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Let (L,�) be a finite distributive lattice, and suppose that the func-
tionsf1, f2 :L → R are monotone increasing with respect to the partial or-
der �. Given µ a probability measure onL, denote byE(fi) the average
of fi over L with respect toµ, i = 1,2. Then the FKG inequality provides
a condition on the measureµ under which the covariance, Cov(f1, f2) :=
E(f1f2) − E(f1)E(f2), is nonnegative. In this paper we derive a “third-
order” generalization of the FKG inequality: Letf1, f2 andf3 be nonnega-
tive, monotone increasing functions onL; and letµ be a probability measure
satisfying the same hypotheses as in the classical FKG inequality; then

2E(f1f2f3)

− [E(f1f2)E(f3) + E(f1f3)E(f2) + E(f1)E(f2f3)]
+ E(f1)E(f2)E(f3)

is nonnegative. This result reduces to the FKG inequality for the case in which
f3 ≡ 1.

We also establish fourth- and fifth-order generalizations of the FKG
inequality and formulate a conjecture for a generalmth-order generalization.
For functions and measures onRn we establish these inequalities by
extending the method of diffusion processes. We provide several applications
of the third-order inequality, generalizing earlier applications of the FKG
inequality. Finally, we remark on some connections between the theory of
total positivity and the existence of inequalities of FKG-type within the
context of Riemannian manifolds.

1. Introduction. In the realm of probability inequalities, the FKG inequality,
due to Fortuin, Kasteleyn and Ginibre (1971), now occupies a position of
fundamental importance because of its simplicity and widespread applicability.
Before we state in detail this remarkable inequality, it is worthwhile to note some
of its many applications.

In statistics, the FKG inequality has appeared in the study of monotonicity prop-
erties of power functions of likelihood ratio test statistics in multivariate analy-
sis, association and dependence properties of random variables, and observational
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studies; see Sarkar (1969), Perlman and Olkin (1980), Eaton (1987), Karlin and
Rinott (1980) and Rosenbaum (1995).

In probability theory and mathematical physics, the FKG inequality has
appeared in the areas of diffusion equations, interacting particle systems, Ising
models, reliability theory and percolation; see Grimmett (1999), Herbst and Pitt
(1991), Lebowitz (1972), Liggett (1985), Preston (1976), Simon (1974, 1979) and
Glimm and Jaffe (1987).

In work on total positivity and its connections with the theory of finite reflection
groups and analysis on Lie groups, an analog of the FKG inequality was derived
by Gross and Richards (1995).

In combinatorial theory, the FKG inequality has appeared in work on the
monotonicity of partial orders, Sperner theory, graph theory and Ramsey theory;
see Graham (1982, 1983), Engel (1997), Cameron (1987) and Seymour and Welsh
(1975).

We now state the inequality. LetL be a finite distributive lattice with partial
ordering �, least upper bound∨ and greatest lower bound∧. A function
f :L → R is called (monotone) increasing if f (x) ≤ f (y) wheneverx � y.
A probability measureµ on L is said to bemultivariate totally positive of order 2
(MTP2) if

µ(x ∨ y)µ(x ∧ y) ≥ µ(x)µ(y)(1.1)

for all x, y ∈ L. In some parts of the literature, an MTP2 probability measureµ is
calledan FKG measure or log-supermodular; we prefer the MTP2 terminology, re-
flecting the relationship with the classical theory of total positivity wherein (1.1) is
an abstract formulation of the concept of total positivity of order 2.

For any probability measureµ onL and any functionf :L → R, denote by

E(f ) := ∑
a∈L

µ(a)f (a)

themean or average of f with respect toµ.
Supposef1 and f2 are both increasing (or both decreasing) real-valued

functions onL, and letµ be an MTP2 probability measure onL. Then the FKG
inequality provides that

Cov(f1, f2) := E(f1f2) − E(f1)E(f2) ≥ 0.(1.2)

In mathematical statistics, it is usual to state the FKG inequality for the
spaceRn. In that setting, for vectorsx = (x1, . . . , xn) andy = ( y1, . . . , yn) in Rn,
the corresponding partial order is given byx � y if xj ≤ yj for all j = 1, . . . , n;
the lattice operations∨ and∧ are

x ∨ y = (
max(x1, y1), . . . ,max(xn, yn)

)
and

x ∧ y = (
min(x1, y1), . . . ,min(xn, yn)

);
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a function f :Rn → R is increasing if f (x) ≤ f (y) wheneverx � y; and
a probability density functionK :Rn → R, or its underlying random vector
(X1, . . . ,Xn), is said to bemultivariate totally positive of order 2 (MTP2) if

K(x ∨ y)K(x ∧ y) ≥ K(x)K(y)(1.3)

for all x, y ∈ Rn. If the functionsf1, f2 :Rn → R are both increasing or both
decreasing and the expectationsE(f1), E(f2) andE(f1f2), with respect toK ,
are finite, then the FKG inequality onRn provides that∫

Rn
f1(x)f2(x)K(x) dx

(1.4)

−
(∫

Rn
f1(x)K(x) dx

)
·
(∫

Rn
f2(x)K(x) dx

)
≥ 0.

It is well known that the continuous case of the FKG inequality, (1.4), can be
deduced by an approximation argument from the discrete case, (1.2); see Karlin
and Rinott (1980). We also remark that numerous generalizations of (1.2) have
appeared in the literature; see Ahlswede and Daykin (1978), Batty and Bollmann
(1980), Holley (1974), Preston (1974), Kemperman (1977), Edwards (1978) and
Rinott and Saks (1993). These results typically provide conditions leading to
inequalities of the form∫ k∏

i=1

fi(x)gi(x) · K(x)dx

−
(∫ k∏

i=1

fi(x) · K(x)dx

)(∫ k∏
i=1

gi(x) · K(x)dx

)
≥ 0

for classes of nonnegative functionsf1, . . . , fk andg1, . . . , gk .
In this paper we derive generalizations of (1.2) or (1.4) involving alternating

sums with more than two terms. Recall that the covariance between two random
variables is an example of a cumulant (or Ursell function) of those random
variables, so the FKG inequality (1.2) provides an inequality for the simplest
cumulant of the random variablesf1 andf2. Hence, in a search for “higher-order”
generalizations of (1.2) involving several functionsf1, f2, . . . , it is natural that we
study the higher cumulants.

There are well-known probability distributions for which the FKG inequality
holds but for which the higher cumulants are nonpositive. Indeed, in the case of any
Gaussian distribution, the higher cumulants are identically zero. It is then apparent
that, without additional restrictions on the density functionK , the cumulants
themselves cannot provide direct generalizations of (1.2) [in this regard, we refer
to Percus (1975) and Sylvester (1975) for other types of correlation inequalities
for Ursell functions].
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Nevertheless, the algebraic structure of the higher-order cumulants provides
crucial motivation for generalizing the FKG inequality. To explain, recall that the
alternating sum

κ3(f1, f2, f3) := E(f1f2f3)

− [E(f1f2)E(f3) + E(f1f3)E(f2) + E(f1)E(f2f3)](1.5)

+ 2E(f1)E(f2)E(f3)

is a cumulant of the random variablesf1, f2 andf3 [cf. Speed (1983)]. We define
the third-order conjugate cumulant

κ ′
3(f1, f2, f3) := 2E(f1f2f3)

− [E(f1f2)E(f3) + E(f1f3)E(f2) + E(f1)E(f2f3)](1.6)

+ E(f1)E(f2)E(f3),

which is derived fromκ3 by “reversing” the order of the absolute value of the
coefficients appearing in (1.5). The generalmth-order conjugate cumulant will
be defined in a similar manner. Our first main result, proven in Section 2, is the
following.

THEOREM 1.1. Let L be a finite distributive lattice, let µ be an MTP2
probability measure on L, and let f1, f2 and f3 be nonnegative increasing
functions on L. Then

κ ′
3(f1, f2, f3) ≥ 0.(1.7)

As a consequence of Theorem 1.1, we obtain a lower bound on the cumulant
κ3(f1, f2, f3).

COROLLARY 1.2. Under the same hypotheses as Theorem 1.1,

κ3(f1, f2, f3) ≥ −[E(f1f2f3) − E(f1)E(f2)E(f3)].
That the inequality (1.7) generalizes the FKG inequality can be seen in three

ways. First, (1.7) reduces to (1.2) iff3 ≡ 1. Second, (1.7) does not generally reduce
to (1.2) if, say,f3 is the indicator function of a proper subset ofL. Third, it is
straightforward to verify that (1.7) can be rewritten as

Cov(f1f2, f3) − E(f1)Cov(f2, f3) + Cov(f1f3, f2) ≥ 0,

expressing the property that an alternating linear combination of nonnegative
covariances is nonnegative. It is also a pleasant surprise that these results hold
under the same hypotheses onK required for the classical FKG inequality, so
that the only additional assumptions required are the existence of the various
expectations.
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With Theorem 1.1 in place, it is natural to ask for similar generalizations of the
FKG inequality involving four or more functions. To that end, we shall prove the
following results.

THEOREM 1.3. Let µ be an MTP2 probability measure on L and let fi ,
i = 1, . . . ,5, be nonnegative increasing functions on L. Then the fourth- and fifth-
order conjugate cumulants,

κ ′
4 := 6E(f1f2f3f4)

− 2[E(f1f2f3)E(f4) + · · ·] − [E(f1f2)E(f3f4) + · · ·](1.8)

+ [E(f1f2)E(f3)E(f4) + · · ·] − E(f1)E(f2)E(f3)E(f4)

and

κ ′
5 := 24E(f1f2f3f4f5)

− 6[E(f1f2f3f4)E(f5) + · · ·] − 2[E(f1f2f3)E(f4f5) + · · ·]
(1.9)

+ 2[E(f1f2f3)E(f4)E(f5) + · · ·] + [E(f1f2)E(f3f4)E(f5) + · · ·]
− [E(f1f2)E(f3)E(f4)E(f5) + · · ·] + E(f1)E(f2)E(f3)E(f4),

are nonnegative.

In the above results, the notation, for example, “E(f1f2)E(f3)E(f4) + · · ·” is
shorthand notation for the sum over all distinct terms consisting of products of
expectations of the set of functions{f1, . . . , f4}, divided into subsets of sizes 2, 1,
and 1. Explicitly,

E(f1f2)E(f3)E(f4) + · · ·
≡ E(f1f2)E(f3)E(f4) + E(f1f3)E(f2)E(f4) + E(f1f4)E(f2)E(f3)

+ E(f1)E(f2f3)E(f4) + E(f1)E(f2f4)E(f3) + E(f1)E(f2)E(f3f4).

In Section 2 we shall prove Theorem 1.1. Once this is complete, the proof of
Theorem 1.3 is seen to be a consequence of elementary, but lengthy, algebraic
calculations which are easily performed using computer algebra software, for
example, MAPLE. Further, we shall conjecture a generalization of Theorems 1.1
and 1.3 to the case of an arbitrary number of functions.

In Section 3 we apply the method of diffusion processes to provide another
approach to the generalized FKG inequalities. We extend a method due to Herbst
and Pitt (1991) who derived the FKG inequality in their work on diffusion
semigroups which are stochastically monotone and which preserve the class of
positively correlated measures onR

n. While the methods utilized in Section 2 are
patently algebraic in flavor, the methods used in Section 3 may initially appear to
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be analytic in nature; however, a deeper reading will also reveal the ideas of this
latter section to be as algebraic in characteristic as are those of Section 2.

In Section 4 we approach the problem of proving Theorem 1.1 through the
method of duplicate variables; this approach seems significantly more complex
than in the case of the classical FKG inequality, and we provide explicit details
for the case in whichn = 1. In Section 5 we provide a number of applications,
extending some well-known applications of the classical FKG inequality. Finally,
in Section 6 we remark on connections between the theory of total positivity and
the possible existence of inequalities of FKG-type within the context of weakly
symmetric Riemannian manifolds.

2. Finite distributive lattices. LetL be a finite distributive lattice with partial
order�, least upper bound∨ and greatest lower bound∧. Recall that every finite
distributive lattice is order-isomorphic to the lattice of subsets of a finite set. Then
there exists a finite setA such thatL = 2A, the collection of all subsets ofA.
Endowed with set inclusion as the partial order, and with union and intersection as
least upper bound and greatest lower bound, respectively, 2A is a finite distributive
lattice.

A probability measureµ on 2A is said to bemultivariate totally positive of
order 2 (MTP2) if, for all a, b ⊆ A,

µ(a ∪ b)µ(a ∩ b) ≥ µ(a)µ(b).(2.1)

A function f : 2A → R is called (monotone) increasing if f (a) ≥ f (b) whenever
a, b ⊆ A satisfy a ⊇ b. We denote theexpected value of f with respect to the
measureµ by

E(f ) := ∑
a⊆A

µ(a)f (a).

We now establish (1.7).

PROOF OFTHEOREM 1.1. Our argument follows that of den Hollander and
Keane (1986). Without loss of generality, we assume thatL = 2A for some finite
set A. If the cardinality of 2A is 1, that is,A = ∅, then (1.7) holds trivially;
therefore we may suppose thatA is nonempty.

Let us first assume thatµ(a) > 0 for all a ⊆ A. Choose and fixB, an arbitrarily
chosen subset ofA. For anya ⊆ B, define

µB(a) := ∑
b⊆A\B

µ(a ∪ b)(2.2)

and, for any functionf : 2A → R, define

fB(a) := 1

µB(a)

∑
b⊆A\B

µ(a ∪ b)f (a ∪ b).(2.3)
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As observed by den Hollander and Keane (1986), it is clear thatµB is the marginal
probability measure on the lattice 2B ; also,fB(a) is the conditional expectation
of f , givena ⊆ B. It can be shown [cf. den Hollander and Keane (1986), page 171]
thatµB is MTP2, and thatfB is increasing iff is increasing [see Eaton (1987) or
Karlin and Rinott (1980) for similar results in the case ofRn].

For any functiong : 2B → R, we define

EB(g) := ∑
a⊆B

µB(a)g(a).

In the sequel we shall need the double expectation theorem: For anyB ⊆ A,

E(f ) = ∑
a⊆A

µ(a)f (a) = ∑
a⊆B

µB(a)fB(a) = EB(fB).(2.4)

In words, the expected value off equals the expected value of its conditional
expectations.

To establish (1.7) it suffices, as observed by den Hollander and Keane (1986) in
the case of the FKG inequality, to assume thatB = A \ {z}, wherez ∈ A is chosen
arbitrarily; this amounts to a proof by induction on the length of maximal chains
in the lattice 2A. Using the shorthand notationfiB to denote(fi)B , i = 1,2,3, we
claim that

2EB

(
(f1f2f3)B

)
− [

EB

(
(f1f2)Bf3B

) + EB

(
(f1f3)Bf2B

) + EB

(
f1B(f2f3)B

)]
(2.5)

+ EB(f1Bf2Bf3B) ≥ 0.

By (2.2) and (2.3) we have

µB(a) = µ(a) + µ(a ∪ {z})(2.6)

and

fB(a) = 1

µB(a)

(
µ(a)f (a) + µ(a ∪ {z})f (a ∪ {z}))(2.7)

for a ⊆ B. By (2.7) we have

µB(a)3(f1f2f3)B(a)

= µB(a)2[µ(a)f1(a)f2(a)f3(a)(2.8)

+ µ(a ∪ {z})f1(a ∪ {z})f2(a ∪ {z})f3(a ∪ {z})].
Further, for{i, j, k} = {1,2,3},

µB(a)3(fifj )B(a)fkB(a)

= µB(a)[µ(a)fi(a)fj (a) + µ(a ∪ {z})fi(a ∪ {z})fj (a ∪ {z})](2.9)

× [µ(a)fk(a) + µ(a ∪ {z})fk(a ∪ {z})]
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and

µB(a)3f1B(a)f2B(a)f3B(a)
(2.10)

=
3∏

i=1

[µ(a)fi(a) + µ(a ∪ {z})fi(a ∪ {z})].

Collecting together (2.8)–(2.10) and performing elementary algebraic simplifica-
tions with the aid of (2.6) and (2.7), we obtain

µB(a)3{2(f1f2f3)B(a)

− [(f1f2)B(a)f3B(a) + (f1f3)B(a)f2B(a) + f1B(a)(f2f3)B(a)]
+ f1B(a)f2B(a)f3B(a)

}
(2.11)

= µ(a)µ(a ∪ {z})
× [(

f1(a ∪ {z}) − f1(a)
)
�1B(a) + f1(a ∪ {z})�2B(a)

]
,

where

�1B(a) = µ(a)
(
f2(a ∪ {z})f3(a ∪ {z}) − f2(a)f3(a)

)
+ µ(a ∪ {z})f3(a)

(
f2(a ∪ {z}) − f2(a)

)
(2.12)

+ µ(a ∪ {z})f2(a)
(
f3(a ∪ {z}) − f3(a)

)
and

�2B(a) = (
µ(a ∪ {z}) + µ(a)

)
(2.13)

× (
f2(a ∪ {z}) − f2(a)

)(
f3(a ∪ {z}) − f3(a)

)
.

Since eachfi is nonnegative and increasing, it follows that (2.12) and (2.13) are
sums of products of nonnegative terms; hence (2.11) is nonnegative.

Next we divide both sides of (2.11) byµB(a)2 and sum over alla ⊆ B. We have∑
a⊆B

µB(a)(f1f2f3)B(a) = EB

(
(f1f2f3)B

) = E(f1f2f3),

the latter equality following from thedouble expectation theorem (2.4). For
{i, j, k} = {1,2,3}, we have∑

a⊆B

µB(a)(fifj )B(a)fkB(a) = EB

(
(fifj )BfkB

);
and also ∑

a⊆B

µB(a)f1B(a)f2B(a)f3B(a) = EB(f1Bf2Bf3B).

Collecting these identities together and applying the nonnegativity of (2.11), we
obtain (2.5).
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Since B was chosen arbitrarily, we may setB = ∅ in (2.5). By (2.2)
and (2.3) we haveE∅(fi∅) ≡ E(fi), E∅((fifj )∅fk∅) ≡ E(fifj )E(fk), where
{i, j, k} = {1,2,3}, and alsoE∅(f1∅f2∅f3∅) ≡ E(f1)E(f2)E(f3). Then (2.5)
reduces to (1.7).

Finally, the case in whichµ is not everywhere positive is resolved as in the case
of the FKG inequality [see den Hollander and Keane (1986), page 172]. That is,
we can carry through the above arguments onceµB and thefiB are defined on
the set{a ⊆ B :µB(a) = 0}; this is done in any way which ensures that allfiB are
increasing on 2B , and the actual choice is immaterial since all we need is that each
fiB is increasing on the support ofµB . �

REMARK 2.1. (i) The assumption that the functionsf1, f2 and f3 are
nonnegative is essential; in particular, we cannot avoid this assumption by adding
a constant to each function, forκ ′

3(f1, f2, f3) is not invariant under such shifts.
A referee has noted that without the positivity assumption,E(X3) can be made
arbitrarily negatively large relative to other moments, and this would violate the
inequality forfi(x) = x, i = 1,2,3.

(ii) Consider the range of values of positive coefficientsc1, c2 andc3 such that

c1E(f1f2f3) − c2[E(f1f2)E(f3) + E(f1f3)E(f2) + E(f1)E(f2f3)]
+ c3E(f1)E(f2)E(f3) ≥ 0

for all nonnegative increasing functionsf1, f2 and f3. For simplicity, let us
work with functions onR2. In order to make comparison with Theorem 1.1, we
obviously need to impose the restriction

c1 − 3c2 + c3 = 0.

Without loss of generality, we may assumec2 = 1. By settingf3 ≡ 1 we obtain

(c1 − 1)E(f1f2) − (2− c3)E(f1)E(f2) ≥ 0.

In order to maintain positive coefficients, we must impose the additional restriction
c1 ≥ 1.

For j = 1,2,3, let aj , bj ∈ R and letfj be the indicator function of the set
{(u, v) ∈ R2 :u ≥ aj , v ≥ bj }. Denote the underlying random vector by(X,Y );
by choosing suitable distributions for(X,Y ) it can be shown that the condition
c1 ≥ 1 is not sufficient to ensure thatκ ′

3(f1, f2, f3) ≥ 0. For instance, suppose
a1 ≤ a2 ≤ a3 andb1 ≤ b2 ≤ b3. DenotingP (X ≥ aj , Y ≥ bj ) by πj , we obtain

κ ′
3(f1, f2, f3) = c1π3 − (2π2π3 + π1π3) + c3π1π2π3

≡ π3
[
(1− π2)

(
2+ (c1 − 3)π1

) + (c1 − 2)(1− π1)
]
.

For c1 ≥ 1 we then have

κ ′
3(f1, f2, f3) ≥ π3(1− π1)(1− 2π2).
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For suitable(X,Y ) it is possible to attain this lower bound; moreover, the bound
can be negative. Therefore the restrictionc1 ≥ 1 is not sufficient to ensure
nonnegativity ofκ ′

3(f1, f2, f3) for all nonnegative increasingfj . By choosing the
fj from among the class of indicator functions of the type above, we can deduce
thatc1 ≥ 2 is sufficient. We will return to this theme in Section 6.

Returning to the general context, a close inspection of the proof of Theorem 1.1
shows that we have also obtained a collection of lower bounds forE(f1f2f3).

COROLLARY 2.2. Let µ be an MTP2 measure on 2A and let f1, f2 and f3

be nonnegative increasing functions on 2A. For any B ⊆ A, there holds the lower
bound

2E(f1f2f3) ≥ EB

(
(f1f2)Bf3B

) + EB

(
(f1f3)Bf2B

)
(2.14)

+ EB

(
f1B(f2f3)B

) − EB(f1Bf2Bf3B).

REMARK 2.3. In the case of the FKG inequality, that is, for the case in which
f3 ≡ 1, the left-hand side of (2.5) reduces to

EB

(
(f1f2)B

) − EB(f1Bf2B) ≡ E(f1f2) − EB(f1Bf2B).(2.15)

In addition to establishing the FKG inequality, den Hollander and Keane [(1986),
Theorem 4(b)] establish the sharper inequality that (2.15) is a decreasing
function of B ∈ 2A. This raises the issue of whether the left-hand side of (2.5)
satisfies similar monotonicity properties. Even for the simplest lattices, such
monotonicity properties appear difficult to discern. In particular, as the following
counterexample shows, the left-hand side of (2.5) is not generally monotonically
decreasing inB.

Suppose thatA = {w,z}, a set with two distinct elements. The corresponding
lattice is 2A = {∅, {w}, {z}, {w,z}}. Define a probability measureµ on 2A

by: µ(φ) = 1/2, µ({w}) = µ({z}) = 1/8 and µ({w,z}) = 1/4; then it is
straightforward to verify thatµ is MTP2. Define three nonnegative increasing
functionsf1, f2 andf3 on 2A by the substitutions

fi(a) =


αi, if a = ∅,
αi + βi, if a = {w},
αi + γi, if a = {z},
αi + βi + γi + δi, if a = {w,z},

where αi, βi, γi, δi ≥ 0, i = 1,2,3. If we denote byg(B) the left-hand side
of (2.5), then for the case in which(α1, α2, α3) = (β1, β2, β3) = (1,2,3),
(γ1, γ2, γ3) = (4,5,6) and (δ1, δ2, δ3) = (0.1,0.2,0.3), a straightforward calcu-
lation (carried out using MAPLE) reveals thatg(∅) − g({w}) < 0. On the
other hand, for the case in whichαi = βi = γi = δi = i, i = 1,2,3, we have
g(∅) − g({w}) > 0.
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REMARK 2.4. Before we turn to the proof of Theorem 1.3, let us review the
algebraic calculations appearing in the proof of Theorem 1.1. In (2.6) and (2.7),
introduce the notationui = fi(a ∪ {z}), vi = fi(a), i = 1,2,3; and letω1 =
µ(a ∪ {z}) and ω2 = µ(a) be nonnegative weights. Withu = (u1, u2, u3) and
v = (v1, v2, v3) as variables, define the polynomials

p(3)(u; v) := (ω1 + ω2)
2(ω1u1u2u3 + ω2v1v2v3

)
,

p(2,1)(u; v) := (ω1 + ω2)
[
(ω1u1u2 + ω2v1v2)(ω1u3 + ω2v3)

+ (ω1u1u3 + ω2v1v3)(ω1u2 + ω2v2)

+ (ω1u2u3 + ω2v2v3)(ω1u1 + ω2v1)
]
,

p(1,1,1)(u; v) := (ω1u1 + ω2v1)(ω1u2 + ω2v2)(ω1u3 + ω2v3).

Also define

�(u; v) := 2p(3)(u; v) − p(2,1)(u; v) + p(1,1,1)(u; v),

which is precisely the left-hand side of (2.11). Then the nonnegativity of (2.11)
is equivalent to the nonnegativity of�(u; v) under the restrictions thatui ≥
vi ≥ 0, i = 1,2,3. Equivalently, to establish (2.5), we only have to show that
the polynomial�(u + v; v) is nonnegative under the restrictionsui ≥ 0, vi ≥ 0,
i = 1,2,3. However, the package MAPLE produces the stronger result that, in the
monomial expansion of�(u+v; v), all the coefficients appearing are nonnegative;
in fact, MAPLE calculates the monomial expansion of�(u + v; v) to be

�(u + v; v) = ω2
1ω2(2v1v2v3 + v1v2u3 + v1u2v3 + u1v2v3)

+ ω1ω
2
2(v1v2v3 + v1v2u3 + v1u2v3 + u1v2v3).

Now it becomes clear that generalizations of Theorem 1.1 can be established in
a similar manner. Indeed, any conjectured generalization involvingm functions
f1, . . . , fm will be valid if, with u = (u1, . . . , um) and v = (v1, . . . , vm), the
coefficients in the monomial expansion of the corresponding polynomial�(u +
v; v) are all nonnegative. This is the approach we adopt to establish the
nonnegativity of the fourth- and fifth-order conjugate cumulants.

PROOF OFTHEOREM 1.3. To show that (1.8) is nonnegative, we follow the
same approach as in the case of Theorem 1.1. To initiate the proof by induction, it
is straightforward to verify that the result is valid for the case in whichA = ∅.

Now we turn to the inductive hypothesis for nonemptyA. In the case of four
increasing functionsfi , i = 1,2,3,4, the claim analogous to (2.5) is that, for
anyB ⊆ A,

6EB

(
(f1f2f3f4)B

) − 2
[
EB

(
(f1f2f3)Bf4B

) + · · · ]
− [

EB

(
(f1f2)B(f3f4)B

) + · · · ](2.16)

+ [
EB

(
(f1f2)Bf3Bf4B

) + · · · ] + EB(f1Bf2Bf3Bf4B) ≥ 0.



1520 D. ST. P. RICHARDS

Proceeding as in Remark 2.4, we apply MAPLE to verify that all coefficients
in the monomial expansion of the corresponding polynomial�(u + v; v) are
nonnegative. Once this has been done, the remainder of the proof follows the
arguments given in the latter part of the proof of Theorem 1.1.

To prove that (1.9) is nonnegative, we begin with the claim that

24EB

(
(f1f2f3f4f5)B

) − 2
[
EB

(
(f1f2f3f4)Bf5B

) + · · · ]
− [

EB

(
(f1f2f3)B(f4f5)B

) + · · · ]
− [

EB

(
(f1f2f3)Bf4Bf5B

) + · · · ](2.17)

+ [
EB

(
(f1f2)B(f3f4)Bf5B

) + · · · ]
+ [

EB

(
(f1f2)Bf3Bf4Bf5B

) + · · · ] − EB

(
f1Bf2Bf3Bf4Bf5B

) ≥ 0

for anyB ⊆ A. Next we construct the corresponding polynomial�(u; v), apply
MAPLE to verify the nonnegativity of all coefficients in the monomial expansion
of �(u + v; v), and then the remainder of the proof is as before.�

To formulate a conjecture for the case ofm increasing functions, we need some
preliminaries from the theory of partitions [see Macdonald (1995)].

A partition λ = (λ1, λ2, . . . ) is a sequence of nonnegative integers withλ1 ≥
λ2 ≥ · · · . Theparts of λ are the nonzeroλi ; theweight of λ is |λ| := λ1+λ2+· · · ;
and thelength of λ, denoted byl(λ), is the number of parts ofλ.

Given a partitionλ, for eachi = 1,2, . . . , let λ′
i denote the cardinality of the set

{j :λj ≥ i}. Thenλ′
1 ≥ λ′

2 ≥ · · · , and the partitionλ′ = (λ′
1, λ

′
2, . . . ) is called the

partition conjugate to λ. It is not difficult to verify that(λ′)′ = λ and thatλ′
1 = l(λ).

For m ∈ N, m ≥ 2, let Sm denote the symmetric group onm symbols. For
any permutationτ ∈ Sm and any vectoru = (u1, . . . , um) ∈ Rm, defineτ · u :=
(uτ(1), . . . , uτ(m)), the standard action ofSm onRm.

Let f1, . . . , fm be functions on the latticeL and letµ be a probability measure
onL. For any partitionλ = (λ1, . . . , λm) of weightm, define

Pλ(f1, . . . , fm) :=
l(λ)∏
j=1

E

( λj∏
k=1

fλ1+···+λj−1+k

)
,

where expectations are with respect to the measureµ. We denote byD(λ) the
set of allτ ∈ Sm which give rise todistinct permutationsPλ(τ · (f1, . . . , fm)) of
Pλ(f1, . . . , fm). Then our conjecture for anmth-order generalization of the FKG
inequality is the following:

CONJECTURE 2.5. Let µ be an MTP2 probability measure on the finite
distributive lattice L, and let f1, . . . , fm be nonnegative increasing functions on L.
Then
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(i) There exists a set of nonzero constants {cλ ∈ Z : |λ| = m} such that

Pm(f1, . . . , fm) := ∑
|λ|=m

cλ

∑
τ∈D(λ)

Pλ

(
τ · (f1, . . . , fm)

)
is nonnegative.

(ii) For each m ≥ 3, there exists a constant dm such that

Pm(f1, . . . , fm−1,1) ≡ dmPm−1(f1, . . . , fm−1).(2.18)

(iii) If fj ≡ 1 for all j = 1, . . . ,m, then Pm(1, . . . ,1) = 0; equivalently,∑
|λ|=m

card(D(λ))cλ = 0.(2.19)

For generalm, themth-order cumulant of a set of random variablesf1, . . . , fm is

κm(f1, . . . , fm)
(2.20)

:= ∑
|λ|=m

(−1)l(λ)−1(
l(λ) − 1

)! ∑
τ∈D(λ)

Pλ

(
τ · (f1, . . . , fm)

)
,

and we define themth-order conjugate cumulant

κ ′
m(f1, . . . , fm)

(2.21)
:= ∑

|λ|=m

(−1)l(λ)−1(
l(λ′) − 1

)! ∑
τ∈D(λ)

Pλ

(
τ · (f1, . . . , fm)

)
.

For m = 2,3,4,5, the conjecture is valid if we choose forPm the conjugate
cumulantκ ′

m. For these values ofm, the coefficientscλ = (−1)l(λ)−1(l(λ′) − 1)!,
|λ| = m, in the expansion ofκ ′

m(f1, . . . , fm) are all nonzero and satisfy (2.19).
Also, it can be verified that, form = 3,4,5, theκ ′

m satisfy (2.18) withdm = m−2.
In light of Theorems 1.1 and 1.3, all the preceding calculations provide evidence
for the general conjecture.

Form ≥ 6, it appears that the conjugate cumulants do not satisfy (2.19). In fact,
it appears to us thatκ ′

m(1, . . . ,1) > 0 for all m ≥ 6.

3. Diffusion processes. Once we have a generalization of the FKG inequality
within the context of finite distributive lattices, we can transfer that result to the
context of functions and measures onRn using standard approximation procedures
[see Karlin and Rinott (1980)]. In this section we give a direct approach, using
the method of diffusion processes, to our generalizations of the FKG inequalities
on Rn. This approach is based on the ideas of Herbst and Pitt (1991) and we first
present some preliminary material, all of which is abstracted from Herbst and Pitt
(1991).

We denote byC(Rn) the space of real-valued continuous functions onRn.
Further, we defineCb(R

n) = {f ∈ C(Rn) :‖f ‖∞ < ∞} and denote byC∞
b (Rn)
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the space of functionsf which have bounded continuous derivatives of all orders.
We also denote byM the space of functionsf ∈ Cb(R

n) which are increasing.
A probability measureµ on Rn is said to bepositively correlated, or

associated, if∫
Rn

f1(x)f2(x) dµ(x) ≥
∫

Rn
f1(x) dµ(x) ·

∫
Rn

f2(x) dµ(x)

for all f1, f2 ∈ M. We denote byP the collection of all probability measuresµ
which are positively correlated.

Let {Pt : t ≥ 0} = {P (t;x, dy) : t ≥ 0} be a Markov transition semigroup of
probability measures onRn. Assume that{Pt : t ≥ 0} is Feller-continuous; that
is, the operatorsPt , defined by

Ptf (x) :=
∫

Rn
f ( y)P (t;x, dy),

map the spaceCb(R
n) into itself. The semigroup{Pt : t ≥ 0} is calledmonotonic,

or is said to leaveM invariant, if, for all t ≥ 0, Ptf ∈ M wheneverf ∈ M. The
semigroup{Pt : t ≥ 0} also acts on measures by

µPt(A) :=
∫

Rn
µ(dx)P (t;x,A) ≡

∫
Rn

∫
Rn

IA( y)µ(dx)P (t;x, dy),

whereIA(·) denotes the indicator function of the measurable setA; equivalently,
for anyf ∈ Cb(R

n), the measureµPt is defined by∫
Rn

f (x) dµPt(x) =
∫

Rn

∫
Rn

f ( y) dµ(x)P (t;x, dy).

If µPt ∈ P for all t ≥ 0 wheneverµ ∈ P , then we shall say that{Pt : t ≥ 0}
preserves positive correlations. Thus{Pt : t ≥ 0} preserves positive correlations if

µPt(f1f2) − (µPtf1)(µPtf2) ≥ 0(3.1)

for all µ ∈ P , t ≥ 0 andf1, f2 ∈ M.
The (strong) infinitesimal generator Ḡ of {Pt : t ≥ 0} is the linear operator on

Cb(R
n) given by

Ḡf (x) := lim
ε→0+

Pεf (x) − f (x)

ε
,(3.2)

where the convergence is uniform inx. The domainD(Ḡ) of Ḡ is the class of all
functionsf for which the limit exists.

For eachi = 1, . . . , n, denote by∂i the partial derivative,∂/∂xi , with respect
to xi , theith coordinate of the vectorx.

Let a(x) = (ai,j (x)), x ∈ Rn, be a symmetric positive semidefinite matrix-
valued function onRn and letb(x) = (bj (x)) be a vector field onRn. Denote
by G the differential operator

Gf (x) := 1
2

n∑
i,j=1

ai,j (x) ∂i ∂jf (x) +
n∑

j=1

bj (x) ∂jf (x)(3.3)
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with domainD(G) = {f ∈ C∞
b (Rn) :Gf ∈ Cb(R

n)}.
Following Herbst and Pitt (1991), we call{Pt : t ≥ 0} a diffusion semigroup

with diffusion coefficients a(x) and b(x) if D(G) ⊆ D(Ḡ) and Gf = Ḡf for
all f ∈ D(G). We will assume throughout thatG generates {Pt : t ≥ 0} in the
sense that there exists a unique diffusion semigroup{Pt : t ≥ 0} corresponding to
given coefficientsa(x) andb(x); a sufficient condition under whichG generates
{Pt : t ≥ 0} is given by Herbst and Pitt [(1991), (1.3)] [cf. Chen and Wang (1993)].

Applying the semigroup propertyPs+ε = PsPε and (3.2), it is straightforward
to show that, for anyf ∈ D(G),

∂

∂s
Psf (x) := lim

ε→0+
Ps+εf (x) − Psf (x)

ε
= GPsf (x) = PsGf (x),(3.4)

with the limit holding uniformly inx.
Forf1, f2 ∈ C1(Rn), we shall use the notation

�1(f1, f2)(x) :=
n∑

i,j=1

ai,j (x) ∂if1(x) ∂jf2(x),(3.5)

x ∈ Rn; this operator is also known as thecarré du champ operator [cf. Hu (2000)].
Forf1, f2 ∈ D(G), it is straightforward to verify that

�1(f1, f2)(x) = G(f1f2)(x) − f1(x)G(f2)(x) − f2(x)G(f1)(x),(3.6)

so that�1 can be viewed as measuring the extent to which the operatorG is a
derivation.

By combining the results of Herbst and Pitt (1991) and Chen and Wang (1993),
we obtain the following criterion for monotonicity of the semigroup{Pt : t ≥ 0}.

THEOREM 3.1 [Herbst and Pitt (1991) and Chen and Wang (1993)].The
semigroup {Pt : t ≥ 0} is monotonic if and only if

(i) for all i, j = 1, . . . , n, ai,j (x) depends only on xi and xj , and
(ii) for all j = 1, . . . , n, bj (x) ≥ bj ( y) whenever x ≥ y with xj = yj .

A necessary and sufficient condition for preservation of positive correlations is
the following result of Herbst and Pitt [(1991), Theorem 1.3].

THEOREM 3.2 [Herbst and Pitt (1991)]. The semigroup {Pt : t ≥ 0} preserves
positive correlations if and only if

(i) {Pt : t ≥ 0} is monotonic, and
(ii) ai,j (x) ≥ 0 for all x ∈ R

n, i, j = 1, . . . , n.
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Theorem 3.1 can be viewed as providing conditions under which the semigroup
{Pt : t ≥ 0} preserves “second-order” correlations. In the sequel we show, general-
izing (3.1), how{Pt : t ≥ 0} preserves certain third-order correlations. The follow-
ing result is motivated by Herbst and Pitt (1991), notably their Proposition 4.1, and
the proof below is along the lines developed by them.

PROPOSITION 3.3. Suppose that the diffusion semigroup {Pt : t ≥ 0} is
monotonic, that

�1(f1, f2)(x) ≥ 0(3.7)

for all x ∈ Rn and for all smooth f1, f2 ∈ M, and that ai,j ∈ M for all i, j = 1,

. . . , n. Then

2Pt(f1f2f3)(x) − [
Pt(f1f2)(x)Ptf3(x)

+ Pt(f1f3)(x)Ptf2(x) + Ptf1(x)Pt(f2f3)(x)
]

(3.8)

+ Ptf1(x)Ptf2(x)Ptf3(x) ≥ 0

for all nonnegative smooth f1, f2, f3 ∈ M and all x ∈ Rn.

PROOF. Since the class of smooth functions is dense inM in the topology
of bounded locally uniform convergence, it suffices to prove (3.8) for the case in
whichf1, f2, f3 ∈ M ∩ C∞

b (Rn).
Now fix t > 0 and define the function

h(s) = 2Ps(Pt−sf1 · Pt−sf2 · Pt−sf3)(x)

− [
Ps(Pt−sf1 · Pt−sf2)(x) · Ptf3(x)

+ Ps(Pt−sf1 · Pt−sf3)(x) · Ptf2(x)(3.9)

+ Ptf1(x) · Ps(Pt−sf2 · Pt−sf3)(x)
]

+ Ptf1(x) · Ptf2(x) · Ptf3(x),

0 ≤ s ≤ t . Observe thath(0) = 0 and

h(t) = 2Pt(f1f2f3)(x)

− [
Pt(f1f2)(x) · Ptf3(x)

(3.10)
+ Pt(f1f3)(x) · Ptf2(x) + Ptf1(x) · Pt(f2f3)(x)

]
+ Ptf1(x) · Ptf2(x) · Ptf3(x).

Thus, to establish (3.8), we need only show thath′(s) ≥ 0 for all s ∈ (0, t).



HIGHER-ORDER INEQUALITIES 1525

We now apply (3.4) repeatedly to (3.9) to differentiateh. Suppressing the
notational dependence of all functions on the argumentx, we obtain

h′(s) = 2
[
PsG(Pt−sf1 · Pt−sf2 · Pt−sf3) − Ps(GPt−sf1 · Pt−sf2 · Pt−sf3)

− Ps(Pt−sf1 · GPt−sf2 · Pt−sf3) − Ps(Pt−sf1 · Pt−sf2 · GPt−sf3)
]

− [
PsG(Pt−sf1 · Pt−sf2)

− Ps(GPt−sf1 · Pt−sf2) − Ps(Pt−sf1 · GPt−sf2)
]
Ptf3

− [
PsG(Pt−sf1 · Pt−sf3)

− Ps(GPt−sf1 · Pt−sf3) − Ps(Pt−sf1 · GPt−sf3)
]
Ptf2

− [
PsG(Pt−sf2 · Pt−sf3)

− Ps(GPt−sf2 · Pt−sf3) − Ps(Pt−sf2 · GPt−sf3)
]
Ptf1.

Equivalently, denotingPt−sfi by gi , i = 1,2,3, what we have shown is that

h′(s) = 2[PsG(g1g2g3) − Ps(g2g3Gg1) − Ps(g1g3Gg2) − Ps(g1g2Gg3)]
− [PsG(g1g2) − Ps(g2Gg1) − Ps(g1Gg2)]Psg3

− [PsG(g1g3) − Ps(g3Gg1) − Ps(g1Gg3)]Psg2

− [PsG(g2g3) − Ps(g3Gg2) − Ps(g2Gg3)]Psg1.

Using the definition of�1(·, ·) in (3.5), we have

h′(s) = 2Ps[G(g1g2g3) − g2g3Gg1 − g1g3Gg2 − g1g2Gg3]
− [

Ps�1(g1, g2) · Psg3(3.11)

+ Ps�1(g1, g3) · Psg2 + Ps�1(g2, g3) · Psg1
]
.

For {i, j, k} = {1,2,3}, we express each termPs�1(gi, gj ) · Psgk in (3.11) in the
form

Ps�1(gi , gj ) · Psgk

≡ Ps

(
�1(gi , gj ) · gk

) − [
Ps

(
�1(gi, gj ) · gk

) − Ps�1(gi, gj ) · Psgk

]
,

and then we obtain

h′(s) = Ps�1(g1, g2, g3) + [
Ps

(
�1(g1, g2) · g3

) − Ps�1(g1, g2) · Psg3
]

+ [
Ps

(
�1(g1, g3) · g2

) − Ps�1(g1, g3) · Psg2
]

(3.12)

+ [
Ps

(
�1(g2, g3) · g1

) − Ps�1(g2, g3) · Psg1
]
,

where

�1(g1, g2, g3) := 2[G(g1g2g3) − g2g3Gg1 − g1g3Gg2 − g1g2Gg3]
− [g3�1(g1, g2) + g2�1(g1, g3) + g1�1(g2, g3)](3.13)

= 2G(g1g2g3) − g1G(g2g3) − g2G(g1g3) − g3G(g1g2).
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By a direct calculation using (3.3) and (3.5), we obtain from (3.13) the identity

�1(g1, g2, g3) = g1

n∑
i,j=1

ai,j ∂ig2 ∂jg3

+ g2

n∑
i,j=1

ai,j ∂ig1 ∂jg3 + g3

n∑
i,j=1

ai,j ∂ig1 ∂jg2(3.14)

≡ g1�1(g2, g3) + g2�1(g1, g3) + g3�1(g1, g2).

Sincef1, f2 andf3 are nonnegative, then so areg1, g2 andg3. By the assumptions
that{Pt : t ≥ 0} is monotonic and that (3.7) holds, we find thatgi ∈ M ∩ C∞

b (Rn),
i = 1,2,3, and�1(gk, gl) ≥ 0, 1≤ k < l ≤ 3; therefore�1(g1, g2, g3) ≥ 0.

Since eachgk ∈ M, then ∂igk ≥ 0 for all i = 1, . . . , n. By assumption,
eachai,j ∈ M. Therefore it follows from (3.5) that, for any pair of smooth
gk, gl ∈ M, �1(gk, gl) is a nonnegative linear combination of elements ofM;
hence�1(gi, gj ) ∈ M. By Proposition 4.1 of Herbst and Pitt (1991), the semigroup
{Pt : t ≥ 0} is known to preserve positive correlations; therefore each term
Ps(�1(gi, gj ) · gk) − Ps�1(gi, gj ) · Psgk is nonnegative, establishing that (3.12)
is a decomposition ofh′(s) into nonnegative terms. This proves thath′(s) ≥ 0,
s ∈ (0, t), from which we conclude thath(t) ≥ 0. �

REMARK 3.4. (i) Consider the case in whichf3 ≡ 1 in the foregoing proof.
Then the termsPs(�1(gi, gj ) · gk) − Ps�1(gi, gj ) · Psgk are identically zero, so
that no monotonicity conditions on theai,j are required. Then we recover a result
of Herbst and Pitt [(1991), Proposition 4.1].

(ii) By analogous arguments we can extend some results of Wang and Yan
(1994) on positive correlations for diffusion processes onn-dimensional tori.

(iii) Results similar to Proposition 3.3 have played a prominent role in the study
of functional inequalities, for example, log-Sobolev inequalities; see Hu (2000). In
work now in progress, we will study extensions of those inequalities by means of
generalizations of Proposition 3.3.

As a consequence of Proposition 3.3, we now obtain an analog of Theorem 1.1
for functions onRn; here again, we follow arguments given by Herbst and Pitt
[(1991), Corollary 1.7] in their proof of the FKG inequality.

COROLLARY 3.5. Suppose that µ(dx) = exp(ψ(x)) dx is a probability
measure on R

n, where ψ ∈ C2(Rn) satisfies the properties that ψ(x) > −∞ and
∂i ∂jψ(x) ≥ 0 for all i = j and for all x ∈ Rn. If f1, f2 and f3 are nonnegative
functions in M such that the various expectations exist, then κ ′

3(f1, f2, f3) ≥ 0.
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PROOF. Construct the diffusion process{Pt : t ≥ 0} with infinitesimal genera-
tor

G =
n∑

j=1

∂2
j +

n∑
j=1

(∂jψ) ∂j ,

corresponding to (3.3) withai,j = 2δi,j and bj = ∂jψ . It is well known that
the process{Pt : t ≥ 0} is monotonic [by Theorem 3.1, this is equivalent to the
assumption that∂i ∂jψ(x) ≥ 0 for all x and i = j ]. Also, �1(f1, f2) ≥ 0 for
all smoothf1, f2 ∈ M and theai,j , being constants, clearly are elements ofM.
Applying Proposition 3.3, we deduce that (3.8) holds. Lettingt → ∞ in (3.8) and
noting thatPtf → E(f ), almost surely, we obtain (1.7).�

It also is clear how to extend Proposition 3.3 to the case of four or more
functions. We have found the algebraic calculations to be more extensive,
indicating that an alternative approach is needed to resolve the case of an arbitrary
number of functions. Nevertheless, the strategy is the same, and we illustrate it by
sketching the details for the case of four functions. Suppose thatf1, . . . , f4 ∈ M
are nonnegative and smooth. Forx ∈ Rn, definegi = Pt−sfi , i = 1, . . . ,4 and

h(s) = 6Ps(g1g2g3g4)

− 2
[
Ps(g1g2g3) · Ptf4 + Ps(g1g2g4) · Ptf3

+ Ps(g1g3g4) · Ptf2 + Ps(g2g3g4) · Ptf1
]

− [Ps(g1g2) · Ps(g3g4) + Ps(g1g3) · Ps(g2g4) + Ps(g1g4) · Ps(g2g3)]
+ [

Ps(g1g2) · Ptf3 · Ptf4 + Ps(g1g3) · Ptf2 · Ptf4

+ Ps(g1g4) · Ptf2 · Ptf3 + Ps(g2g3) · Ptf1 · Ptf4

+ Ps(g2g4) · Ptf1 · Ptf3 + Ps(g3g4) · Ptf1 · Ptf2
]

+ Ptf1 · Ptf2 · Ptf3 · Ptf4,

0 ≤ s ≤ t , where, as usual, we have suppressed all notational dependence of
functions onx. Define

�1(g1, g2, g3, g4)

:= g1g2�1(g3, g4) + g1g3�1(g2, g4) + g1g4�1(g2, g3)

+ g2g3�1(g1, g4) + g2g4�1(g1, g3) + g3g4�1(g1, g2),

and denote�1(g2, g3, g4) by �1({g1, . . . , g4} \ {g1}), and so on. For 0< s < t ,
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a lengthy, but straightforward, calculation leads to the result

h′(s) = Ps�1(g1, g2, g3, g4)

+ 2
4∑

j=1

[
Ps

(
gj · �1({g1, . . . , g4} \ {gj }))

− Psgj · Ps�1({g1, . . . , g4} \ {gj })]
+ ∑

1≤i<j≤4

[
Ps

(
gigj · �1({g1, . . . , g4} \ {gi, gj }))

− Ps(gigj ) · Ps�1({g1, . . . , g4} \ {gi, gj })]
+ ∑

1≤i<j≤4

Psgi · Psgj · Ps�1({g1, . . . , g4} \ {gi, gj }).

Now we apply the same arguments which concluded the proof of Proposition 3.3.
Then the above expression is seen to be a resolution ofh′(s) into nonnegative
terms; hence, under the hypotheses of Proposition 3.3,h′(s) ≥ 0, 0< s < t , and
thereforeh(t) ≥ h(0) = 0. Finally, we argue as in Corollary 3.5 to deduceκ ′

4 ≥ 0.
It is interesting to compare the techniques applied in Sections 2 and 3. On the

one hand, the lattice formulation in Section 2 required no analytical considerations;
however, the algebraic manipulations were sufficiently complicated that we found
it necessary to use the MAPLE package to decompose expressions as sums of
nonnegative terms. On the other hand, in the present section, analytical machinery
was needed but the algebraic calculations appeared to be simpler and we made no
use of the MAPLE package.

4. Duplicate variables. Another approach to establishing the classical FKG
inequality onR

n is by way of the method of duplicate variables; see Cartier
(1974) and Glimm and Jaffe (1987). Therefore it is natural to search for a proof
of Theorem 1.1 using this method. Forn = 1, we have such a proof; however,
the inductive step seems difficult and we have not been able to find it. To
demonstrate the difficulties inherent in the inductive step, we now establish the
case in whichn = 1.

Here, the functionsf1, f2 and f3 are nonnegative and increasing onR and
we wish to show that the conjugate cumulantκ ′

3(f1, f2, f3) is nonnegative. By
duplicating variables we have

κ ′
3(f1, f2, f3) =

∫
R3

I (x1, x2, x3) dµ(x1) dµ(x2) dµ(x3),
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where

I (x1, x2, x3)

= 2f1(x1)f2(x1)f3(x1)

− [f1(x1)f2(x1)f3(x2) + f1(x1)f2(x2)f3(x1) + f1(x2)f2(x1)f3(x1)]
+ f1(x1)f2(x2)f3(x3).

Define

J (x1, x2, x3) = ∑
τ∈S3

I
(
τ · (x1, x2, x3)

);
then, by a symmetry argument, we obtain

κ ′
3(f1, f2, f3) = 1

3!
∫

R3
J (x1, x2, x3) dµ(x1) dµ(x2) dµ(x3).

With the help of MAPLE we find that

J (x1, x2, x3) = f3(x1)
(
f1(x3) − f1(x1)

)(
f2(x3) − f2(x1)

)
+ f1(x3)

(
f2(x3) − f2(x1)

)(
f3(x3) − f3(x1)

)
+ f2(x1)

(
f1(x3) − f1(x1)

)(
f3(x3) − f3(x1)

)
+ f3(x1)

(
f1(x2) − f1(x1)

)(
f2(x2) − f2(x1)

)
+ f1(x2)

(
f2(x2) − f2(x1)

)(
f3(x2) − f3(x1)

)
+ f2(x1)

(
f1(x2) − f1(x1)

)(
f3(x2) − f3(x1)

)
(4.1) + f1(x3)

(
f2(x3) − f2(x2)

)(
f3(x3) − f3(x2)

)
+ f3(x2)

(
f1(x3) − f1(x2)

)(
f2(x3) − f2(x2)

)
+ f2(x3)

(
f1(x3) − f1(x2)

)(
f3(x3) − f3(x2)

)
+ (

f1(x3) − f1(x2)
)(

f2(x2) − f2(x1)
)(

f3(x3) − f3(x2)
)

+ (
f1(x3) − f1(x1)

)(
f2(x3) − f2(x2)

)(
f3(x3) − f3(x2)

)
+ (

f1(x3) − f1(x2)
)(

f2(x3) − f2(x2)
)(

f3(x2) − f3(x1)
)
.

Sincef1, f2 andf3 are nonnegative and increasing, we deduce immediately that
J (x1, x2, x3) ≥ 0 on the “fundamental” chamber{x1 < x2 < x3}. It then follows by
symmetry thatJ (x1, x2, x3) ≥ 0 on every Weyl chamber{xτ(1) < xτ(2) < xτ(3)},
τ ∈ S3. By taking limits as(x1, x2, x3) goes to a boundary{xτ(1) ≤ xτ(2) ≤ xτ(3)},
τ ∈ S3, we find thatJ (x1, x2, x3) remains nonnegative on every wall of a chamber.
Thereforeκ ′

3(f1, f2, f3) ≥ 0.
To carry out the inductive step toward higher dimensions requires a method for

handling functions of the formJ in (4.1); unfortunately, we have not been able to
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develop such a technique. More importantly, our usage of the terminology “Weyl
chamber,” “wall” and “fundamental chamber” is not accidental, for we believe
that inequalities of FKG-type exist within the context of arbitrary finite reflection
groups; see Gross and Richards (1995).

5. Applications. Any generalization of the FKG inequality has the potential
for vast numbers of applications. In this section we provide a few applications
and point the reader to others. We begin with generalizations of some applications
given by Seymour and Welsh (1975).

5.1. Generalized inequalities for Bernstein polynomials. Forf ∈ C[0,1], the
Bernstein polynomial off is the polynomial defined on[0,1] by

Bnf (x) =
n∑

k=0

f (k/n)

(
n

k

)
xk(1− x)n−k.

Generalizing Theorem 2.6 of Seymour and Welsh (1975), we have the following
result.

PROPOSITION 5.1. If f1, f2 and f3 are nonnegative increasing functions
on [0,1], then their Bernstein polynomials satisfy

2Bn(f1f2f3)(x)

− [
Bn(f1f2)(x)Bnf3(x)

(5.1)
+ Bn(f1f3)(x)Bnf2(x) + Bnf1(x)Bn(f2f3)(x)

]
+ Bnf1(x)Bnf2(x)Bnf3(x) ≥ 0

for all x ∈ [0,1].
PROOF. Let A be a set ofn elements and letx ∈ [0,1]. Define a probability

measureµ on the lattice 2A by

µ(a) = cxcard(a)(1− x)n−card(a),

a ∈ 2A, where card(a) denotes the cardinality ofa and c is the normalizing
constant; it is well known thatµ satisfies the MTP2 condition (2.1). Next we define

f̂j (a) = fj

(
card(a)/n

)
,

j = 1,2,3, a ∈ 2A. Then the functionŝfj are nonnegative and increasing on 2A.
On applying Theorem 1.1 to the probability measureµ and the functionsf̂j ,
j = 1,2,3, we obtain (5.1). �

By arguing along similar lines, inequalities for Bernstein polynomials for four
and five functions can be obtained through application of Theorem 1.3.
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5.2. Inequalities for log-convex sequences. Recall that a sequence of real
numbers{a0, . . . , an} is calledlog-convex if a2

k ≤ ak−1ak+1 for all k = 1, . . . , n − 1.

For any sequence{α0, . . . , αn}, we will use the notation

〈{αk}〉 :=
n∑

k=0

αk.

The following result extends Theorem 3.2 of Seymour and Welsh (1975), which
itself is a generalization of a classical inequality of Tchebycheff.

PROPOSITION 5.2. Suppose that {a0, . . . , an} is a positive, log-convex se-
quence with 〈{ak}〉 = 1.Suppose also that the sequences {α0, . . . , αn}, {β0, . . . , βn}
and {γ0, . . . , γn} are increasing and nonnegative. Then

2〈{akαkβkγk}〉 − 〈{akαkβk}〉〈{akγk}〉
− 〈{akαkγk}〉〈{akβk}〉 − 〈{akαk}〉〈{akβkγk}〉(5.2)

+ 〈{akαk}〉〈{akβk}〉〈{akγk}〉 ≥ 0.

PROOF. The proof of this result is similar to the proof of the corresponding
result given by Seymour and Welsh (1975). Define the sequence

bk = ak

/(
n

k

)
,

k = 0, . . . , n. Since the sequences{ak} and{1/
( n

k

)} are log-convex, then so is{bk}.
Let A = {1, . . . , n} and defineµ : 2A → R by

µ(a) = bcard(a),

a ∈ 2A. It is shown by Seymour and Welsh (1975), thatµ satisfies (2.1).
Definef1, f2, f3 : 2A → R by

f1(a) = αcard(a), f2(a) = βcard(a), f3(a) = γcard(a),

a ∈ 2A. Then the functionsfj are nonnegative and increasing on 2A. On applying
Theorem 1.1 to the probability measure proportional toµ and the functionsfj ,
j = 1,2,3, we obtain the desired result.�

5.3. A generalization of Kleitman’s lemma. A collectionC of subsets of a set
A is closed above if a ∈ C anda ⊆ b imply b ∈ C. Similarly, C is closed below if
a ∈ C anda ⊇ b imply b ∈ C.

Suppose thatA is a finite set of cardinalityn, and letU andL be collections of
subsets ofA such thatU is closed above andL is closed below. Then Kleitman
(1966) proved the remarkable inequality,

2n card(U ∩ L) ≤ card(U)card(L).(5.3)

The following result generalizes this inequality; see Seymour and Welsh [(1975),
Theorem 4.2].
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PROPOSITION5.3. Let A be a finite set of cardinality n, and let U1, U2, and L

be collections of subsets of A. Suppose that U1 and U2 are closed above and L is
closed below. Then

22n card(U1 ∩ U2) − 22n+1 card(U1 ∩ U2 ∩ L)

+ 2n
(
card(U1 ∩ U2)card(L)

(5.4)
+ card(U1 ∩ L)card(U2) + card(U1)card(U2 ∩ L)

)
− 2n card(U1)card(U2) − card(U1)card(U2)card(L) ≥ 0.

PROOF. Let µ be the uniform distribution on 2A, that is,µ(a) = 1/2n for
all a ∈ 2A. Let f1 andf2 be the characteristic functions of the setsU1 andU2,
respectively; that is, forj = 1,2,

fj (a) =
{

1, if a ∈ Uj ,

0, if a /∈ Uj .

Also let f3 denote the characteristic function ofLc, the complement ofL. Then
f1, f2 and 1− f3 are nonnegative increasing functions. Then (5.4) is obtained by
applying Theorem 1.1 to the measureµ and the functionsf1, f2 and 1− f3. �

For the case in whichU1 ≡ U is closed above andU2 = 2A, the inequality (5.4)
reduces to (5.3).

5.4. Inequalities for matrix functions.

DEFINITION 5.4. LetR = (R(i, j)) be ann × n real matrix. Then

(i) R satisfies thetriangle property if

R(i, j)R(k, k) = R(i, k)R(k, j)(5.5)

for all i ≤ k ≤ j and allj ≤ k ≤ i [see Barrett and Feinsilver (1981)];
(ii) R is nonnegative if R(i, j) is nonnegative for alli andj ;
(iii) R represents a discrete probability distribution if R is nonnegative and∑n
i,j=1 R(i, j) = 1;
(iv) R is increasing if R(i, j) is monotone increasing ini and inj .

For anyn×n matrixR = R(i, j) representing a discrete probability distribution
and anyn × n matrix F = (F (i, j), we denote tr(RF ′) by ER(F ). Because

tr(RF ′) =
n∑

i=1

n∑
j=1

R(i, j)F (i, j),
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the notationER(F ) for tr(RF ′) is consistent with the notation for expectation with
respect to the discrete probability distribution represented by the entries of the
matrix R.

Given twon × n matricesF1 = (f1(i, j)) andF2 = (f2(i, j)), recall that the
Hadamard product of F1 andF2 is the matrixF1 ◦ F2 = (f1(i, j)f2(i, j)).

Now we have the following result.

PROPOSITION 5.5. Let R be an n × n matrix which represents a discrete
probability distribution and satisfies the triangle property. If F1 = (f1(i, j)),
F2 = (f2(i, j)) and F3 = (f3(i, j)) are nonnegative increasing n × n matrices,
then

2ER(F1 ◦ F2 ◦ F3) − [
ER(F1 ◦ F2)ER(F3)

+ ER(F1 ◦ F3)ER(F2) + ER(F1)ER(F2 ◦ F3)
]

(5.6)

+ ER(F1)ER(F2)ER(F3) ≥ 0.

In particular,

ER(F1 ◦ F2) ≥ ER(F1)ER(F2).(5.7)

PROOF. Let A = {1, . . . , n}, so thatA × A is the set of pairs of positive
integers ranging from 1 throughn. EquipA × A with the partial order given by
(i, j) � (k, l) if i ≤ j andk ≤ l; this is the same partial ordering utilized in the
study of the FKG inequality on Euclidean space. For pairsp = (i, j) andq = (k, l)

in A × A, we definep ∨ q andp ∧ q in the usual component-wise manner:

p ∨ q = (
max(i, k),max(j, l)

)
, p ∧ q = (

min(i, k),min(j, l)
)
.

It is straightforward to check that the triangle property (5.5) is equivalent to the
MTP2 condition with equality:

R(p ∨ q)R(p ∧ q) = R(p)R(q)

for all p,q ∈ A × A. Therefore, any matrixR which represents a discrete
distribution and satisfies the triangle condition corresponds to an MTP2 probability
distribution onA × A. This observation is the crux of the proof, for we can now
apply Theorem 1.1 to nonnegative increasing matrix functions to deduce (5.6).
Finally, (5.7) is the special case of (5.6) in whichf3(i, j) ≡ 1. �

We now turn to inequalities for rank and determinant functions of positive-
definite functions.

Let M denote a fixedn × n positive-semidefinite matrixM . Given an index set
a ⊆ A = {1, . . . , n}, we denote byM[a] the submatrix ofM appearing in the rows
and columns labelled by the elements of the seta. For anya, b ⊆ A, it is a result
of Lundquist and Barrett (1996) that

rankM[a ∪ b] + rankM[a ∩ b] ≤ rankM[a] + rankM[b].(5.8)
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For fixedt > 0, define the probability measureµ on 2A by

µ(a) = tn−rankM[a]∑
α⊆A tn−rankM[α] ,

a ∈ 2A; the measureµ can be viewed as a generating function for the ranks of the
submatricesM[a], a ⊆ A.

It follows from (5.8) thatµ satisfies the MTP2 condition (1.1) on the lattice 2A.
By applying Theorem 1.1 to the measureµ and nonnegative increasing functions
fj , j = 1,2,3, we obtain various positivity results. We leave it to the reader to
work out special cases, for example, the case in which thefj are defined in terms
of the characteristic functions of subsets of 2A that are closed above or below, as
necessary.

Other examples arise by specifying thefj to be functions analogous to those
chosen by Seymour and Welsh (1975) in the proof of their Theorem 5.10. More
generally, we may consider the context of matroid theory considered by Seymour
and Welsh (1975) and deduce by application of Theorem 1.1 higher-order total
positivity properties of the rank-generating function of a matroid.

To derive determinantal inequalities, suppose thatM is a fixed positive-definite
symmetricn × n matrix. We recall the generalized Hadamard–Fischer inequality

detM[a ∪ b]detM[a ∩ b] ≤ detM[a]detM[b];(5.9)

see Horn and Johnson [(1985), page 485]. For fixedt > 0, define the probability
measure

µ(a) = detM[a]−t∑
α⊆A detM[α]−t

,

a ∈ 2A. Thenµ satisfies the MTP2 condition (1.1) on the lattice 2A. On applying
Theorem 1.1 to various choices of the functionsfj , we obtain determinantal
inequalities.

For example, supposef1(a) = trM[a], the trace ofM[a]; f2(a) = λmin(M[a]),
the smallest eigenvalue ofM[a]; andf3(a) = 1/λmax(M[a]), the inverse of the
largest eigenvalue ofM[a]. Then it is a consequence of the fundamentalinclusion
principle describing the interlacing properties of eigenvalues of submatrices of
Hermitian matrices [Horn and Johnson(1985), Theorem 4.3.15, page 185] that
thesefj are all increasing functions on the lattice 2A. Therefore we may obtain
eigenvalue inequalities by application of Theorem 1.1. As a special case, by
applying the FKG inequality to the functionsf2 andf3, we obtain the inequality( ∑

a⊆A

detM[a]−t

)( ∑
a⊆A

detM[a]−t λmin(M[a])
λmax(M[a])

)

≥
( ∑

a⊆A

detM[a]−t λmin(M[a])
)( ∑

a⊆A

detM[a]−t 1

λmax(M[a])
)
.
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5.5. Monotonicity properties of partial orders. Suppose that(a1, . . . , am,

b1, . . . , bn) is a uniformly distributed random permutation onSm+n, the set of
permutations onm + n symbols. The permutation is to be viewed as the actual
ranking of tennis skills of playersa1, . . . , am, b1, . . . , bn. We suppose that a player
x always loses to a playery in a match ifx < y. In a contest between teams
A = {a1, . . . , am} andB = {b1, . . . , bn}, suppose that there is a partial order�

between certaina’s and between certainb’s, for example,a1 < a2, a1 < a3,
b2 < b1, . . . , but no information about relative rankings between anyai andbj .
Such a situation arises if, to date, there have been numerous intrateam matches
resulting, for example, ina1 losing toa2, a1 losing toa3, b2 losing tob1, and so on,
but no interteam matches. We denote byP (a1 < b1|�) the conditional probability
thatb1 defeatsa1 given the partial order�.

Following numerous matches between members of theA andB teams, suppose
the result has been a victory forB in every case. Thus we now have information
that thea’s have so far lost each match to theb’s. This induces a new partial order,
�′ = � ∪ �′′, where�′′ consists of inequalities of the formai < bj for some
collection ofi andj . We denote byP (a1 < b1|�′) the conditional probability that
b1 defeatsa1 given the information in�′.

Graham, Yao and Yao (1980) [see Graham (1982, 1983)] proved that

P (a1 < b1|�′) ≥ P (a1 < b1|�),(5.10)

and Shepp (1980) later gave another proof using the FKG inequality. As observed
by Shepp, the additional knowledge with�′ that a number ofa’s severally have
lost to aB-team member provides the basis for us to infer that theA-team is
jointly inferior to theB-team. Therefore it is natural to expect a higher probability
conditional on�′, than conditional on�, thata1 loses tob1 and (5.10) confirms
this expectation.

Shepp (1980) constructed a suitable finite distributive lattice, a nonnegative
MTP2 measureµ and two decreasing indicator functionsf and g. Then he
deduced (5.10) by an application of the FKG inequality. Along the same lines,
we obtain generalizations of (5.10) using Shepp’s MTP2 measure by constructing
three or more decreasing indicator functionsfj and applying Theorem 1.1 or 1.3
to the functions 1− fj . As an example, we state a result which follows from
Theorem 1.1.

PROPOSITION5.6. Let A0 be the subset of Sm+n for which A and B have the
complete order:

A0 = {a1 < · · · < am} ∩ {b1 < · · · < bn}.
Suppose that A1, . . . ,A4 are subsets of Sm+n, each of which is an intersection of
subsets of the form ai < bj . For any A ⊆ Sm+n, define

π(A) := P (A0 ∩ A4 ∩ A)

P (A0 ∩ A4)
.
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Then

2π(A1 ∩ A2 ∩ A3)

− [π(A1 ∩ A2)π(A3) + π(A1 ∩ A3)π(A2) + π(A1)π(A2 ∩ A3)]
+ π(A1)π(A2)π(A3)

− 2
[
π(A1 ∩ A2) − π(A1)π(A2) + π(A1 ∩ A3)

− π(A1)π(A3) + π(A2 ∩ A3) − π(A2)π(A3)
] ≤ 0.

By similar arguments, we can also generalize related results of Shepp (1980)
and the XYZ conjecture [Shepp (1982)].

5.6. Cumulants inequalities for probability distributions. Our initial motiva-
tion for investigating the higher-order inequalities of FKG-type was to generalize
numerous correlation inequalities well known for MTP2 probability distributions
in mathematical statistics; see Eaton (1987) and Karlin and Rinott (1980). We shall
leave it to the reader to deduce from Theorems 1.1 and 1.3 bounds on the third-,
fourth-, and fifth-order cumulants of those probability distributions.

The basis for much of Section 4 of Karlin and Rinott (1980) is a special case of
the following result.

COROLLARY 5.7. Let ϕ and ψ be MTP2 functions on Rn and define

E(f ) :=
∫

ϕ(x)ψ(x)f (x) dx∫
ϕ(x)ψ(x) dx

for any function f for which the integrals converge. If fj , j = 1,2,3, are
nonnegative increasing functions on Rn, then κ ′

3(f1, f2, f3) ≥ 0.

The proof of this result follows immediately from the generalized third-order
FKG inequality once we note that the probability measure which is proportional to
ϕ(x)ψ(x) dx, x ∈ Rn, is an MTP2 measure. As applications of this result we can
then deduce higher-order probability inequalities for any MTP2 random vector
generalizing, for example, Example 4.1 of Karlin and Rinott (1980). In closing
this section we provide, as a generalization of Proposition 4.1 of Karlin and Rinott
(1980), a higher-order log-concavity property of exchangeable random variables.

PROPOSITION5.8. Let X1, . . . ,Xn be exchangeable random variables having
a joint MTP2 probability density function ϕ. For a ∈ R, define c0(a) = 1 and

cm(a) = P (X1 ≤ a, . . . ,Xm ≤ a),
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1 ≤ m ≤ n. Then

2
cm+2(a)

cm−1(a)
− 3

cm+1(a)

cm−1(a)

cm(a)

cm−1(a)
(5.11)

+ cm(a)3

cm−1(a)3 − 6
[
cm+1(a)

cm−1(a)
− cm(a)2

cm−1(a)2

]
≤ 0,

m = 1, . . . , n − 2.

PROOF. Forx ∈ Rn, define

ψ(x) =
{

1, if x1, . . . , xm−1 ≤ a,
0, otherwise.

It is well known thatψ is MTP2. Fork = 1,2,3, define

fk(x) =
{

1, if xm+k−1 ≤ a,
0, otherwise.

Then the functionsf1, f2 and f3 are decreasing. Moreover,E(fk) = cm(a)/

cm−1(a), k = 1,2,3; E(f1f2) = E(f1f3) = E(f2f3) = cm+1(a)/cm−1(a); and
E(f1f2f3) = cm+2(a)/cm−1(a).

Now we apply Corollary 5.7 to the functions 1− f1, 1 − f2 and 1− f3.
Simplifying the resulting expression, we obtain (5.11).�

By applying Proposition 5.8, we can obtain generalizations of other examples
given by Karlin and Rinott [(1980), Section 4].

6. Remarks on total positivity and inequalities of FKG-type. In the
development of inequalities of FKG-type, it will be instructive to study the case of
indicator functions onR2. In what follows, for anya ∈ R, we use the notation

Ia(t) =
{

1, t ≥ a,
0, t < a,

for the indicator function of the interval[a,∞).
A prototypical increasing functionf on R2 is an indicator function of a

“northeast” region,[a,∞) × [b,∞), so thatf is of the form

f (u, v) = Ia(u)Ib(v) ≡
{

1, u ≥ a, v ≥ b,
0, otherwise,

(6.1)

for somea, b ∈ R. Let us consider the case of two such functionsfj (u, v) =
Iaj

(u)Ibj
(v), (u, v) ∈ R2, whereaj , bj ∈ R, j = 1,2. In establishing the FKG

inequality for these functions we may assume, by symmetry, thata1 ≤ a2. We
denote by(X1,X2) the random vector corresponding to the density functionK .

Suppose thatb1 ≤ b2. Then

Ef1 = P (X1 ≥ a1,X2 ≥ b1) ≤ 1
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and

Ef1f2 = Ef2 = P (X1 ≥ a2,X2 ≥ b2) ≥ 0.

Therefore

Cov(f1, f2) = Ef1f2 − (Ef1)(Ef2) = Ef2 − (Ef1)(Ef2)

= (Ef2)(1− Ef1) ≥ 0.

Next suppose thatb1 > b2. Then

Cov(f1, f2) = Ef1f2 − (Ef1)(Ef2)

= P (X1 ≥ a2,X2 ≥ b1)

− P (X1 ≥ a1,X2 ≥ b1)P (X1 ≥ a2,X2 ≥ b2)
(6.2)

≡ P (X1 ≥ a1,X2 ≥ b1)[1− P (X1 ≥ a1,X2 ≥ b2)]
+

∣∣∣∣P (X1 ≥ a1,X2 ≥ b2) P (X1 ≥ a1,X2 ≥ b1)

P (X1 ≥ a2,X2 ≥ b2) P (X1 ≥ a2,X2 ≥ b1)

∣∣∣∣ .
The first term in (6.2) clearly is nonnegative, so it remains to establish nonnegativ-
ity of the second term. To that end, we write∣∣∣∣P (X1 ≥ a1,X2 ≥ b2) P (X1 ≥ a1,X2 ≥ b1)

P (X1 ≥ a2,X2 ≥ b2) P (X1 ≥ a2,X2 ≥ b1)

∣∣∣∣
(6.3)

=
∣∣∣∣
∫

Ia1(u)Ib2(v)K(u, v) dudv
∫

Ia1(u)Ib1(v)K(u, v) dudv∫
Ia2(u)Ib2(v)K(u, v) dudv

∫
Ia2(u)Ib1(v)K(u, v) dudv

∣∣∣∣ .
By two applications of the basic composition formula [Karlin (1968), page 17],
once inu and once inv, we see that (6.3) reduces to

4
∫ ∫
u1<u2

∫ ∫
v1<v2

∣∣∣∣ Ia1(u1) Ia1(u2)

Ia2(u1) Ia2(u2)

∣∣∣∣ ·
∣∣∣∣ Ib2(v1) Ib2(v2)

Ib1(v1) Ib1(v2)

∣∣∣∣
(6.4)

×
∣∣∣∣K(u1, v1) K(u1, v2)

K(u2, v1) K(u2, v2)

∣∣∣∣ du1dv1 du2dv2.

The determinant det(Iai
(xj )) is well known to be nonnegative ifx1 < x2 and

a1 < a2; indeed, the set of functions{Ia1, Ia2 :a1 < a2} is an example of a
weak Tchebycheff system [cf. Karlin (1968), Chapter 1]. Therefore the first two
determinants in (6.4) are nonnegative on the region{u1 < u2, v1 < v2}. Since
K is TP2, then the third determinant also is nonnegative on the same region. Hence
Cov(f1(X1,X2), f2(X1,X2)) ≥ 0.

Next suppose thatf1 andf2 are functions onRn of the form

fj (x1, . . . , xn) = Iaj,1(x1)Iaj,2(x2) · · · Iaj,n
(xn),(6.5)
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for j = 1,2. We assume, by induction, that the FKG inequality holds for all
functions of the above form for all dimensions up ton − 1. Thus, we have

fj (x1, . . . , xn) = gj (x1, . . . , xn−1)Iaj,n
(xn),(6.6)

wheregj (x1, . . . , xn−1) = Iaj,1(x1) · · · Iaj,n−1(xn−1), j = 1,2, and

Cov
(
g1(X1, . . . ,Xn−1), g2(X1, . . . ,Xn−1)

) ≥ 0.

Using the standard method based upon conditional expectations, we now complete
the inductive step; we underscore that this inductive step is well known and we
provide details only for the sake of completeness. Denoting byEX1,...,Xn−1|Xn

expectation with respect to the probability distribution of the random variables
X1, . . . ,Xn−1 conditional onXn, it follows from (6.6) and the law of total
probability that

Ef1f2 = EXnEX1,...,Xn−1|Xnf1f2
(6.7)

= EXnIa1,n
(Xn)Ia2,n

(Xn)EX1,...,Xn−1|Xn

2∏
j=1

gj (X1, . . . ,Xn−1).

Since(X1, . . . ,Xn) is MTP2, then(X1, . . . ,Xn−1)|Xn is also MTP2 [see Sarkar
(1969) and Karlin and Rinott (1980)]. Therefore, by inductive hypothesis,

EX1,...,Xn−1|Xng1g2 ≥ (
EX1,...,Xn−1|Xng1

)(
EX1,...,Xn−1|Xng2

)
,

and then it follows from (6.7) that

Ef1f2 ≥ EXnψ1(Xn)ψ2(Xn),

where

ψj(xn) = Iaj,n
(xn)EX1,...,Xn−1|Xn=xngj (X1, . . . ,Xn−1),

j = 1,2. Since(X1, . . . ,Xn)|Xn is MTP2 andgj is increasing, then [cf. Sarkar
(1969) and Karlin and Rinott (1980), page 484, Theorem 4.1] the function
EX1,...,Xn−1|Xn=xngj (X1, . . . ,Xn−1) is increasing inxn; henceψ1 andψ2 are both
increasing, so thatEψ1ψ2 ≥ Eψ1Eψ2. Therefore we obtain

Ef1f2 ≥ Eψ1ψ2 ≥ Eψ1Eψ2 ≡ Ef1Ef2,

and the proof of the FKG inequality for functions of the type (6.5) is complete.
Having established the FKG inequality (1.2) for all indicator functions of the

form (6.5), we observe that the functional(f1, f2) → Cov(f1, f2) is bilinear.
Hence (1.2) holds for all functionsf1 andf2 onRn of the form

f (x1, . . . , xn) =
r∑

i=1

ci

n∏
j=1

Iai,j
(xj ),
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(x1, . . . , xn) ∈ Rn, wherer ∈ N andci ≥ 0, i = 1, . . . , r . Denoting byM+(Rn) the
set of positive Borel measures onR2, it then follows by approximation arguments
that the FKG inequality (1.2) holds for all functionsf1 andf2 of the form

f (x1, . . . , xn) =
∫

Rn

n∏
j=1

Iaj
(xj ) dν(a1, . . . , an),(6.8)

(x1, . . . , xn) ∈ Rn, whereν ∈ M+(Rn).
It is well known that the set of functions of type (6.8) is a proper subset of

the class of increasing functions onRn and contains all cumulative distribution
functions onRn.

Turning to the third-order FKG inequality in Theorem 1.1, we can also
establish that result for the class of functions (6.1). Suppose that we have three
indicator functions,fj (u, v) = Iaj

(u)Ibj
(v), (u, v) ∈ R2, j = 1,2,3. To establish

Theorem 1.1 forf1, f2 andf3, we may assume, by symmetry, thata1 ≤ a2 ≤ a3.
Then the proof requires that we resolve six cases, each corresponding to an
ordering ofb1, b2 andb3. In what follows, we shall denoteP (X1 ≥ ai,X2 ≥ bj )

by ρij .

CASE 1. b1 ≤ b2 ≤ b3. In this case,fifj ≡ fj for i ≤ j . Therefore

κ ′
3 = 2ρ33 − [ρ22ρ33 + ρ33ρ22 + ρ11ρ33] + ρ11ρ22ρ33

= (2− ρ11)(1− ρ22)ρ33,

which, clearly, is nonnegative.

CASE 2. b1 ≤ b3 ≤ b2. Here, we have

κ ′
3 = 2ρ32 − [ρ22ρ33 + ρ33ρ22 + ρ11ρ32] + ρ11ρ22ρ33

= (2− ρ11)(ρ32 − ρ33ρ22).

By the FKG inequality,ρ32 − ρ33ρ22 = E(f3f2) − E(f3)E(f2) ≥ 0; therefore
κ ′

3 ≥ 0.

CASE 3. b2 ≤ b1 ≤ b3. In this case, we have

κ ′
3 = 2ρ33 − [ρ21ρ33 + ρ33ρ22 + ρ11ρ33] + ρ11ρ22ρ33

= ρ33[1− ρ21 + (1− ρ11)(1− ρ22)],
which, clearly, is nonnegative.

CASE 4. b2 ≤ b3 ≤ b1. Here,

κ ′
3 = 2ρ31 − [ρ21ρ33 + ρ31ρ22 + ρ11ρ33] + ρ11ρ22ρ33

= (1− ρ22)(ρ31 − ρ33ρ11) + ρ31 − ρ21ρ33.

By the FKG inequality, bothρ31 − ρ33ρ11 = E(f3f1) − E(f3)E(f1) andρ31 −
ρ33ρ21 = E(f3f2f1) − E(f3)E(f2f1) are nonnegative. Thereforeκ ′

3 ≥ 0.
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CASE 5. b3 ≤ b1 ≤ b2. In this case, we have

κ ′
3 = 2ρ32 − [ρ22ρ33 + ρ31ρ22 + ρ11ρ32] + ρ11ρ22ρ33

= (1− ρ11)(ρ32 − ρ33ρ22) + ρ32 − ρ31ρ22.

By the FKG inequality, bothρ32 − ρ33ρ22 = E(f3f2) − E(f3)E(f2) andρ32 −
ρ31ρ22 = E(f1f2f3) − E(f3f1)E(f2) are nonnegative. Thereforeκ ′

3 ≥ 0.

CASE 6. b3 ≤ b2 ≤ b1. In this case, we have

κ ′
3 = 2ρ31 − [ρ21ρ33 + ρ31ρ22 + ρ11ρ32] + ρ11ρ22ρ33

= (1− ρ22)(ρ31 − ρ33ρ11) + ρ33(1− ρ21) + ρ11(ρ33 − ρ32).

By the FKG inequality,ρ31 − ρ33ρ11 = E(f3f1) − E(f3)E(f1) ≥ 0. Also, since
1− f2 ≥ 0, ρ33 − ρ32 = E(f3) − E(f2f3) = Ef3(1− f2) ≥ 0. Thereforeκ ′

3 ≥ 0.

Having resolved the case in which thefj are indicator functions, we apply the
multilinearity of the functional(f1, f2, f3) → κ ′

3(f1, f2, f3), and an approxima-
tion argument, to deduce nonnegativity ofκ ′

3(f1, f2, f3) for all fj of the class (6.8)
with n = 2.

In the case ofκ ′
4, we have carried out the case-by-case analysis (consisting of

24 cases); as regardsκ ′
5, we unhesitatingly entrust the analysis (of all 120 cases)

to the reader.
Even in the case of the classical FKG inequality, the method of indicator

functions appears to be new. The technique has the obvious drawback that it yields
the classical FKG inequality only for a proper subset of the class of all increasing
functions, and that too by way of a case-by-case analysis. However, the method
has the advantage that it points the way toward generalizations of that inequality;
indeed, the method of indicator functions is the means by which we first discovered
instances of the nonnegativity ofκ ′

3.
In developing the method of indicator functions, the appearance of the Binet–

Cauchy formula is noteworthy. To explain, we first remark that in a previous paper,
Gross and Richards (1995) developed a Binet–Cauchy formula in the context of
finite reflection groups and obtained an analog of the FKG inequality for one
particular reflection group. We speculatethat analogs of those inequalities exist
in any context in which Binet–Cauchy formulas are available, including those of
Karlin and Rinott (1988).

A general context in which formulas of Binet–Cauchy type arise is given by
Selberg (1956) in a fundamental paper laying the groundwork for the general
theory of what is now known asSelberg’s trace formula. Let S denote a
Riemannian space, with local coordinatest1, . . . , tn and positive-definite metric

ds2 = ∑
gij dti dtj ,
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where the functionsgij are analytic int1, . . . , tn. We assume that we have a
locally compact groupG of isometries ofS, with a transitive action. A function
K :S × S → C is point-pair invariant if K(gx,gy) = K(x,y) for all x, y ∈ S and
g ∈ G. One of the basic problems considered by Selberg (1956) is the analysis of
the spectral theory of the integral operator

f �→
∫
S
K(x, y)f ( y) dy,

wheredy denotes the invariant measure onS derived from the metricds2 andf is
a suitable function.

Let � denote a discrete subgroup ofG which acts properly and discontinuously
on S. Denote byD the fundamental domain of�. With U(d) denoting the group
of unitaryd × d matrices, letχ :� → U(d) be a unitary representation of�. Let
F be a complex, vector-valued function onS such that, for allx ∈ S andM ∈ �,
F(Mx) = χ(M)F (x). Then it is a readily established, but important, result that∫

S
K(x, y)F (y) dy =

∫
D

Kχ(x, y)F (y) dy

where

Kχ(x, y) := ∑
M∈�

χ(M)K(x,My);(6.9)

see Selberg [(1956), page 59]. Formally, there exists an eigenfunction expansion
of Kχ :

Kχ(x, y) = ∑
ciFi(x)Fi( y)∗,

where theci are constants, theFi are eigenfunctions of a class of differential
operators invariant under the action ofG, and Fi( y)∗ is the transpose of the
complex conjugate ofFi( y). What is of interest to us here is that the functionKχ

possesses properties of the determinant function [defined by Gross and Richards
(1995)] for finite reflection groups. Indeed, it follows from (6.9) that

Kχ(x,My) = Kχ(x, y)χ(M−1)

for all x, y ∈ S, M ∈ �; this property generalizes the familiar sign-change behavior
of the classical determinants under the interchange of rows or columns. The
function Kχ also satisfies a generalized Binet–Cauchy formula: IfK andL are
point-pair invariant functions, and

Q(x,y) :=
∫
S
K(x, t)L(t, y) dt

thenQ is point-pair invariant and

Qχ(x, y) =
∫
D

Kχ(x, t)Lχ (t, y) dt.
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We conjecture that inequalities of FKG-type exist in this context. Owing to the
potential for applications in multivariate statistical analysis, of special interest for
us will be the case in whichS is the space of positive-definite symmetric matrices.
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