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A UNIFORM FUNCTIONAL LAW OF THE LOGARITHM FOR
THE LOCAL EMPIRICAL PROCESS

By DaviD M. MAsON!
University of Delaware

We prove a uniform functional law of the logarithm for the local
empirical process. To accomplish this we combine techniques from classical
and abstract empirical process theory, Gaussian distributional approximation
and probabilityon Banach spaces. The body ethniques we develop should
prove useful to the study of the strong consistencyl-ofiriate kernel-type
nonparametric function estimators.

1. Introduction. Let U, Ui, Us, ..., be a sequence of independent Uni-
form [0, 1] random variables. Consider for each integer 1 the empirical distri-
bution function based otry, ..., U,,

n
Gu(t)=n"1Y LU; <1}, —00 <t < 00.
i=1
Stute (1982a) was the first to initiate a concerted study of the almost sure behavior
of the oscillation modulus of the uniform empirical process, which for any positive
0 <h < 1is defined to be

@y (h) = sup|vVn{Gn(t +s) — Gu(t) —s}[:0<t, t +s <1, 0<s <h}.

He proved that whenevéh,},>1 is a sequence of positive constants converging
to zero at a certain rate [see (H.i—iii)], then the following uniform law holds:

(1.1) nli_)moo @y (hy) /N 2h, l0g(1/ hy) =1 a.s.
Now more generally, leZ, Z1, Zo, ..., be i.i.d. random variables taking values

in R with common Lebesgue density functign Stute (1982b) obtained from (1.1)
and the probability integral transformation a uniform strong law for the kernel
density estimatorf,, over compact intervald; namely, he showed that under
certain regularity conditions of,

(12) Jim Vo SR fu(2) = Efu(I V2K I3/ @ log(1/h) | =1 as.,
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1392 D. M. MASON

wheref, is defined, for; € R, to be
(1.3) fa@) = (hn) 1Y K (hy Yz — Z0),
i=1
with K being a kernel with compact support and of bounded variation satisfying

(1.4) 0</K¢@nu:nKﬁ<al
R

Later, Stute (1984a) established a version of his strong law (1.1) for certain
oscillations of the empirical process based ugan Z,, ..., i.i.d. d-dimensional
random vectors with common Lebesgue density functfotde used it to derive
precise results on the uniform consistency ofdheariate kernel density estimator,
which is defined as in (1.3), but with tltg inside K replaced byz,%/d.

Deheuvels and Mason (1992) extended the Stute (1982a) strong law (1.1) to
a uniform functional law of the logarithm (UFLL) for the cluster of random

increment functions of0, 1],
(1.5) {£n(t,):0<t<1—h,},
where, foreach & ¢ <1 - h,, &,(¢, -) is the function defined of0, 1],

(1.6) En(t,s) =/n/hu{G(t + hys) — Gy (t) — hys}, O0<s<1,

and applied it to obtain exact rates of strong consistency for a number of
nonparametric density estimators. (See Corollary 3 for a statement of this
result.) Motivated partially by their work, Einmahl and Mason (2000) developed
techniques from general empirical process theory and combined them with
methods from Deheuvels and Mason (1992) to establish the precise rate of strong
consistency over compact intervals for certain kernel-type nonparametric function
estimators. Their results improved upon those of Hardle, Janssen and Serfling
(1988), who had obtained only approximate rates. As a byproduct, they were
able to obtain the Stute (1982b) result (1.2) through an approach based upon
viewing {f,(z) — Ef,(z):z € J} as an empirical process indexed by the class
of functions{h;lK(h,jl(z —)):z € J}. They also pointed out that thevariate
version of (1.2) could be derived in the same way. Giné and Guillou (2002) have
recently done this and proved the somewhat unexpected result that wh&nisver
continuous onR? with support contained ii—1/2,1/2]¢, and satisfies some
additional assumptions (see Example F.1), the densityuniformly continuous
onR4 and{h,},>1 satisfies conditions (H.iiii), then

Jim_ sup ik £,(2) = Efu(@)1/V 21K 210g(L/ )
zeR

= sup+v f(z) a.s.

zeRd

(1.7)
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[Somewnhat earlier, Deheuvels (2000) proved a dimension 1 version of this result.]
We will derive a UFLL version of (1.7) as a corollary to our main result.

The proof of the Deheuvels and Mason (1992) UFLL for (1.5) was strongly
based on the Komlds, Major and Tusnady (KMT) (19ABdener process
approximation to partial sums of i.i.d. Poisson random variables, coupled with
a functional large deviation result for the Wiener process. Such a precise and
powerful strong approximation as given by KMT does not exist in the general
empirical process setting.

Our goal in this paper is to show how one can meld the techniques from classical
and abstract empirical process theory, Gaussian distributional approximation and
probability on Banach spaces to prove a UFLL for a general indexed by class
of functions version of (1.5) formed by a sequence of i.i.d. random variables
Z1, Zo, ..., taking values ifR? with common Lebesgue density functigh The
basic ingredients of our approach, along with their sources, are the following:

1. Poissonization [Einmahl (1987), Deheuvels and Mason (1992) and Giné,
Mason and Zaitsev (2003)].

2. The Talagrand (1994) exponential ineliyefor the empirical process indexed
by functions.

3. Tight bounds for the absolute moment for the supremum of the empirical
process under a uniform covering number bound [Einmahl and Mason (2000)
and Giné and Guillou (2001)].

4. Gaussian distributional approximation of multivariate sums [Zaitsev
(19874, b)].

5. Functional large deviation results for stochastic processes [Arcones (2003,
2004)].

We shall see that our approach is powerful enough to obtain the Deheuvels
and Mason (1992) UFLL (without the use of KMT) as a corollary of our main
result. The methods and results developed in this paper should be of potential
application to the investigation of the strong consistency of a variety of multivariate
nonparametric function estimators. To see how to apply the UFLL for the
increment functions of the uniform empirical process to obtain exact rates of strong
consistency for a number of univariate nonparametric density estimators, refer to
Section 3 of Deheuvels and Mason (1992). Our main results are stated in Section 2,
several examples are detailed in Section 3 and all the proofs are given in Section 4.

2. Mainresults. Let Z, Z1, Z», ..., bei.i.d.d-dimensional random vectors
with common Lebesgue density functigh Throughout this pape} will denote
a class of measurable real valued functions define®énwhich have support
contained inf? :=[—1/2, 1/2]¢ and are bounded by some> 0. Let | - |» denote
the usual Euclidean norm @&f . Assume that the clagg satisfies:

(G.i) 1M}y, 0SURcq fralg(x) — g(x +w)]?dx =0;
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(Gii) lim;15UR,cg fralg(x) — g(hx)1?dx =0.
In addition, let¥ denote the class of functions formed fr@satisfying:
(F.i) foreachh >1,zeR?andge g, g(z— -A) € F.

To avoid using outer probability measures in all of our statements, we impose
the measurability assumption:

(F.ii) & is a pointwise measurable class; that is, there exists a countable
subclassfo of & such that we can find, for any function € ¥, a sequence
of functions{g,,} in %o for which g,,(z) = g(z), z € R?. [See Example 2.3.4 in
van der Vaart and Wellner (1996).]

Finally we shall require the following entropy condition on the cl&sFor
e >0, let N(e, F) = sup, N(ke, F,dg), where the supremum is taken over
all probability measure® on (R?, 8), do is the Ly(Q)-metric, and, as usual,
N(e, F,dp) is the minimal number of ball§g:dp(g,g’) < ¢} of dp-radius
¢ needed to covefr. Assume that# satisfies the following uniform entropy
condition:

(F.iii) forsomeCp>0andvy>0, N(e, F) <Coe™ ", 0<e <L

Let {n,},>1 be a sequence of positive constants less than 1 converging to zero.
Choose any < R?. The local empirical process atindexed byg < 6 is defined
to be

n
(2.1) En(z,8) = h) 2 Y (e (hy ¥z = Z0)) — Eg(h, V! (= — 2))}.
i=1
Einmahl and Mason (1997, 1998) obtained central limit theorems, strong approx-
imations and functional laws of the iterated logarithm for the local empirical
process at a fixed. [Mason (1988) had treated a special case of this process,
which he called the tail uniform empirical process.] They showed how to apply
their results to obtain the exact rate of pointwise consistency for a number of well-
known nonparametric kernel-type function estimators. The definition of the local
empirical process given by Einmahl and Mason (1997, 1998) is a bit more general
in that theh,l/d is replaced by a sequence of bi-measurable functions. It extends an
earlier notion introduced by Deheuvels and Mason (1994).
It is our aim to study the uniform limiting behavior of this procesg asoves
over a compact set Towards this end we introduce the following normed versions
of E,: For anyz e R? andg € g, set

(2.2) Dy(z, 8) = Eu(z, g)/~2109(1/ hy)
and if f(z) > 0, set
(2.3) Ly(z,8) = E,(z,8)/~2109(1/ hy) f (2).

We will assume that the sequends },>1 converges to zero at the following rate:
(H.)) hp O, nhy /7 o0;
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(H.ii) nh,/log(l/h,) — oo;
(H.iii) log(1/hy,)/loglogn — oc.

Consider the inner product defined for, g2 € ¢ by
(2.4) (81, 82) := /w g1(u)g2(u) du.

Let Go(I%) be the Hilbert subspace @h(1¢) spanned bg. Now let 8 denote its
reproducing kernel Hilbert space generated by the inner pradugt Applying
Theorem 4D of Parzen (1961), the spate&an be represented as follows: Let
l(%), denote the class of bounded functionsgrfFor anyé € Go(I%), denote
@e €150(9) by @e(g) :=(g,%), g € §. Eachgg is uniquely defined by in the
sense thapg, = ¢, if and only if & = &, in La(I¢). The spaces = {¢s :& €
G2(I%)} has the inner product

(2.5) (g, 0e,) 1= (61, &2).
Let 8o denote the unit ball i and, for any € 8 ande > 0, set
(2.6) B () ={¥ €loc(§): Iy — P g <&},

where for any class of functior® andyr € I, (C), the class of bounded functions
onge,

(2.7) ¥ lle = suply (g)I.

geC

Finally, write for anye > 0,
(2.8) $5.= (¥ €l inf v = 2l <e).

Throughout this paped will denote a compact subset &¢ with nonempty
interior. For anyy > 0, we set

2.9 =ix:inflx —zl2<yq.
(2.9) gy ={xsint x—zlo <)
Our UFLL for the local empirical process is given in the following theorem.

THEOREM 1. In addition to assumptions (G.i—ii), (F.i—iii) and (H.iiii),
assume that, for some y > 0, the density f is continuous and positiveon J,,. Then
with probability 1:

(a) for all ¢ > 0, there exists an n(e) such that, for each n > n(¢), {L,(z,):
zeJ} C 8y

(b) for any ¢ € 8p and ¢ > 0, thereisan n(s, £) such that, for all n > n(?9, ¢),
thereisaz, € J suchthat L, (z,, ) € B ().
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REMARK 1. Ithaslong been recognized that the polynomial covering number
assumption (F.iii) is the natural condition to impose upon the indexing class,
when studying the local behavior of the empirical process. For instance, when
Alexander (1987) made the first steps toward the investigation of the increments
of the empirical process in a general indexed by a class of sets framework, he
considered classes of index sets, which satisfy (F.iii)). Nolan and Pollard (1987)
and Nolan and Marron (1989) pointed oabw the assumption (F.iii) on the
class ¥ arises naturally when investigating the large sample behavior of the
kernel density estimator via empirical process indexed by a class of functions
theory. (See Example F.1.) Later, Rio (1994) found that (F.iii) was the right
assumption to impose o when he derived his local invariance principle for
the uniform ([0, 1]¢) empirical process indexed by a class of functions, and
applied it to kernel density estimation; as did Einmahl and Mason (1987, 2000,
2003) in their treatment of local empidl processes, @é and Gillou (2002)
in their derivation of rates of strong consistency for multivariate kernel density
estimators and Deheuvels and Mason (2004) in their construction of universal
confidence bands for regression functions. Classes of functions satisfying (F.iii)
play a featured role in Devroye and Lugosi’s (2000) derivation of bounds ih the
error for certain kinds of density estimators. This assumption also plays a critical
role in the work of Giné, Koltchinskii and Wellner (2003) on ratio limit theorems
for empirical processes.

REMARK 2. Condition (F.ii) was imposed to ensure that the moment
bound (4.21) given in Fact 5 holds uniformly over all the classes of indexing
functions considered in the proof of Theorem 1. One may surmise that (F.iii)
could be replaced by a less restrictive entropy assumption. However, it is not clear
whether this is the case. For a closely related discussion of this assumption, as it
pertains to a local Gaussian process version of Theorem 1, see Mason (2003).

REMARK 3. It is routine to modify the proof of Theorem 1 to show that it
remains true when (i) is replaced by the bracketing condition:

(F.iii)” for someCp > 0 andvg > 0, Nj(e, F, L2(P)) < Coe ™", 0< e < 1.

Refer to page 270 of van deg¥rt (1998) for thelefinition of Ni.j(e, ¥, L2(P)).
Essentially all that one has to do is to substitute the use of Fact 5 below by Lemma
19.34 of van der Vaart (1998).

Theorem 1 should be compared with the following functional law oftirated
logarithm at a fixed € R? that can be inferred from Corollary 1.1 of Einmahl and
Mason (1997), namely, that with probability 1 the sequence of processes indexed

byge§,

{En(z, 8)/v/2l0glog1/h,) f(2), g € 4},
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is relatively compact ifl (%) with set of limit points equal t&§g. We see that to
describe the behavior @, (z, ) at a fixed point € R¢, the/log(1/%,) horming
must be replaced byToglog(1/%,).

The following corollary provides a UFLL version of the Giné and Guillou
(2002) result cited in (1.7).

COROLLARY 1. In addition to assumptions (G.i—ii), (F.i—iii) and (H.iiii),
assume the density f is uniformly continuous on R¢. Then with probability 1:

(a) for all ¢ > 0, thereexistsan n(e) suchthat, for eachn > n(¢), {D, (z,") :z €
R?} C {r080:z € RY}, where 1o = SUR.cpe +/ F (2);

(b) for any z € R4, ¢ € 89 and ¢ > 0, there is an n(¥, z, ¢) such that, for
all n > n(,z, ¢), there is a z, € R? such that D, (z,,-) € VF)B:(®) and
lzn — zl2 <&

To see how Corollary 1 implies the Giné and Guillou (2002) result (1.7), let
g ={K}, whereK is continuous oR? with support contained ifi—1/2, 1/2]¢,
and satisfies the conditions of Example F.1. Then assumptions (G.i—ii), (F.i—iii)
and (H.i—iii) are satisfied. In this casglg = {¢s : £ = uK /|| K || for someju| < 1}
and clearly sufigs (K)|: ¢e € 80} = [IK ||2, from which (1.7) readily follows from
parts (a) and (b) of Corollary 1.

Further examples are detailed in Section 3.

3. Examples. What classes of functions satisfy conditions (G.i—ii)? Using
continuity of the shift and scale operators In(R?), it is trivial to see that
(G.i—ii) hold for any class of functiong on R¢ which is the convex hull of a
finite number ofLo(R?) functions. Here are some important classes that satisfy
conditions (G.i—ii).

ExaMPLE G.1. Considerthe class of functiogs={1¢ : C is convex, closed
and contained in?}. Choose anylc € 4., 0 <r < 1 andw € R? satisfying
|lw|2 < r; then

/Rd[ilc(X) — L@ + w)Pdx = [CA(C — w)| < |C"AC| +|C"A(C — w)|

=2{|C"| = ICl},

where A denotes symmetric differenc€ = {x:|x — y|> < r for somey € C}
and|A| signifies the Lebesgue measure of a measurablé.9¢bw by the Steiner
formula [see page 14 of Stoyan, Kendall and Mecke (1995)], we can conclude that,
there exists a positive constantsuch that, for allC convex, closed and contained

in 14, and O< r < 1, we havelC”| < |C|+cqr. Thus Z|C”| — |C|} < 2cq4r, which
easily implies that the class satisfies condition (G.i). Condition (G.ii) is also readily
verified.
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EXAMPLE G.2. Letg be a bounded equicontinuous class of function®6n
with support in/¢. From the inequality

/R 800 — g +w)PPdx = /R 8011 () — g (x +w)Lya(x +w)]?dx
<2 /R 8L () = L0 + w))Pdx

+ Z/Rd [g(x) — g(x + w)?La(x + w) dx,

it is straightforward to show that condition (G.i) holds using the fact that the
class of function% is bounded and uniformly continuous in combination with
Example G.1. Condition (G.ii) is checked in the same way.

Notice thatthe clas§ = {ag+blc:g € 4, 1c € G, and|a|+|b| < D}, where
0 < D < oo andg is any class of functions as in Example G.2 satisfies conditions
(G.iii).

What about classes of functiofs that satisfy all the conditions (G.i—ii) and
(F.i—iii)?

EXAMPLE F.1. Setg = {K}, where K is continuous with support if?.
Furthermore, whenevaf = 1, assumekK is of bounded variation o, and
whenever > 2, thatK is of the formK (x) = ® (x Ax), for somed x d matrix A
and bounded continuous real valued functidnof bounded variation orR.
Obviously (G.i—ii) hold forg. The classFx = {K(z — -A):A > 1 andz € R%)
satisfies (F.i) by construction and (F.iii) by the results in Section 5 of Nolan and
Pollard (1987). Also (F.ii) is readily verified using continuity &f

EXAMPLE F.2. Letgr ={1g: R € R}, whereR = class of closed rectangles
contained inf?, or G = {1z : E € &}, whereg is the class of closed ellipsoids
contained inf¢. Clearly, sincegy andgy are subsets of., conditions (Gi—ii)
hold for both classes. Set

(3.1) Fr={1g(z —-1):1g € Gz, A >1andz € R}
and
(3.2) Fg={1g(z—-A):1g € $g, A >1andz € R,

It is well known that both the set of all closed rectangles and the set of all
closed ellipsoids iR¢ form Vapnik-Chervonenkis (V.C.) classes; therefore, both
Fr and Fg clearly satisfy (F.i) and (F.ii). [See van der Vaart and Wellner (1996)
for the definition of a V.C. class, along with exercise 9 on page 151 of their book.]
Finally, (F.iii) is readily verified for botl#¥ and %.

Observe that the class of functions

Fy=A{ag1+bg2:g1€ Fx. g2 € Fr and|a| + |b| < D},
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where O< D < oo, is easily shown to satisfy (G.i—ii) and (F.i—iii). This class
should suffice for most applications.

The following corollary provides a UFLL version of Theorem 2.1 of Stute
(1984).

COROLLARY 2. Let {h,},>1 satisfy (H.i—iii) and let g g and Fx be defined as
above. Assume that, for some y > 0, the density f is continuous and positive on
l[ar—vy,b1+y]x---x[ag—y,bsg+y], where—co <a; <b; <o0,i=1,...,d.
Then with probability 1:

(a) for all ¢ > 0, there exists an n(e) such that, for each n > n(¢), {L,(z,):
zelJ}C /36, where J = [a1, b1] x --- x [ag4, bg] and

S0 = {903<P(1R) = /d Tr(x)E(x)dx for 1g € Ggr
(3.3) !

with & satisfying /d E2(x)dx < 1};
1

(b) for any ¢ € 89 and ¢ > 0, thereisan n(?, ¢) such that, for all n > n (9, ¢),
thereisaz, € J suchthat L, (z,, ) € B ().

Notice thatitis readily checked that, fég in (3.3), sup.c 5,SUPyeg,l¢ (1r) =1,
which on account of parts (a) and (b) of Corollary 2 implies that
Iimn%oosuglRegR |L,(1g)| =1, a.s.

We end this section by showing how the UFLL for the increment functions
of the uniform empirical process given in Theorem 3.1 of Deheuvels and Mason
(1992) can be derived from Theorem 1. First note that the proof of Theorem 1
shows that it remains true whel{ is replaced by any compadtdimensional
cube. In particular, in dimension 1, Theorem 1 holds witheplaced by{O, 1].

Next, the classes of functions

6 ={10:t€[0,1]} and F ={1;0,(z—-1):t€[0,1], A >1andz e R}
are readily shown to satisfy (G.i—ii) and (F.i—iii), respectively. Furthermore, in this
setup,
t
80 = {(p:qo(]l[o,,]) :/ E(x)dx forr €0, 1]

0

(3.4) L
with & satisfying / £2(x) dx < 1}.
0

Recalling the notation in (1.5) and (1.6), set for each 1 andr € [0, 1 — A, ],

En(t, ) =£&x(t,)/vV2109(1/ hy).

Assume thath, },>1 satisfies (H.i—iii) Clearly, when the underlying distribution
function is Uniform[O, 1], we can apply Theorem 1 to infer that, for any choice of
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0 < y < 1/2 and for eaclz > 0, there exists an(e) such that, for any: > n(e),
{€n(2,):1 €[y, 1—y]} C 85. Combining this with (1.1), which implies that

' L _ _
(3.5 )I/l@o’lll_)moown(hny)/«/ZhnIog(l/hn 0 a.s,

we obtain from Theorem 1 the following corollary, which is Theorem 3.1 of
Deheuvels and Mason (1992). [Alternatively, in place of (1.1), we could have
proved (3.5) by an argument based on Inequality 1.]

COROLLARY 3. Let {h,},>1 satisfy (H.i—iii). Then with probability 1:

(a) for all ¢ > 0, thereexistsan n(e) such that, for eachn > n(e), {€,(, ) :t €
[0,1—h,]} C 85 and

(b) for any ¢ € 4o, [a, b] C [0, 1], witha < b, and ¢ > 0, thereis an n(%, &)
such that, for all n > n(%9, &), thereisat, € [a, b] suchthat &,(,, -) € B:(1%).

4. Proofs.

4.1. Proof of part (b) of Theorem 1.

4.1.1. Alargedeviation result. Set, forn > 1,

4.1) b, = ~/2nh,109(1/ hy,).
Crucial to our proof is the following uniform large deviation result. ygtbe a
standard Poisson random variable with raténdependent o, Z4, Zo, ..., and

consider the Poissonized version of thgprocess:

Nn
(2. 8) == (baV T @) Y (8 (0 Y4 @ — ) — Eg(hy Yz — 2))).

i=1

where the empty sum is defined to be zero.
Define the rate functioi(-) onl(4) as follows. For any) € [ ($),

4.2 IWy)= { %/Id £2(u) du, if ¥ = ¢, for somet € Go(I%),
00, otherwise.

Recall the definitions of, andG,(1¢) between (2.4) and (2.5) in Section 2. Also
denote for any subs& C /,,(%),

(4.3) 1(B) =inf{I(y): ¢ € B).

We endowl($) with the topology generated by the norin |4, defined as
in (2.7).
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ProOPOSITION 1. Under the assumptions of Theorem 1, for any sequence
{mn},>1 of positiveintegersand any triangular array of pointsz; ,, i =1, ..., my,
n>1,inJ, wehave

(i) for all closed subsets F of [,,(%),
limsup max e, log P{Il; ,(-) € F} < —I(F);

n—oo l1l<i<m,
(ii) for all open subsets G of [ (4),
liminf min ¢,log P{I1; ,(-) € G} > —I1(G),

n—>o0 1<i<m,

Wherenl,l’l() = Hn(zl,nv ')7 l = 17 ~~~7mn’ n 2 1and

(4.4) en = (2l0g(1/ hy)) "t

4.1.2. Proof of Proposition 1. We will take advantage of some recent work of
Arcones (2003, 2004). In fact, we shall require the following trivial generalization
of Theorem 3.1 of Arcones (2003). In the statement of this reBtilgnd P, denote
the usual outer and inner measures associated Aithnd A and A? denote the
closure and interior ofd, respectively. Let,,(T) denote the space of bounded
functions on7. Also LDP is short forlarge deviation principle, as defined, for
instance, in Arcones (2003). Note that a basic ingredient of Fact 1 is the uniform
exponential tightness condition (A.iii).

FacT 1. Let {X;,(t):t €T,1<i <m,}, where {m,},>1 is a sequence of
positive integers, be a triangular array of stochastic processes and let T be an
index set. Let {¢,},>1 be a sequence of positive numbers that converges to zero.
Let o be a pseudo-metricon T. Consider the following conditions:

(A.) (T, p) istotally bounded.

(A.ii) For each choice of f1,...,1 € T, the triangular array of vectors
{(Xin(t1),..., Xin(tx)),1 <i <m,} satisfies uniformly the LDP with speed ¢,
and good rate function /1, ., in the sensethat, for any Borel subset A C Rk,

.....

w () =liminfe, min log P{(Xin (), ... Xin(@)) € A}

<i<my,

.....

<limsupe, max log P*{(X;,(t1), ..., Xin(tx)) € A}

n— 00 1<i<m,

and for any 0 < @ < oo, the set {z e R¥: I,
(A.iii) For eacht > 0,

1 (2) < a} isa compact set in R¥.

.....

lim limsupe, max IogP*{ sup | X;n(t) — Xin(s)| Zr} = —00.

77—>O n— 00 1§i§n1n Q(SJ)EW
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Then, for each 0 < o < 00, the set { € Io(T):I(¥) < «a} isa compact set in
loo(T), Where

I(W)=suply, (W), ..., ¥ (%) :t1,....tx €T, k>1}.

Moreover, one gets the following upper and lower boundsin the LDP with respect
to outer and inner probabilities (because of possible lack of measurability): For
each A C Il (T),

—wmf I(Y) < I|m|nf e,, min log P.{X;, € A}

<i<my

<limsupe, max logP*{X;, € A} <— inf I(y).
YeA

n—00 <i<my

Also we will require the following fact, which follows by applying Theorem 5.2
of Arcones (2004) to a finite index s&t

FACT 2. Let {U;,(t):teT,1<i<m,} beatriangular array of centered
Gaussian random vectors, where {m,},>1 iS a sequence of positive integers
and T = {r1,...,t4} is afinite index set. Let {¢,},>1 be a sequence of positive
numbers that convergesto zero asn — oo. Assume that for a covariance matrix
R={R(t,tj):(t,t)) € T2}, wehave, for anys,r €T,

(4.5) lim max |R(s,1) — &, LE[U; . (s)U;n(1)]| = 0.

n—-o0 1<i<m,
Then for any Borel subset A c R?,

(@) = I|m|nf &n o min log P{U;, € A}

<i<my

.....

<limsupe, max logP{U;, € A} < — |nf I,1 ,,,,, 12(2),

n—o00 <i<my
wherefor z € R,
@n I () =inf(27 26T RE  RE =2},

The following lemma, which is a special case of a result of Stein [(1970), pages
62 and 63], will come in handy.

LEMMA 1. Let f be a Lebesgue density function on R¢, which for some
y > 0is bounded and uniformly continuous on D,,, where D is a closed subset of
R? and D, isdefined asin (2.9). Then for any L1(R?) function H, which is equal
to zerofor x ¢l

(4.8) suplf « Hy(z) —I(H)f(2)| >0  ash\0,
zeD

where I (H) = fpa H(u)du and f  Hy(z) :=h™1 f[pa f)H Y4z — x)) dx.
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Choose§, = {g1,---,8;} C ¢ andzap, -+, Zm,.n € J. LEL{U; () g € ¢,
1<i <m,} be atriangular array of centered Gaussian random vectors each with
covariance function

-1 _ _
0in (g1, 8K) =n(b%f i) cov(gr(h, M zin — 2)), gr(hy Y Gin — 2))),
1<i<m,.
It is routine using Lemma 1 to show that, with as in (4.4), aa — oo,

(4.9) max max |e, o, (g1, gk) — o (g1, g0)| — O,

1<i<m, 1<l,k<q

whereo (g1, gk) = [7a g1 () gk () du.
Thus Fact 2 applies here and its conclusion (4.6) holds with

(4.10) R(g1. gr) =0 (g1, &)
Consider now the triangular array of Poisson-type processes indexed By
Min(8) = (bu/T i)

(4.11) Nn
x> (gl M zin — Z))) — Eg(hy Y i — 2))),
j=1

1<i <my, n>1 Notice thatfor each X i <m,, the process$ll; ,(g)}¢cg, has
the same covariance function as the prodéss,(g)}s<g, - We claim that for any
Borel subsed C RY,

_Zien/IO Igy...g, () < Iinnlior!)f &n L min log P{I1; , € A}

<i<mp
(4.12) <limsupe, max logP{Il;, € A}
n—o00 1<i<my

S - inilgl,...,gq (Z)7
z€A

wheree, is as in (4.4), and fog € RY, I,
in (4.10).

To show this we shall need the following result of Zaitsev (1987a). For
probability measure® and Q on the Borel subsets &%, ¢ > 1, andé > 0,
let

(4.13) A(P, Q,8) :=SUPP(A) — Q(A%), O(A) — P(A%): A CRY, Borel,

whereA® denotes thé-neighborhood o, A° := {x € RY :infyca [x — y|2 < 8}
Let P be an infinitely divisibleg-dimensional distribution with spectral measure
concentrated onthe bdht e R?: |x|2 < B}, B > 0, and letQ be theg-dimensional
normal distribution with the same mean and covariance matrix $e following
inequality is contained in Theorem 1.hdhExample 1.2 of Zaitsev (1987a). See,
as well, a slightly weaker statement in Theorem 1.2 of Zaitsev (1987b).

g,(2) is defined as in (4.7), wit® as

.....
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FacTt 3. Forall §=>0,

(4.14) MP, Q,8) <c1qexp(—8/(c24B)).
wherec; , < cig? with ¢1, ¢2 being universal finite positive constants.

It is easy to see that the distribution @f1;,(g1),...,I1;,(g,)), being
compound Poisson, is infinitely divisible with spectral measure, uniformly
in 1 <i <m,, concentrated on the ballx € RY:|x|> < B}, where § =
p/~/nh,log(1/h,) andp > 0 is a constant. This follows from the fact that, for
somep’ > 0, uniformly in1<i <m,, n>1,

(b FGim)) Hehy Y4 Giw — Z))) — Eg(h Y zin — 2)))|
< p'/Nnhy 10g(1/ hy).

Hence by applying Fact 3, we see that uniformly ig 1 <m,,,

(4.15) A(Pin, Qi,n, 3) =< Clgq eXp(—5 vnhy Iog(l/hn)/(pCZ,q)),

whereP; ,, is the distribution of(I1; ,,(g1), . .., I1; ,(g4)) andQ; , is the distribu-
tion of (U; »(g1), .., Uin(gy)). Using (H.ii), it is easy to infer from (4.15) that,
for eachs > 0, asn — oo,

(4.16) max log(1/h,) " 1ogA(P; ., Qin, 8) = —o0.

1<i<m,

Therefore, since by (4.9) in combination with Fact 2, (4.12) holds ith,
replaced byU; ,, we readily conclude from (4.16) that (4.12) is satisfied. Hence
assumption (A.ii) of Fact 1 holds witd), as in (4.4).

Our next goal is to verify that (A.iii) holds witl = G.. Let o denote the pseudo-
metric ong,,

(4.17) 0(g.8) = \//Rd(g(u) —g/)°du,  g.g'€g.
We shall show that for each> 0,

lim limsupe, max IogP*{ sup |T;,(g) — M (g > r} = —00.
n—0 n—oo 1<i<m, <
0(g.8"=n
Observe that whenevey, = m, for somem > 1, for g, ¢’ € g and each k
i S mn7

Hi,n (g) — 1_[i,n (g/)
m

= (T @) Y (g — &) (Y @i — Z))

j:l
—E(g— (Y zin — 2)))

(be(Zln) Tpn,i(g — g)
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Notice that we can choosep; < B2 < oo such that, for alk € J,,,
(4.18) 0<p1=<f(z) <P2<o0.
Thus foreach ki < m,,,

p{ sup |n,-,n<g>—nl-,n<g’>|zr/m}

0(g.8)=<n

(4.19) < P{ max max sup |Tu..i(g—g)l=> rbn} + P{n, > 2n}
Isismnl=m=2no(q ¢'y<p
= pu(T, 1) + P{n, > 2n}.

To finish the proof, we shall require two more facts and an inequality following
from them.

Let X, X1, X» ..., be i.i.d. on a probability space&x, 4, P). Let # be a
pointwise measurable class of real valued functions definedoifrurther let
€1, €2, ..., be a sequence of i.i.d. Rademacher random variables independent of
X1, X2, ....[By Rademacher, we meah(e; = 1) = P(e1 = —1) = 1/2.] Set, for
eachg € # andm > 1,

m
(4.20) Tu(g) = ) (8(X;) — Eg(X)}.
j=1
We shall need the following inequality, which is essentially due to Talagrand
(1994). See Einmahl and Mason (2000).

FACT 4. Let # be a pointwise measurable class of functions on (3, 4)
satisfying, for some 0 < M < oo, |Igllx :=SUP.cx |8(x)| < M, g € #. Then, for
all n > 1andr > 0, we have, for suitable finite constants A1, A2 > 0,

> eig(Xi) +r)}
i=1 H

< 2[exp(—Apt?/nody) + exp(— Azt /M),
where %, = sup, 5 Var(g(Xx)).

Py max ([Tl s 2A1<E
1<m<n

Let G be a finite valued measurable function satisfying, foradl X, G (x) >
SUR,c 5 |g(x)], and define

N (e, #) = SupN (svV Q(G?), #,dg),
0

where the supremum is taken over all probability meas@esn (X, 4) for
which 0< Q(G?) < o0 anddy is the L(Q)-metric. As aboveN (e, #,dg) is
the minimal number of ball§g : dp (g. ') < €} of dp-radiuss needed to covert.

We shall require the following moment bound of Einmahl and Mason (2000).
[For a similar bound, refer to Giné and Guillou (2001).]
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FAcT 5. Let # be a pointwise measurable class of real valued bounded
functions on (X, ») such that, for some constants 8, v, C > 1, o < 1/(8C) and
function G as above, the following four conditions hold:

0(G?) = EG(X) < %
N(g, #) < Ce™", O<e<1;

002 = SupEgz(X) <o
geH

and

supligllx < (2vv+ 1) Vno?/log(B v 1/0).

geH
Then we have, for a universal constant As,

Y eig(Xi)
i=1

< Azv'vno?log(B v 1/0).
H

(4.21) E

We shall make frequent use of the next inequality, which follows readily from
Facts 4 and 5.

INEQUALITY 1. Let {#,},>1 be a sequence of classes of measurable real
valued functionson R? each bounded by M > 0 and satisfying uniformlyinn > 1,

zero at the rate (H.ii). Assumethat, for some y > 0, for all n large,
(4.22) 02 := supEg(X) < y°h,.

P
g€Fn

Then with b, asin (4.1), there exist constants Do > 0 and D1 > 0 such that, for
all p >0andall n large,

Pa(p) = P{ max [Tz, = (v + p)len}
1<m<2n

(4.23) < 2exp(—Do(p/y)?10g(1/ hn)).

PrROOF First, by Fact 4, for suitable finite constams, A, > 0,
2n

Y €ig(Xi) +pbn) }
i=1 Fu

< 2[exp(—A2p%b} [ (2n0,))) + eXP(—A2pbn/M)].
Now by using (4.22) with Fact 5, we get, for a suitalle > A1, for all n large,

2n
D eig(Xi)

i=1

Py max ||T, > A E
{1<m<2n|| 7, 2 1<

A1E <yD1b,,

Fn
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+pbn) }
Fn

Therefore we readily conclude from Fact 4 that, for some consiant®s > 0,

P.(p) < 2exp(—D2(p/y)?109(L/ hy)) + 2 €XH—D3pby),
which by (H.ii) is, for someDg > 0 and all large, less than or equal to

2exp(—Do(p/y)?10g(1/ hy)). m

which gives

Py(p) = Py max (Tl = A1<E
1<m<2n

2n
> eig(Xi)
i=1

Returning to the proof of Proposition 1, for any- 0, with ¢ asin (4.17), let
(4.24) H(n):={g—g0(g.8)=<n g8 €
and
(4.25) () ={(g — &)1, in =) g — ¢ € HMm),L<i <my).
Using this notation, we can writg, (t, ) in (4.19) as

(4.26) patr.n) = P max [Tl = oba)
1<m<2n
Clearly, by using the fact that eagh— g’ is uniformly bounded by := 2«, we

get, with D1 as in Inequality 1 that for some> 0 and alln > 0,

(4.27)  max sup E(g—g)?(h; Y0 — Z)) < hn8%n?/ D2
1siz=mn g—g'eqt(n)

LetF' ={g—g' :g,¢ € F}. Clearly, from (F.iii) we get that, for somé > 0 and
with v =2vg, N(e, F) <Ce™V, 0<e < 1.
Now for anyt > 0 andn > 0 such thaysé < /2, we see that

(T, n) < P{llf)%n 1 Tonll s = (08 + r/2)bn}.

Therefore, by (4.27) and¢, (n) C ', we can apply Inequality 1 with = n8/ D1
andp = t/(2D1) to show that, for alk > 0 and sufficiently smalh > 0 satisfying
né < t/2 and alln large enough,

(4.28) Pa(t. ) < 2exp(—4~1872Do(t/m)?log(1/ hy)),
which implies that
lim suplog p, (t, 1)/(2109(1/ hy)) < =876~ Do(x/n)>.

n—o0
Next, by Chebyshev’s inequality applied to €xplog 2), we getP{n, > 2n} <
exp((1 — 2log2n), from which we obtain that

lim_log P{r, > 2n}/(2l0g(1/ hy)) = —oo.
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Putting everythig together, taking (4.19) into account, we conclude veith=
(210g(1/ hy)t)~H,

lim lim supe, max P{ sup |Hi’n<g)—“i»"(g/)'2f/m}
n—0 n—oo 1<i<my, 0(g.8")=<n

< Iimo(—8_18_2Do(r/n)2) = —0o0.
n—

This shows that condition (A.iii) of Fact 1 holds. Assumption (F.iii) implies
that (A.i) of Fact 1 is satisfied and we have already verified (A.ii) above. Thus
we have checked all the conditions of Fact 1 and can infer that its conclusions
hold for the triangular array of processgs; ,(-), i =1,...,m,}. Finally, it can
be deduced from Theorem 4.2 of Arcones (2004) that, in our situatior,(ihg
as arises from Fact 1 has the representation (4.2). This completes the proof of
Proposition 1.

4.1.3. Poissonization. Choosez1 ,, ..., zm,.n € J, and, for 1<i <m,, let,
forg € g,

n

Lin(g) = (buVF @) Y (e ¥ Gin — Z)) — Eg(hy Y4 (i — 2))).

j=1

We shall need the following special case of Lemma 2.1 of Giné, Mason and
Zaitsev (2003). Its idea may be traced back to Pyke and Shorack [(1968), proof
of Lemma 2.2], through Einmahl (1987) and Deheuvels and Mason (1992) [also
see Einmahl and Mason (1997)]. For a furtbeneralization, along with additional
historical remarks, refer to Borisov (2002).

FACT 6. Chooseziy,...,zm,.n € J. Whenever
my
(4.29) Y P{Zezi,—hy'1) <1/2,
i=1

then for all Borel subsets By, ..., By, Of [50($),
P{Li,eB;i,i=1...,m,}<2P{Il;,€Bi,i=1,...,my,},
where I1; , isthe Poissonized version of L; , asdefinedin (4.11).

Our next lemma completes the proof of part (b) of Theorem 1.

LEMMA 2. With probability 1, for any ¢ € 8p, and ¢ > 0, thereisan n(#, ¢)
such that, for all n > n(%9, ¢), thereisa z,, € J such that

(430) Ly(zn,-) € Be(9).
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PrRoOF Recall definitions (4.2) and (4.3). Choose afiye 49 with 0 <
(9, 9) =21(9¥) <1 ande > 0 small enough so that

(4.31) 0<2I(B:(¥)) <1

Selectzy p, ..., Zm,,» € J such that the components gf, andz; ,, i # j, differ
in absolute value by more thalzr%/d, (4.29) holds and

(4.32) logm,, /log(1/h,) — 1 asn — oo.

The existence of such a sequenge,},>1 is guaranteed by (4.18) and the
assumption that has nonempty interior, which implies th@i, b1] x --- x
[ag, byl C J, forsome—oco <a; <b; <oo,i=1,...,d.

We see by Fact 6 that

Po=P{Lin&B:®), i=1 ... ,mp} <2P{Tl;, ¢ Be(®), i =1,...,mp)}.

Now by using the independence property of the Poisson procéksesl <i <
m,,, following from the choice of the; ,, i =1, ..., m,, and the assumption that
the functionsg have support i<, this last bound equals

my

2[] PiMin ¢ B:0)).

i=1

Applying part (ii) of Proposition 1, we see that this last expression is, fopany)
and alln sufficiently large,

< 2[1— exp(—2(1+ p) log(1/ hy) I (B:(9)))]™".

which, in turn, by (4.31) and an appropriate choice ot ® < 1 is, for some
0 < t < 1 and for alln sufficiently large,

<2[1—exp(—tlog(1/h,))]"" =2(1 — h})™ < 2exg—myh}).

Since we assume (4.32) and (H.iii), we see that, foyalt 1 andn large, P, <
exp(—(logn)?), from which we readily conclude (4.30) by the Borel-Cantelli
lemma. The casé(¥) = 0 is readily inferred from the & 27 () < 1 case. [

4.2. Proof of part (a) of Theorem 1.

LEMMA 3. For some constant C > O independent of the sequence {4, },>1,
with probability 1,

(4.33) limsupsupsup|L,(z, g)| <C.

n—oo zeJ ge§



1410 D. M. MASON

PROOF The proof will be obtained by blocking betweef &nd #*1 and
using Inequality 1. Notice that for a suitahle- O, for all largek,

max supsupEg?(h,; Y4 (z — 7)) < t%h
2k <p<2k+l g g<4

nk+1°
withng =2k k=1,2,.... Setfork=1,2, ...,
Fner = ghy Yz —))ig€§, zeJ, 28 <n <21}

Now for anyp > 0 andDg as in Inequality 1 with3; as in (4.18), we get, using
hylog(1/ hy) N\, that

P{ max supsup|L,(z, g)| > v2(t +,0)D1/\/E}

2ken<2ttl e geg

< P{ max |T,l#,,, = (t+ p)lenm},
1

1<n<nj4

< 2expg—Do(p/7)?109(1/ . ,)).-

Notice that by (H.iii), we have lod./ h,,.,)/log(k) — oo, which in combination
with this last bound and the Borel-Cantelli lemma implies that (4.33) holds with
C=+2(t +p)D1//B1foranyp >0. O

Write now, for anyy > 0,

(4.34) we=[A+yk  fork=12....

LEMMA 4. With probability 1,

(4.35) )I/ignolimsup max |by/by,,, —1|supsup|L,(z, g)|=0

k—>oo VK<N=Vitl zeJ ge$
and
N l/d
FOpmsue, T2, Supsetbn/bu (e & (hn/ Fuca) )
(4.36)

ProOOF The proofs of (4.35) and (4.36) follow closely those of Lemmas
3.5 and 3.6 of Deheuvels and Mason (1992). Lemma 3 is used to establish (4.35).
The proof of (4.35) is based on Inequality 1 using condition (G.ii). We omit the
routine details. [J
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By condition (G.i) and compactness @f for any O0< 6 < 1, we can choose
21, ..., ZM,(0) € J With M, (8) < oo such that, for alk € J,

_ “d,. 2
Su;l<zrl]£(9)/ [g(x) g(x+hn (z Z))] dx <6

and, further, we can do this so that

4.37 sup min  h Ye|z — 0 ash\ 0,
#.37) ze]p1<l<Mn(9 Iz = zila = N

and for some functiod (9) < oo for 6 > 0,
(4.38) M, () <C ©)h;*.

Next, for any 0< 0 < 1, z € J, let z(9) denote a selection of a among
215 - -+ > ZM,(6) satisfying

(4.39) Sup i [g(x) — g(x + A, Y (z(0) — Z))]2dx <0.
g<€%
Moreover, we do this in such a way so that
(4.40) suph; Y4z —z(0)2— 0  ash \ 0.
zeJ

LEMMA 5. There exists a ¢ > 0 such that, for all 0 <6 < 1 and large
enough n,

(4.41)  supsupE (g(h; Y4 (z — 2)) — g(h; ¥4 (2(0) — Z)))? < T26h,,.
zeJ g€e$

PrROOFE Notice that
E(g(h, ™"z = 2)) - g(h; /" (2(0) - 2)))?
<E[E(g(h; Yz — 2)) — g(h;Y(2(0) — 2)))?1Z € Qu(z.2(0))].
whereQ, (z. 2(0)) = (z — h¥/*19) U (z(8) — h2/*

Jo, ezonlg 4 @ = y) — g(ha ' 2(0) — YN () dy
P(Q0(z.2(0)))

I%). Now this last bound equals

P(Qu(z, 2(0)))

=: I, (z, 2(9)).
Clearly, for all large enough, uniformly in z € J, 2,(z,z(0)) C J,,. Thus by
using the fact that, with denoting Lebesgue measukg,< A(2,(z, z(6))) < 2h>,
along with (4.18), we get, for all large enoughuniformly in z € J andg € 4,
Jo, e.r@nlghn = ¥) — gV (2(0) — y)PB2dy

hnﬂl

_ Jralg Gz = ) — g 2(0) = y))PPB2dy
N hnﬂl

In(Z7 2(9)) = 2B2h

2ﬁ2hn,
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which by the change of variables= 4, Y/¢(z — y) and (4.39)

B ~1/d W2
_ Jralg) —g(x +’Zl @O) = Ddx 5 p2, 26200, 181.

Thus we have (4.41) with? = 282/8,. O

For eachz € J andh > O, let S,(-; z, h) denote the function fron§ to R
defined, for eaclg € 4, to be

(4.42) Su(giz.h)=(VF@) Y {e(h™ M@~ 2)) - Eg(h™Y(z - 2))}.

j=1
Now for any O< 6 < 1, with z(6) andM,,(9) satisfying (4.37)—(4.40), set
o D(0) = b, supsup S, (g; 2, hn) — V£ (2(0))/f (2)Su(g; 2(8), hn)|
zelJ ge$
and

’

@ P (0) = 5(0)b, L supsup S, (g; 2(0), )
zelJ g€§

whereb, is as in (4.1) and(9) =sup.; |/ f(z(0))/f (z) — 1|. Notice that

supsuf L, (z, &) — La(z(0), )| < &Y 0) + &2 (6),
zeJ ge$

from which we get that, forany >0 and 0< 6 < 1,
P{L,(z,-) ¢ 8 for somez € J}

My (0)

(4.43) < Y PlLa(zi,) ¢ 807
i=1

+ Pla Y ®) > n/4) + Plo?©6) > n/4).

To complete the proof of part (a) of Theorem 1, we need the following
generalization of the Ottaviani inequality.

4.2.1. A generalized Ottaviani inequality. Let {S,,(#):t € A,0 <m < n},
n > 1, be an indexed set of random processes such that, for each and
l<m=<n, S, € B, whereA is a countable set an8l is a separable Banach
space with normj - ||. Also assume that, for each<lm < n,

(4.44) {S,(t) — S, (t):t € A}isindependent ofSi (1) :t € A, L <k <m}.
Further assume that, for sorae- 0,
(4.45) max supP{||S,(t) = S,@®)|| =1t}=1c <1,

O<m=<n e A
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whereSp(t) =0 for all r € A. For any Borel subsed ¢ B, n > 1 and$ > 0, set
A% = {x:infycq llx — y| <8},

Cn(8) = {S (1) ¢ A° for somer € A and 1< m < n}
and
D, (8) = {S, (1) ¢ A’ for somer € A}.

We shall prove the following extension of Ottaviani’s inequality.

LEMMA 6. Witht > 0and0 < ¢ < lasin(4.45),for all Borel subsets A C B,
and ¢ > 0,

(4.46) P{Cy(e + 1)} < (1= ) LP{D,(e)}.
PrOOE Lets, i=1,2,..., be an enumeration of the satand define the
eventsfors >0,i=1,2,..., and 1<m <n,
Dim(8) ={Su(t) ¢ A%}, D@ = Dim(®
i>1
and

Fim(8) ={lSn(#i) — Sm (@)l < 8}.
We defineD; o(8) = @ andDg(§) = @. We get that

n o0
P{Cu(e+T)} =) Y P{Dige+1) () Df,(c+1) (| Di(e+71)¢,
g=1li=1 j<i-1 k<q—1

whereA¢ denotes the complement of the eventWe see by (4.44) that, for any
8’ ands” > 0, the sequences of even; ,,,(8") :i > 1} and{F; ,,(8"):i > 1} are
independent. Therefore by (4.45),

(1—c)P{Cp(e + 1)}
= min inf P{F;u(D}P{Cule + 1)}

1<m<ni

522P{Di,q(8+r)mlfi,q(r) (| DS,e+1) [ Die+1)

i=1g=1 j<i—1 k<qg—1

< P{U Di,n<s>} = P{D,(e)).

i=1 O

The ideas used in the proof of Lemma 6 go back at least to Lemma 2.3 of James
(1975).
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Returning now to the proof of part (a) of Theorem 1 and recalling (4.34),
consider, for any, y > 0 andk > 1, the sets

Ci(e.y) ={by > Su(- 2. hy,,) ¢ 86 for somew, <n < w41 andz € J}

and
Di(e,y) = byt Sui (52, hy,) ¢ 85 for somez € J}.

Vk+1
It is elementary to verify using Inequality 1 that, for any- 0, all y > 0 small,
depending or, and all large enough,

max SUpP{b_l I Suea (52 hug) = Sm(- 5 2, hvk+1)||3~' >e/2} <1/2.

Vk<m=Vi1 Vk+1

Thus, since with probability 1, the values®f(- ; z, hy,,,), vk <n <wvii1, 2 € J,
are determined by a countable subsetJofit is clear that we can apply the
generalized Ottaviani inequality to give, for all large

P{Ci(e,y)} < 2P{Di(e/2,y)} = 2P{Ly, ., (z, ) ¢ 85/* for somez € J},
which by inequality (4.43) is
My 49)
<2 Y P{Ly,Gi) ¢85 +2P{@ D (©) > ¢/8)

Vi+1

+2P{@? () > ¢/8}

Vi+1
= Q1k(e) + Q2 (e) + O3k (8).
First, by choosing > 0 sufficiently small and using the fact that (4.40) implies

thats(0) — 0, aso \ 0, along with (4.41), one can easily show using Inequality 1
that

o0

Z(Qz,k(8) + 03.4(8)) < 00.

k=1
Next, by applying part (i) of Proposition 1 witih, = M,,,(#), in combination
with Fact 6 withm,, = 1, it is straightforward to check that, for some- 0 and all
largek,

01.k(e) < My, (0) exp(—(1+ ) log(L/ hy,,,)),
which by (4.38) and lodL/h,,.,)/log(k) — oo, following from (H.iii), implies
that) 72, Q1.«(¢) < oco. Thus for anys > 0 and ally > 0 small, depending os
using the Borel-Cantelli lemma and the above string of inequalities, we obtain that
(4.47) P{Ci(e,y), i.0.ink>1} =
Observing that fopy <n < vgy1,
(B /bug) Ln (2o 8((n/ g ) ) = S5 20 1) [

the remainder of the proof of part (a) is now easily inferred from (4.47) and
Lemma 4.
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4.3. Proof of Corollary 1. First note that the assumption that the dengiig
uniformly continuous orR¢ is equivalent to the assumption thatis continuous
onR¢ and satisfies the condition that

Rlilnmsunf(z) lzl2> R} =0,

from which we readily infer thatrg = sup.gas+/f(z) < co. Furthermore,
f continuous onR? implies that, for allc > 0, the set{z:c > f(z) > O} is
nonempty.

Define the compact set = {z:c < f(z) and|z|2 < 2R}, wherec > 0 andR
are chosen so that has nonempty interior and witP; as in Inequality 1 and
the bound on the functions i,

(4.48) SUNVf(2):1zl2 = R} < V/c < 70/ (6v2 Dy).

Now since f is assumed to be uniformly continuous, we can chooge-a0 so
that

f@)>c/2 forallze J,.

Thus we can apply Theorem 1 to conclude that, foe al O, there exists an(¢)
such that for eacl > n(e), {L,(z,-):z € J} C 45, which clearly implies that
{Dy(z,-):z € J} C 1083 Obviously now, to complete the proof of the first part of
Corollary 1, it suffices to show that

(4.49) limsup supsup| D, (z, g)| < 10/2 a.s,

n—>o zeBgr ge$

whereBg = {z:|z]2> > R}. The proof will follow from blocking between*2and
2¢+1 and using Inquality 1. Noticethat since each € 4 is bounded by > 0, we
get, foreacw > 1, z € Bg andg € §,

Eg?(h; Yz — Z)) < k®h, f * Hy, (2),

whereH (x) = I'{x € I?}, which by Lemma 1, for alk large enough uniformly in
zZ € l?R,iS

< k2, (f(2) + ¢) < 2ck%h,,.
Thus withng :=2K, k=1,2, ..., using (H.i), we get, for all large enoudie 1,

max  supsupEg?(h; Y (z — Z)) < 4ck®h

n
2k<n<2+1:eBpgeg

Set, fork=1,2, ...,

Np41°

Fueer =gy Yz —)):g €4, z€ Br, 2 <n <21},
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Now with D1 as in Inequality 1,

P{ max supsup|Dn(z,g)|>«/§(2xﬁ+xﬁ)Dl}

2k <n<2k+1,eBp g€

< P{ max Tyl , = (2evE+kvE)Dibiyal,

1<n=<npyq1

which since#,, ,, satisfies (F.iiiii) is, by Inequality 1, with = x\/c andy =
2k\/c,
< 2ex(—Dod H10g(1/ hny,,))-

Since log1/hy, ,)/log(k) — oo, this last bound, the Borel-Cantelli lemma
and (4.48) imply that (4.49) holds, which completes the proof of part (a) of
Corollary 1.

Wheneverf(z) > 0, part (b) of Corollary 1 is proved by applying part (b) of
Theorem 1 on closed balBs(z) = {x:|x — z|» < 8} of radiusé > 0 aroundz,
whereé§ > 0 is sufficiently small, and whei(z) = 0 we apply a straightforward
modification of the argument given in the previous paragraph to closedmals
aroundz to show that

lim limsup sup sup|D,(z,g)|=0 a.s
N0 n—oo By (r) g€
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