the results in this
paper can be applied, for example, to the usual super-Brownian motion (with finite
initial mass). To keep notation simple, we formulate our results in the rest of this
paper for superprocesses in a compact spaceE.

1.3. Historical superprocesses and branching particle systems.Let E be a
compact metrizable space as before, and letDE[0,∞) andDE[0, t] denote the
spaces of cadlag pathsw : [0,∞)→E andw: [0, t] →E, respectively, equipped
with the Skorohod topology. Letξ be a Feller process inE. Then thepath
procesŝξ associated withξ is a time-inhomogeneous Markov process with time-
dependent state spaceDE[0, t], defined as follows. Letξx denote the processξ
started inξx

0 = x ∈ E. Then(ξ̂
s,w
t )t≥s , the path procesŝξ started at times ≥ 0 in

w ∈DE[0, s] and evaluated at timest ≥ s, is defined as

ξ̂
s,w
t (r) :=

{
w(r), if 0 ≤ r ≤ s,

ξ
w(s)
r−s , if s ≤ r ≤ t.

(1.14)

For t ≥ 0, we identify the spaceDE[0, t] with the space{w ∈DE[0,∞) :w(u)=
w(t) ∀u≥ t} of paths stopped at timet . With this identification,̂ξ s,w : [s,∞)→
DE[0,∞) has cadlag sample paths. Note thatξ̂

0,x
t , the path process started at time

zero inx ∈DE{0} ∼= E and evaluated at timet ≥ 0, records the path followed by
ξx up to timet .

If X is a(G,α,β)-superprocess inE as defined in the last section, then by defi-
nition thehistorical superprocesŝX associated withX is the time-inhomogeneous
superprocess with time-dependent state spaceM(DE[0, t]), with underlying mo-
tion ξ̂ , time-dependent activitŷαt (w) := α(w(t)) and time-dependent growth pa-
rameterβ̂t (w) := β(w(t)). We call X̂ the historical (G,α,β)-superprocess. As
before, we identifyDE[0, t] with the subspace ofDE[0,∞) consisting of paths
stopped at timet , and in this identificationX : [0,∞)→M(DE[0,∞)) has con-
tinuous sample paths. For the technical details needed to deal with the facts that the
underlying motion is time-inhomogeneous and the spaceDE[0,∞) is not locally
compact, we refer to Section 2.2; see also [3], Chapter 2. IfX̂ is started at time
zero inX̂0 = µ ∈M(DE{0})∼=M(E) andπt (w) := w(t) denotes the projection
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on the endpoint of a pathw ∈ DE[0, t], then (a proof can be found in Section
2.2.3) the projection

Xt := X̂t ◦ π−1
t , t ≥ 0,(1.15)

gives back the original(G,α,β)-superprocessX started inX0=µ.
Likewise, if X is a(G,b, d)-particle system inE as defined in the last section,

then thehistorical binary branching particle system̂X associated withX is defined
as the time-inhomogeneous binary branching particle system with time-dependent
state spaceN (DE[0, t]), with underlying motionξ̂ , time-dependent branching
rateb̂(t,w) := b(w(t)) and time-dependent death rated̂(t,w) := d(w(t)). We call
X̂ the historical (G,b, d)-particle system. For a historical setting in the case of
spatial Markov branching processes in discrete time, see, for instance, [13] or [18],
Chapter 10. Viewed as a process inN (DE[0,∞)), X̂ has cadlag sample paths.
If X̂ is started at time zero in̂X0 = ν ∈ N (DE{0}) ∼= N (E), then the analogue
of (1.15) gives back the (nonhistorical)(G,b, d)-particle systemX started in
X0= ν.

1.4. Weighted superprocesses and compensatedh-transforms. We continue to
assume thatξ is a Feller process in a compact metrizable spaceE. Let G be the
generator ofξ , that is,Gf := lim t→0 t−1(Ptf − f ), wherePtf (x) := Ex[f (ξt )]
is the semigroup associated withξ and the domainD(G) of G consists of
all functionsf ∈ C(E) for which the limit exists in the supremum norm. The
following lemma, the proof of which can be found in Section 2.3.3, introduces
compensatedh-transformsof Feller processes.

LEMMA 3 (Compensatedh-transform of a Feller process).Let G be the
generator of a Feller processξ in a compact metrizable spaceE and assume that
h ∈D(G) satisfiesh > 0. Then the operator

Ghf := 1

h

(
G(hf )− (Gh)f

)
,(1.16)

with domainD(Gh) := {f ∈ C(E) :hf ∈ D(G)}, is the generator of a Feller
processξh onE. The laws ofξh andξ are related by

P x
[
(ξh

s )s∈[0,t] ∈ dw
]

(1.17)

= h(wt)

h(x)
exp

(
−

∫ t

0

Gh

h
(ws)

)
P x

[
(ξs)s∈[0,t] ∈ dw

]
, t > 0, x ∈E.

REMARK 4 (h-transforms). Doob’sh-transform of a Feller process is the
process with generator̃Ghf := 1

h
G(hf ) (see, e.g., [4], Section 2.VI.13, [24],

formula (62.23) and [5], Section IX.4). Hereh is superharmonic (i.e.,Gh ≤ 0)
and theh-transformed process has an additional local killing rateGh/h. In our
setup, it is natural to compensate for this killing by adding the term−Gh/h in the
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definition of Gh. In this case, we can allowh to be any positive function in the
domain ofG. A variant of the transformation in (1.16) appeared before in [15],
Section 4. At least for diffusion processes, their transformation is equivalent
to (1.16) if one chooses the logarithm ofh for their functionξ .

The following lemma, which was proved in a nonhistorical setting for su-
perdiffusions in [7], describes the relation between weighted historical(G,α,β)-
superprocesses and compensatedh-transforms.

LEMMA 5 (Weighted superprocess).Let X̂ be the historical (G,α,β)-
superprocess and assume thath ∈D(G), h > 0. Then the weighted procesŝXh,
defined by

X̂h
t (dw) := h(wt )X̂t (dw), t ≥ 0,(1.18)

is the historical(Gh,hα,β + Gh
h

)-superprocess.

In particular, by formula (1.15), ifX is the (G,α,β)-superprocess, then
Xh

t (dx) := h(x)Xt (dx), t ≥ 0, is the(Gh,hα,β + Gh
h

)-superprocess. The proof
of Lemma 5 is deferred to Section 2.3.4.

1.5. Main results. We are ready to state our first main result.

THEOREM 6 (Embedded particle system).Let E be a compact metrizable
space, let G be the generator of a Feller process inE andα ∈ C+(E), β ∈ C(E).
Assume thath ∈D(G) satisfiesh > 0 and, for someγ ∈ C+(E),

Gh+ βh− αh2=−γ h.(1.19)

Then the historical(G,α,β)-superprocesŝX started inX̂0 = µ ∈M(E) and the
historical(Gh,hα,γ )-particle system̂X started inX̂0= Pois(hµ) can be coupled
as processes such that

P [X̂t ∈ ·|(X̂s)0≤s≤t ] = P
[
Pois

(
(h ◦ πt )X̂t

) ∈ ·|X̂t

]
a.s. ∀ t ≥ 0.(1.20)

It follows from (1.15) that the associated nonhistorical processesX and X

are related by (1.2). The phrase “coupled as processes” means that(X̂t )t≥0 and
(X̂t )t≥0 can be defined on the same probability space in such a way that (1.20)
holds.

If X̂ andX̂ are related by (1.20), then clearly the extinction ofX̂ implies the
extinction of X̂ a.s. We now investigate when the converse conclusion can be
drawn, that is, whenX̂ and X̂ can be coupled such that in addition to (1.20),
eventually all mass of the superprocessX descends from particles inX. Set

p(x) := − logP δx [Xt = 0 t-eventually], x ∈E.(1.21)
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Here,− log 0 := ∞ and we writet-eventuallybehind an event, depending ont ,
to denote the existence of a (random) timeτ < ∞ such that the event holds
for all t ≥ τ . If no ambiguity is possible, we simply write eventually. It is not
hard to check thatp, defined by (1.21), satisfies (1.4). Therefore, we callp the
infinitesimal survival probabilityof X. Note that

P δx [Xt = 0] =Eδx
[
e−〈Xt ,∞〉]= e−Ut∞(x), t ≥ 0, x ∈E.(1.22)

The following proposition is proved in Section 3.1.3.

PROPOSITION 7 (Properties of the infinitesimal survival probability).Con-
siderU=U(G,α,β), whereG, α andβ are as in Theorem6, and letp be given
by (1.21).Assume thatsupx∈E Ut∞(x) < ∞ for somet > 0. Then we have the
following properties:

(a) PointwiseUt∞ ↓ p as t ↑ ∞ and lim t→∞Ut f = p for all f ∈ C+(E)

with f > 0.
(b) For all t ≥ 0, Utp = p.
(c) A function f ∈ C+(E) satisfiesUt f = f for all t ≥ 0 if and only if

f ∈D(G) andf solves

Gf + βf − αf 2= 0.(1.23)

(d) If infx∈E p(x) > 0, then p is continuous andp is the unique positive
solution to(1.23).

We now formulate our main theorem, which gives sufficient conditions for
all mass of the superprocessX to descend eventually from particles in an
embedded particle systemX. We write π[0,s] to denote projection onDE[0, s].
By definition, the support supp(µ) of a measureµ is the smallest closed set such
thatµ(supp(µ)c)= 0.

THEOREM 8 (Eventual descent from an embedded particle system).Let X̂,
X̂ and h be as in Theorem6, and assume thatU = U(G,α,β) satisfies
supx∈E Ut∞(x) <∞ for somet > 0. Thenp ≤ h. Moreover, X̂ and X̂ may be
coupled as processes such that(1.20)holds and such that, additionally,

supp(X̂t )⊃ supp
(
X̂r ◦ π−1

[0,t]
)

r-eventually∀ t ≥ 0 a.s.(1.24)

If, moreover, infx∈E p(x) > 0, then by Proposition 7 we may takeh = p in
Theorem 6. In this case we have the following theorem:

THEOREM 9 (Trimmed tree of a superprocess).Let E be a compact metriz-
able space, let G be the generator of a Feller process inE and α ∈ C+(E),
β ∈ C(E). Assume thatU=U(G,α,β) satisfiessupx∈E Ut∞(x) <∞ for some
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t > 0 and infx∈E p(x) > 0. Then the historical(G,α,β)-superprocesŝX started
in X̂0 = µ ∈ M(E) and the historical(Gp,pα,0)-particle systemX̂ started in
X̂0= Pois(pµ) can be coupled as processes such that

P [X̂t ∈ ·|(X̂s)0≤s≤t ] = P
[
Pois

(
(p ◦ πt )X̂t

) ∈ ·|X̂t

]
a.s. ∀ t ≥ 0(1.25)

and

supp(X̂t )= supp
(
X̂r ◦ π−1

[0,t]
)
, r-eventually∀ t ≥ 0 a.s.(1.26)

If X̂ andX̂ are coupled as in Theorem 9, then we say thatX̂ is the trimmed
treeof X̂. If Xt = X̂t ◦ π−1

t andXt = X̂t ◦ π−1
t are the associated nonhistorical

processes, then we also callX the trimmed tree ofX. Note that the death rate ofX

is zero, that is,X is a binary splitting particle system.

REMARK 10 (Checking the assumptions onUt∞ andp). Upper bounds on
Ut∞ and lower bounds onp can be found, in practical situations, by finding
solutions to an appropriate differential inequality; see Lemmas 12 and 25.

1.6. Finite ancestry. In this section, we investigate the assumption in Theo-
rems 8 and 9 that supx∈E Ut∞(x) <∞ for somet > 0. In particular, we show
that this assumption is equivalent to the statement that all mass of the superprocess
X descends eventually from finitely many ancestors, in some sense.

To do this, we need to equip the historical(G,α,β)-superprocesŝX with some
additional structure that makes it possible to distinguish different ancestors. To
this aim, setE′ :=E × [0,1]. Define a Feller processξ ′ = (ξ, η) onE′, where for
given initial conditions(x, y) ∈ E × [0,1], ξ is the Feller process with generator
G started inx, andηt := y, t ≥ 0. Putα′(x, y) := α(x) andβ ′(x, y) := β(x). Let
X̂′ denote the historical(G′, α′, β ′)-superprocess. Then the formula

X̂t := X̂′
t ◦ψ−1

t , t ≥ 0,(1.27)

gives back the original historical(G,α,β)-superprocesŝX, whereψt denotes the
projection fromDE×[0,1][0, t] to DE[0, t]. The following lemma is proved in
Section 3.2.3. Hereπ0(w) := w(0) denotes the projection on the starting point
of a pathw in DE[0, t] or DE′ [0, t].

LEMMA 11 (Finite ancestry). LetX̂ be the historical(G,α,β)-superprocess,
let X̂′ be the extended historical(G′, α′, β ′)-superprocess just defined and
U = U(G,α,β). Let � denote Lebesgue measure on[0,1]. Then we have the
relations(i)⇔ (ii)⇒ (iii ), where

(i) sup
x∈E

Ut∞(x) <∞ for somet > 0,

(ii) P 0,µ⊗�[supp(X̂′
t ◦ π−1

0 ) is finite eventually] = 1 ∀µ ∈M(E),

(iii ) P 0,µ[supp(X̂t ◦ π−1
0 ) is finite eventually] = 1 ∀µ ∈M(E).

(1.28)
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We interpret supp(X̂′
t ◦ π−1

0 ) as the ancestors at time 0 of the population ofX
at time t . We have extended the underlying spaceE to make sure that different
ancestors live a.s. on different positions. Note that ifE is finite, then (iii) is always
trivially fulfilled even when (i) fails.

For many superprocesses, it is actually the case that

sup
x∈E

Ut∞(x) <∞ ∀ t > 0.(1.29)

A sufficient, but not necessary condition for (1.29) is thatα is bounded away
from zero. The sufficiency follows from the following bound (see, e.g., [14],
Lemma 11).

LEMMA 12 (Extinction estimate). Setα := infx∈Eα(x) andβ := supx∈Eβ(x).
If α > 0, then

Ut∞≤ β

α(1− e−βt )
, β �= 0 and Ut∞≤ 1

αt
, β = 0.(1.30)

On the other hand, it is possible for a(G,α,β)-superprocess to satisfy (1.29)
while α = 0 (see [14], Lemmas 5 and 6).

The following consequence of (1.29) is proved in Section 3.2.3.

LEMMA 13 (Finite ancestry and preserved past property).If X satisfies(1.29),
then

(i) supp
(
X̂r ◦ π−1

[0,t]
)

is finite ∀0≤ t < r a.s.,

(ii) supp
(
X̂r ◦ π−1

[0,t]
)⊃ supp

(
X̂r ′ ◦ π−1

[0,t]
) ∀0≤ t < r ≤ r ′ a.s.

(1.31)

In view of Lemma 11 and (1.31)(i) we say that a superprocessX has thefinite
ancestry propertyif X satisfies (1.29). Note that (1.31)(ii) says that lines of descent
(up to a given times) can become extinct, but no new ones are created. This
statement may seem obvious, but some care is needed regarding the order of the∀
and the a.s. in the statements. In (1.31)(ii), we claim that the same zero set works
for all timest, r, r ′ such that 0≤ t < r ≤ r ′. One cannot simply argue by continuity
here, because the support of a measureµ is not a continuous function ofµ. Note
that if the superprocessX in Theorem 9 has the finite ancestry property, then a.s.
the sets supp(X̂r ◦π−1

[0,t]) in (1.26) are finite for allr > t and decrease to supp(X̂t )

asr ↑∞.

1.7. Methods, discussion and outline of the proofs.Our results have obvious
applications in the study of (local) extinction and survival of superprocesses. For
superdiffusions, extinction properties were studied by Engländer and Pinsky [7].
Parallel to the present paper, Engländer and Kyprianou [6] investigated local
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survival and local exponential growth of superdiffusions. The first paper uses more
analytic tools, while the second is more probabilistic in nature.

While our methods are more probabilistic, some of our results are close in spirit
to the work in [7]. As we already mentioned, the weighted superprocess(pXt )t≥0
with p as in (1.4) plays an important role in [7]. Also, their Theorem 4.4(a) is
not surprising in view of our Theorem 9, although their setup and ours do not
completely overlap. Their Theorem 3.1 describes properties of the functionp

similar (but not identical) to our Proposition 7. Since our underlying motion is
a general Feller process which does not have the good smoothing properties of
uniformly elliptic diffusions, we have to be more careful about the sense in which
p solves equation (1.23).

The main tool in [6] is an expression [their Theorem 5(i)] that says (in
the language of log-Laplace functionals) that a certain change of measure of a
superdiffusion yields back the same superdiffusion with an additional immigration
term coming from a single particle. In their introduction, Engländer and Kyprianou
discussed the possible use of Poissonization relations for their aims, but rejected
them on the ground that relation between the laws ofXt andXt at fixed timest are
not enough to relate the long-time behavior ofX andX. A central aim of our work
is to overcome such shortcomings of the usual Poissonization formulas. Another
aim, of course, is to allow more general underlying motions than diffusions.

The main ideas behind our proofs of Theorems 6, 8 and 9 are the simple
observations about Poissonization and weighting of superprocesses in Lemmas
1 and 5, respectively. Our strategy is to construct a version of the superprocess with
so much additional structure that we can distinguish all ancestors of the population
alive at a given time. For such a sufficiently enriched process, we then explicitly
identify the trimmed tree and check that it is a binary splitting particle system. This
is done in Proposition 39 and Lemma 40 in Sections 3.3.1 and 3.3.2, respectively.
The essential step, where a coupling ofXt andXt for fixed t is improved to a
coupling ofX andX as processes, occurs in the proof of Lemma 40. Forgetting
step by step some of the added structure, we then arrive at Theorems 6, 8 and 9.

Interesting side results of this approach are a number of lemmas about the lines
of descent of a superprocess, notably Lemma 13, which may seem intuitively
obvious, but to our knowledge has not been proved before. On the other hand,
our approach does not make any statements about the transition probabilities of
the joint process(Xt ,Xt )t≥0, whenX andX (and their historical counterparts)
are coupled as in Theorem 6. Another possible approach to our Theorem 6 (not
followed in this paper) would be to specify a joint Markov evolution for(X,X)

and then show that if the process is started in a state such thatX0 = Pois(hX0),
then Xt = Pois(hXt ) for all t ≥ 0. Here,X would be an autonomous binary
branching particle system, whileX would be a superprocess with an additional
mass creation on the positions of the particles inX.

Our results can be generalized in several directions. If the spaceE is not
compact butlocally compact,then generalizations of our results can be derived
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using the compactification technique from Remark 2. This requires, however, that
the functionsh in Theorems 6 and 8 orp in Theorem 9 are uniformly bounded
away from zero, and hence can be extended to positive continuous functions on
some compactification ofE. Truly local versions of our results, whereh andp are
only required to be locally bounded away from zero, are somewhat more subtle.
We hope to handle these in a forthcoming paper.

A lot of our proofs work for superprocesses whose underlying motion is a
general Hunt process on a Polish space, and whose activity and growth parameter
are bounded and measurable, but we do not know how to treat compensated
h-transforms and weighted superprocesses (Lemmas 3 and 5) in this context.

The proofs are organized as follows. After settling some notational and
topological issues in Section 2.1, we introduce formally historical processes in
Section 2.2 and collect some of their elementary properties. Section 2.3 treats
compensatedh-transforms and weighted superprocesses. Section 3.1 is devoted
to the infinitesimal survival probabilityp. Section 3.2 collects some basic facts
about surviving lines of descent. In Section 3.3, finally, we prove our main results.

2. Prerequisites on superprocesses.

2.1. Topological preliminaries. Let E be a Polish space (i.e.,E is a separable
topological space and there exists a complete metric generating the topology).
We always equipE with the Borel σ -field B(E). We let B(E), B+(E) and
B[0,1](E) denote the spaces of bounded, bounded nonnegative and[0,1]-valued,
real measurable functions onE, respectively. If a countable collection of functions
{fi : i ≥ 1} ⊂ B(E) separates points, thenB(E) = σ(fi : i ≥ 1) (see [23],
Lemma II.18). We remind the reader of the fact that a subspaceF of a Polish
spaceE is itself Polish in the induced topology if and only ifF is a Gδ-subset
of E, that is, a countable intersection of open sets ([1], Section 6, Theorem 1).

Let Cb(E) denote the space of bounded continuous real functions onE. We
write M(E) for the space of finite measures onE, equipped with the topology of
weak convergence (with weak convergence denoted by⇒), under whichM(E) is
a Polish space ([9], Theorem 3.1.7). Recall that by definitionµn ⇒ µ if and only
if 〈µn,f 〉→ 〈µ,f 〉 for all f ∈ Cb(E). Note that the topology onM(E) does not
depend on the choice of the metric onE. The Borelσ -field onM(E) is generated
by the mappingsµ �→ µ(A), A ∈ B(E) (cf. [21], Lemma 3.2.3). IfF ⊂ E is
measurable, we identifyM(F ) with the space{µ ∈ M(E) :µ(E \ F) = 0}. In
particular, whenF is a Gδ-subset ofE (and therefore Polish in the induced
topology), then the topology of weak convergence onM(F ) coincides with the
induced topology from its embedding inM(E). By M1(E) ⊂M(E) we denote
the space of probability measures;N (E)⊂M(E) denotes the space of finite point
measures onE.

We denote byDE[0,∞) the space of cadlag (i.e., right-continuous with existing
left limits) functions w : [0,∞) → E, equipped with the Skorohod topology.
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This is theJ1 topology defined in [25]. The spaceDE[0,∞) is Polish ([9],
Theorem 3.5.6). One haswn → w in DE[0,∞) if and only if for eachT > 0
there exists a sequence of strictly increasing, continuousλn : [0, T ]→ [0,∞) with
λn(0)= 0, such that

lim
n→∞ sup

t∈[0,T ]
|λn(t)− t| = 0(2.1)

and such that (cf. [9], Proposition 3.5.3)

wn(λn(tn))→
{

w(t), whenevertn ↓ t,

w(t−), whenevertn ↑ t,
tn, t ∈ [0, T ].(2.2)

Note that the topology onDE[0,∞) does not depend on the choice of the metric
onE.

2.2. Historical processes.

2.2.1. Hunt processes.Let E be a Polish space and let(Pt)t≥0 be a
measurable transition probability onE. That is, (t, x) �→ Pt(x, ·) is a (Borel)
measurable map from[0,∞) × E into M1(E), P0(x, ·) = δ0 for all x ∈ E and
the operators

Ptf (x) :=
∫
E

Pt(x, dy)f (y), t ≥ 0, x ∈E,f ∈ B(E),(2.3)

form a semigroup:PtPsf = Pt+sf for all s, t ≥ 0, f ∈B(E).
Assume that(Pt)t≥0 is the transition probability (equivalently the semigroup)

of a Markov process with cadlag sample paths inE, that is, for everyx ∈E there
exists aDE[0,∞)-valued random variableξx , unique in distribution, such that
ξx

0 = x and

E[f (ξx
t )|Fs] = (Pt−sf )(ξx

s ) a.s., 0≤ s ≤ t, f ∈B(E),(2.4)

where(Ft )t≥0 denotes the filtration generated byξx . By definition, the Markov
process with transition probability(Pt)t≥0 is a Hunt processif, for every x ∈ E,
the following statements hold (see [24], Theorem I.7.4 and Definition V.47.3):

(i) Right property. For everyt > 0 andf ∈B(E),
the map[0, t) � s �→ Pt−sf (ξx

s ) is a.s. right-continuous.

(ii) Quasi left-continuity. For every increasing sequence of
F·+ stopping timesτn ↑ τ , we haveξx

τn
→ ξx

τ a.s. on{τ <∞}.
(2.5)

Here F·+ = (Ft+)t≥0 denotes the right-continuous modification of(Ft )t≥0.
The right property implies the strong Markov property ([24], Theorem I.7.4).
Conditions (2.5)(i) and (2.5)(ii) are properties of the lawP x :=L(ξx) of ξx only
and, therefore, being a Hunt process is a property of the transition probability.
It suffices to check (2.5)(i) for allf ∈ Cb(E) ([24], Theorem I.7.4). We identify a
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Hunt process with the collection of probability measures(P x)x∈E . If (ξx)x∈E is a
collection ofDE[0,∞)-valued random variables with lawsL(ξx) = P x , x ∈ E,
then with a slight abuse of terminology we say that(ξx)x∈E is a Hunt process
(regardless of a possible dependence structure between theξx ).

We also need time-inhomogeneous Hunt processes with a time-dependent state
spaceEt . We assume that theEt are (or can be identified with) subsets of some
Polish spaceE and that the seṫE := {(t, x) ∈ [0,∞)×E :x ∈Et } is aGδ-subset
of [0,∞)×E (and therefore Polish in the induced topology). LetW[s,∞) := {w ∈
DE[s,∞) :wt ∈Et ∀ t ≥ s} denote the space of all possible paths the process can
follow after times. Generalizing our previous definition, we say that a collection
of random variables(ξ s,x)(s,x)∈Ė , whereξ s,x takes values inW[s,∞), is a time-

inhomogeneous Hunt processif the collection of random variables(ξ̇ (s,x))(s,x)∈Ė

defined by

ξ̇
(s,x)
t := (s + t, ξ

s,x
s+t ), (s, x) ∈ Ė, t ≥ 0,(2.6)

is a (time-homogeneous) Hunt process inĖ. If (ξ s,x)(s,x)∈Ė is a time-inhomoge-
neous Hunt process, then we writePs,t (x, ·) := P [ξ s,x

t ∈ ·] and we letPs,t :
B(Et)→ B(Es) denote the operator

Ps,tf (x) :=
∫
Et

Ps,t (x, dy)f (y), x ∈Es,f ∈ B(Et).(2.7)

By a slight abuse of terminology, we call(Ps,t )t≥s≥0 the (time-inhomogeneous)
semigroup associated with(ξ s,x)(s,x)∈Ė . (Such time-inhomogeneous semigroups
are sometimes called transition functions.)

2.2.2. Superprocesses with Hunt underlying motion.Let ξ be a (time-
homogeneous) Hunt process in a Polish spaceE with semigroup(Pt )t≥0 and
assume thatα ∈ B+(E), β ∈ B(E). Then, for everyf ∈ B+(E), there exists a
uniqueB([0,∞)× E)-measurable nonnegative functionu which is bounded on
[0, T ] ×E for all T > 0, solving the Cauchy integral equation

ut = Ptf +
∫ t

0
Pt−s(βus − αu2

s ) ds, t ≥ 0(2.8)

([10], Proposition 2.3). Moreover, it was shown ([10], Corollary 3.6) that there
exists a unique (in law) Hunt process(Xµ)µ∈M(E), with continuous sample paths,
such that

Eµ
[
e−〈Xt ,f 〉]= e−〈µ,Ut f 〉, t ≥ 0,µ ∈M(E), f ∈B+(E),(2.9)

whereUt f := ut , t ≥ 0, andu solves (2.8). We callX the superprocess with
underlying motionξ , activity α and growth parameterβ, or, for short, the
(ξ,α,β)-superprocess, and we callU = U(ξ,α,β) its log-Laplace semigroup.
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By monotone convergence,Ut f can be defined unambiguously such that (2.9)
holds for any measurablef :E →[0,∞] ([14], Lemma 9).

We list some elementary properties of(ξ,α,β)-superprocesses that we need
later. The following lemma is an easy consequence of (2.9).

LEMMA 14 (Branching property). Letµ1,µ2 ∈M(E), and letXµ1 andXµ2

be independent copies of the(ξ,α,β)-superprocess started inµ1 and µ2,
respectively. Then

X
µ1+µ2
t :=X

µ1
t +X

µ2
t , t ≥ 0,(2.10)

is the(ξ,α,β) superprocess started inµ1+µ2.

The following lemma was proved in [10], Proposition 2.7.

LEMMA 15 (Moment formulas). For everyf ∈ B(E), there exists a unique
B([0,∞) × E)-measurable functionv which is bounded on[0, T ] × E for all
T > 0, such that

vt = Ptf +
∫ t

0
Pt−s(βvs) ds, t ≥ 0.(2.11)

The formulaVt f := vt defines a(linear) semigroup(Vt )t≥0 onB(E). We have

Vt f (x)= Ex

[
f (ξt )exp

(∫ t

0
β(ξs) ds

)]
, t ≥ 0, x ∈E,f ∈ B(E).(2.12)

Moreover, for all t ≥ 0, f, g ∈B(E),

(i) Eµ[〈Xt , f 〉] = 〈µ,Vtf 〉,
(ii) Covµ(〈Xt , f 〉, 〈Xt , g〉)= 2

∫ t

0
ds

〈
µ,Vs

(
α(Vt−sf )(Vt−sg)

)〉
.

(2.13)

The following lemma is an easy consequence of Lemma 15 and the fact that
0 ≤ Vt f ≤ e‖β‖t‖Ptf ‖ for all f ∈ B+(E) (where‖ · ‖ denotes the supremum
norm).

LEMMA 16 (Absolute continuity of moment measures).Letµ be a probability
measure onE andm≥ 0. Then, for t ≥ 0,

(i) Emµ[Xt ] � P µ[ξt ∈ ·],
(ii) Emµ[Xt ⊗Xt ] � P µ[ξt ∈ ·] ⊗ P µ[ξt ∈ ·] +Q

µ
t ,

(2.14)

whereQ
µ
t is the measure onE ×E defined as

Q
µ
t :=

∫ t

0
ds

∫
E

P µ[ξs ∈ dx](P x[ξt−s ∈ ·] ⊗ P x[ξt−s ∈ ·]).(2.15)
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A measureµ ∈M(E) is atomless [i.e.,µ({x})= 0 for all x ∈E] if and only if

µ⊗µ
({(x1, x2) ∈E ×E : 1= x2})= 0.(2.16)

The following lemma follows from formulas (2.14)(ii) and (2.16).

LEMMA 17 (Atomless superprocess).Assume thatP x[ξt ∈ ·] is atomless for
everyt > 0 andx ∈ E. ThenXt is atomless a.s. for everyt > 0 and initial state
µ ∈M(E).

Our next lemma is the following:

LEMMA 18 (Image property). Let E,F be Polish spaces, let ψ :E → F be
continuous and letξ = (ξx)x∈E andη = (ηy)y∈F be Hunt processes inE andF ,
respectively, satisfying

ψ(ξx
t )= η

ψ(x)
t , x ∈E, t ≥ 0.(2.17)

Assume thatαF ∈ B+(F ) andβF ∈ B(F ), and letαE ∈B+(E) andβE ∈B(E) be
given by

αE := αF ◦ψ and βE := βF ◦ψ.(2.18)

LetX be the(ξ,αE,βE)-superprocess with initial stateµ ∈M(E). Then

Yt :=Xt ◦ψ−1, t ≥ 0,(2.19)

is the(η,αF ,βF )-superprocess with initial stateµ ◦ψ−1.

PROOF. Let P E andP F denote the semigroups associated with the processes
ξ and η, respectively. Formula (2.17) implies thatP E

t (f ◦ ψ) = (P F
t f ) ◦ ψ

for all f ∈ B(F ). Using this fact and (2.18), it is not hard to show that also
UE

t (f ◦ ψ) = (UF
t f ) ◦ ψ for all f ∈ B+(F ), whereUE = U(ξ,αE,βE) and

UF = U(η,αF ,βF ) are the log-Laplace semigroups ofX andY, respectively.
Let (Ft )t≥0 be the filtration generated byX. Then, for all 0≤ s ≤ t ,

E[exp(−〈Xt ◦ψ−1, f 〉)|Fs]
=E[exp(−〈Xt , f ◦ψ〉)|Fs] = exp

(− 〈Xs,U
E
t−s(f ◦ψ)〉)

(2.20)
= exp

(− 〈Xs, (U
F
t−sf ) ◦ψ〉)

= exp(−〈Xs ◦ψ−1,UF
t−sf 〉), f ∈ B+(F ).

This shows that(Xt ◦ ψ−1)t≥0 is a Markov process and that its transition
probabilities coincide with those of the(η,αF ,βF )-superprocess. Sinceψ is
continuous,Xt ◦ψ−1 has continuous sample paths.�

The following simple observation will be useful later.



2196 K. FLEISCHMANN AND J. M. SWART

LEMMA 19 (Preserved sets).LetX be the(ξ,α,β)-superprocess.

(a) If F ⊂E is measurable andP x[ξt ∈ F ] = 1∀ t ≥ 0 (x ∈ F), then

P µ[Xt ∈M(F )] = 1 ∀ t ≥ 0,µ ∈M(F ).(2.21)

(b) If F ⊂ E is a Gδ-set andP x[ξt ∈ F ∀ t ≥ 0, ξt− ∈ F ∀ t > 0] = 1, x ∈ F ,
then

P µ[Xt ∈M(F ) ∀ t ≥ 0] = 1, µ ∈M(F ).(2.22)

PROOF. Statement (a) follows from (2.14)(i), while (b) follows by applying
Lemma 18 to the inclusion mapF ⊂ E, where we use that the restriction ofξ to F

is again a Hunt process. The assumption thatF is aGδ-set guarantees thatF is a
Polish space and that the event{Xt ∈M(F ) ∀ t ≥ 0} is Borel measurable.�

We conclude this section by constructing superprocesses with time-inhomoge-
neous underlying motion. Letξ = (ξ s,x)(s,x)∈Ė be a time-inhomogeneous Hunt
process as defined at the end of the last section, and assume thatα̇ ∈ B+(Ė) and
β̇ ∈ B(Ė). Let ξ̇ be the time-homogeneous Hunt process in (2.6) and letẊ denote
the(ξ̇ , α̇, β̇) superprocess. Using Lemma 16 we see thatẊδs⊗µ

t is concentrated on
{s + t} × Es+t a.s.∀ t ≥ 0. SinceẊδs⊗µ has continuous sample paths and since
{δt ⊗ µ : t ≥ 0,µ ∈M(Et)} ⊂M(Ė) is closed, there exists a processXs,µ with
continuous sample paths inM(E) such thatXs,µ

s+t ∈M(Es+t ) for all t ≥ 0 and

Ẋ
δs⊗µ
t = δs+t ⊗X

s,µ
s+t .(2.23)

SetṀ := {(t,µ) ∈ [0,∞)×M(E) :µ ∈M(Et)}. It is not hard to check thatX=
(Xs,µ)(s,µ)∈Ṁ is a time-inhomogeneous Hunt process with continuous sample
paths, and

Es,µ[
e−〈Xt ,f 〉]= e−〈µ,Us,t f 〉, t ≥ s ≥ 0,µ ∈M(Es), f ∈ B+(Et),(2.24)

where(Us,t f )s∈[0,t] =: u ∈B+({(s, x) ∈ [0, t] ×E :x ∈Es}) solves the equation

us = Ps,tf +
∫ t

s
Ps,r(βrur − αru

2
r ) dr, s ∈ [0, t].(2.25)

Here αt (x) := α̇(t, x), βt (x) := β̇(t, x) ((t, x) ∈ Ė) and (Ps,t )t≥s≥0 is the
(time-inhomogeneous) semigroup associated withξ . We call X the (time-
inhomogeneous)(ξ,αt, βt )-superprocessand call(Us,t )t≥s≥0 the (time-inhomoge-
neous)log-Laplace semigroupassociated withX.
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2.2.3. Historical superprocesses.Let ξ = (ξx)x∈E be a Hunt process in a
Polish spaceE and let ξ̂ = (ξ̂ s,w)s≥0,w∈DE [0,s] be the associated path process,
defined as in (1.14). Identify, as usual,DE[0, s] with the subspace ofDE[0,∞)

consisting of paths stopped at times and defineẼ ⊂ [0,∞)×DE[0,∞) by

Ẽ := {(s,w) : s ≥ 0,w ∈DE[0, s]}.(2.26)

Then (ξ̂ s,w)(s,w)∈Ẽ is a time-inhomogeneous Hunt process (see [3], Proposi-
tion 2.1.2). If X is a (ξ,α,β)-superprocess, then by definition thehistorical
(ξ,α,β)-superprocessX̂ is the (time-inhomogeneous)(ξ̂ , α̂t , β̂t )-superprocess,
whereα̂t (w) := α(w(t)) and β̂t (w) := β(w(t)), (t,w) ∈ Ẽ. We are now in a sit-
uation where we can prove some of the elementary properties of historical super-
processes mentioned in Section 1.

PROOF OF(1.15). If ξ̂ is the path process associated with a Hunt processξ ,
started at times ≥ 0 in w ∈DE[0, s], thenξt := πs+t (ξ̂s+t ), t ≥ 0, gives back the
original Hunt processξ started inπs(ξ̂s). Moreover, the map(t,w) �→ w(t) from
Ẽ into E is continuous. (Note that this is true even though the mapw �→ w(t)

from DE[0,∞) into E is in general discontinuous.) Therefore, Lemma 18 (the
image property of superprocesses) shows that if(X̂t )t≥s is the historical(ξ,α,β)-
superprocess started at times ≥ 0 in µ̂ ∈DE[0, s], then

Xt := X̂s+t ◦ π−1
s+t , t ≥ 0,(2.27)

is the (nonhistorical)(ξ,α,β)-superprocess started in̂µ ◦ π−1
s . �

One of the driving ideas behind the development of historical superprocesses
has been the desire to have a means to distinguish those parts of the population that
descend from different ancestors. However, all that a path inDE[0, t] tells us is
where in space these ancestors have lived in the past. Let us say that the underlying
motion ξ has thedistinct path propertyif the law of (ξs)s∈[0,t] (considered as a
DE[0, t]-valued random variable) is atomless for everyt > 0 and for every initial
stateξ0 = x ∈ E. This is called Property S in [2], Definition 12.2.2.6, and occurs
as formula (3.18) in [3]. In this case, the idea is that different ancestors follow a.s.
different paths, and therefore it should be possible to recover the genealogy from
the paths. As an immediate consequence of Lemma 17, we have the following
lemma. (An analogue of this result in a spatially homogeneous setting, but for
more general branching mechanisms, can be found in [3], Proposition 4.1.8(b).)

LEMMA 20 (Atomless historical superprocesses).If ξ has the distinct path
property, thenX̂t is atomless a.s. ∀ t > 0.

The following characterization of historical superprocesses will be convenient
more than once.
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LEMMA 21 (Finite-dimensional projections).LetX be a(ξ,α,β)-superprocess
with log-Laplace semigroupU = U(ξ,α,β) and let X̂ be the associated his-
torical (ξ,α,β)-superprocess. Then, for all n ≥ 0, 0= t0 < t1 < · · · < tn+1 and
f ∈B+(En+2),

Etn,µ̂

[
exp

(
−

∫
DE [0,tn+1]

X̂tn+1(dw)f
(
wt0, . . . ,wtn+1

))]
(2.28)

= exp
(
−

∫
DE [0,tn]

µ̂(dw)Utn+1−tnf
(
wt0, . . . ,wtn, ·

)(
wtn

))
.

Conversely, any Markov processX̂ with time-dependent state space
M(DE[0, t]) and continuous sample paths, satisfying (2.28), is the historical
(ξ,α,β)-superprocess.

PROOF. The fact thatX̂ satisfies (2.28) can be found in [3], Theorem 2.2.5(b)
or [2], Theorem 12.3.4. Conversely, if a Markov processX̂ satisfies (2.28), then,
for all 0≤ k ≤ n,

Etk,µ̂

[
exp

(
−

∫
DE [0,tn+1]

X̂tn+1(dw)f
(
wt0, . . . ,wtn+1

))]
(2.29)

= exp
(
−

∫
DE [0,tk]

µ̂(dw)fk

(
wt0, . . . ,wtk

))
,

where we have inductively defined functionsfl ∈B+(El+1) by

fn+1(x0, . . . , xn+1) := f (x0, . . . , xn+1),
(2.30)

fl(x0, . . . , xl) :=Utl+1−tl fl+1(x0, . . . , xl, ·)(xl), k ≤ l ≤ n.

The expectations in (2.29) clearly determine the transition probabilities ofX̂
uniquely. �

Note that formula (2.29) says that if̂U denotes the (time-inhomogeneous)
log-Laplace semigroup of̂X andF(w) := f (wt0, . . . ,wtn+1), then

Ûtk ,tn+1F(w)= fk

(
wt0, . . . ,wtk

)
.(2.31)

LEMMA 22 (Mean of historical superprocess).Let X̂ be the historical
(ξ,α,β)-superprocess. Then, for anyµ ∈M1(E) andm≥ 0,

Emµ[X̂t ](dw)=mexp
(∫ t

0
β(ws) ds

)
P µ

[
(ξs)s∈[0,t] ∈ dw

]
, t ≥ 0.(2.32)

In particular, if α = 0, thenX̂t is deterministic and given by the right-hand side
of (2.32).
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PROOF. By Lemma 15, the mean of a superprocess does not depend on the
activity. Therefore, it suffices to prove that the historical(ξ,0, β)-superprocess is
deterministic and given by the right-hand side of (2.32). DefineX̂t (dw), t ≥ 0,
by the right-hand side of (2.32). LetU = U(ξ,0, β) denote the log-Laplace
semigroup of the (nonhistorical)(ξ,0, β)-superprocess. Sinceα = 0, U coincides
with the linear semigroupV in formula (2.12). It follows that, forn≥ 0, 0= t0 <

t1 < · · ·< tn+1 andf ∈ B+(En+2),∫
DE [0,tn+1]

X̂tn+1(dw)f
(
wt0, . . . ,wtn+1

)

=
∫
DE [0,tn+1]

mexp
(∫ tn+1

0
β(ws) ds

)
f

(
wt0, . . . ,wtn+1

)

× P µ
[
(ξs)s∈[0,t] ∈ dw

]

=mEµ

[
exp

(∫ tn+1

0
β(ξs) ds

)
f

(
ξt0, . . . , ξtn+1

)]
(2.33)

=mEµ

[
exp

(∫ tn

0
β(ξs) ds

)

×E

[
exp

(∫ tn+1

tn

β(ξs) ds

)
f

(
ξt0, . . . , ξtn+1

)∣∣(ξs)s∈[0,tn]
]]

=mEµ

[
exp

(∫ tn

0
β(ξs) ds

)
f̃

(
ξt0, . . . , ξtn

)]

=
∫
DE [0,tn]

X̂tn (dw)f̃
(
wt0, . . . ,wtn

)
,

where

f̃ (x0, . . . , xn) :=Utn+1−tnf (x0, . . . , xn, ·)(xn).(2.34)

Thus,X̂ satisfies (2.28). SincêX is a Markov process with continuous sample
paths, it follows from Lemma 21 that(X̂t )t≥0 is the historical (ξ,0, β)-
superprocess started at time 0 inmµ. �

Although the next result may appear obvious, be aware of the fact that since the
functions involved are not continuous, parts (b) and (c) are not trivial consequences
of part (a). We will need (c) in the proof of Lemma 13.

LEMMA 23 (Preserved past property).Let X̂ be the historical(ξ,α,β)-
superprocess started at times ≥ 0 in µ̂ ∈M(DE[0, s]).

(a) If F ⊂DE[0, s] is measurable, then

P s,µ̂[
X̂t ◦ π−1

[0,s] ∈M(F )
]= 1 ∀ t ≥ s, µ̂ ∈M(F ).(2.35)
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(b) If F ⊂DE[0, s] is aGδ-set, then

P s,µ̂
[
X̂t ◦ π−1

[0,s] ∈M(F ) ∀ t ≥ s
]= 1, µ̂ ∈M(F ).(2.36)

(c) If F,F c ⊂DE[0, s] areGδ-sets, then

P s,µ̂[
1{X̂t ′◦π−1

[0,s](F )>0} ≤ 1{X̂t◦π−1
[0,s](F )>0} ∀ t ′ ≥ t ≥ s

]= 1.(2.37)

PROOF. Recall the definition ofẼ in (2.26) and setF̃ := {(t,w) ∈ Ẽ : t ≥ s,

π[0,s](w) ∈ F }. If F is measurable, theñF is measurable. Moreover, since
π[0,s] is the pointwise limit of a sequence of continuous functions (cf. [9],
Proposition 3.7.1),̃F is aGδ-set whenF is aGδ-set. The path processξ̂ satisfies

P s′,w[(t, ξ̂t ) ∈ F̃ ∀ t ≥ s′, (t, ξ̂t−) ∈ F̃ ∀ t > s′] = 1, (s′,w) ∈ F̃ .(2.38)

Therefore (a) follows from Lemma 19(a) and (b) follows from Lemma 19(b). To
prove (c), use the branching property (Lemma 14) to write

X̂
s,µ̂
t = X̂

s,1F µ̂
t + X̂

s,1Fc µ̂
t ∀ t ≥ s a.s.(2.39)

Then, applying (b) toF andF c,

X̂s,µ̂
t ◦ π−1

[0,s](F )= X̂s,1F µ̂
t ◦ π−1

[0,s](F )+ X̂
s,1Fc µ̂
t ◦ π−1

[0,s](F )
(2.40)

= 〈
X̂

s,1F µ̂
t ◦ π−1

[0,s],1
〉+ 0 ∀ t ≥ s a.s.

By applying the strong Markov property to the stopping time inf{t ≥ s : X̂s,1F µ̂
t

= 0}, it is not hard to see that

1{X̂s,1F µ̂

t ′ ◦π−1
[0,s]>0} ≤ 1{X̂s,1F µ̂

t ◦π−1
[0,s]>0} ∀ t ′ ≥ t ≥ s a.s.,(2.41)

which proves (c). �

2.2.4. Historical binary branching particle systems.Historical binary branch-
ing particle systems can be introduced in much the same way as historical su-
perprocesses. First, binary branching particle systems, the underlying motion of
which is a Hunt processξ with cadlag sample paths in a Polish spaceE, are de-
fined through their generating semigroup, which in turn is defined via the unique
solution to a Cauchy integral equation of the form (2.8). Ifξ is such a Hunt process
and b, d ∈ B+(E), then the historical(ξ, b, d)-particle systemX̂ is the (time-
inhomogeneous)(ξ̂ , b̂, d̂)-particle system, wherêξ is the path process associated
with ξ andb̂(t,w) := b(w(t)), d̂(t,w) := d(w(t)). Because this is very similar to
what we have already seen (but easier), we skip the details.

Many of the elementary properties of historical superprocesses have analogues
for historical binary branching particle systems. For example, if the underlying
motion has the distinct path property, then the historical binary branching particle
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system at timet > 0 is a.s. a simple point measure. (One way to prove this is to
use Poissonization and Lemma 20.) Also the formula for the finite-dimensional
projections of a historical superprocess (Lemma 21) has a straightforward
analogue for particle systems.

2.3. Compensatedh-transforms and weighted superprocesses.

2.3.1. Preliminaries from semigroup theory.Let E be a compact metrizable
space and letC(E) be the Banach space of continuous real functions onE,
equipped with the supremum norm, denoted by‖ · ‖. Let S = (St )t≥0 be a
semigroup of bounded linear operators onC(E). By definition, S is strongly
continuousif lim t→0 ‖Stf − f ‖ = 0 for all f ∈ C(E) andS is positiveif f ≥ 0
implies Stf ≥ 0, t ≥ 0. Forλ ∈ R, let us say thatS is λ-contractiveif ‖Stf ‖ ≤
eλt‖f ‖, t ≥ 0. The following version of the Hille–Yosida theorem can easily be
derived from [9], Theorem 4.2.2 and Proposition 1.1.5(b). (SettingS̃t := e−λSt and
G̃ :=G− λ, we can restrict ourselves to contraction semigroups and operatorsG

that satisfy the positive maximum principle. To see that for contraction semigroups
our condition (iv) implies condition (c) from [9], Theorem 4.2.2, note thatv :=∫∞
0 ute

−ct dt solves(c−G)v = f . By [9], Proposition 1.1.5(b), our condition (iv)
is also necessary.)

LEMMA 24 (Hille–Yosida theorem). A linear operatorG on C(E) with
domainD(G) is the generator of a strongly continuous, positive, λ-contractive
semigroupS onC(E), with λ ∈R, if and only if

(i) G is closed;
(ii) D(G) is dense inC(E);
(iii) Gf (x) ≤ λf (x) wheneverf ∈D(G) assumes its maximum over

E in a pointx ∈E with f (x)≥ 0;
(iv) for all f ∈ D(G) there exists a continuously differentiableu :

[0,∞)→ C(E) such thatu0= f , ut ∈D(G) and ∂
∂t

ut =Gut , t ≥ 0.

(2.42)

The functionu in (iv) is unique and given byStf = ut , t ≥ 0, f ∈D(G).

Let G be the generator of a strongly continuous, positive,λ-contractive
semigroup onC(E) and letα ∈ C+(E), β ∈ C(E). By definition, amild solution to
the Cauchy problem (1.7) is a continuous functionu : [0,∞)→ C(E) that satisfies

ut = Stf +
∫ t

0
St−s(βus − αu2

s ) ds, t ≥ 0,(2.43)

[cf. (2.8)]. By definition,u is aclassicalsolution to (1.7) ift �→ ut is continuously
differentiable inC(E), ut ∈ D(G) for all t ≥ 0 and (1.7) holds. Every classical
solution is a mild solution. For classical solutions, we have the following
comparison result.
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LEMMA 25 (Sub- and supersolutions).Fix T > 0 and assume thatu is a
classical solution to(1.7) on [0, T ] for someu0 = f ∈ D(G). Assume that
ũ : [0, T ]→ C(E) is continuously differentiable, ũt ∈D(G) for all t ∈ [0, T ] and

∂

∂t
ũt ≤Gũt + βũt − αũ2

t , t ∈ [0, T ],
(2.44)

ũ0 ≤ f.

ThenũT ≤ uT . The same holds with all inequality signs reversed.

PROOF. This is a standard application of the maximum principle (see,
e.g. [14], Lemma 10). �

Existence of solutions to (1.7) is guaranteed by the following lemma.

LEMMA 26 (Classical and mild solutions to a semilinear Cauchy problem).
For each f ∈ C(E) there exists a unique mild solutionu of (1.7) up to an
“explosion time” T (f ), with lim t↑T (f ) ‖ut‖ =∞ if T (f ) is finite. For eacht ≥ 0,
f �→Ut f := ut defines a continuous map from{f ∈ C(E) :T (f ) < t}, into C(E).
If f ∈D(G), then the mild solution to(1.7) is a classical solution. The timeT (f )

is infinite if f ≥ 0, in which case alsou≥ 0, or if α = 0.

PROOF. The statements about mild solutions follow from [22], Theorems
6.1.2 and 6.1.4, and the statement about classical solutions follows from [22],
Theorem 6.1.5. Iff ∈D(G) ∩ C+(E), then using Lemma 25 it is easy to prove
that the classical solution to (1.7) satisfies 0≤ u ≤ e(λ+‖β‖)t‖f ‖. SinceD(G) is
dense,C+(E) is the closure of its interior andUt is continuous, the same bounds
hold for mild solutions. The fact that solutions do not explode in the linear case
α = 0 follows from [22], Theorem 6.1.2.�

2.3.2. Superprocesses with Feller underlying motion.Let E be a locally
compact metrizable space and let(ξx)x∈E be a Markov process inE with cadlag
sample paths. Then(ξx)x∈E is called aFeller processif the map(t, x) �→L(ξx

t )

from [0,∞) × E into M(E) is continuous and (in caseE is not compact)
the semigroup of(ξx)x∈E maps the spaceC0(E) of continuous real functions
vanishing at infinity into itself. A Feller process on a locally compact but not
compact spaceE can always be extended to a Feller process on the one-point
compactification ofE by puttingξ∞t :=∞, t ≥ 0.

If E is compact, then(ξx)x∈E is a Feller process if and only if its semigroup
is strongly continuous, positive, and satisfiesSt1= 1, t ≥ 0. Such semigroups
are called Feller semigroups. Note that a Feller semigroup is contractive, that is,
λ-contractive withλ= 0. To every Feller semigroup there exists a unique (in law)
Feller process inE with cadlag sample paths ([9], Theorem 4.2.7). A Feller process
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on a compact metrizable space is a Hunt process (see [24], Theorem I.9.26 and
Exercise I.9.27 or [16], (9.11)).

Let E be compact and metrizable, letG be the generator of a Feller semigroup
(Pt)t≥0 onC(E), α ∈ C+(E), andβ ∈ C(E). Then we have the following lemma:

LEMMA 27 (Feller property of superprocess).Let X be the (G,α,β)-
superprocess with log-Laplace semigroupU = U(G,α,β). ThenX is a Feller
process. For eachf ∈ C+(E), the map(t, x) �→ Ut f (x) from [0,∞) × E into
[0,∞) is continuous.

PROOF. SinceE is compact, the spaceM(E) is locally compact. By [22],
Theorem 6.1.4,(t, x) �→ Ut f (x) is jointly continuous int and x whenever
f ∈ C+(E). Therefore, and by (1.8),

Eµn
[
e−〈Xtn ,f 〉]→Eµ

[
e−〈Xt ,f 〉] asµn ⇒µ, tn → t, f ∈ C+(E).(2.45)

If f ∈ C+(E) satisfiesf > 0, then the functionµ �→ e−〈µ,f 〉 is continuous
on M(E) and vanishes at infinity, and by the Stone–Weierstrass theorem, the
linear span of all such functions is dense inC0(M(E)). Thus, (2.45) implies that
Lµn(Xtn ) ⇒ Lµ(Xt ) wheneverµn ⇒ µ, tn → t . It is not hard to see that the
semigroup ofX maps functions that vanish at infinity into functions that vanish at
infinity; therefore,X is a Feller process.�

2.3.3. Compensatedh-transforms of Feller processes.In this section we prove
Lemma 3. We start with two simple observations.

LEMMA 28 (h-transformed semigroup).Let S be a strongly continuous,
positive, λ-contractive semigroup onC(E) with generatorG and assume that
h ∈D(G) satisfiesh > 0. Then

S̃tf := 1

h
St (hf ), f ∈ C(E), t ≥ 0,(2.46)

defines a strongly continuous, positive, λ̃-contractive semigroup onC(E), with
λ̃ := ‖Gh

h
‖ and generator

G̃f := 1

h
G(hf ) with D(G̃) := {f ∈ C(E) :hf ∈D(G)}.(2.47)

PROOF. Sinceh is bounded away from zero andS is strongly continuous, it is
easy to see that alsõS is strongly continuous. Moreover,t−1(S̃tf − f ) converges
in C(E) if and only if hf ∈D(G), and the limit is given byG̃f . Obviously,S̃ is
positive. Since∂

∂t
heλ̃t = ‖Gh

h
‖heλ̃t ≥ Gheλ̃t , Lemma 25 shows thatSth ≤ heλ̃t .

Since f h ≤ ‖f ‖h and S is positive, it follows that1
h
St(hf ) ≤ 1

h
St(‖f ‖h) ≤

‖f ‖eλ̃t . Similarly−‖f ‖eλ̃t ≤ S̃t f and, therefore,̃S is λ̃-contractive. �
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LEMMA 29 (Linear perturbation). Let G be the generator of a strongly
continuous, positive, λ-contractive semigroup onC(E) and assume thatg ∈ C(E).
Then

G̃ :=G+ g with D(G̃) :=D(G)(2.48)

is the generator of a strongly continuous, positive, λ̃-contractive semigroup on
C(E) with λ̃ := λ+ ‖g‖.

PROOF. The operatorG̃ satisfies conditions (i)–(iv) from Lemma 24, where
condition (iv) follows from Lemma 26. �

PROOF OF LEMMA 3. It follows from the previous two lemmas thatGh is
the generator of a strongly continuous, positive,λ-contractive semigroup onC(E)

(for someλ). Obviously 1∈D(Gh) andGh1= 0, and thereforeGh generates a
Feller semigroup.

To see that the law of the corresponding Feller processξh is given by (1.17), we
proceed as follows. By [9], Lemma 4.3.2, the process

Mt := h(ξt )

h(x)
exp

(
−

∫ t

0

Gh(ξs)

h(ξs)
ds

)
, t ≥ 0,(2.49)

is a martingale with respect to the filtration(Ft )t≥0 generated byξ ; therefore,
P̃ x(A) := Ex[Mt1A], A ∈ Ft , defines a legitimate change of measure. Put
P h

t f (x) := Ẽx[f (ξt )], x ∈E,f ∈ C(E). We need to show that under the changed
measure,ξ is a Feller process with semigroupP h and thatGh is the generator
of P h. By the Markov property ofP x , for 0≤ s ≤ t ,

Ex

[
f (ξt )

Mt

Ms

∣∣∣Fs

]
= Ex

[
f (ξt )

h(ξt )

h(ξs)
exp

(
−

∫ t

s

Gh(ξu)

h(ξu)
du

)∣∣∣Fs

]
(2.50)

= Eξs [f (ξt−s)Ms] = P h
t−sf (ξs).

Therefore, for anyA ∈ Fs ,

Ẽx[f (ξt )1A] = Ex[f (ξt )Mt1A] = Ex

[
Ex

[
f (ξt )

Mt

Ms

∣∣∣Fs

]
Ms1A

]
(2.51)

= Ex[P h
t−sf (ξs)Ms1A] = Ẽx[P h

t−sf (ξs)1A],
which shows thatẼx[f (ξt )|Fs] = P h

t−sf (ξs). It is not hard to see thatP h
t f (x) is

jointly continuous int andx, and thereforeP h is a Feller semigroup. Finally, if
f h ∈D(G), then

h(x) lim
t→0

t−1(P h
t f − f )(x)

= lim
t→0

t−1
(
Ex

[
f (ξt )h(ξt )exp

(
−

∫ t

0

Gh(ξs)

h(ξs)
ds

)]
− h(x)f (x)

)
(2.52)

=G(fh)(x)− f (x)Gh(x)
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uniformly in x ∈E, which shows thatGh is the generator ofP h. �

An alternative proof of formula (1.17), using historical superprocesses, is given
at the end of the next section.

2.3.4. Weighted superprocesses.

PROOF OF LEMMA 5. Write U := U(G,α,β) and Uh := U(Gh,hα,β +
Gh
h

). By Lemma 26, for everyf ∈ D(Gh) ∩ C+(E), the functiont �→ ut :=
Ut (hf ) is a classical solution to the Cauchy problem

∂

∂t
ut =Gut + βut − αu2

t , t ≥ 0,

(2.53)
u0 = hf.

A little calculation shows thatt �→ uh
t := 1

h
ut is a classical solution to the Cauchy

problem

∂

∂t
uh

t =Ghuh
t +

(
β + Gh

h

)
uh

t − hα(uh
t )

2, t ≥ 0,

(2.54)
uh

0 = f.

Therefore,Uh
t f = 1

h
Ut (hf ) for all f ∈D(Gh) ∩ C+(E). SinceD(Gh) is dense

in C(E), C+(E) is the closure of its interior andU,Uh are continuous, it follows
that

Uh
t f = 1

h
Ut (hf ), t ≥ 0, f ∈ C+(E).(2.55)

It is clear that the procesŝXh defined in (1.18) is a Markov process with
continuous sample paths. To see thatX̂h is the historical(Gh,hα,β + Gh

h
)-

superprocess, by Lemma 21, it suffices to check thatX̂h satisfies (2.28) for the
log-Laplace semigroupUh. This is easily done, since we have

E

[
exp

(
−

∫
DE [0,tn+1]

X̂h
tn+1

(dw)f
(
wt0, . . . ,wtn+1

))∣∣∣X̂h
tn
=µ

]

= E

[
exp

(
−

∫
DE [0,tn+1]

h
(
wtn+1

)
X̂tn+1(dw)

× f
(
wt0, . . . ,wtn+1

))∣∣∣(h ◦ πtn

)
X̂tn = µ

]

= E

[
exp

(
−

∫
DE [0,tn+1]

X̂tn+1(dw)h
(
wtn+1

)

× f
(
wt0, . . . ,wtn+1

))∣∣∣X̂tn =
(
h ◦ πtn

)−1
µ

]
(2.56)
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= exp
(
−

∫
DE[0,tn]

h
(
wtn

)−1
µ(dw)

×Utn+1−tn

{
h(·)f (

wt0, . . . ,wtn, ·
)}(

wtn

))

= exp
(
−

∫
DE[0,tn]

µ(dw)Uh
tn+1−tn

f
(
wt0, . . . ,wtn, ·

)(
wtn

))
. �

ALTERNATIVE PROOF OF (1.17). Let X̂ be the (deterministic) historical
(G,0,0)-superprocess started in̂X0= δx and set

X̂h
t (dw) := h(wt )X̂t (dw), t ≥ 0.(2.57)

By Lemma 5,X̂h is the historical(Gh,0, Gh
h

)-superprocess started in̂X0 =
h(x)δx and, therefore, by Lemma 22,

(i) X̂t (dw) = P x
[
(ξs)s∈[0,t] ∈ dw

]
,

(ii) X̂h
t (dw) = h(x)exp

(∫ t

0

Gh

h
(ws) ds

)
P x

[
(ξh

s )s∈[0,t] ∈ dw
]
.

(2.58)

Combining (2.57) and (2.58), we arrive at (1.17).�

3. Proof of the main results.

3.1. The infinitesimal survival probability.

3.1.1. Extinction versus unbounded growth.

LEMMA 30 (Eventual extinction). We haveUt∞↓ p as t ↑∞. Moreover,

P µ[Xt = 0 eventually] =
{

e−〈µ,p〉, if 〈µ,Ut∞〉<∞ for somet > 0,

0, otherwise.
(3.1)

If supx∈E Ut∞(x) <∞ for somet > 0, thenUtp = p for all t ≥ 0.

If 〈µ,Ut∞〉 = ∞ for all t ≥ 0, then possiblye−〈µ,p〉 = 0, but this need not
always be the case; see Example 34.

PROOF OF LEMMA 30. Since the zero measure is an absorbing state,
1{Xt=0} = 1{Xr=0∀ r≥t} a.s. and, therefore,1{Xtn=0} ↑ 1{Xt=0 eventually} as

tn ↑∞ a.s. Thus, taking the limit in (1.22), we see thatUt∞↓ p. If 〈µ,Ut∞〉<
∞ for somet > 0, then〈µ,Ut∞〉 ↓ 〈µ,p〉. Taking the limit inP µ[Xt = 0] =
e−〈µ,Ut∞〉, we arrive at (3.1). Formula (1.8) shows thatUt is continuous with
respect to bounded decreasing sequences. Therefore, if supx∈E Ut∞(x) <∞ for
somet > 0, thenUtp =Ut (lims↑∞Us∞) = lims↑∞Ut+s∞= p for all t ≥ 0.

�
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LEMMA 31 (Extinction versus unbounded growth).If supx∈E Ut∞(x) <∞
for somet > 0, then

P µ

[
Xt = 0 eventually or lim

t→∞〈Xt ,1〉 =∞
]
= 1, µ ∈M(E),(3.2)

and

lim
t→∞Ut f (x)= p(x) ∀x ∈E,f ∈ C(E), f > 0.(3.3)

PROOF. Let (Ft )t≥0 denote the filtration generated byX. It follows from the
right property of the processX [see (2.5)(i)] thatt �→ e−〈Xt ,p〉 is right-continuous.
By Lemma 30 and convergence of bounded right-continuous martingales,

e−〈Xt ,p〉 = P [Xs = 0 eventually|Ft ] −→
t→∞1{Xs=0 eventually} a.s.(3.4)

It follows that 〈Xt , p〉 →∞ a.s. on{Xs = 0 eventually}c. Since‖p‖ <∞, the
same conclusion holds for〈Xt ,1〉. �

3.1.2. Continuity of the infinitesimal survival probability.Even though the
underlying motion has the Feller property andα,β are continuous functions,
p need not be continuous in general, as is illustrated by the following examples,
which we give without proof.

EXAMPLE 32 (Discontinuous infinitesimal survival probability).Let ξ be the
deterministic Feller process in[−1,1] given by the differential equation

∂

∂t
ξt = 1− (ξt )

2, t ≥ 0.(3.5)

LetX be the superprocess in[−1,1] with underlying motionξ , activityα(x) := 1
and growth parameterβ(x) := −x. Then

− logP δx [Xt = 0 eventually] =
{1, if x =−1,

0, if x ∈ (−1,1].(3.6)

Let Y be the superprocess in[−1,1] with underlying motionξ , activity α(x) :=
x ∨ 0 and growth parameterβ(x) := x ∨ 0. Then

− logP δx [Yt = 0 eventually] =
{∞, if x =−1,

1, if x ∈ (−1,1].(3.7)

Nevertheless, we have the following lemma.

LEMMA 33 (Continuity of the infinitesimal survival probability).If

sup
x∈E

Ut∞(x) <∞

for somet > 0 and infx∈E p(x) > 0, thenp is continuous.
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PROOF. Our strategy is to prove that the event thatX becomes extinct depends
in a continuous way on the path ofX and, therefore, by the Feller property, on the
initial condition. To do this, we show that by observingX for a finite time, we can
be almost certain whetherX becomes extinct.

Set

p := inf
x∈E

p(x) and p := sup
x∈E

p(x).(3.8)

Note that by (3.1),

e−〈µ,1〉p ≤ P µ[Xt = 0 eventually] ≤ e−〈µ,1〉p, µ ∈M(E).(3.9)

Fix x0 ∈ E. We will show thatp is continuous atx0. Let 0 < c < C < ∞
andε′, ε′′ > 0 be arbitrary. Choose continuous functionsf0, f1, f∞ from [0,∞)

into [0,1], summing up to 1, such that1[0,c/2] ≤ f0 ≤ 1[0,c], 1[c,C] ≤ f1 ≤
1[c/2,2C], and1[2C,∞) ≤ f∞ ≤ 1[C,∞). By Lemma 31, there exists aT > 0 such
that

Eδx0[f1(〈XT ,1〉)] ≤ ε′.(3.10)

Let d be a metric that generates the topology onE. By Lemma 27, we can choose
δ > 0 such that for allx ∈E with d(x, x0)≤ δ,∣∣Eδx0 [fr(〈XT ,1〉)] −Eδx [fr(〈XT ,1〉)]∣∣≤ ε′′, d(x, x0)≤ δ, r = 0,1.(3.11)

Write

P δx [Xt = 0 eventually]

= Eδx

[ ∑
r=0,1,∞

fr(〈XT ,1〉)1{Xt=0 eventually}
]

(3.12)

= ∑
r=0,1,∞

Eδx
[
fr(〈XT ,1〉)P XT [Xt = 0 eventually]].

Using (3.12) to get lower and upper estimates onP δx
[
Xt = 0 eventually

]
, and

applying (3.9), we find that

Eδx [f0(〈XT ,1〉)] − (1− e−cp)

≤Eδx [f0(〈XT ,1〉)]e−cp

≤ P δx [Xt = 0 eventually](3.13)

≤Eδx [f0(〈XT ,1〉)] +Eδx [f1(〈XT ,1〉)] +Eδx [f∞(〈XT ,1〉)]e−Cp

≤Eδx [f0(〈XT ,1〉)] + (ε′ + ε′′)+ e−Cp, d(x, x0)≤ δ.
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Therefore, for allx ∈E with d(x, x0)≤ δ,∣∣P δx0 [Xt = 0 eventually] − P δx [Xt = 0 eventually]∣∣
≤ ∣∣P δx0[Xt = 0 eventually] −Eδx0[f0(〈XT ,1〉)]∣∣
+ ∣∣Eδx0 [f0(〈XT ,1〉)] −Eδx [f0(〈XT ,1〉)]∣∣

(3.14)
+ ∣∣Eδx [f0(〈XT ,1〉)] − P δx [Xt = 0 eventually]∣∣

≤ (
(1− e−cp)+ (ε′ + ε′′ + e−Cp)

)
+ ε′′ + (

(1− e−cp)+ (ε′ + ε′′ + e−Cp)
)
.

Since 0< c < C < ∞ andε′, ε′′ > 0 are arbitrary, the last line of (3.14) can be
made arbitrarily small. Thus, we have shown that for eachε > 0 there exists a
δ > 0 such that∣∣e−p(x0) − e−p(x)

∣∣≤ ε ∀x ∈E with d(x, x0)≤ δ.(3.15)

This shows thatp is continuous atx0. �

3.1.3. Properties of the infinitesimal survival probability.

PROOF OFPROPOSITION7. Parts (a) and (b) follow from Lemmas 30 and 31.
To prove part (c), note that iff ∈ C+(E) satisfiesUt f = f for all t ≥ 0, then
ut := f , t ≥ 0, is a mild solution to (1.7), that is,

f = Ptf +
∫ t

0
Ps(βf − αf 2) ds, t ≥ 0.(3.16)

Thus,

lim
t→0

t−1(Ptf − f )=− lim
t→0

t−1
∫ t

0
Ps(βf − αf 2) ds =−βf + αf 2,(3.17)

which proves thatf ∈ D(G) and that (1.23) holds. Conversely, iff ∈ D(G) ∩
C+(E) solves (1.23), thenut := f is a classical solution to (1.7) and, therefore,
Ut f = f for all t ≥ 0.

To prove (d), note that if infx∈E p(x) > 0, thenp is continuous by Lemma 33
and, therefore,p solves (1.23) by parts (b) and (c). Moreover, part (a) shows that
in this case there exists only one positive fixed point ofU. �

3.1.4. Nonuniform convergence ofUt∞. Lemma 11 shows that the assump-
tion that supx∈E Ut∞(x) < ∞ for somet > 0 cannot be dropped from Theo-
rems 8 and 9. However, the reader may wonder if this condition is not implied by
the simpler-looking condition supx∈E p(x) <∞. To show that this is not the case,
we include the following example.
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EXAMPLE 34 (Nonuniform convergence ofUt∞). There exists a generator
G of a Feller process in a compact metrizable spaceE andα ∈ C+(E) such that
U=U(G,α,0) satisfies

(i) Ut∞(x) <∞ ∀x ∈E, t > 0,

(ii) Ut∞↓ 0, ast ↑∞,

(iii ) supx∈E Ut∞(x)=∞ ∀ t ≥ 0.

(3.18)

PROOF. TakeE := [0,1]2. Define a Feller processξ = (ξx)x∈E in E by

ξ
(x,y)
t := (x, ye−t ), (x, y) ∈ [0,1] × [0,1),

(3.19)

ξ
(x,1)
t :=

{
(x,1), t ≤ τx,(
x, e−(t−τx)

)
, t > τx,

x ∈ [0,1],

whereτx , x ∈ (0,1] is an exponentially distributed random variable with mean
x and τ0 := 0. It is not hard to see thatξ is a Feller process. LetG denote its
generator. Chooseα ∈ C+(E) such thatα(0,1)= 0 andα > 0 elsewhere. Set

α(x, ·) := inf{α(x, y) :y ∈ [0,1]}, x ∈ [0,1].(3.20)

For fixedx ∈ [0,1], the processξ restricted to{x}× [0,1] is an autonomous Feller
process andα(x, ·) > 0 for x > 0. Therefore, using (1.30), we have

Ut∞(x, y)≤ 1

α(x, ·)t , t > 0, (x, y) ∈ (0,1] × [0,1].(3.21)

The superprocessX started inδ(0,y) (y ∈ [0,1]) is concentrated on(0, ye−t ) at
time t , if it survives. Therefore, applying (1.30) to the process(Xt )t≥ε , we have
for eachε > 0 that

Ut∞(0, y)≤ 1

δ(t − ε)
, t > ε, whereδ := inf{α(0, e−t ) : t ∈ [ε,∞]}.(3.22)

This proves (3.18)(i) and (3.18)(ii). Now consider the process(Xt (· ∩ ((0,1] ×
{1})))t≥0. It is not too hard to see that this is an autonomous superprocess without
(i.e., with constant) underlying motion, activityα(·,1) and growth parameter
β(x) := − 1

x
. Therefore [see (1.30)],

Ut

(∞1(0,1]×{1}
)
(x,1)= β(x)

α(x,1)(1− e−β(x)t )
= x−1

α(x,1)(et/x − 1)
,(3.23)

t > 0, x ∈ (0,1]. We can additionally chooseα(x,1) := e−1/x2
, x ∈ (0,1]. Then

lim
x→0

Ut

(∞1(0,1]×{1}
)
(x,1)=∞, t > 0.(3.24)

It follows that supx∈E Ut∞(x) ≥ supx∈E Ut (∞1(0,1]×{1})(x) = ∞, which
proves (3.18)(iii). �
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3.2. Surviving lines of descent.

3.2.1. Poisson point measures.Let E be a Polish space. By definition, a
Poisson point measure with intensityµ ∈ M(E) is an N (E)-valued random
variable Pois(µ) with

E
[
(1− f )Pois(µ)

]= e−〈µ,f 〉, f ∈B+(E).(3.25)

If µ is atomless, then Pois(µ) a.s. takes values in the spaceN ∗(E) := {ν ∈
N (E) :ν({x}) ≤ 1 ∀x ∈ E} of simple point measures onE. Note thatN ∗(E)

is an open subset ofN (E) and, therefore, a Polish space in the induced topology.
We identifyN ∗(E) with the space of finite subsets ofE. If µ ∈M(E) is atomless,
then anN ∗(E)-valued random variableν is a Poisson point measure with intensity
µ if and only if (see [21], Proposition 1.4.7)

P [ν(A)= 0] = e−µ(A), A ∈B(E).(3.26)

It is not hard to see that the event{µ ∈M(E) : supp(µ) is finite} ⊂M(E) is mea-
surable and thatµ �→ supp(µ) is a measurable map from{µ ∈M(E) : supp(µ) is
finite} into N ∗(E).

We need a criterion to decide whether the support of a random measure is a
Poisson point measure.

LEMMA 35 (Random measures with Poisson support).Let E be a Polish
space, let µ be an atomless measure onE and letZ be anM(E)-valued random
variable such that

P [Z(A)= 0] = e−µ(A), A ∈B(E).(3.27)

Then

P [supp(Z) is finite] =
{ 1, if µ(E) <∞,

0, if µ(E)=∞.
(3.28)

Moreover, if µ(E) <∞, thensupp(Z) is a Poisson point measure with intensityµ.

PROOF. Assume thatµ(E) <∞. Choose finite measurable partitionsA(n) =
{A(n)

i }i∈I (n) such thatA(n+1) is a refinement ofA(n) and such that intersections of

the form
⋂

A
(n)
in

are empty or consist of one point. Since

E
[∣∣{i ∈ I (n) :Z

(
A

(n)
i

)
> 0

}∣∣]= ∑
i∈I (n)

(
1− e−µ(A

(n)
i ))≤ µ(E),(3.29)

the increasing limit of|{i ∈ I (n) :Z(A
(n)
i ) > 0}| is a.s. finite, that is, there are a.s.

finitely many decreasing sequences of partition elementsA
(1)
i1
⊃ A

(2)
i2
⊃ · · · such

that Z(A
(n)
in

) > 0 for all n. The limit points of these sequences give the support
of Z and by formula (3.26), supp(Z) is a Poisson point measure with intensityµ.
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Assume, on the other hand, thatµ(E) =∞. Sinceµ is atomless, there exist
measurable disjoint sets(Bi)i≥0 such thatµ(Bi) ≥ 1. Formula (3.27) shows that
the events{Z(Bi) > 0} are independent and that

∞∑
i=1

P [Z(Bi) > 0] =
∞∑
i=1

(
1− e−µ(Bi)

)=∞.(3.30)

Therefore, by the Borel–Cantelli lemmaZ(Bi) > 0 for infinitely manyi, which
proves that supp(Z) is infinite a.s. �

3.2.2. Poissonization of historical superprocesses.The following lemma
gives a historical variant of formula (1.11)(i). Moreover, it shows that the particles
in Pois((Ut f )µ) from (1.11)(i) are, in a sense, the ancestors of the particles in
Pois(fXt ).

LEMMA 36 (Poissonization of historical superprocesses).Let X̂ be the
historical (G,α,β)-superprocess started at times ≥ 0 in µ̂ ∈ M(DE[0, s]).
Assume that̂µ is atomless. If ν̂ is an N (DE[0, s + t])-valued random variable
such that, for a givenf ∈ B+(E) and t ≥ 0,

P [ν̂ ∈ ·|(X̂r )s≤r≤s+t ] = P
[
Pois

(
(f ◦ πs+t )X̂s+t

) ∈ ·|X̂s+t

]
a.s.,(3.31)

thensupp(ν̂ ◦ π−1
[0,s]) is a Poisson point measure with intensity(Ut f ◦ πs)µ̂.

PROOF. Sinceµ̂ is atomless, by Lemma 35, it suffices to show that for all
A ∈B(DE[0, s]),

P
[
ν̂ ◦ π−1

[0,s](A)= 0
]= exp

(− (Ut f ◦ πs)µ̂(A)
)
.(3.32)

By (3.31),

P
[
ν̂ ◦ π−1

[0,s](A)= 0
]=Es,µ̂

[
exp

(− (f ◦ πs+t )X̂s+t ◦ π−1
[0,s](A)

)]
.(3.33)

By the branching property (Lemma 14) and by Lemma 23(a), we can rewrite the
right-hand side of this equation as

Es,1Aµ̂
[
exp

(− (f ◦ πs+t )X̂s+t ◦ π−1
[0,s](A)

)]
×Es,1Ac µ̂[

exp
(− (f ◦ πs+t )X̂s+t ◦ π−1

[0,s](A)
)]

(3.34)

=Es,1Aµ̂
[
exp

(− 〈(f ◦ πs+t )X̂s+t ,1〉)] · 1.

From the relation (2.27) between a historical superprocess and its associated
superprocess it is obvious that

Es,1Aµ̂
[
exp

(− 〈X̂s+t ◦ π−1
s+t , f 〉

)]= exp
(− 〈(1Aµ̂) ◦ π−1

s ,Ut f 〉).(3.35)
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It follows that

Es,µ̂
[
exp

(− (f ◦ πs+t )X̂s+t ◦ π−1
[0,s](A)

)]= exp
(− (Ut f ◦ πs)µ̂(A)

)
.(3.36)

Combining this with (3.33), we see that (3.32) holds.�

The proof of Lemma 36 has the following corollary.

COROLLARY 37 (Surviving lines of descent).Let X̂ be the historical
(G,α,β)-superprocess started at times ≥ 0 in µ̂ ∈ M(DE[0, s]). Assume that
µ̂ is atomless. Then, for anyt > 0,

P
[
supp

(
X̂s+t ◦ π−1

[0,s]
)

is finite
]= 1 ⇐⇒ 〈µ̂ ◦ π−1

s ,Ut∞〉<∞.(3.37)

Moreover, if 〈µ̂ ◦ π−1
s ,Ut∞〉 < ∞, thensupp(X̂s+t ◦ π−1

[0,s]) is a Poisson point
measure with intensity(Ut∞◦ πs)µ̂.

PROOF. Lettingf ↑∞ in (3.36) we see that

P s,µ̂
[
X̂s+t ◦ π−1

[0,s](A)= 0
]

(3.38)
= exp

(− (Ut∞◦ πs)µ̂(A)
)
, A ∈B(DE[0, s]).

Now the statements follow from Lemma 35.�

3.2.3. Finite ancestry property.

PROOF OF LEMMA 11. If supx∈E Ut∞(x) < ∞ for some t > 0, then
〈µ,Ut∞〉 < ∞ for all µ ∈ M(E). On the other hand, if supx∈E Ut∞(x) = ∞
for all t ≥ 0, then we can findµ ∈ M(E) such that〈µ,Ut∞〉 = ∞ for all
t ≥ 0. To see this, choose strictly positive(εn)n≥0 such that

∑
n≥0 εn = 1. Choose

tn ↑∞ andxn ∈E such thatUtn∞(xn)≥ ε−1
n and chooseµ :=∑

n≥0 εnδxn . Then
〈µ,Utn∞〉≥∑

m≥n εmUtn (xm)≥∑
m≥n εmUtm(xm)=∞.

The log-Laplace semigroupU′ =U(G′, α′, β ′) satisfiesU′
t (f ◦ψ)= (Ut f ) ◦

ψ , whereψ denotes the projection fromE′ to E (see Lemma 18). Therefore (i)
implies that〈µ⊗�,U′

t∞〉<∞ for somet > 0, which by Corollary 37 implies (ii).
On the other hand, if (i) does not hold, then there exists aµ ∈ M(E) such that
〈µ⊗ �,U′

t∞〉=∞ for all t ≥ 0, and in this case Corollary 37 shows that (ii) does
not hold. Finally, sinceX̂t = X̂′

t ◦ψ−1
t , (ii) implies (iii). �

PROOF OFLEMMA 13. We prove the following, slightly more general result.

LEMMA 38 (Immortal lines of descent).LetX̂ be the historical(G,α,β)-su-
perprocess started at time0 in µ ∈M(E). Assume thatsupx∈E Ut∞(x) <∞ for
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all t > q, for someq ≥ 0, whereU=U(G,α,β). Then

(i) supp
(
X̂r ◦ π−1

[0,t]
)

is finite

∀ t, r ≥ 0 such thatt + q < r a.s.

(ii) supp
(
X̂r ◦ π−1

[0,t]
)⊃ supp

(
X̂r ′ ◦ π−1

[0,t]
)

∀ t, r, r ′ ≥ 0 such thatt + q < r ≤ r ′ a.s.

(3.39)

PROOF. Let us introduce the shorthand

X̂t,r := X̂r ◦ π−1
[0,t], 0≤ t ≤ r.(3.40)

Let D ⊂ [0,∞) be countable and dense. The implication⇐ in (3.37) also holds if
µ̂ is not atomless; this can be proved by extending the spaceE as in Lemma 11.
Therefore,

supp(X̂t,r ) is finite ∀ t, r ∈D, t + q < r a.s.(3.41)

Let O be a countable basis for the topology onDE[0, t]. Conditioning onX̂t and
applying Lemma 23(c), we see that

1{X̂t,r′ (O)>0} ≤ 1{X̂t,r (O)>0} ∀ r, r ′ ≥ 0, t ∈D,O ∈O, t ≤ r ≤ r ′ a.s.(3.42)

It follows that

supp(X̂t,r ′)⊂ supp(X̂t,r ) ∀ r, r ′ ≥ 0, t ∈D, t ≤ r ≤ r ′ a.s.(3.43)

Combining this with (3.41), we see that supp(X̂t,r ′)⊂ supp(X̂t,r ) and supp(X̂t,r )

is finite ∀ r ′ ≥ 0, t, r ∈ D, t + q < r ≤ r ′ a.s., and therefore (3.41) can be
sharpened to

supp(X̂t,r ′) is finite ∀ r ′ ≥ 0, t ∈D, t + q < r ′ a.s.(3.44)

If X̂t,r ′ is finitely supported for somet, r ′, then supp(X̂t ′,r ′)= π[0,t ′](supp(X̂t,r ′))
for all t ′ ≤ t . Thus, (3.44) can be further sharpened to

supp(X̂t ′,r ′) is finite ∀ t ′, r ′ ≥ 0, t ′ + q < r ′ a.s.(3.45)

This proves (3.39)(i). Moreover, by (3.43) and (3.45),

supp(X̂t ′,r ′)= π[0,t ′]
(
supp(X̂t,r ′)

)⊂ π[0,t ′]
(
supp(X̂t,r )

)= supp(X̂t ′,r )(3.46)

∀ t ′, r, r ′ ≥ 0, t ∈D, t ′ + q ≤ t + q < r ≤ r ′ a.s.,

which proves (3.39)(ii). �

The proof of Lemma 13 is complete.�
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3.3. Embedded trees.Our first and crucial proposition in this section shows
that it is possible to embed a collectionI of immortal lines of descent in certain
historical superprocesses. We then identify these immortal lines of descent as a
historical binary branching particle system. Finally, we generalize our results in a
number of steps, until we arrive at the statements in Section 1.5.

3.3.1. Construction of the embedded tree.Recall the definition of the distinct
path property before Lemma 20.

PROPOSITION 39 (Embedded tree).Let X̂ be the historical (G,α,α)-
superprocess started at time0 in µ ∈ M(E). Assume thatµ is atomless and
that the Feller process with generatorG has the distinct path property. Then
X̂ may be coupled to a random setI ⊂ DE[0,∞) such that the random sets
It := {π[0,t](w) :w ∈ I } are finite for all t ≥ 0 and satisfy

P [It ∈ ·|(X̂s )0≤s≤t ] = P [Pois(X̂t ) ∈ ·|X̂t ] a.s. ∀ t ≥ 0.(3.47)

If, in addition, U = U(G,α,α) satisfiessupx∈E Ut∞(x) < ∞ for somet > 0,
thenp := lim t↑∞Ut∞= 1 andI may be chosen such that, moreover,

It = supp
(
X̂r ◦ π−1

[0,t]
)
, r-eventually∀ t ≥ 0 a.s.(3.48)

PROOF. Identify, as usual, finite subsets and simple point measures. For each
T ≥ 0, letI (T ) be a random finite subset ofDE[0, T ] such that

P
[
I (T ) ∈ ·|(X̂t )0≤t≤T

]= P [Pois(X̂T ) ∈ ·|X̂T ].(3.49)

Put

I
(T )
t := {

π[0,t](w) :w ∈ I (T )
}= supp

(
I (T ) ◦ π−1

[0,t]
)
, 0≤ t ≤ T .(3.50)

Using the fact that, by Lemma 20,̂Xt is a.s. atomless, conditioning on(X̂s)0≤s≤t ,
applying Lemma 36 and the fact that the function 1 is a fixed point ofU(G,α,α),
we find that

P
[
I

(T )
t ∈ ·|(X̂s )0≤s≤t

]= P [Pois(X̂t ) ∈ ·|X̂t ] a.s.∀0≤ t ≤ T .(3.51)

Thus, we can satisfy (3.47) up to a finite time horizonT . To let T ↑∞, we need
to take a projective limit. For 0≤ S ≤ T , define a mapψS,T :N ∗(DE[0, T ]) →
N ∗(DE[0, S]) by

ψS,T (J ) := {
π[0,S](w) :w ∈ J

}
, J ∈N ∗(DE[0, T ]).(3.52)

Then (3.51) shows that the random variables((X̂t )0≤t≤T , I (T ))T≥0 satisfy the con-
sistency relationL((X̂t )0≤t≤S,ψS,T (I (T ))) = L((X̂t )0≤t≤S, I (S)) (0≤ S ≤ T ).
Note that((X̂t )0≤t≤T , I (T )) takes values in the Polish spaceCM(DE [0,∞))[0, T ] ×
N ∗(DE[0, T ]). Let N (∞) be the space of all countable subsetsI ⊂ DE[0,∞)
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such thatψT,∞(I ) := {π[0,T ](w) :w ∈ I } is finite for all T ≥ 0. EquipN (∞) with
the σ -field generated by the mappingsψT,∞ :N (∞) → N ∗(DE[0, T ]), T ≥ 0.
Taking the projective limit of the variables((X̂t )0≤t≤T , I (T ))T≥0, we can con-
struct a random variable(X̃, I ) with values inCM(DE [0,∞))[0,∞)×N (∞) such
that ((X̃t )0≤t≤T ,ψT,∞(I )) is equal in distribution to((X̂t )0≤t≤T , I (T )) for all
T ≥ 0. It follows thatX̃ is the historical(G,α,α)-superprocess started at time 0
in µ ∈M(E) and thatI is a random set that satisfies (3.47).

Assume that supx∈E Ut∞(x) <∞ for somet > 0. We must show that we can
chooseI such that, moreover, (3.48) holds. First note that the function 1 is a
positive solution to (1.23) and, therefore, by Proposition 7(a),p = 1. Chooseq ≥ 0
such that supx∈E Ut∞(x) <∞ for all t > q. Then, by Lemma 38, the random sets

supp(X̂r ◦ π−1
[0,t]) are finite and nonincreasing inr > t + q for all t ≥ 0 a.s. Define

random finite subsetsIt ⊂DE[0, t] by

It :=
⋂

r>t+q

supp
(
X̂r ◦ π−1

[0,t]
) ∀ t ≥ 0 a.s.(3.53)

Then (3.48) is fulfilled. DefineI ⊂DE[0,∞) by

I := {
w ∈DE[0,∞) :π[0,t](w) ∈ It ∀ t ≥ 0

}
.(3.54)

Then

It = {
π[0,t](w) :w ∈ I

} ∀ t ≥ 0 a.s.(3.55)

By Corollary 37,

P
[
supp

(
X̂r ◦ π−1

[0,t]
) ∈ ·|(X̂s)0≤s≤t

]
(3.56)

= P
[
Pois

(
(Ur−t∞◦ πt)X̂t

) ∈ ·|X̂t

]
a.s.

∀ t, r ≥ 0, t + q < r . Taking the limitr ↑∞, we see that also (3.47) holds.�

3.3.2. Identification of the embedded tree.Our next step is to identify the
embedded treeI in Proposition 39 as a binary splitting particle system. Fort ≥ 0,

define equivalence relation
t−∼ and

t+∼ on I by

w
t−∼ v if and only if π[0,t)(w)= π[0,t)(v),

w
t+∼ v if and only if π[0,t+ε](w)= π[0,t+ε](v) for someε > 0,

(3.57)

and letIt− andIt+ denote the collections of
t−∼ and

t+∼ equivalence classes inI ,
respectively. Define counting measuresX̂t− andX̂t+ onDE[0, t] by

X̂t− :=
∑

w∈It−
δπ[0,t](w), t > 0,

(3.58)
X̂t :=

∑
w∈It+

δπ[0,t](w), t ≥ 0.
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It is not hard to see that̂X = (X̂t )t≥0 has right-continuous sample paths with left
limits given byX̂t− and that

It = X̂t a.s.∀ t ≥ 0.(3.59)

Note that the a.s. and the∀ t ≥ 0 cannot be interchanged here, sinceX̂t is not
a simple point measure at those (random) times when|It | < |It+|, that is, when
splitting occurs.

LEMMA 40 (Identification of the embedded tree).The processX̂ is the
(G,α,0)-particle system started at time0 in Pois(µ).

PROOF. By (3.59) and (3.47),

P [X̂t ∈ ·|(X̂s)0≤s≤t ] = P [Pois(X̂t ) ∈ ·|X̂t ] a.s.∀ t ≥ 0.(3.60)

Let X̂′ denote the(G,α,0)-particle system started at time 0 in Pois(µ). The time-
inhomogeneous log-Laplace semigroup(Ûs,t )0≤s≤t of the historical(G,α,α)-
superprocesŝX and the time-inhomogeneous generating semigroup(Ûs,t )0≤s≤t of
the historical(G,α,0)-particle systemX̂′ are defined by the same Cauchy integral
equation. Hence

Ûs,t f = Ûs,tf, 0≤ s ≤ t, f ∈B[0,1](DE[0, t]).(3.61)

Therefore, we may reason exactly as in the proof of Lemma 1 to see that

P 0,Pois(µ)[X̂′
t ∈ ·] = P 0,µ[Pois(X̂t ) ∈ ·], t ≥ 0,µ ∈M(E).(3.62)

Combining (3.60) and (3.62), we see that

P [X̂t ∈ ·] = P [X̂′
t ∈ ·], t ≥ 0.(3.63)

It follows from our definition ofX̂ that

X̂s = supp
(
X̂t ◦ π−1

[0,s]
)

a.s.∀0≤ s ≤ t.(3.64)

By a straightforward analogue of Lemma 23(a) for historical particle systems,
supp(X̂′

t ◦ π−1
[0,s]) ⊂ supp(X̂′

s) a.s.∀0≤ s ≤ t . Since the death rate of̂X′ is zero,

particles cannot become extinct and, therefore, in fact supp(X̂′
t ◦π−1

[0,s])= supp(X̂′
s)

a.s.∀0≤ s ≤ t . SinceX̂′
s is a.s. a simple point measure [which follows from (3.63)

and the fact thatX̂s is a.s. a simple point measure],X′ satisfies, in analogy
with (3.64),

X̂′
s = supp

(
X̂′

t ◦ π−1
[0,s]

)
a.s.∀0≤ s ≤ t.(3.65)

It follows from (3.63)–(3.65) that

P
[(

X̂t1, . . . , X̂tn

) ∈ ·]= P
[(

X̂′
t1
, . . . , X̂′

tn

) ∈ ·], 0≤ t1 < t2 < · · ·< tn.(3.66)

Since X̂ and X̂′ have right-continuous sample paths,X̂ and X̂′ are equal in
distribution. �
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3.3.3. Proof of the main theorems.Theorems 6, 8 and 9 can be combined into
the following theorem.

THEOREM 41 (Main results). Let X̂ be the historical(G,α,β)-superprocess
started at time0 in µ ∈M(E). Assume thath ∈ D(G) satisfiesh > 0 and, for
someγ ∈ C+(E),

Gh+ βh− αh2=−γ h.(3.67)

ThenX̂ can be coupled to the historical(Gh,hα,γ )-particle systemX̂ started in
X̂0= Pois(hµ) such that

P
[
X̂t ∈ ·

∣∣(X̂s)0≤s≤t

]= P
[
Pois

(
(h ◦ πt )X̂t

) ∈ ·|X̂t

]
a.s. ∀ t ≥ 0.(3.68)

If, in addition, U = U(G,α,β) satisfiessupx∈E Ut∞(x) < ∞ for somet > 0,
thenp := limt↑∞Ut∞≤ h and the coupling may be chosen such that, moreover,

supp(X̂t )⊃ supp
(
X̂r ◦ π−1

[0,t]
)
, r-eventually∀ t ≥ 0 a.s.(3.69)

If, in addition, γ = 0, then p = h and the coupling may be chosen such that
equality holdsr-eventually in(3.69).

PROOF. Under the additional assumptions that (i)µ is atomless and the Feller
process with generatorG has the distinct path property, (ii)γ = 0 and (iii) h= 1,
the statement follows from Proposition 39 and Lemma 40. We now remove these
assumptions one by one.

(i) Generalization to measures with atoms.Let η be a Feller process in a
compact metrizable spaceF such thatη has the distinct path property (e.g.,
Brownian motion on the unit circle). LetG′ denote the generator of the Feller
process(ξ, η) in E × F , where for given initial conditions,ξ and η evolve
independently. Putα′(x, y) := α(x) and β ′(x, y) := β(x). Let ψt denote the
projection from DE×F [0, t] to DE[0, t]. Let µ̂ and ρ̂ be finite measures on
DE[0, s] andDF [0, s], respectively, and assume thatρ̂ is atomless. IfX̂′ is the
historical(G′, α′, β ′)-superprocess started at times in µ̂⊗ ρ̂, then, by Lemma 18,

X̂t := X̂′
t ◦ψ−1

t , t ≥ s(3.70)

is the historical(G,α,β)-superprocess started at times in µ̂. Moreover,X̂′
t is

atomless a.s.∀ t ≥ s and its underlying motion has the distinct path property. The
statements for̂X now follow from the statements for̂X′ by projection.

(ii) Generalization toγ �= 0. Note that since we are still assumingh= 1, (3.67)
reduces toα − β = γ . SetE† := E ∪ {†}, where † is an isolated cemetery point
that does not belong toE. Define a linear operatorG† onC(E†) by

G†f (x) :=Gf (x)+ γ (x)
(
f (†)− f (x)

)
, x ∈E,

(3.71)
G†f (†) := 0,
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whereD(G†) consists of thosef ∈ C(E†) such that the restriction off to E is in
D(G). Set, moreover,

α†(x) := α(x), x ∈E,
(3.72)

α†(†) := 1.

Let X̂† denote the historical(G†, α†, α†)-superprocess started at time 0 in
µ ∈M(E) and let X̂† denote the historical(G†, α†,0)-particle system started
at time 0 in Pois(µ). For t ≥ 0, let X̂t and X̂t denote the restrictions of
X̂†

t andX̂
†
t to DE[0, t], respectively. Elementary considerations involving the log-

Laplace semigroups of̂X†
t andX̂

†
t show that(X̂t )t≥0, so defined, is the historical

(G,α,β)-superprocess, and that(X̂t )t≥0 is the historical(G,α, γ )-particle system.
By what we have already proved,X̂† andX̂† may be coupled such that

P [X̂†
t ∈ ·|(X̂†

s )0≤s≤t ] = P [Pois(X̂†
t ) ∈ ·|X̂†

t ] a.s.∀ t ≥ 0,(3.73)

which implies (3.68). If, in addition, supx∈E Ut∞(x) <∞ for somet > 0, then
using the fact thatα†(†)= 1, it is not hard to show that also supx∈E† U†

t∞(x) <∞
for somet > 0 and, therefore, by what we have already proved,

p† := lim
t↑∞U†

t∞= 1

and the coupling between̂X† andX̂† may be chosen such that, moreover,

supp(X̂†
t )= supp

(
X̂†

r ◦ π−1
[0,t]

)
, r-eventually∀ t ≥ 0 a.s.(3.74)

By Lemma 19(b) and the fact that † is a trap for the underlying motion,X̂† is
concentrated on paths that are trapped in †, once they reach † and, therefore,

supp(X̂t )= supp(X̂†
t )∩DE[0, t]

(3.75)
= supp

(
X̂†

r ◦ π−1
[0,t]

)∩DE[0, t] ⊃ supp
(
X̂r ◦ π−1

[0,t]
)

∀0≤ t ≤ r a.s. Formulas (3.74) and (3.75) imply (3.69). Finally, for allx ∈E,

p(x)=− logP δx [Xt = 0 eventually]
(3.76)

≤ − logP δx [X†
t = 0 eventually] = p†(x)= 1.

(iii) Generalization toh �= 1. Set X̂h
t (dw) := h(wt )X̂t (dw), t ≥ 0. By

Lemma 5,X̂h is the historical(Gh,αh,βh)-superprocess, whereGh is defined
in (1.16) andαh := hα, βh := β + Gh

h
. Formula (3.67) implies that

−γ = βh − αh ≤ 0.(3.77)

Therefore the statements follow from what we have already proved.�
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