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Detecting associations between microbial compositions and sample char-
acteristics is one of the most important tasks in microbiome studies. Most
of the existing methods apply univariate models to single microbial species
separately, with adjustments for multiple hypothesis testing. We propose a
Bayesian analysis for a generalized mixed effects linear model tailored to this
application. The marginal prior on each microbial composition is a Dirich-
let process, and dependence across compositions is induced through a linear
combination of individual covariates, such as disease biomarkers or the sub-
ject’s age, and latent factors. The latent factors capture residual variability
and their dimensionality is learned from the data in a fully Bayesian proce-
dure. The proposed model is tested in data analyses and simulation studies
with zero-inflated compositions. In these settings and within each sample,
a large proportion of counts per microbial species are equal to zero. In our
Bayesian model a priori the probability of compositions with absent micro-
bial species is strictly positive. We propose an efficient algorithm to sample
from the posterior and visualizations of model parameters which reveal asso-
ciations between covariates and microbial compositions. We evaluate the pro-
posed method in simulation studies, and then analyze a microbiome dataset
for infants with type 1 diabetes which contains a large proportion of zeros in
the sample-specific microbial compositions.

1. Introduction. Large-scale studies of the human microbiome have become increas-
ingly common thanks to advances in next generation sequencing (NGS) technologies (Qin
et al. (2010), Human Microbiome Project Consortium (2012)). A relevant task in these stud-
ies is to measure the association between a sample’s microbial composition and individual
characteristics, such as biomarkers and aspects of the sample’s environment (Kostic et al.
(2015), Morgan et al. (2012), Quince et al. (2013)). The abundances of microbial taxa are
measured by assigning DNA reads to reference genomes. Some experiments target specific
genes, such as the 16S rRNA gene, while others sample the entire bacterial genome. In all
cases, the resulting count data for a collection of samples are organized into a contingency
table known as the operational taxonomic unit (OTU) table.

Several methods for association studies with microbial data apply ideas from RNA-seq and
other high-throughput genomic experiments (Anders and Huber (2010), Robinson, McCarthy
and Smyth (2010), Paulson et al. (2013)). These methods use raw or transformed counts of
microbial species to test the association of a single species with relevant covariates. Typically,
these tests are carried out one species at a time by using generalized linear models (GLMs)
combined with families of distributions that are overdispersed and zero inflated (Xu et al.
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(2015)) to accommodate well-known characteristics of microbial abundance data (Li (2015)).
The major drawback of this approach is that it models species independently. This approach
does not take into account correlations across microbial species and does not allow borrowing
of information across species.

The outlined limitation has prompted the introduction of joint models of microbial abun-
dance (Chen and Li (2013), Wadsworth et al. (2017), Xia et al. (2013), Grantham et al.
(2019)). These methods model the counts of I microbial species (ni,j ; i = 1, . . . , I ), of a
specific sample j , say a saliva sample, with a multinomial distribution. To account for the
overdispersion, these methods assume the multinomial parameter P j = (P

j
1 , . . . ,P

j
I ) is ran-

dom and distributed accordingly to a parametric model. For example, in Chen and Li (2013)
and Wadsworth et al. (2017), P j ’s follow independent Dirichlet distributions and in Xia et al.
(2013) and Grantham et al. (2019), P j ’s follow multivariate logistic-normal distributions. To
associate the covariates to the microbial compositions, all models link the parameters of each
distribution of P j (Dirichlet or logistic normal) to covariates of sample j via a regression
function. Inference on the regression coefficients indicates whether a covariate is associated
with the abundance of a species or not. Although these joint models overcome limitations of
separate modeling of single species, the assumed distributions of the P j ’s in these methods
are restrictive. For instance, P

j
i is strictly positive for all i and j . This does not reflect the

fact that some species can be completely absent in sample j . In addition, the variation of
P j ’s across samples might be mainly associated to some latent characteristics that are not
observed. In this case, the methods which link model parameters exclusively to covariates do
not capture dependence across species-specific residuals.

Bayesian nonparametric methods that jointly model the compositions P j offer flexible al-
ternatives. A widely used class of nonparametric models stems from the hierarchical Dirichlet
process (Teh et al. (2006)). In its simplest form, the hierarchical Dirichlet process (HDP) as-
sumes samples are exchangeable and the compositions P j over I = ∞ species are identically
distributed. The exchangeability assumption in the HDP does not capture potential associa-
tion between P j ’s and covariates. Nonparametric models with covariates explicitly embed-
ded are ideal candidates for modeling dependence of compositions P j on covariates. There
are only a few such models discussed in literature. A relevant class of nonparametric models
embedding covariates utilizes the Chinese restaurant processes representation (Johnson et al.
(2013)). A second class of such models utilizes completely random measures (Lijoi, Nipoti
and Prünster (2014)). A third class of models follows the idea in MacEachern (2000). Among
this class of models, Rodríguez and Dunson (2011), Müller, Quintana and Rosner (2011),
Griffin, Kolossiatis and Steel (2013) and Arbel, Mengersen and Rousseau (2016) construct
dependent random measures using stick-breaking processes with atoms and weights specified
through covariate-indexed stochastic processes.

Recently, a Bayesian nonparametric model for microbiome data specified through sample-
specific latent factors has been discussed in Ren et al. (2017). This construction induces a
marginal Dirichlet process prior for each composition P j and introduces dependences across
samples by associating microbial compositions P j to linear combinations of latent factors.
In addition, the authors introduced a link function with hard truncation at zero to model zero
inflation in microbiome data. This model employs a shrinkage prior on the latent factors to
produce parsimonious estimates that concentrate on a low-dimensional space.

This manuscript builds on the model of Ren et al. (2017), linking the microbial compo-
sition P j to covariate effects as well as to the latent factors. The resulting extended model
takes into account overdispersion and zero inflation in microbiome data. More importantly,
it can also enable association studies for microbiome data with efficient computations. By
estimating coefficients for linear combinations of relevant covariates, we visualize and infer
whether a given covariate is associated with the microbial compositions or not.
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We performed an extensive simulation analysis to compare the performances of the pro-
posed model and a parametric model with latent factors (Grantham et al. (2019)) that is used
in microbiome studies. The simulation study suggests that our model can accurately recover
population-level trends of microbial abundances over covariates even when the model is mis-
specified. Our model has better performance than Grantham et al. (2019) in estimating the
relationship between covariates and microbial abundances when the level of zero inflation
in the data increases. We also discuss the interpretation of model parameters and propose
approaches to visualize covariates’ effects.

The paper is organized as follows. In Section 2 we specify the Bayesian model and discuss
the identifiability of relevant model parameters. Section 3 is dedicated to computational as-
pects and provides an overview of the sampling algorithm for posterior inference. Section 4
presents simulation studies, and in Section 5 we discuss an application of the model to data
from type 1 diabetes studies which collected longitudinal measurements from a cohort of
infants. Section 6 concludes and discusses possible extensions of the proposed analyses.

2. Prior model. In this section we first review the construction of the dependent Dirich-
let processes in Ren et al. (2017) and then provide a new version of the model which incor-
porates covariates. We also discuss the identifiability of the model parameters, including the
parameters that correspond to the covariates’ effects. The model will be used in the next sec-
tions to analyze the OTU table n = (ni,j ; i ≤ I, j ≤ J ), where ni,j is the observed count of
the microbial species i in sample j . I and J are the total number of species and samples, re-
spectively. Our aim is to extract from the OTU table information on the relationships between
microbial composition and observed samples’ characteristics.

2.1. Dependent Dirichlet processes. In Table 1 we illustrate a subset of the OTU table
from the DIABIMMUNE project (Vatanen et al. (2016)). The goal of the DIABIMMUNE
project is to compare microbiome communities in infants with type 1 diabetes (T1D) or serum
autoantibodies (markers predicting the onset of T1D) and healthy controls in three countries:
Finland (FIN), Estonia (EST) and Russia (RUS). The study is prospective and longitudinal,
and the microbial abundances are measured with shotgun sequencing. Table 1 records the
counts of 10 microbial species in three Russian samples and three Finnish samples based
on 16S rRNA sequencing. We denote the ith recorded species by Zi . For instance, Z1 is
Bifidobacterium longum in Table 1.

For sample j , we assume the vector (n1,j , . . . , nI,j ) follows a multinomial distribution
with unknown parameters. Our analyses extend easily to the case in which the counts ni,j

TABLE 1
An example of OTU table (Vatanen et al. (2016))

Species RUS1 RUS2 RUS3 FIN1 FIN2 FIN3

Bifidobacterium longum 0 73,222 3,014,074 14,294 7291 9228
Bifidobacterium bifidum 3,594,189 49,223 0 11,177 11,656,816 14,759
Escherichia coli 4,210,380 23,025 635,855 29,700 7508 556,208
Bifidobacterium breve 0 136 245,827 19,312 7,223,273 0
Bacteroides fragilis 0 88,751 0 6,257,732 343 75,506
Bacteroides vulgatus 0 7454 0 4745 0 25,859
Bacteroides dorei 0 0 0 0 0 0
Bifidobacterium adolescentis 0 111,248 1,626,357 735,715 1194 0
Bacteroides uniformis 0 3901 0 5859 1633 28,638
Ruminococcus gnavus 145,485 33,004 92,101 253,830 29 1,186,774
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are Poisson random variables with unknown means. The sequencing depth nj = ∑I
i=1 ni,j

and the sample-specific multinomial probabilities (P
j
1 , . . . ,P

j
I ) determine the distribution

of (ni,j ; i ≤ I ). The probabilities (P
j
1 , . . . ,P

j
I ) represent the microbial composition of sam-

ple j . We use P j ({Zi}) = P
j
i to denote the relative abundance of Zi in sample j . The vectors

P j vary across samples according to heterogeneity of either measured or unknown charac-
teristics of the J samples. For example, in Table 1, the maximum likelihood estimates (MLE)
of abundances of Bifidobacterium longum (P j ({Z1})) tend to be higher in Russian samples
than in Finnish samples.

We describe the Bayesian model for the unknown compositions P j , j = 1, . . . , J in Ren
et al. (2017). Let Z be the set of all microbial species and Zi ∈ Z , i ≥ 1 be a sequence of
distinct species. The model does not constrain a priori the number of species present in the J

samples. The relative abundance of OTU Zi in sample j is defined as

(2.1) P j ({Zi}) = σi〈Xi ,Yj 〉2+∑
i′ σi′ 〈Xi′,Yj 〉2+

,

where σi ∈ (0,1), σ1 > σ2 > σ3 > · · · and Xi ,Yj ∈ R
K . The kth components of Xi and Yj

are denoted as Xk,i and Yk,j . We will explain the definitions of σi , Xi , Yj and K in the next
paragraph. I(·) is the indicator function, and x+ = x × I(x > 0). 〈·, ·〉 denotes the standard
inner product in R

K . We define Qi,j = 〈Xi ,Yj 〉. In addition, σ = (σi; i ≥ 1), X = (Xi; i ≥
1), Y = (Yj ; j ≤ J ) and Q = (Qi,j ; i ≥ 1, j ≤ J ).

We can interpret σi > 0 as a summary of the overall abundance of species i across sam-
ples. We call Xi and Yj species vector and sample vector, respectively. Xi and Yj are latent
components of the probability model. Differences across compositions P j are determined by
the Yj latent vectors. Vectors Yj can be interpreted as latent characteristics of the samples
that affect their microbial compositions. The model assumes that there are K latent charac-
teristics and Xi corresponds to the effects of these K latent characteristics on the abundance
of the species Zi .

The construction above implies that the angle φj,j ′ between Yj and Yj ′ determines the
degree of similarity between compositions P j and P j ′

. Specifically, small φj,j ′ indicates
that P j and P j ′

are similar. When φj,j ′ = 0, compositions P j and P j ′
are identical. Sym-

metrically, the angle ϕi,i′ between Xi and Xi′ can be viewed as a measure of similarity
between species Zi and Zi′ . When ϕi,i′ decreases toward zero, the correlation between
(P j ({Zi}); j ≤ J ) and (P j ({Zi′ }); j ≤ J ) increases to one.

The prior specification in the model is as follows. First, σ1 > σ2 > σ3 . . . are a priori
ordered points from a Poisson process on (0,1) with intensity ν(σ ) = ασ−1(1 − σ)−1/2.
Second, the Xk,i random variables are independent Gaussian N (0,1), i = 1,2, . . ., k =
1,2, . . . ,K . We can assume for the moment that the Yj ’s are fixed.

The resulting marginal prior distribution on the composition P j is a Dirichlet process (Ren
et al. (2017)). In addition, P j and P j ′

are dependent for j 	= j ′. To provide some intuition
on this construction of Dirichlet process, we consider a similar model with I < ∞ species.
For simplicity, we set ‖Yj‖ = 1, where ‖ · ‖ is the Euclidean norm of a real vector. The
prior on Xi’s induces a standard normal distribution on (Q1,j , . . . ,QI,j ). The prior distri-
bution of (Qi,j )

2+ is therefore a mixture of a point mass at zero and a Gamma(1/2,1/2)

distribution. Assume (σ1, . . . , σI ) are independent Beta(α/I,1/2 − α/I) variables. It can
be verified by moment generating function that the joint law of these ordered independent
Beta random variables converges to the law of a Poisson process on (0,1) with intensity
ασ−1(1 − σ)−1/2 when I → ∞. The products (σi(Qi,j )

2+, i = 1, . . . , I ) then follow a mix-
ture distribution of a point mass at zero and a Gamma(α/I,1/2). The normalized vector
(σi(Qi,j )

2+/
∑

i′ σi′(Qi′,j )2+, i = 1, . . . , I ), conditioned on (I(Q1,j > 0), . . . , I(QI,j > 0)),
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follows a Dirichlet distribution with weights proportional to I(Qi,j > 0). If I → ∞, we know
that the (σ1, . . . , σI ) converges in distribution to the Poisson process with intensity ν, and
(σi(Qi,j )

2+/
∑

i′ σi′(Qi′,j )2+, i = 1, . . . , I ) becomes a Dirichlet process (Ferguson (1973)).
This holds also when ‖Yj‖ 	= 1 because the distribution of (σi(Qi,j )

2+/
∑

i′ σi′(Qi′,j )2+, i =
1, . . . , I ) does not depend on ‖Yj‖.

For inferential and visualization purposes it is desirable that the Yj latent vectors concen-
trate approximately on a low-dimensional space. The resulting Yj are parsimonious latent
factors that capture the variability of observed species abundances across samples. To this
end, the model applies the prior studied in Bhattacharya and Dunson (2011),

Yj ∼ N
(
0,diag{γ1, . . . , γK}),

where γk rapidly decrease with k. The prior formalizes the desiderata of having the norm
‖Yj‖ mostly driven by the first few components of Yj , say the first three components
(Y1,j , Y2,j , Y3,j ) and the rest of the components, (Y4,j , . . . , YK,j ), vanish with negligible
values. In different words, only a small set of Yj entries—three in the example—are rel-
evant. This approach is preferable to a hyperprior on the dimensionality of Yj mainly for
computational convenience.

2.2. Fixed effects. The goal of this subsection is to model relationships between mi-
crobial compositions and samples’ characteristics. For example, in studies of inflammatory
bowel disease (IBD) (Gevers et al. (2014), Greenblum, Turnbaugh and Borenstein (2012),
Morgan et al. (2012)) researchers were interested in identifying microbes that correlate with
the onset of IBD to develop therapeutic hypotheses. These analyses typically utilize regres-
sion models where the outcomes coincide with OTU abundances. Following a similar strat-
egy, we expand the model in Section 2.1.

Assume there are L ≥ 1 observed covariates. We use wj = (wl,j ; l = 1, . . . ,L) to denote
the covariates’ values for sample j . The effects of this set of covariates on species i are
vi = (vl,i; l = 1, . . . ,L). The collection of all wj and vi are w = (w1, . . . ,wJ ) and v =
(v1, . . . ,vI ). Our extended model directly modifies the random variables Qi,j ’s introduced
in the definition of the model (2.1), by adding a linear function of wj and an error term

(2.2) Qi,j = 〈Xi ,Yj 〉 + 〈vi ,wj 〉 + εi,j ,

where εi,j
iid∼ N (0,1) is the error term. Thus,

P j ({Zi}) = σi(Qi,j )
2+∑

i′ σi′(Qi′,j )2+
.

The inner product 〈vi ,wj 〉 represents the fixed effects of our model, whereas 〈Xi ,Yj 〉 repre-
sents the random effects. We fix the variance of the errors to one since the model for P j is
invariant if we rescale all Qi,j variables by a fixed multiplicative term.

In this construction vi and wj can be viewed as additional dimensions of Xi and Yj ,
respectively. The angle between (wj ,Yj ) and (wj ′,Yj ′), denoted as φ̃j,j ′ , measures the sim-

ilarity between the microbial compositions P j and P j ′
. As in model (2.1), one can verify that

the correlation cor(P j (A),P j ′
(A)) is monotone with respect to φ̃j,j ′ . Similarly, the angle be-

tween (vi ,Xi) and (vi′,Xi′), ϕ̃i,i′ , is representative of the correlation between abundances of
species i and i ′ across samples. A small ϕ̃i,i′ value makes the correlation between vectors
(P j ({Zi}); j ≤ J ) and (P j ({Zi′ }); j ≤ J ) close to one.

The coefficients vi are a priori independent normal random variables with mean zero and
variance one. When the latent factors Y are fixed and the prior for Xi and σi remains the same
as in Section 2.1, the microbial composition P j , for each j = 1, . . . , J , retains a marginal
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FIG. 1. Effect of a single covariate w1,j on microbial species abundances. We illustrate the expected abun-
dances of species 1 and 2 when w1,j varies (Left) and the observed abundances of species 1–10 in one simulated
dataset as w1,j changes (Right). We focus on a single sample j and fix the random effects 〈Xi ,Yj 〉 in all simula-
tions. Only the value of w1,j and the error terms εi,j ’s vary. The expected abundances are calculated by averaging
over 1000 simulation replicates. We consider the cases where Qi,j = v1,iw1,j + 〈Xi ,Yj 〉 + εi,j with v1,1 = 5,
v1,2 = −5 and v1,i = 0 for i > 2 (Top) and Qi,j = v1,i sin(w1,j ) + 〈Xi ,Yj 〉 + εi,j with v1,1 = 5 and v1,i = 0
for i > 1 (Bottom). The covariate w1,j varies from −5 to 5 with 0.1 increments.

Dirichlet process distribution. More precisely, P j is a Dirichlet process with concentration
parameter α. This can be shown using the same argument as in Section 2.1.

It is important not to misinterpret the coefficients vi . The species abundances are not lin-
ear functions of the covariates (see Figure 1). In certain cases the relationship between the
covariates and the species abundances is not monotone. Consider a single covariate w1,j,

and assume Qi,j = v1,iw1,j + 〈Xi ,Yj 〉 + εi,j , where v1,1 = 5, v1,2 = 1 and v1,i = 0 when
i > 2. For simplicity, assume in addition σi variables all equal to 0.5. When w1,j is small, say
w1,j ∈ (0,0.5), the abundances of species 1 and 2 increases with w1,j . However, as w1,j gets
larger, say w1,j > 5, species 1 will dominate all other species, and the abundance of species
2 decreases to nearly zero.

2.2.1. Models for data analysis. In our analyses we considered longitudinal data with
repeated measurements over time for each individual. Assume samples j = 1, . . . , J are par-
titioned into U groups, that is, U distinct individuals. We use uj to identify the individ-
ual associated to sample j . We enforce the samples j and j ′ from the same individual u

(uj = uj ′ = u) to share common latent factors Yu. The longitudinal version of model (2.2)
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utilizes

(2.3) Qi,j = 〈Xi ,Yuj
〉 + 〈vi ,wj 〉 + εi,j .

The rationale for this model is that samples derived from the same individual tend to be
similar. The covariates wj will include time information (e.g., individual’s age) for each
sample j . This version of the model is tailored toward longitudinal data and studies with
repeated measurements, and it allows one to visualize time trends of microbial compositions.

We will use a truncated version of model (2.2) or (2.3) in data analyses, which we call the
finite-species model. Truncating the stick-breaking representation of Dirichlet process has
been studied extensively in literature (Ishwaran and Zarepour (2002)). The truncated process
can be arbitrarily close to the Dirichlet process in total variation distance if the number of
retained atoms is large. In our case we truncate the model (2.3) at the number of observed
species, I . This is sufficient for data analysis as the sequencing depth in microbiome studies
is generally large enough to capture most of the microbial species of interest. With I < ∞
species the finite-species model is defined by

(2.4)

Qi,j = 〈Xi ,Yj 〉 + 〈vi ,wj 〉 + εi,j ,

P j ({Zi}) = σi(Qi,j )
2+∑I

i′=1 σi′(Qi′,j )2+
, i = 1, . . . , I.

The prior for Xi and Yj remain identical. The prior for σi ’s becomes σi
iid∼ Beta(α/I,1/2 −

α/I).

2.3. Identifiability. In this subsection we consider the identifiability of the proposed
model. Since the model is invariant under simultaneous rotations of the vectors Yj and Xi ,
we cannot learn Y from the data. We discuss the identifiability of the correlation matrix S
associated to � = YᵀY + I, where I is the J × J identity matrix. Similarly, since the compo-
sition P j is invariant to scale transformation of σ , we will discuss identifiability of the ratios
σi/σi′ for i 	= i′. We assume that the number of samples is finite and that covariates wj ’s are
independent with E(wj wᵀ

j ) of full rank.

We proceed assuming initially that (P j ({Zi}); i ≥ 1, j ≤ J ) are observable random vari-
ables. Recall that

(2.5) (Qi,j ; j ≤ J )|vi ,Y,w ∼ N
(
wᵀvi ,�

)
.

Since we assume that P j ({Zi}) is observable, we have that P j ({Zi}) = 0 implies Qi,j ≤ 0.
Consider a set of new random variables, denoted as (P̃ j ({Zi}); i ≤ I, j ≤ J ), where
P̃ j ({Zi}) = I(P j ({Zi}) > 0). From (2.5) the conditional distribution of (P̃ j ({Zi}); i ≥
1, j ≤ J ) given (σ ,Y,v,w) is

(2.6)

p
(
P̃ j ({Zi}), i ≥ 1, j ≤ J |σ ,Y,v,w

)
∝ ∏

i

[∫
Ai

(2π)−J/2|�|−1/2 × exp
(
−1

2
(Qi − μi)

ᵀ�−1(Qi − μi )

)
dQi

]
.

Here, Qi = (Qi,1, . . . ,Qi,J ), μi = wᵀvi , Ai =×J
j=1 Ai,j and Ai,j = (−∞,0] if P̃ j ({Zi}) =

0, while Ai,j = (0,∞) when P̃ j ({Zi}) = 1. To illustrate the identifiability of the parameters
(σi/σi′ ; i 	= i′), S and v, we start with two simplified cases and then give a proposition:

1. Without random effects (Y = 0). We first note that conditioning on w, for a fixed i,
(P̃ j ({Zi}); j ≤ J ) are samples from a standard probit model (Albert and Chib (1993)), where
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vi serves as regression coefficients and the sample covariates are wj . Based on the theory of
generalized linear models, vi is identifiable when E(wj wᵀ

j ) is of full rank.
We then consider (σi/σi′ ; i 	= i ′). By construction,

P j ({Zi})
P j ({Zi′ }) = σi

σi′
(Qi,j )

2+
(Qi′,j )2+

.

Here, we use the convention that the ratio is zero whenever the denominator is zero. To ensure
the identifiability of (σi/σi′ ; i ≥ 1, j ≤ J ), we want to show that if(

P j ({Zi}); i ≥ 1, j ≤ J
)
,w

∣∣v,σ
d= (

P j ({Zi}); i ≥ 1, j ≤ J
)
,w

∣∣v′,σ ′,
then σi/σi′ = σ ′

i /σ
′
i′ for all i 	= i′. Using the identifiability of vi , the above equality

in distribution implies vi = v′
i , and in turn the equality of the conditional distributions

p(((Qi,j )
2+, (Qi′,j )2+),wj |v,σ ) and p(((Qi,j )

2+, (Qi′,j )2+),wj |v′,σ ′). This directly implies
σi/σi′ = σ ′

i /σ
′
i′ for all i 	= i′.

2. Without fixed effects (vi = 0). We consider σ and S. The distribution of (P̃ j ({Zi}),
P̃ j ′

({Zi})) is

p
(
P̃ j ({Zi}), P̃ j ′({Zi})|σ ,Y

) = 1

2π

∫
Ai,j×Ai,j ′

(
1 − S2

j,j ′
)−1/2 exp

(
−1

2
qᵀS−1

j :j ′q
)

dq,

where Sj,j ′ is the correlation between Qi,j and Qi,j ′ and Sj :j ′ is the correlation matrix of
(Qi,j ,Qi,j ′). Ai,j = (−∞,0] if P̃ j ({Zi}) = 0, while Ai,j = (0,∞) if P̃ j ({Zi}) = 1. Corol-
lary 3.12 in Ledoux and Talagrand (2011) shows that p(P̃ j ({Zi}), P̃ j ′

({Zi})|vi ,Y), when
vi = 0, is monotone with respect to Sj,j ′ . This implies that Sj,j ′ is identifiable.

Using the same arguments as in the case where no random effect is present, one can show
that the ratios (σi/σi′ ; i 	= i ′) remain identifiable.

In the general case the identifiability of the model parameters, with both fixed and random
effects, is described through Proposition 1 in Section S1 of the Supplementary Material (Ren
et al. (2020)).

3. Posterior simulations and visualization of covariates’ effects. In this section we
focus on posterior inference and computational aspects. In Section 3.1 we introduce an algo-
rithm for posterior simulations with the model described in Section 2.2. Then, in Section 3.2
we propose graphical visualizations to illustrate associations of microbial compositions and
covariates. These representations are relevant for the analysis of microbial abundances be-
cause, as we mentioned in Section 2.2, a positive (or negative) element of the vector vi ,
say the lth element, does not imply a monotone relation between the lth covariate and the
abundances of species i. To illustrate the relation between the lth covariate and species i,
we estimate how the abundance of species i would vary at hypothetical values of the lth
covariate.

3.1. Posterior simulations. We proceed with the finite-species model (2.4). The likeli-
hood function is

p(n|Q,σ ) ∝
(

J∏
j=1

I∏
i=1

(
σi(Qi,j )

2+
)ni,j

)
×

J∏
j=1

(
I∑

i=1

σi(Qi,j )
2+

)−nj

and

(3.1)
p(σ ,Q,X,Y,v|n,w) ∝

(
J∏

j=1

I∏
i=1

(
σi(Qi,j )

2+
)ni,j

)
×

J∏
j=1

(
I∑

i=1

σi(Qi,j )
2+

)−nj

× π(σ ,Q|X,Y,v,w)π(X,Y,v),
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where π indicates the prior. By introducing positive latent random variables T = (T1, . . . , TJ ),
as in James, Lijoi and Prünster (2009), we rewrite the conditional distribution

(3.2)

p(σ ,Q,X,Y,v|n,w)

∝
∫

π(σ ,Q,X,Y,v|w)

×
J∏

j=1

{(
I∏

i=1

(
σi(Qi,j )

2+
)ni,j

)
T

nj−1
j exp

(
−Tj

∑
i

σi(Qi,j )
2+

)}
dT.

We use a Gibbs sampler to perform posterior simulations. The algorithm iteratively samples
σ , T, Q, X, Y and v from the full conditional distributions. We describe the two components
of the algorithm:

1. The first component samples σ , T and Q from the full-conditional distributions. We
note that σ1, . . . , σI , given the remaining variables, are conditionally independent. The sam-
pling of (σ1, . . . , σI ) from the full conditional distribution is identical as in Ren et al.
(2017). The random variables T1, . . . , TJ , given (Q,n,σ ), are conditionally independent with
Gamma distributions. These random variables can be straightforwardly generated from the
full conditional distribution. To complete this part of the algorithm we can write

(3.3)

p(Qi,j |n,Q−i,−j ,T,σ ,X,Y,w,v)

∝ (Qi,j )
2ni,j

+ × exp
(−Tjσi(Qi,j )

2+
) × exp

(
−(Qi,j − 〈Xi ,Yj 〉 − 〈vi ,wj 〉)2

2

)
,

where Q−i,−j is identical to Q with the only exception that it does not include Qi,j . The
density (3.3) indicates that the Qi,j ’s random variables are conditionally independent. We
also note that the density in (3.3) is log concave. We use these arguments to sample Q from
the full conditional distribution.

2. The second component considers the sampling of Y, X and v from the full conditional
distributions. Using expression (3.2) we write

p(X|n,σ ,T,Q,Y,v,w) ∝ exp
(
−∑

i,j

(Qi,j − 〈Xi ,Yj 〉 − 〈vi ,wj 〉)2

2

)
× π(X).

Recall that the Xi’s are a priori independent normal random variables. Therefore, the full
conditional distribution of Xi coincides with the conjugate posterior distribution in a standard
linear model (Lindley and Smith (1972)). Sampling of Y and v from the full conditional
distributions follows identical arguments. Indeed, the prior model studied in Bhattacharya
and Dunson (2011), which we use for Y, is conditionally conjugate.

3.2. Visualization of covariate effects. We consider the partial derivatives

∂P j ({Zi})
∂wl,j

:= ∂

[
σi(〈Xi ,Yj 〉 + 〈vi ,wj 〉 + εi,j )

2+∑
i′ σi′(〈Xi′,Yj 〉 + 〈vi′,wj 〉 + εi′,j )2+

]/
∂wl,j .

The derivative ∂P j ({Zi})/∂wl,j quantifies the abundance variation of species i in sample
j in response to an infinitesimal increment of the lth component of wj . We can estimate
these derivatives from the data using the posterior approximation obtained by the algorithm
in Section 3.1. We use the estimates E(∂P j ({Zi})/∂wl,j |n,w). For example, the top row
of Figure 3 in Section 4.2 summarizes the posterior distributions of ∂P j ({Zi})/∂w1,j , j =
1, . . . ,300, for three species. Details on the figure, including a description of the simulated
data that generated the panels, are provided in Section 4.2. In species 1 the estimates of the
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derivatives are positive for the majority of the samples and tend to be large when w1,j > 0.
We also note that the estimates of ∂P j ({Zi})/∂wl,j are larger for samples in the subgroup
w2,j = 1 than in the subgroup w2,j = 0. These results indicate that, for any j = 1, . . . ,300,
if we could increase (decrease) the value of w1,j while holding w2,j fixed, then one would
expect an increase (decrease) of the relative abundance of species 1, and this trend appears
more pronounced in those samples with w1,j > 0 and w2,j = 1.

We also define

P j ({Zi};w0
) := σi(〈Xi ,Yj 〉 + 〈vi ,w0〉 + εi,j )

2+∑
i′ σi′(〈Xi′,Yj 〉 + 〈vi′,w0〉 + εi′,j )2+

;

it is the abundance of species i if the covariates values of sample j could be enforced to
be equal to w0. When estimating the effect of a binary covariate wl,j ∈ {0,1} on microbial
compositions, we replace derivatives by differences

(3.4)
�P j({Zi})

�wl,j

:= P j ({Zi};w1
l,j

) − P j ({Zi};w0
l,j

)
.

Here, w1
l,j is identical to wj with the exception that the lth component wl,j is set to be one

and, symmetrically, w0
l,j is specified with wl,j equal to zero. Therefore, �P j({Zi})/�wl,j is

the variation of P j ({Zi}) that one would observe by changing the value of a binary covariate.
We also consider the population-level associations between microbial compositions and a

specific covariate, say the lth covariate, when adjusting for all other covariates. To this end,
we first define P̄ ({Zi};w0), the population average abundance of species i at a covariate
value w0, by

P̄
({Zi};w0

) := 1

J

(
J∑

j=1

P j ({Zi};w0
))

,

which quantifies the average abundance of species i when all J samples in the study have
the same hypothetical covariates values w0. We estimate P̄ ({Zi};w0) from the data with
E(P̄ ({Zi};w0)|n,w).

To illustrate the association between the abundance of species i and the lth covariate,
we visualize the variation of P̄ ({Zi};w0) as wl,0 (the lth entry of w0) varies and all other
covariates remain fixed at w−l,0. This visualization is obtained by plotting the estimated
P̄ ({Zi};w0) against wl,0. We call the resulting curve the population trend of species i with
respect to the lth covariate at w−l,0. In Figure 3’s bottom row, we illustrate population trends
of three species with respect to the first covariate at w2,0 = 0 and at w2,0 = 1.

Interactions terms for pairs of covariates and, more generally, functions of the covariates
can be included in the proposed model. We specify a function f : RL → R

L′
for interaction

terms. One example is f(wj ) = w1,jw2,j . The definition of Qi,j in (2.2), when interactions
are incorporated, becomes

Qi,j = 〈Xi ,Yj 〉 + 〈
vi ,

(
wj , f(wj )

)〉 + εi,j ,

where vi ∈ R
L+L′

. In these cases variations of the lth coordinate of wj affect f(wj ) and
translate into compositional variations equal to ∂P j ({Zi})/∂wl,j or �P j({Zi})/�wl,j .

4. Simulation study. In this section we focus on the model introduced in Section 2.2,
and we illustrate that we can transform the model parameters into interpretable results on
the relationship between covariates and microbial compositions. We also provide in this sec-
tion a comparison between our model and a recent published latent factor model MIMIX
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TABLE 2
Specification of v in the simulation study

Species (i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . . 100

v1,i (for w1,j ) 5 5 5 5 5 5 5 5 −5 −5 −5 −5 −5 −5 −5 −5 0 . . . 0
v2,i (for w2,j ) 5 5 5 5 −5 −5 −5 −5 5 5 5 5 −5 −5 −5 −5 0 . . . 0
v3,i (for w1,j · w2,j ) 10 −5 −5 −10 10 −5 −5 −10 −10 5 5 10 −10 5 5 10 0 . . . 0

(Grantham et al. (2019)) which uses the logistic-normal distribution to link covariates to the
relative abundances of species. We illustrate in simulation scenarios that the proposed model
has similar performance to the logistic-normal model even when the data is generated from
MIMIX. When the degree of zero inflation is large, our model tends to outperform MIMIX
regression regardless of the underlying data generating model. The code for replicating the
simulation studies is available in the Supplementary Materials (Ren et al. (2020)) and online
at https://github.com/boyuren158/DirFactor-fix.

In our simulation study we included I = 100 species and J = 300 samples. The 300 sam-
ples are taken from U = 50 individuals (see Section 2.2.1). Each individual is measured
six times. The read depth of each sample is nj = 105. We simulate σ using independent
Beta densities with mean 0.2 and variance 0.1. As we discussed in Section 2.1, σi repre-
sents the average abundance of species i across all samples. We included in the simulation
a continuous covariate w1,j , generated from independent N (0,1) distributions, and a binary
covariate w2,j , generated from independent Bernoulli(0.5). We also use the interaction term
w1,j × w2,j to specify scenarios where effects of w1,j differ in the groups w2,j = 0 and
w2,j = 1. We will later discuss in Section 5 this type of interaction in a microbiome study for
type 1 diabetes.

For the latent factors Y we assumed Yu ∈ R
4. For the first half of the individuals,

u = 1, . . . ,25, we set Y3,u = Y4,u = 0 while for the other half, u = 26, . . . ,50, we set symmet-
rically Y1,u = Y2,u = 0. The nonzero components in Yu were simulated independently from
a N (0,1) density. This specification of Y makes the correlation matrix S block diagonal (see
Figure 2(b)).

We simulate the first eight species with positive v1,i ’s and the following eight species
(i = 9, . . . ,16) with negative v1,i ’s. As detailed in Table 2, the first 16 species abundances
correlate with w2,j . Moreover, we make the assumption that some of the trends with respect to
w1,j are either amplified or reversed when we contrast the two groups w2,j = 1 and w2,j = 0.
All other species (i > 16) have the corresponding vi coefficients equal to 0 (Table 2).

We further examine the robustness of our method by checking its performances when the
link function between P j and Qi,j is misspecified. In particular, we apply our method to data
simulated using the following specification of (P j ({Zi}); i ≤ I, j ≤ J ),

(4.1) P j ({Zi}) = σiQ
+
i,j∑

i′ σi′Q
+
i′,j

.

The specification of σ , v, Y and w remains the same as described in the previous paragraphs.

4.1. Estimating species and samples parameters v and S. We first consider estimation of
v and S between individuals when the model is correctly specified. Recall, from Proposition 1
in the Supplementary Material (Ren et al. (2020)), v is identifiable when trace(�) is assumed
fixed at a constant value. We assume trace(�) = 1 and compute the posterior distribution of
v/

√
trace(�). The performance of the estimate of S is measured by the RV-coefficient (Robert

and Escoufier (1976)), which is bounded between zero and one, between the estimated S and

https://github.com/boyuren158/DirFactor-fix
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the actual value of S. An RV-coefficient close to one indicates that the estimate is close to the
parameter S used in simulations.

In Figure 2(a) we illustrate the estimates of vi , i = 1, . . . ,16 in one simulation. The pos-
terior means of vi for the first 16 species are, in general, close to the corresponding values of
the simulation scenario. One exception is species 16, whose average relative abundance is the
lowest (8.1 × 10−5) among the first 16 species. In the left panel of Figure 2(b), we illustrate
the posterior mean of S between individuals in one simulation. The estimate is close to the
actual value of S with an RV coefficient between them equal to 0.98, although the estimate
indicates weak correlation between two independent subgroups (subject 1–25 and subject
26–50).

When the model is misspecified (see equation (4.1)), the estimates of v are not compa-
rable to the corresponding values of the simulation scenarios. However, this result does not
discourage the application of model (2.2) when estimating effects of covariates on microbial
compositions. The model can still capture the derivatives and population trends (see Sec-
tion 4.2) which directly describe the covariates’ effects. The estimate of S, on the other hand,

FIG. 2. Estimates of vi , i = 1, . . . ,16, and S between individuals. (a) Posterior distributions of vi/
√

trace(�),
i = 1, . . . ,16. The posterior distributions are visualized by boxplots. The corresponding values of vi/

√
trace(�)

used for data simulation are indicated by dots. (b) Posterior mean of the correlation matrix S between individuals
(values above the main diagonal) compared to the truth (values below the main diagonal) in one simulation when
the model is correctly specified (Left) and misspecified (Right).
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is only minimally affected by model misspecification and preserves its closeness to the actual
value of S (Figure 2(b), right panel). The RV coefficient between the estimate and the actual
value of S is 0.96 in this case.

We then repeat the simulation for 50 times under the correctly specified model as well as
the misspecified model to verify the observed accuracy levels. We fix across all simulation
replicates the values of σ . When the model is correctly specified, the mean squared errors
(MSEs) between the posterior means of rescaled vi coefficients and the values of the simula-
tion scenario across the 50 simulation replicates are comparable across species. The smallest
average MSE across 50 replicates is 4.3 × 10−6 for species 18 (the standard deviation of the
estimate is 5.8×10−6) and the largest average MSE is 5.2×10−3 for species 14 (the standard
deviation of the estimate is 2.3×10−2). The RV coefficients between the posterior means of S
and the actual value of S across 50 replicates are close to one, whether the model is correctly
specified or not. When the model is correctly specified, the mean and the standard deviation
of the RV-coefficients are 0.964 and 0.009. When the model is misspecified, the mean and
the standard deviation are 0.960 and 0.012. We diagnosed the mixing of the MCMC sam-
pler for our model with R̂ statistics (Brooks and Gelman (1998)). The R̂ statistics indicate
that, when the model is correctly specified, mixing is reached for rescaled parameter vl,j and
eigenvalues of S after 60,000 iteration. See Section S2 of the Supplementary Material (Ren
et al. (2020)) for details.

The Bayesian model can be embedded into a permutation procedure to detect whether a
covariate wl,j is associated with the microbial composition or not. The null and alternative
hypotheses that we consider are H0 : vl = 0I vs. HA : vl 	= 0I , where 0I is a vector of zeros.
We permute covariate values wl,j across samples and estimate, under H0, the distribution of
‖v̂l‖, where v̂l is the posterior mean of vl . Permutation is one possible approach to estimate
the ‖v̂l‖ distribution under H0, which is applicable if covariates are independent or nearly
independent. We finally compare the actual ‖v̂l‖ value with the estimated distribution (see
Section S3 of the Supplementary Material (Ren et al. (2020)) for an example). One could
apply other approaches to generate in silico datasets under H0. For example, the parametric
bootstrap can replace the observed wl,j values with samples from estimates of the conditional
distributions p(wl,j |w−l,j ), where w−l,j indicates the values of all covariates except wl,j .

4.2. Visualizing the relationship between covariates and microbial compositions. As we
mentioned in Section 2.2, the values of v do not directly express the sign and the magnitude
of the covariates’ effects on microbial compositions. Recall, for example, that a positive vl,i

might correspond to a decreasing trend with respect to the covariate wl,j . This can happen
when the vl,i′ of another species i ′ is larger than vl,i . The goal of this subsection is to evaluate
if we can estimate responses of species abundances to variations of covariates of interest.

We consider the visualization approaches described in Section 3.2. We first focus on the
estimates of the derivatives ∂P j ({Zi})/∂wl,j . These provide, for each individual sample, es-
timates of the variation in microbial abundance resulting from an infinitesimal increment of
a specific covariate wl,j , while the other covariates remain fixed. The results for three rep-
resentative species are summarized in the top panels of Figure 3. The X-axes indicate the
value of wl,j and the Y-axes the value of ∂P j ({Zi})/∂wl,j . Each solid curve in these fig-
ures is generated by computing the posterior means of ∂P j ({Zi})/∂wl,j , for each sample j ,
which then become the input of a LOWESS algorithm. We also calculate the actual values
of ∂P j ({Zi})/∂wl,j using the σ , X, Y and v parameters that generated the data. The actual
values of the partial derivatives are visualized with dash lines. In Section S4 of the Supple-
mentary Material (Ren et al. (2020)), we also plot the posterior mean of ∂P j ({Zi})/∂wl,j vs.
the actual value of ∂P j ({Zi})/∂wl,j for each sample j along with the 95% credible intervals
for ∂P j ({Zi})/∂wl,j .
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FIG. 3. Posterior estimates of individual-level and population-level relationship between covariate l = 1 and
relative abundances when the model is correctly specified. (Left) Increasing trend for the group w2,j = 0 and
the group w2,j = 1. (Middle) Increasing trend for the group w2,j = 0 and nonmonotone trend for the group
w2,j = 1. (Right) Decreasing trend for the group w2,j = 0 and the group w2,j = 1. Each curve in the top panels

is generated by computing the individual posterior estimates of ∂P j ({Zi})/∂wl,j , for each sample j , which then
become the input of a LOWESS procedure. The bottom panels illustrate the posterior distribution of the population
trends.

We then focus on the population level estimates of covariates’ effects by visualizing the
population trend of species i with respect to a given covariate (see Section 3.2). Population
trends of three representative species with respect to w1,0 at different values of w2,0 are
summarized in Figure 3’s bottom panels. The X-axes indicate the value of w1,0 and the Y-
axes the population average abundance P̄ ({Zi};w0). The shaded areas indicate the pointwise
95% credible bands of population trends.

When the model is misspecified, the comparisons of estimated derivatives and population
trends to the truth are shown in Figure 4. To compute the actual derivatives and population
trends, we use the specification of P j ({Zi}) in (4.1). From the top panels of Figure 4, we
observe that the estimates of the derivatives capture the sign of the actual values. However,
the estimates are not as close to the actual values of the derivatives, as in the case where the
model is correctly specified. This result is expected as we erroneously assume that P j ({Zi})
depends on (Qi,j )

2+ instead of (Qi,j )+. Bottom panels of Figure 4 illustrate that the estimated
population trends follow the actual trends, but the posterior credible bands do not cover the
truth, as in the previous example where the model is correctly specified.

We repeat the simulation for 50 times under the correctly specified model as well as un-
der the misspecified model. For each species i, we use MSE between the posterior mean of
(P j ({Zi}); j ≤ J ) derivatives and the corresponding values of our simulation model. In the
Supplementary Material, Figure S5.1’s top panel (Ren et al. (2020)), we plot the distribu-
tions of MSEs across simulation replicates. This figure confirms the results in Figure 3 and
Figure 4. The estimates of derivatives in the correctly specified model are closer to the truth
compared to the estimates with the misspecified model. For both correctly specified and mis-
specified models, the mean MSE across replicates reaches its maximum for species 9, with
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FIG. 4. Posterior estimates of individual-level and population-level relationship between covariate l = 1 and
relative abundances when the model is misspecified.

value 8.7 × 10−4 under the correctly specified model and 3.8 × 10−2 under the misspecified
model.

We then consider the estimates of population trends in the 50 replicates. In the Supple-
mentary Material, Figure S5.1’s middle and bottom panels (Ren et al. (2020)), we illustrate
the estimated population trends in three species when the model is correctly specified and
misspecified. When the model is misspecified, the overall shape of each band still mirrors
the actual trend, but the confidence band does not cover the actual trend in a few intervals of
w1,0.

4.3. The logistic-normal model. We conclude the simulation study with a comparison of
our model (referred to as DirFactor) to MIMIX (Grantham et al. (2019)), a logistic-normal
model with latent factors. MIMIX employs a low-dimensional latent structure that is shared
by both the fixed effects and the random effects to highlight the relationships between mi-
crobial species. The major difference between MIMIX and our model lies in the distribution
assumption for P j . In MIMIX the distribution of P j follows a logistic-normal distribution

(4.2) P j ({Zi}) = exp(Qi,j )∑
i′ exp(Qi′,j )

.

A characteristic of this specification is that the relative abundances of species are strictly pos-
itive and not tailored to zero-inflated microbiome data. By contrast, our specification of P j

assigns nonzero mass to zero which means that our model allows for explicit zero-inflation.
In this subsection we are interested in comparing the estimation performance of our model to
that of MIMIX.

We focus on the accuracy of the estimated population trends for the continuous covariates
w1,j . The accuracy is evaluated in two aspects: root mean-squared errors (RMSE) of the
estimated population trends and coverages of the estimated credible bands of the population
trends. The first metric is a universal summary of the bias and variance of the estimates, while
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the second metric is used to evaluate the reported uncertainty on the estimates. We generate
two sets of simulation datasets. The first set of data is generated using the link function (2.1)
in our model whereas the second set uses the link function (4.2) in MIMIX. The specifications
of v, w, X, Y are the same for both sets and are described at the beginning of Section 4.

For each simulated dataset we impose additional zero inflation via hard truncation of P j

at 10−3 and 10−2. The larger the threshold the higher the degree of zero inflation introduced
in the simulated dataset. We also examine the effect of overdispersion. Specifically, for fixed
v, w, X, Y, we generate three datasets based on them with var(εi,j ) = 1, var(εi,j ) = 5 and
var(εi,j ) = 10 to represent low overdispersion, medium overdispersion and high overdis-
persion. We finally consider the effect of overdispersion in the distribution of read depths
nj . Once relative abundances (P j ({Zi}); j ≤ J, i ≤ I ) are simulated, we generate the OTU
counts with three different distributions of nj : a Poisson distribution with mean 105, a neg-
ative binomial distribution with mean 105 and variance 109 (moderate overdispersion) and a
negative binomial distribution with mean 105 and variance 4 × 1010 (large overdispersion).

We use a B-spline basis of w1,j both when we produce inference based on our model or
MIMIX in the simulation study (i.e., we don’t directly incorporate the w1,j values within the
models). This adds flexibility in the relation between covariates and microbial compositions.
We recommend the use of splines or other transformations when the number of covariates
is considerably lower than the number of samples, as in our simulation study. The B-spline
basis we used is of degree three with internal knots at −1, 0 and 1 and two boundary knots
at −2 and 2. We simulate 50 instances of v, w, X and Y. For each simulation replicate of
v, w, X and Y, we generate datasets based on combinations of different link function (2.1)
and (4.2), three different truncation levels, three overdispersion levels and three distributions
of nj .

In each simulation replicate we estimate the population average abundance (see Section 3.2
for its definition) of each species at 20 different values of w1,0 equally spaced between −2
and 2. We report the average RMSE between the resulting vector of estimates and simulation
scenario parameters across all species and 50 simulation replicates as well as two values of
w2,0. We also report the coverage of the 95% credible intervals of the population trends for
w1,0 ∈ (−2,2) in the 50 replicates averaging across all species and two values of w2,0 = 0,1.
For nj generated from the Poisson distribution, the RMSEs are shown in Table 3, and the
coverage probabilities are included in Table 4. For the other two distributions of the nj counts
we illustrate the results in Section S6 of the Supplementary Material (Ren et al. (2020)).

From the results we find that the proposed DirFactor model shows little sensitivity to the
degree of zero inflation. Setting P j ({Zi}) to be zero when its value is below a given threshold

TABLE 3
Average RMSE of estimated population mean abundances at 20 different values of w1,0 equally spaced between
−2 and 2 across simulation replicates for our model (DirFactor) and MIMIX. The threshold parameter indicates

at which value we truncate the simulated Pj ({Zi})’s to zero. We consider two scenarios where the data is
generated from DirFactor and MIMIX, respectively. The read depths are generated from a Poisson distribution

with mean 105. All RMSEs in the table are multiplied by 103

Simulated from DirFactor Simulated from MIMIX

DirFactor MIMIX DirFactor MIMIX

Threshold 0 10−3 10−2 0 10−3 10−2 0 10−3 10−2 0 10−3 10−2

var(εi,j ) = 1 1.0 1.2 1.4 15.3 24.3 44.8 1.3 2.5 3.8 1.3 1.5 1.8
var(εi,j ) = 5 3.5 3.5 3.4 35.4 65.9 74.1 5.4 7.9 8.8 1.4 2.9 4.1
var(εi,j ) = 10 4.5 4.6 4.7 66.0 96.6 154.3 10.6 11.3 11.7 1.7 3 4.7
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TABLE 4
Coverage of the posterior distribution of the population trend (defined in Section 3.2). We average across species

and across w1,0 values between −2 and 2 and w2,0 = 0 and w2,0 = 1. The threshold parameter indicates at
which value we truncate the simulated Pj ({Zi})’s to zero. The coverage is calculated using simulation

replicates. The read depths are generated from a Poisson distribution with mean 105. We consider two scenarios
where the data is generated from DirFactor and MIMIX, respectively

Simulated from DirFactor Simulated from MIMIX

DirFactor MIMIX DirFactor MIMIX

Threshold 0 10−3 10−2 0 10−3 10−2 0 10−3 10−2 0 10−3 10−2

var(εi,j ) = 1 0.99 0.97 0.95 0.92 0.86 0.80 0.95 0.89 0.89 1.00 0.93 0.89
var(εi,j ) = 5 0.97 0.97 0.95 0.94 0.87 0.80 0.96 0.91 0.90 1.00 0.95 0.90
var(εi,j ) = 10 0.94 0.91 0.90 0.94 0.86 0.77 0.90 0.88 0.83 0.94 0.90 0.84

does not affect accuracy. On the other hand, when the threshold for truncating P j ({Zi}) in-
creases, the accuracy of MIMIX tends to decrease. The RMSE of MIMIX increases with this
threshold parameter, regardless of the data generating models (2.1) and (4.2) and the level of
overdispersion var(εi,j ). The performances in terms of coverage of the two models appear
comparable even when var(εi,j ) is large. These findings are confirmed when the distribution
of nj counts is a negative binomial distribution. But prediction accuracy and coverage of the
two models decrease significantly when the overdispersion of the negative binomial distribu-
tion is large (mean = 105 and variance = 4 × 1010). See the Supplementary Material, Tables
S6.3 and S6.4, for details (Ren et al. (2020)).

We conclude this subsection with a posterior predictive procedure to evaluate and com-
pare Bayesian models. For distinct Bayesian models we compute leave-one-out 95% pos-
terior predictive intervals of the relative abundance (P j ({Zi})) of a species i in sample j

using the available data, with sample j excluded. The predictive intervals are generated using
Pareto smoothed importance sampling (Vehtari, Gelman and Gabry (2015), Vehtari, Gelman
and Gabry (2017)). We calculate the predictive intervals for all samples and all species in the
data. We then derive the proportion of samples whose observed relative abundances ni,j /nj

of species i are covered by the corresponding leave-one-out predictive intervals. We define
the mean coverage probability of the model by averaging these proportions across species. In
Section S7 of the Supplementary Material (Ren et al. (2020)), we illustrate the approach in
the comparison of our Bayesian model and MIMIX (Grantham et al. (2019)). Limitations of
leave-one-out cross-validation in terms of stability have been previously discussed (Kohavi
(1995)); the use of the procedure in our work serves the main purpose of producing inter-
pretable summaries that integrate our evaluations and comparisons of regression methods.

5. Microbiome analyses for type 1 diabetes in early infancy. We use the longitudi-
nal model in Section 2.2.1 to evaluate associations between gut microbiome compositions,
clinical variables and demographic characteristics of infants in the DIABIMMUNE project
(Vatanen et al. (2016)). The DIABIMMUNE project collected longitudinal microbiome data
in 157 infants over a period up to 1600 days after birth. Infants were enrolled from Finland,
Estonia and Russia. Dietary information has been collected from each participant. The main
goal of this project is to examine the relationship between type 1 diabetes (T1D) associated
autoantibody seropositivity (seroconverted), which is an indicator of T1D onset, and the in-
fants’ gut microbiome. In this project, seven out of 157 infants are seroconverted.

The dataset contains a total of 55 microbial genera and 762 samples from 157 infants.
A large collection of potential associations between relative abundances of microbial taxa and
covariates has been previously discussed in Vatanen et al. (2016). Among these associations,
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the most significant ones link nationality and age to 44 microbial genera. Due to moderate
sample size, only limited evidence of variations of the microbiome profile associated with
seroconversion has been reported.

We present analyses based on the proposed Bayesian model. The set of covariates is com-
posed by nationality, age, seroconversion and the interaction between age and nationality. We
want to verify consistency of our posterior inference with the results discussed in the litera-
ture. Additionally, we want to quantify the uncertainty of the estimated relationship between
seroconversion and microbial compositions in human gut.

5.1. Estimating the effects of age. We estimated the effects of age on microbial composi-
tions using the visualization approaches in Section 3.2. In the top panels of Figure 5, we illus-
trate the estimated derivatives of microbial abundances with respect to age, ∂P j ({Zi})/∂w3,j ,
for two genera, Bifidobacterium and Bacteroides. We only plot the ∂P j ({Zi})/∂w3,j ’s for
150 randomly selected samples for visual clarity. We show the 95% credible intervals for
derivatives with bars, and the sizes of points are proportional to the observed abundances.

FIG. 5. (Top) Estimated ∂P j ({Zi})/∂w3,j for two genera. Each point represents a sample. Colors indicate
nationalities, and the sizes of points are proportional to the observed abundances. The error bars indicate 95%
credible intervals. We only plot 150 randomly selected samples. (Bottom) Estimated population trends of Bifi-
dobacterium and Bacteroides for Estonian, Finnish and Russian infants. The infants are assumed to be nonse-
roconverted. Curves represent the estimated population trends and the shaded areas illustrate pointwise 95%
credible bands. Points indicate the observed abundances of Bifidobacterium or Bacteroides in all samples. We use
colors to indicate nationalities.
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In the bottom panels of Figure 5, we plot the estimated population trends of the same gen-
era with respect to age. We consider the population trends for Estonian, Finnish and Russian
infants and assume that the infants are not seroconverted. Posterior credible bands for the pop-
ulation trends are visualized by shaded areas. The observed abundances of Bifidobacterium
and Bacteroides in all samples are illustrated by scatter plots together with the estimated
population trends.

The estimated derivatives with respect to age for Bifidobacterium are significantly smaller
than zero in most of the samples, indicating that the abundances of Bifidobacterium in infants’
gut microbiome tend to decrease with age. Since bacteria from this genus are associated with
breastfeeding (Fanaro et al. (2003)), this is to some extent expected. The results on derivatives
are consistent with the estimated population trends. In all three populations (Estonian, Finnish
and Russian), Bifidobacterium is estimated to have a decreasing population trend with respect
to age. The trends for Finnish and Estonian infants are similar, while for Russian infants the
decrease is faster for infants that are less than 600 days old.

The association between genus Bacteroides and age is less pronounced. The derivatives
of Bacteroides tend to be positive in samples taken before 300 days. When the infants get
older, the derivatives become slightly negative in Estonian and Finnish infants but remain
positive in the Russian group. The population trends in this case are also consistent with
the estimated derivatives. For nonseroconverted Estonian and Finnish infants the estimated
population abundances of Bifidobactrium increase with age when the infants are less than 450
days old and start to decrease slowly afterward. In Russian infants the initial increasing trend
is more pronounced with a narrower credible band than the other two populations until 900
days. After 900 days, the population average abundance reaches a plateau and the credible
band widens.

5.2. Estimating effects of nationalities and seroconversion. We make inference about the
associations between the gut microbial compositions and nationalities using the differences
�P j({Zi})/�wl,j defined in (3.4). For each sample, we estimate �P j({Zi})/�w1,j , which
is the difference associated to the change of nationality from Finland (FIN) to Estonia (EST),
as well as �P j({Zi})/�w2,j , the difference associated to the change from Finland (FIN)
to Russia (RUS). We consider the averages of �P j({Zi})/�w1,j and �P j({Zi})/�w2,j in
each of five consecutive age groups. The posterior distributions of these population averages
(Figure 6) illustrate the effect of nationality. In both panels of Figure 6, the X-axis identifies
age groups, and the Y-axis indicates the value of �P j({Zi})/�w1,j and �P j({Zi})/�w2,j .
Each box plot approximates, using posterior simulations, the posterior distribution of the av-
erage �P j({Zi})/�wl,j , l = 1,2. These averages are defined by integration within a specific
age group.

There is an increase of Bifidobacterium abundance when we compare FIN to RUS nation-
alities. This increase diminishes with age. In the last age group (670–1160 days), the posterior
distribution of �P j({Zi})/�w2,j indicates that the abundances of Bifidobacterium in sam-
ples collected from infants older than 670 days remain comparable across nationalities. In
the second comparison of nationalities, FIN to EST, only minor changes of Bifidobacterium
abundance levels are observed. The abundances of Bacteroides are smaller in RUS than in
FIN nationalities. This difference again diminishes with age. The difference of Bacteroides
abundances between EST and FIN are also minor.

We also explored associations between microbial compositions and seroconversion status.
In this case we again examine the posterior distributions of average �P j({Zi})/�w4,j in
five consecutive age groups. We do not find evidence in our analyses of any genus associated
to seroconversion, due to high uncertainty of the estimated average �P j({Zi})/�w4,j in all
age groups.
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FIG. 6. Posterior distributions of the average difference �Pj ({Zi})/�w1,j (red) and �Pj ({Zi})/�w2,j

(green) in five consecutive age groups. We plot the results for Bifidobacterium (Left) and Bacteroides (Right).

5.3. Similarities of microbial genera. In this subsection we focus on similarities between
microbial genera. We first consider the simple approach where the similarity of two genera
is measured by the correlation between their observed relative abundances across all sam-
ples. The result of this approach is a correlation matrix, denoted by Sraw = (Sraw(i, i′); i, i′ ≤
I ), where Sraw(i, i′) = cor[(ni,j /nj ; j ≤ J ), (ni′,j /nj ; j ≤ J )]. We then consider two ap-
proaches which utilize the proposed model. The first approach uses the cosine of the angle
between vi and vi′ to quantify the similarity of genera i and i′, whereas the second approach
uses the cosine of the angle between Xi and Xi′ . The results of these two approaches are
normalized Gram matrices, denoted as Sv and SX, respectively. In the top panels of Figure 7,
we illustrate the estimates of Sraw, Sv and SX by heat-maps. Each row or column of the heat
map represents a specific genus, and the color of each tile represents the estimated similarity
of two genera.

We then focus on examining the concordance of Sraw, Sv and SX to the phylogenetic rela-
tions of the observed genera. To this end, we compare the phylogenetic tree of the observed
genera published in Segata et al. (2013) to the heat maps. If an estimated correlation ma-
trix indicates clusters of genera that share similarities with the phylogenetic tree, then we
conclude that the estimate is consistent with phylogenetic relations.

From the figures we can find that Sraw indicates little between-genera similarity and does
not recover phylogenetic relations of the observed genera. On the other hand, both SX and
Sv indicate clusters of genera that are consistent with the phylogenetic tree. For instance,
the cluster in the middle of the heat maps of SX and Sv corresponds to 13 genera from
phylum Firmicutes (Clostridium, Ruminococcus, etc). These results suggest that both SX and
Sv capture the phylogenetic relations of the observed genera. The ordination plot of genera
based on SX in the bottom panel of Figure 7 further confirms this conclusion. We generate the
ordination plot using the method in Ren et al. (2017) which represents each genus by a region
instead of a single point. In the ordination plot we find that genera from the same cluster in
SX or Sv are close to each other.

We also verify quantitatively the consistency of SX and Sv to the phylogenetic relations.
We first calculate the pair-wise phylogenetic distance matrix of the observed genera using
unweighted-Unifrac dissimilarity (Lozupone et al. (2011)). We then convert this distance
matrix into a normalized Gram matrix Sunifrac by Torgerson Classical Scaling (Borg and
Groenen (2005)) and compare Sunifrac to Sraw, SX and Sv. The estimated SX and Sv are both
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FIG. 7. Estimated similarities of genera. (Top) Estimates of SX, Sv and Sraw. Each row or column in the heat
maps correspond to a specific genus. The color of each entry is determined by the estimated pair-wise similarity.
The rows and columns in heat maps are reordered so that adjacent rows or columns correspond to genera that are
close phylogenetically. The phylogenetic tree for these genera are plotted at the right side of the figure. (Bottom)
Ordination of genera based on SX. The contour lines indicate uncertainty regions in the ordination configuration.
The contour line of a genus is colored accordingly to the phylum of the genus.

similar to Sunifrac with RV-coefficients 0.66 and 0.76, respectively, while the RV-coefficient
between Sraw and Sunifrac is 0.32.

5.4. Goodness-of-fit of the model. We conducted goodness-of-fit analyses for our model
based on the model evaluation approach proposed in Section 4.3; see, for example, the results
shown in Section S8 of the Supplementary Material (Ren et al. (2020)). We use posterior pre-
dictive evaluations to examine whether the observed distributions of reads for the two species
discussed in this section, Bacteroides and Bifidobacterium, are close to the corresponding
posterior predictive distributions. We construct the leave-one-out 95% posterior predictive
intervals of the relative abundances of Bacteroides and Bifidobacterium in biological sample
j based on data with biological sample j excluded. We then check if the leave-one-out poste-
rior predictive intervals cover the observed abundances of Bacteroides and Bifidobacterium.
In our case the predictive intervals for 93.2% of all biological samples cover the observed
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relative abundances of Bacteroides and 96.3% of all biological samples for Bifidobacterium.
The high proportions of coverage for both genera indicate that there is no systematic discrep-
ancy between the observed data and the fitted model.

6. Discussion. We proposed a Bayesian mixed effects regression model to perform mul-
tivariate analyses for microbiome data. This regression analysis estimates the effects of co-
variates on microbial composition while allowing for correlations of the residuals. We illus-
trate that the model parameters are identifiable. This result is consistent with our simulation
study. The model allows us to infer the relationship between covariates and microbial compo-
sitions with two visualization approaches. In simulations we showed that both the individual-
level and the population-level relationships between covariates and microbial compositions
can be accurately estimated. Moreover, our model is more robust against zero inflation than
a latent factor model based on logistic-normal distribution. We finally applied the model to a
longitudinal microbiome dataset and compared our results with those previously reported in
the literature.

The current posterior computation is implemented with a Gibbs sampler. This can be ineffi-
cient when the number of parameters is large. The computation time increases approximately
linearly with the number of samples and, similarly, with the number of microbial species. For
the longitudinal microbial dataset that we analyzed, the computation time of one chain with
105 iterations is around 90 minutes. A possible substantial improvement in computation time
can probably be obtained with Hamiltonian Monte Carlo or variational Bayes methods.

In the future we would also like to investigate appropriate variable selection techniques for
the fixed effects. This is particularly helpful in settings with large collections of covariates.
A more flexible model for the fixed effects is also desirable. Currently, the relationship be-
tween microbial abundances and covariates are depicted by linear functions of the samples
characteristics, possibly augmented by prespecified transformations of the covariates. Finally,
the current prior specification ignores potential relationship across regression vectors vi asso-
ciated to similar microbial species. A systematic way to incorporate such information would
involve the specification of a prior distribution on v that mirrors the phylogeny of microbial
species.

Acknowledgments. The authors wish to thank the Associate Editor and two anonymous
Referees for all their comments, corrections and suggestions which remarkably improved the
original version of the paper. Boyu Ren and Lorenzo Trippa are supported by NSF DMS
Award No. 1810829. Stefano Favaro received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 817257. Stefano Favaro gratefully acknowledges the financial support
from the Italian Ministry of Education, University and Research (MIUR), “Dipartimenti di
Eccellenza” grant 2018-2022.

SUPPLEMENTARY MATERIAL

Source code for “Bayesian mixed effects models for zero-inflated compositions in
microbiome data analysis” (DOI: 10.1214/19-AOAS1295SUPPA; .zip). R source code for
replicating results in this paper and data files for the microbiome dataset.

Supplement to “Bayesian mixed effects models for zero-inflated compositions in mi-
crobiome data analysis” (DOI: 10.1214/19-AOAS1295SUPPB; .pdf). We provide the proof
of the proposition for model identifiability in the general setting. We also include additional
supporting plots and tables for the simulation studies and data application.

https://doi.org/10.1214/19-AOAS1295SUPPA
https://doi.org/10.1214/19-AOAS1295SUPPB
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