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Principal component analysis (PCA) is a popular method for dimension
reduction in unsupervised multivariate analysis. However, existing ad hoc
uses of PCA in both multivariate regression (multiple outcomes) and mul-
tiple regression (multiple predictors) lack theoretical justification. The differ-
ences in the statistical properties of PCAs in these two regression settings
are not well understood. In this paper we provide theoretical results on the
power of PCA in genetic association testings in both multiple phenotype and
SNP-set settings. The multiple phenotype setting refers to the case when one
is interested in studying the association between a single SNP and multiple
phenotypes as outcomes. The SNP-set setting refers to the case when one is
interested in studying the association between multiple SNPs in a SNP set
and a single phenotype as the outcome. We demonstrate analytically that the
properties of the PC-based analysis in these two regression settings are sub-
stantially different. We show that the lower order PCs, that is, PCs with large
eigenvalues, are generally preferred and lead to a higher power in the SNP-set
setting, while the higher-order PCs, that is, PCs with small eigenvalues, are
generally preferred in the multiple phenotype setting. We also investigate the
power of three other popular statistical methods, the Wald test, the variance
component test and the minimum p-value test, in both multiple phenotype
and SNP-set settings. We use theoretical power, simulation studies, and two
real data analyses to validate our findings.

1. Introduction. In view of the rapid progression of massive data in genetic and ge-
nomic studies, developing statistical machinery to effectively leverage the correlation present
in the data to boost analysis power becomes increasingly important. In this paper we focus on
jointly testing multiple correlated quantities in two important settings which frequently arise
in genetic association studies: the SNP-set setting, which tests for the association between a
single phenotype and a set of single nucleotide polymorphisms (SNPs) in a genetic construct,
for example, gene or network (Li and Leal (2008), Wu et al. (2011)), and the multiple pheno-
type setting, which tests for the association between a single SNP and multiple phenotypes,
that is, pleiotropy (Aschard et al. (2014), Solovieft et al. (2013)). Despite having a similar set
of statistical methods developed separately in each case, we explore the subtle but important
differences in the methodology across the two cases. Specifically, principal component anal-
ysis (PCA) is a popular unsupervised dimension reduction method frequently used in both
settings. However, little is known about how the performance of PCA differs in multiple phe-
notype regression as compared to multiple SNP regression, and when a PCA should be used
in practice in each case as opposed to other methods, as well as which PC should be used.
We investigate this problem in this paper.
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There is an increasing interest to analyze multiple phenotypes jointly in genetic associa-
tion studies to detect pleiotropic effects, as the power gain of joint analysis of multiple pheno-
types has been demonstrated by several previous studies (Liu and Lin (2018, 2019), Schifano
et al. (2013), Solovieff et al. (2013), Stephens (2013), Zhou and Stephens (2014), Zhu et al.
(2015)). PCA has been used as a popular tool for dimension reduction in multiple phenotype
analysis (Aschard et al. (2014), Karasik et al. (2012), Suo et al. (2013), Zhang et al. (2012),
Liu and Lin (2019)). Aschard et al. (2014) found that combining multiple related phenotypes
through their principal components identified significant top SNPs that were missed by indi-
vidual phenotype association tests. Liu and Lin (2019) further proposed a series of PC based
association tests for multiple phenotype studies using summary statistics from genome-wide
association studies (GWASS).

In the case of a univariate phenotype outcome, SNPs in a genetic construct, such as gene
or pathway, can be tested jointly which boosts analysis power by combining effects across
multiple SNPs while also reducing the multiple testing burden. While true for GWASs, SNP-
set testing is more important in sequencing studies where rare variant associations would be
near impossible to detect without grouping signals within a SNP-set (Lee et al. (2014), Li
and Leal (2008)). Due to linkage disequilibrium (LD), it is frequently the case that adjacent
SNPs are in LD and correlated, complicating their joint analysis. There have been numerous
statistical techniques developed for the purpose of properly accounting for LD/correlation
when testing multiple SNPs simultaneously (Conneely and Boehnke (2007), Han, Kang and
Eskin (2009), Moskvina and Schmidt (2008), Wu et al. (2011)). Dimension reduction can be
a useful tool in these settings particularly for larger SNP-sets, and principal component re-
gression is a commonly used dimension reduction approach for removing correlation among
SNPs in a SNP-set, for example, a gene (Wang and Abbott (2008), Karacaoéren et al. (2011)).
For example, in Karacadren et al. (2011), principal component regression was used in a QTL
analysis to account for the LD between significant markers in a set of SNPs that was regressed
on gene expression.

Despite its frequent usage throughout genetic association studies, there is little theoretical
analysis on when using PCs is beneficial and when it is not in regression analysis, and how
its performance differs in the multiple phenotype setting as compared to the multiple SNP
setting. This renders PCA at the risk of potential power loss if used inappropriately. In this
paper we investigate the circumstances under which PCA is effective in both the SNP-set and
multiple phenotype settings. In addition, we address two other popular approaches in genetic
epidemiology, variance component tests and min p-value tests. Upon first glance, all of these
statistical methods have strong similarities across the two settings, but we will illuminate
some crucial statistical differences.

In particular, we find that in the SNP-set setting, principal components with large eigenval-
ues tend to have increased power, whereas the opposite holds true in the multiple phenotype
setting. The power of these methods are compared both theoretically and through simulation.
In addition, we apply the concepts developed in this paper to both a lipids GWAS, which
studies how a SNP affects multiple lipids, as well as a Breast Cancer GWAS by performing
a gene-based analysis to study how the SNPs in a gene affect breast cancer risk. Henceforth,
we refer to the SNP-set setting as “1:K” with reference its one outcome and K predictors,
and we similarly refer to the multiple phenotype setting as “K:1” for its K outcomes and one
predictor. In the 1:K setting, K usually represents the number of SNPs in a gene, while in
the K:1 setting, K represents the number of phenotypes and is usually chosen based on the
scientific question under study.

Section 2 compares the theoretical power of principal component tests in both the K:1
and 1:K settings. Section 3 discusses the crucial role of principal components in variance
component tests, while again highlighting the stark differences between the K:1 and 1:K
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settings. Section 4 demonstrates these differences between the 1:K and K:1 settings through
a series of power simulations. Finally, Section 5 shows these differences by comparing the
analysis of two real data sets, one in the K:1 multiple phenotype setting (lipids GWAS) and
one in the 1:K multiple SNP setting (breast cancer GWAS).

2. The power of PCA.

2.1. The K:1 multiple phenotype setting. In the K:1 multiple phenotype setting, we con-
sider testing the association between a particular SNP and a group of correlated phenotypes,
that is, study pleiotropy. Suppose that we have measured K continuous phenotypes on n
genotyped individuals. We first consider a model without covariates and then discuss the ex-
tension of the results to the covariate case. For the ith individual, we can use the following
model to link a particular genotype to the kth phenotype:

P P P P
@.1) v =G e

where egp) = {elgf)), e ei([};)}T ~ N(0, Z(P)), Yi(kp) is the kth phenotype for the ith sub-
ject, GEP) is a scalar representing the genotype of a SNP of interest for the ith subject and
ﬂ,EP) is the regression coefficient for the genotype and the kth phenotype. We use the super-
script (P) to indicate this setting represents multiple phentoype regression and the K:1 set-
ting. For notation simplicity, we assume that the Y ") have been standardized and the GEP)
have been centered and scaled such that "7 1{G(P)}2 = 1. Denote ﬂ(P) = {,B(P) . ,B%P)}T,

(P) = {Yl(,f), .. (P)}T and G = {Gip), e G,(ZP)}T. To assess whether this particular
SNP is associated with those K phenotypes, we can formulate this problem as the following
hypothesis testing:

Hy: B =0 vs H :,B(P);AO.
Consider the following score statistics:

Z(P) — {Z(P)’ Z(P), Z(P)}T,

where Z( ) {G(P)}TY(P) and its distribution is Z( )~ N{/,L](CP) 1} where ,u(P) ,B(P).

For each fixed genetic variant, we have a random vector Z*) = {Z, (P) - ZE(P)}T

N(BP), 2P where uP) = BP) is defined as the signal vector and does not depend on

the correlation matrix. In what follows, we assume that the correlation matrix ) of Z(¥)

is known or can be consistently estimated. As sample sizes in GWAS are often large, the cor-

relation matrix £(¥) can be estimated very accurately using the GWAS phenotype-specific

summary statistics and the bias and variance of the estimated X (*) have little effects on infer-

ence for ﬂ(P), and P does not vary across SNPs (Liu and Lin (2018), Zhu et al. (2015)).
This correlation matrix £*) can be decomposed as

2 (P) — U(P)A(P){U(P) Z A(P) (P){ (P)}
k=1

where A" is a diagonal matrix diag{kip), ey )L(If)} whose elements represent the eigenval-
ues of £ and AEP) > )\EP) > > )\%P) > 0, and U is the normalized orthogonal matrix
whose kth column u,EP) represents the kth eigenvector associated with the kth largest eigen-

value. Then, the distribution of the portion of Z(*) along the kth principal component is given
by

v = PV 2P ~ N{(@) B AP, 1<k <K,
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There is a relationship between the principal components of the score test statistics Z")
and the principal compoents of the K phenotypes: Let Y(¥) = (Y(P) Y(P)) be the
n x K phenotype matrix and note that V, (P) (Y(P)u(P))TG(P) {PC(P)}TG(P) where
PC,({P) =YY )u,(cp) is the kth principal component of the K phenotypes. This suggests
that if one performs PCA analysis of the K phenotypes and transforms the K phenotypes
(YEP), ey Y(If)) to K independent phenotype PCs {PCEP), ey PC%P)}, then Vk(P) is equal
to the score statistic obtained by regressing the kth phenotype PC,(CP) on the genotype G(*).
This implies that whether a PC decomposition is done before or after testing, the resulting

inference is the same.
Using the fact that ||u(P) |> = 1, the noncentrality parameter (ncp) of the kth phenotype

PC Vk(P) under the alternative hypothesis is

[y 87 1812 (cos(8))?
AP AP ’

where GIEP) is the kth principal angle defined as the angle between B*) and the eigenvector
u,((P) first introduced by Liu and Lin (2019). Because the kth eigenvalue enters into the de-
nominator of the kth ncp, excluding the effect of ngp), the first PC test statistic VI(P) has the
smallest ncp compared to the other PCs.

If we use Vk(P) as a testing statistic for the hypothesis Ho : B =0 vs. H, : B #£0,
then its theoretical power at significance level « is

P+ | cos Q(P)
Pr(ivzf”|>zl_%|Ha)=cp(Z%+”ﬁ | - I cos(6 >|)

D

(2.2)

P . | cos G(P)
+<I>(z%—”ﬂ [l - | cos(6; )I)’

\/ﬁ

where ®(-) is the cumulative distribution function of a standard normal random variable,
and z, is its « percentile. The power of this test depends on both the kth principal angle
and the kth eigenvalue. Specifically, the test statistic Vk( is powerful if G(P) =0 but is

(P)

powerless if QIEP ) = 90° (i.e., when u" ” is orthogonal to B (P)), and the phenotype PCs with

smaller eignvalues, that is, Vk(P) with larger k, are more likely to be powerful. This geometric
perspective offered by equation (2.2) demonstrates why the test based on the first PC, without
taking the true direction of B into account, will have the least power of all the K PCs in the
K:1 setting due to it having the largest eigenvalue.

2.2. The 1:K SNP-set setting. The difficulty of detecting single SNP effects in GWAS
due to the tremendous multiple comparisons problem and weak SNP effects can be alleviated
by changing the unit of analysis from a single SNP to meaningful groupings of SNPs. The
most common choice of these groupings, or SNP-sets, is to combine the analysis of SNPs
in the same gene. The number of SNPs in most GWAS is approximately 20 times larger
than the number of genes, and therefore the multiple comparisons burden is greatly reduced
by analyzing SNPs grouped by gene membership. Another benefit of analyzing SNP-set is
the power gain by aggregating weak signal effects of multiple SNPs in a set, which is now
becoming standard for rare variant association testings (Lee et al. (2014)).

A strong effort has been made to develop statistical methods for association testing in the
SNP-set context. One primary difficulty is that often SNPs within the same gene are in LD.
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One popular approach uses a principal component decomposition in order to orthogonalize
the genotype matrix. We outline and analyze this approach more closely here.

Consider the 1:K linear model, where a scalar phenotype Yi(S) is regressed on K SNPs in
a SNP set GZ(S) = {Gl(f), e GE‘I?}T as

2.3) Y_(S) _ IB{S)GG) 4.t ,B(S)G(S) (S)

where e ~ N{0, (69)?}. We set YOS = {Y(S) . Y,SS)}T to be the standardized pheno-
type vector and G to be the n by K matrix of genotypes with columns centered and scaled
such that }°7_ {G (S)}2 = 1 for each k. We here use the superscript (S) to indicate this setting
represents 1:K SNP-set regression. Our goal is to test whether a group of SNPs Gl( ) is as-
sociated with the scalar phenotype Yi(S), that is, to test the null hypothesis Ho : ) =0 vs.
Hy: BS £0, where B = {8, ..., g7

Based on model (2.3), the score test statistic for ﬂ(S) is ZS) = {GENWTY® ~ N{u®®,
T where £G) = (GOTGS is a K x K correlation matrix of the K SNPs in a SNP
set, and u® = £ B Note the covariance matrix £ appears in both the mean and the
covariance of Z®®, while X P appears only in the covariance of Z).

Using spectral decomposition, we have

O —yOASO U7

(s

where U is the eigenvector matrix whose kth column u; ) represents the kth eigenvector

of £ and A = diag{)»is), ey A(KS)} is a diagonal matrix whose diagonal elements are
the ordered eigenvalues of ). Define Vk(S) as the portion of Z® along the kth principal
component,

s ST ST S) . (ST S
@ VO = )72 = (GO YO ~ NP ) S 40

In fact, suppose we first perform principal component analysis on the genotype matrix
G® and obtain PC(S) = {G(S)}Tu(s) which is the kth principal component of the SNP-set
of the ith subject. Then, regress Y(S) on these K orthogonal genotype principal components
as
2.5) v =y PCY +- + v PO + €,

where € ~ N (0, 0*2). Then testing whether the set of SNPs Gfs) is associated with the
scalar phenotype Yl.(S), that is, testing the null hypothesis Hy : B =0 vs. H; : B %0
is equivalent to testing the null hypothesis Ho : y =0 vs. H : & #£ 0, where y® =

{y(S), s YK )}T In other words, inference is the same for SNP- pr1n01pa1 component re-

gression as it is for the score tests on the original scale.
The power of using Vk(s) as a testing statistic is

pr{[Ve ] > zimg) = (g + 1 fu) B

S ST
+¢@%—¢&’w?}ﬂ“»

Analagous to the K:1 multiple phenotype regression setting, we have

() B = B cos (™),

2.6)

where 9 ) is the principal angle between the kth eigenvector of %) and the effect vector
B 1If Q(S) 90°, then Vk( ) is powerless, and if G(S) 0, then Vk(S) is powerful. This implies
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that a larger eigenvalue Al X 5) Jeads to larger power, and the power is highest when 9(5) 0.
This is the opposite of the conclusion found in the K:1 setting. This result shows that, for 1:K
SNP-set regression, the PCs of SNPs with large eigenvalues have more power for detecting
genetic association.

2.3. Differences and connections between 1:K and K:1 problems. In both 1:K multiple
SNP regression and K:1 multiple phenotype settings, we aim to test for the overall associ-
ation between one variable and K variables. In the 1:K SNP set setting, the PCA analysis
is conducted on the genotype matrix to obtain orthogonal PC genotype scores, and then we
can regress the scalar phenotype variable on those genotype PCs jointly. In the K:1 multi-
ple phenotype setting, we first apply PCA on the multiple phenotypes and obtain orthogonal
phenotype PCs and then regress each phenotype PC on the single SNP genotype variable.

There is an important difference when applying PCA in these two settings: correlation be-
tween explanatory variables has a different effect on inference than does correlation between
outcome variables. In the K:1 setting, the K variables are multiple phenotypes which are put
on the left-hand side of the regression model as outcomes, and the one explanatory variable
is the SNP genotype which is put on the right-hand side of the regression model. In contrast,
in the 1:K setting there are K explanatory variables, the multiple SNPs in the SNP-set, which
are put on the right hand-side of the regression, while the one phenotype is still on the only
outcome on the left-hand side of the regression model.

This difference leads to an asymmetry between the two settings. In the K:1 multiple phe-
notype regression setting, the correlation matrix among multiple phenotypes influences only
the correlation matrix of the score testing statistics and has no influence on its mean vector, as
the test statistic is Z(") ~ N{8), (")} However, in the 1:K SNP-set regression setting the
correlation matrix (LD) among the K SNPs influences both the mean vector and correlation
matrix of the score testing statistics, as the test statistic is Z 8~ N {Z(S)ﬂ(s), ¥ (5}, This oc-
curs because the Gaussian likelihood accounts for correlation between multivariate outcomes
differently than it does for correlation between multiple explanatory variables, leading to the
differences we see in the score equations and corresponding test statistics.

2.4. Extension to allow for covariate adjustment.

2.4.1. The K:1 setting. In many cases covariates are included in the model to adjust for
potential confounding factors. Suppose we denote the g-dimensional centered covariate row
vector for individual i as X EP), then we can model the relationship between genotype and
phenotype adjusted for covariates as

P P) (P P) o(P P
(2.7) Yi(k ) X( ) ( )—}—G( ),3( ) l(k)’
where oc,(cp) ={ok1, ..., oqu}T are the covariate regression coefficients. Under Hp : §¥) =0,
the score test statistics are
P P (P
(2.8) Z( ) (G(P)) (y](c ) _ X(P)“IE ))7

where (’i,(cp) is the maximum likelihood estimator under the null model Hp. Using matrix

notation, we have
29) 2" = (6" I-xP((xD) x®) 7 (x ™)y

Denote a') = (G(P>)T[I — XPr(xPHT x(P)y=L(x(P)YT] g be the row vector of length
n, then we can rewrite equation (2.9) as Z; (P)
Section 2.1.

=al’ )Y,EP), which reduces to the setting in
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2.4.2. The 1:K setting. To adjust for covariates in equation (2.3), we use ) as a column
vector of g regression coefficients for the row vector X ES) of g covariates

(2.10) 7S = x0a® + GOBO 1.
The score test statistics are
(2.11) Z® = (G (¥® — xOg®),

where @® is the maximum likelihood estimator under the null model Hy : ) = 0. Similar
to the K:1 setting, denote

a® — (G(S))T[I _ X(S)((X(S))TX(S))—I(X(S))T]

to be the row vector of length 1, then we can rewrite equation (2.9) as Z®) = a9 Y which
can be treated in the same fashion of Section 2.2 and similar analysis can proceed.

3. The role of PCs in variance component tests. Principal components play a similar
role in variance component score tests in linear mixed models. In the K:1 setting, if 87 from
the multiple phenotype regression model (2.1) is such that each B; is assumed to follow an
arbitrary distribution with mean 0 and variance (*), where ¥ is the variance component,
then testing for Hy : 8 (P) =0 is equivalent testing for Hy : 7(P) =0 (Lin (1997)). Based on
model (2.1), the variance component score test statistic for H : P =0is (Huang and Lin
(2013))

0P = {Z(P)}T{):(P)}—l{Z(P)}—IZ(P).

This can also be rewritten as

K
0P = Z[{Y(P)UI(CP)}TG(P)/)\]EP)F

>~
—_

[G"{PC”)1 T

1
M=

(3.1)

;\N
Il

P P)y2
v gy,

Il
M=

k

I
—_

where PC,({P), Vk(P) and )L,((P) are all defined in Section 2.1. This suggests that the variance
component multiple phenotype test statistic Q¥) can be viewed as an inverse squared eigen-
value weighted quadratic combination of the K phenotype PC score test statistics V,((P).

The power of the multiple phenotype variance component test depends on both the K
principal angles H,EP) as well as the phenotype eigenvalues )\,((P). Its power is more robust with
respect to the direction of the true unknown B©) than the test based on a specific phenotype
PC, in the sense that it can be powerful when the angle of the true f ") lies in between
phenotype PCs. Since the last phenotype PC has the largest weight in Q)| the phenotype
variance component test in the K:1 setting implicitly assumes that the phenotype PCs with
smaller eigenvalues capture more association signals and, hence, weight them more. In fact,
it weights the last phenotype PC%D) most. Similar assumptions are made by the multiple
phenotype Wald test. If this underlying assumption is violated, like, for example, if the first
PC actually has a small principal angle, then Q) will not be powerful.

The variance component test for a SNP set can be constructed similarly in the 1:K SNP

set regression setting. Specifically, if B from model (2.3) is such that each ,BJ(S) is assumed
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to follow an arbitrary distribution with mean 0 and variance t‘5), where t5 is the variance
component, then testing for Hy : 8 = 0 is equivalent to testing for Hp : T = 0. Based
on model (2.3), this SNP-set variance component test takes the form of the sequence kernel
association test statistic (SKAT) (Wu et al. (2011))

(3.2) 0¥ = {Y(S)}TG(S){G(S)}TY(S),

where a linear kernel is assumed and we have used the fact that Y is scaled to have an unit
variance. This leads to the simplified form of

Q(S) — {Z(S)}Tz(s)’

which can be rewritten as

K
Q(S) — Z )‘IES)[{G(S)ngS)/ /)‘I(<S)}TY(S)]2
k=1

>~

(3.3) =Y [{pc?} YO
k=1

$)12
(VOP.

M=

k

—

Going from equation (3.2) to equation (3.3) can be realized by noting that GO GONHT
has the same eigenvalues as the component (G®))T G, except that the corresponding nor-

malized eigenvectors are G(S)u,((s) /+/ )»,(CS) instead of u,(cs). This can be seen by multiplying the
left hand sides of the following equation by G3): (G(S))TG(S)u,((S) = )\,((S) u,ES). Hence, equa-
tion (3.3) suggests that Q> can be viewed as a quadratic combination of the K genotype

PC score test statistics Vk(S) which have variance )L,((S). This is in contrast to Q") of the K:1
multiple phenotype setting, where the inverse of the squared eigenvalues are used as weights
in the sum.

To highlight the difference in the role of the eigenvalues in the two settings, it is interesting
to note that, for multiple phenotypes, Ax is squared in the denominator of the K:1 variance

component test while it is only implicitly present through the variance of Vk(S) in the 1:K
case, that is,

K
P)\—=2¢1,(P){2
0P =3 ()P,
k=1
K

0= 3

k=1

The means are

EQP) =3 (") + ") BN

k=1

X P X P P\T 2
:Z () +Z)‘() ()) ﬂ(P)},

k=1 k=1

K K
E(QW) =30+ ) (@) BOF
=1 k=1
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In contrast, for the Wald test in the K:1 multiple phenotype setting

K
Wald® = 3" (") v Py,
k=1

and this is consistent with the Wald test in the 1:K SNP-set setting

K
k=1

So, the Wald tests put more weight on the last PC in both settings. However, differences
arise when examining the ncp for each test. The ncp of the Wald test of multiple phenotypes
is influenced more by smaller eigenvalues, while the ncp of the Wald test of a SNP set is
influenced more by larger eigenvalues:

>q

(Wald(P) Z A(P) (P))Tlg(P)}Z’

E(Wald®) K+Z/\(S) TP

Comparing the means of the test statistics, for K:1 multiple phenotype regression the power
of the variance component test is influenced more by the last PC than the Wald test. On the
other hand, for 1:K SNP-set regression the power of the variance component test is influenced
more by the first PC than the corresponding Wald test.

The fundamental reason for the difference between the variance component test statistics
of the two settings is best understood by looking at the variance component (VC) score test
statistics directly. For the 1:K setting, the variance component score test statistic in equation
(3.2) is based on the loglikelihood of ¥, which is, apart from a constant

1 n
E(ﬂ(s)lY(S), G(S)) — -3 Z{Yi(S) _ GES),B(S)}Z-
i=1

This likelihood does not contain X, which appears only in the VC statistic (3.2) in its
empirical form (G(S ))TG(S). On the other hand, the likelihood of ¥ ¥ in the K:1 setting is,
apart from a constant

E(ﬂ(P)|Y(P), G(P))

1 n
(P) (P) p(PNT (5 (P~ (y(P) (P) P P
=_§Z(Yi - G; B )) (E( )) (¥; B )) 21 {):( )}
i=1
Here, X (P) enters directly into the likelihood itself. The stark difference in the two likelihood
functions explains the differences in the variance component score tests as well as the PC and

Wald tests.

4. Simulation studies. In this section we first conduct simulation studies to assess the
estimation accuracy of the eigenvalues and eigenvectors of the correlation matrix X in the
K:1 setting by using GWAS summary statistics. Second, we compare the finite sample per-
formance of the PC-based tests in both the K:1 multiple phenotype setting and the 1:K multi-
ple SNP setting. Specifically, we will show that the phenotype PCs with smaller eigenvalues
are likely to play more important roles in the K:1 multiple phenotype association tests, while



442 Z.LIU, I. BARNETT AND X. LIN

the genotype PCs with larger eigenvalues are likely to play more important roles in the 1:K
SNP-set association tests.

First, the correlation matrix £*) in Section 5.1 is set to be a true correlation matrix,
and its eigenvalues and eigenvectors can be calculated, respectively. Our goal is to esti-
mate the eigenvalues and eigenvectors using GWAS summary Z-scores. One million three-
dimensional multivariate normal Z-scores with mean zeros and correlation matrix equal to
%) are generated mimicking GWAS Z-scores for one million SNPs. The correlation matrix

can be estimated as &' using sample covariance matrix of those one million Z-score vec-
tors (Liu and Lin (2018), Zhu et al. (2015)). The sample eigenvalues and eigenvectors can be

computed as the eigenvalues and eigenvectors of the matrix P To assess accuracy of esti-
mation, we repeat this experiment for 1000 times. The bias of the three estimated eigenvalues
is equal to the average of the difference between the true values and the estimated values over
the 1000 experiments. The variability of the three estimated eigenvalues is calculated as the
sample standard deviation of those estimated eigenvalues across the 1000 experiments.

For eigenvectors we use the normalized inner product (NIP) between two vectors to mea-
sure the accuracy of the estimation of the eigenvectors. For two vectors u, v, the normalized
inner product is defined as u - v/\/u - u+/v - v, where the - notation denotes inner product
operation between two vectors of the same dimension. If two vectors are identical, then the
NIP is equal to 1. The biases of the estimation of the three eigenvalues are: 3.61 x 107>,
—7.35 x 1073, —5.14 x 1073, and the standard errors are: 0.0021, 0.0016, 0.0005, respec-
tively. The NIP for the three eigenvectors are: 0.9999910, 0.9999909, 0.9999995 and its
standard errors are: 1.17 x 1075, 1.17 x 1075, 5.32 x 10~7. Simulation results show that the
eigenvalues and eigenvectors can be accurately estimated.

In the K:1 multiple phenotype regression setting, we show numerically that the phenotype
variance component (VC) test 0P) | which is designed to test for the association of a SNP
and mulitple phenotypes without having a prior knowledge of the true direction of the effects
goP), gives more weights to the phenotype PCs with smaller eigenvalues. Hence, it favors
the last phenotype PC-based test statistic V[gp) more than the first phenotype PC-based test

statistic VI(P). Hence, the VC test in the K:1 setting will be most powerful if the last PC
captures all the signals. Its performance is closer to the last phenotype PC-based test statistic
V1(<P) than the first phenotype PC-based test statistic.

We considered an exchangeable correlation structure £ = (1 — p)I + p117, where p
specifies the strength of the correlation. To demonstrate the theoretical results, we consider
two extreme cases of g): gF) =3. uEP) and g0 = ug). In both cases we vary p such
that p =0.1,0.2,...,0.7,0.8. The simulations are based on 10° runs. We consider K = 10
phenotypes. The results are summarized in Figure 1.

Next, we consider the 1:K SNP-set regression setting using the same exchangeable cor-
relation structure. To demonstrate the theoretical results, we consider two extreme cases of
B g = ugs) and g =3. u(Ig). With K = 10 SNPs in a SNP set and simulations based
on 107 runs, the results are summarized in Figure 1.

As shown in Figure 1, in the K:1 multiple phenotype setting the last phenotype PC test
statistic V[((p) has a behavior closer to the phenotype VC test than the first phenotype PC test

statistic V](P). When the last principal angle 91(<P) is zero, VI((P) and the VC test are powerful

while VI(P) has little power. When the first principal angle 91(1’) is zero, VI(P) is powerful
while V,((P) has little power. Also, note that when S (P) is in the direction of the first PC,

signal strength needs to be three times larger in order to reach comparable power levels
to when B is in the direction of the last PC. This supports our theoretical findings in

Section 2. The performance of the K:1 VC test is closer to that of V[((p) but has more power
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K:1, pP=3u{” K:1, pP=u
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FI1G. 1. Power simulations demonstrating the relationship between PC tests and variance component tests. Set
K =10, and consider the exchangeable correlation structure with a varying correlation coefficient p. For each
BS) (and BP)) and each p, 10° simulations are used to estimate the power of each method empirically.

when 8 (P) — 3u§P) due to the (albeit small) contribution from the first PC. In this case, when
the between-phenotype correlation p becomes larger, the phenotype VC test behaves more
closely to VI((P) , reflecting the decrease in Ag).

In the 1:K SNP-set regression setting, the first genotype PC-based test, VI(S), has a be-
havior closer to the SNP-set variance component test, that is, the SKAT test, than does VI({S).
Specifically, when the first principal angle 01(3) =0, both Vl(S) and SKAT are more powerful
than V(S), although SKAT is slightly less powerful than VI(S). When 91((5) =0, VIES) is pow-
erful while VI(S) and SKAT have little power, although SKAT slightly outperforms VI(S) here
due to the small contribution from the last PC. Also, note that when 8¢ is in the direction of
the last PC, B needs to be three times larger in order to reach comparable power levels to
the case when 8 ) = ugs). As the between-SNP correlation (LD) p increases, the behavior
of SKAT becomes more closer to VI(S) due to the increase of )»ES) which gives the first PC a
higher weight in the SKAT test statistic Q5. In all, SKAT can be viewed as very similar to
VI(S) while being a slightly more robust when the signal is orthogonal to the first PC.

It is also interesting to compare the variance component tests and the principal component
tests with the minimum p-value test (MinP) in the 1:K and K:1 settings. The MinP test
statistic is defined as the minimum p-value of the K marginal test statistics Z) (or Z(")).
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One uses the distribution of the MinP test statistics to calculates the p-value of this test. The
MinP test is conceived to perform better when the signals are sparse (Conneely and Boehnke
(2007)). However, we will show that the accuracy of this notion is highly dependent on the
correlation structure. In fact, the MinP test might be less powerful than the VC tests and the
PC tests in the presence of sparse signals due to correlation. In the 1:K SNP-set regression
setting, an additional reason for this result is that even if BD is sparse, p8 = £ B
may not be sparse. The opposite notion is also true: when 8 ) (or BP)) is dense, it is not
necessarily the case that VC and PC-based methods like Q) (or Q")) outperform MinP.

We use the K:1 multiple phenotype regression setting to demonstrate these points for
the dense case. Let K = 10 and ‘P be autocorrelated with p = 0.5. First, consider the
case where ﬂ(P) =19-[1,1,1,...,1]7 such that 91((P) = 90°. In this case MinP has 76.1%
power, while the phenotype VC test Q¥) has 14.9% power, the Wald test has 74.6% power
and VI(<P) has 5.0% power (Figure 2). In this dense signal case MinP far outperforms both
0" and PC%)). At first glance this result appears counter to common perceptions of the
MinP test being ideal in sparse signal settings. Second, consider a different dense signal case,
where B ~ (1, 2,3, 4,5, 5,4, 3,2, —1)7 such that 6%’ = 4.8°. In this case MinP
has 10.8% power, while VC has 53.5% power, the Wald test has 36.6% power and VI(<P) has
82.5% power, which contradicts our first example and agrees with the prevailing intuition
that MinP has lower power relative to VC and PC-based methods when the signal is dense.
As this intuition originally emerged from uncorrelated setting, it cannot be directly applied
to correlated data.

We use the 1:K SNP-set setting demonstrate the sparse case. We here set all SNPs to have
pairwise correlation p = 0.8 with one another, except for the first SNP which is independent
of all others. We simulate power at the & = 0.05 level according to model (2.3) with 0> = 8,
K =10 and n = 1000. First, consider the ideal case for MinP where 8 =1, 0,0, ...,0]”
and, therefore, [L(S) =1[1,0,0,...,0]”. In this case MinP has 46.7% power, while the SKAT
0 has 8.2% power, the Wald test has 7.2% power and VI(S) has 5.0% power. The poor
performance of Q¢ and VI(S) is due to the angle between the first eigenvector of £ and
B being orthogonal (6> = 90°) (Figure 3). If B ~ [0, 31,32, ...,39]7, then MinP has
59.2% power, while Q8 has 61.2% power and Vl(S) has 61.8% power. The improvement
of 0 and VI(S) is due to a smaller angle between B8 and the first eigenvector of X5

Power Power [ ®)
MinP: 10.8% MinP: 76.1% |
VC: 53.5% VC: 14.9%
v 81.2% v 5.0%
Wald: 36.6% Wald: 74.6%
P) _ 4 g0 Be®
e I ol -
ugP) ugP)
pP) =0.143 « [-1,2,—3,4,-5,5,-4,3,—2,1]" B =19+[111,..,1]"

FI1G. 2. The effect of QI(K), the angle between B(P) and the last eigenvector ug)

tion tests in the K:1 multiple phenotype regression setting. Both BP) and ug) are vectors in R'0, where there

, on the power of associa-

are K = 10 phenotypes being tested. The correlation structure =P is autocorrelated with p = 0.5. Power is
calculated using 103 simulations under the null distribution for each test at the significance level 0.05.
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Power Power r )
MinP: 59.2% MinP: 46.7% |
SKAT: 61.2% SKAT: 8.2%
v, 61.8% V%) 5.0%
Wald: 5.2% Wald: 7.2%
©) _ 4 90 pe
S S
ul® u®
B =0.003125 * [0,31,32, ...,39]" BS =1[1,0,0,...,0]"

FI1G. 3. The effect of 91(5), the angle between B(S) and the first eigenvector ugs)

($)
1

, on the power of association
tests in the 1:K SNP-set regression setting. Both ﬂ(S) and u®’ are vectors in R0, where there are K = 10

SNPs in a SNP-set. The correlation structure 5 is exchangeable among nine SNPs with p = 0.8, and they are
independent of one SNP. Power is calculated using 10° simulations under the null distribution for each test at the
significance level 0.05.

(GI(S) = 4.2°). Based on these results it is clear that notions of signal sparsity/density and its
effect on statistical power must always be conditional on the correlation and signal structure.

Our simulation study results highlight the importance of using principal angles and eigen-
values to understand the power of PC-based tests in the K:1 and 1:K settings. We have demon-
strated that the tests based on the first PC are more powerful in general in the 1:K setting while
tests based on the the last PC are more powerful in general in the K:1 setting. We have also
illustrated that although signal sparsity plays a role in determining the power of a test, us-
ing only signal sparsity to categorize the performance of PC-based tests and the MinP test
without also considering the correlation structure is not appropriate.

5. Real data analysis. In this section we compare the PC-based tests in K:1 and 1:K
settings by analyzing two real data sets. The first data set is in the K:1 setting and contains
GWAS summary statistics of three lipids traits where we are interested in studying individual
SNP effects on multiple lipid phenotypes. The second data set is in the 1:K setting and is a
breast cancer GWAS data set where we are interested in performing gene-level analysis of
breast cancer risk across the genome.

5.1. The K:1 multiple phenotype setting. Coronary artery disease is a leading cause of
death in the U.S. and worldwide. Serum concentrations of high-density lipoprotein (HDL)
cholesterol, low-density lipoprotein (LDL), total cholesterol (TC) and triglycerides (TG) are
important risk factors for coronary artery disease and are therapeutic targets for drug develop-
ment. Genetic analysis of those lipids levels can help identify genetic determinants of abnor-
mal lipids levels. The publicly available global lipids GWAS data set contains the summary
statistics (Z-scores) for these lipids traits calculated from more than 100,000 individuals of
European ancestry (Teslovich et al. (2010)). Since LDL and TC are highly correlated with a
correlation 0.88, we restrict the analysis to three phenotypes HDL, LDL and TG since LDL
is of more clinical interest than TC.

The total number of genotyped or imputed SNPs is 269,1421, and for each SNP there
are three phenotype-specific Z-scores corresponding to HDL, LDL and TG. The estimated
correlation matrix between the three Z-scores using the sample correlation matrix over all the
independent SNPs after LD pruning is as follows (Zhu et al. (2015)):

1.00  —0.08 —0.42
>P =1-008 1.00 0.27
—0.42 027  1.00
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MinP 0 0010 42 QP

v

FI1G. 4. The number of novel independent SNPs detected by PC-based tests for the global lipids GWAS data
in the K:1 setting. With K = 3 different lipids, HDL, LDL and TG, multiple phenotype tests based on SNP-level
association tests were performed: first and last PCs, VC and MinP.

The three eigenvalues of P are A(P) = (1.54,0.93,0.53), and the three correspond-
ing eigenvectors are ul"’ = (0.59, —0.43, —0.68), ul”’ = (—0.53, —0.84,0.07), u\"” =
(0.60, —0.32,0.73). We apply several methods to analyze the data including the phenotype
PC tests, the phenotype VC test QF) test and the MinP test to jointly analyze the three
correlated Z-scores and to obtain corresponding overall p-values for testing the association
between each SNP and the three lipids. The p-value of MinP cannot be more significant than
the smallest individual p-value corresponding to each lipid which is one drawback of MinP
in the sense that MinP cannot detect any additional SNPs. Due to linkage disequilibrium
(LD), the SNPs identified might be in LD with each other. To obtain independent signals, we
performed LD pruning using the LD threshold r? < 0.01 within 500kb region (Purcell et al.
(2007)). Figure 4 presents the numbers of independent SNPs identified by each test. The first
PC identified 38 SNPs, while 19 of them were also identified by the VC test; The third PC
identified 46 SNPs, and all of them were also identified by the VC test.

To demonstrate the roles of principal angles on the power of the phenotype PC tests, we
also compute the third empirical principal angle 93(1)) which is estimated as the angle between
Z?) and the third eigenvector of the correlation matrix of Z¥). Table 1 summarizes the SNPs
with the smallest principal angles G}P) as well as the SNPs with top five largest principal an-
gles §3(P). The first five SNPs, which have the smallest principal angles é3(P), can be detected
by V3(P) and Q") but not by MinP. They all have the third principal angles less than 29°. The
VC test Q) gives more weight to V3(P) and also has very significant p-values. However,
for the last five SNPs, which have the largest principal angles 0A3(P), their effects cannot be
detected by V3(P) or 9P,

This real data example well illustrates our theoretical finding that the variance component
test favors the last PC in the K:1 setting and that the tests that favor the last PC generally
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TABLE 1
Joint Analysis of the GWAS summary statistics of three lipids levels in the K:1 multiple phenotype setting. The
three lipids levels include HDL, LDL and TG. We use Z® a5 an estimate of the direction of B. The angle

between ZP) and u](cp) is estimated as élip). SNPs with the smallest five principal angles §3(P) as well as the
SNPs with the five largest principal angles é:gp) are displayed

SNP CHR  MinP pval VP pval ViP) pval 0P pval o) 3"
157257916 19 2.19E-05 8.24E-01 2.90E-18 1.38E-19 87.52 6.21
rs13210634 6 5.58E-04 3.68E-01 9.61E-09 3.89E-09 7551 20.56
rs804267 8 6.49E-05 1.72E-01 6.08E-09 2.90E-09 6823  21.79
rs531117 11 1.51E-04 3.77E-01 1.25E-08 2.95E-09 7625 2592
rs1233489 6 7.83E-04 3.44E-01 2.07E-08 3.69E-09 7544 28.98
156124245 20 1.42E-06 3.45E-03 9.04E-01 4.89E-04 48.84  89.10
152168711 18 1.14E-07 1.30E-06 8.28E-01 1.79E-04 2986 88.69
rs12673863 7 1.11E-07 3.61E-03 8.28E-01 1.31E-04 5195 8845
157826687 8 8.08E-07 5.56E-09 7.32E-01 1.11E-03 435  88.03
rs17625826 2 1.22B-04 9.58E-08 5.49E-01 1.70E-03 11.64  86.29

are more powerful. It is clear that the principal angles provide a geometric perspective on the
power of PC-based tests.

5.2. The 1:K SNP-set setting. To illustrate the performance of genotype PC-based tests
relative to principal angles for SNP-set analysis of a phenotype in the 1:K setting, we ana-
lyzed the 1145 postmenopausal women of European ancestry with breast cancer and 1142
controls from the Cancer Genetic Markers of Susceptibility (CGEM) GWAS (Hunter et al.
(2007)). These women were genotyped at 528,173 loci using an Illumina HumanHap500 ar-
ray. A logistic regression model is used for performing gene-level analysis by controlling for
the covariates—age, postmenopausal hormone usage and the top three principal components
to correct for population stratification (Price et al. (2006)). Let X be the matrix of these co-
variates (with an additional column of 1s) and W = diag{#; (1 — 71), ..., 7,,(1 — 7,))} where
#; = E(Y¥|Hy, X®) s0 that P = W — WX (X&) TWXS)~1(X)TW. The marginal
test statistics are

5.1) Jo_ G -

J /(G§S))TPG§~S)

where we estimate cov(ZE-S), Z ]ES)) =0 J(.,f), the (j, k)th component of x® by

) (8)
L _ (G)TPGY
k= :
J& P /(6" TPG

where GE.S) and G,(cs) are the jth and kth column vectors of G, respectively.
We perform gene-level analysis across the genome, testing 15,890 genes with an average
of 18 SNPs per gene, including the 20kb regions flanking each gene. We perform gene-level

SNP set analysis using genotype PC tests Vk(S) , SKAT (Q®)) and MinP, and demonstrate the
effect of the first principal angle GI(S) on the performance of these tests.
We estimate 8¢5 by its MLE and estimate the first principal angle Gl(s) using the angle

between ﬁ(s) and u(ls). We compare in Table 2 the performance of VI(S), VI({S), Q" and
MinP among the top gene hits. Despite lacking genome-wide significance, Figure 5 shows
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TABLE 2
Top breast cancer GWAS gene hits for competing methods compared to principal angles in the 1:K setting.

~(S ~A(S ~
Though BS) is unknown, we use ,B( ) as an estimate of,B(S). The angle between /3( ) and u,(cs) is 9,55). The top
15 most significant genes, as determined by the smallest of the p-values of the four methods (first and last PCs,

VC and MinP), are listed and sorted in increasing order by their 01(5)

Gene K MinP pval VI(S) pval VI((S) pval o) pval él(s) éﬁ(s)
STXBP1 9 4.00E-04 1.52E-04 9.25E-02 1.52E-03 6.3 88.9
PTCD3 12 2.66E-04 4.36E-05 8.45E-01 1.13E-04 7.7 89.9
POLRIA 16 4.00E-04 6.37E-05 1.54E-01 3.43E-04 9.0 90.0
TBK1 11 1.28E-03 3.59E-05 2.24E-01 5.44E-05 10.8 89.1
Cl1orf49 24 2.57E-03 3.11E-04 8.50E-01 3.84E-04 11.5 90.0
VAPB 25 7.53E-03 2.50E-04 1.34E-02 4.93E-04 15.7 89.8
XPOT 9 1.07E-03 2.04E-04 9.45E-02 1.59E-04 17.1 89.3
Clorf71 25 1.65E-02 1.19E-04 8.37E-01 6.40E-04 18.4 89.9
CNGA3 26 1.19E-03 1.33E-04 5.22E-01 1.36E-04 28.4 89.9
FGFR2 35 1.00E-04 8.15E-05 1.32E-01 3.88E-05 28.9 89.3
TMEM175 10 5.00E-04 5.05E-03 2.87E-04 2.96E-03 32.9 88.4
ZNF19 6 3.71E-02 4.55E-02 2.12E-04 3.54E-04 36.5 86.1
VWA3B 51 1.39E-03 1.23E-03 2.82E-01 2.10E-04 39.3 90.0
DACT1 9 1.26E-01 1.59E-01 1.55E-04 1.32E-01 44.9 75.6
DGKQ 9 3.31E-04 5.01E-01 1.22E-05 7.33E-03 80.1 87.0

the similarity of performance between VI(S) and SKAT while showing the differences when

compared to both MinP and V,((S). The performance of V,ES) was strongest when é,((s) was
further from 90°. When él(s) is small (< 20°), then B is likely to share much of its direction

V1(S)

MinP 0 0,00><_ 1 Q®

v

F1G. 5. Venn Diagram for 1:K method similarity in the detection of the top genes in the breast cancer GWAS.
The top 15 genes were determined by sorting the smallest p-values of all four methods: first and last PCs, SKAT
and MinP. Among these genes, p-values less than 103 were counted for each method to produce the diagram.
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with ugs). The p-values for both Q) and VI(S) tend to be more significant than the p-value
using MinP, although MinP still performs adequately. In contrast, when él(s) is large (> 70°),
then B is likely to be nearly orthogonal to uES). This indicates that, even when the signal

is strong, VI(S) and Q® generally have almost no power while MinP has relatively small

p-values. Overall, MinP appears to be robust to the value of él(s), whereas Q) and VI(S)

are very sensitive and require the principal angle 91(3) to be small. This sensitivity to QI(S)
reflects the important role of the principal angle in the theoretical power of equation (2.6).

In addition, the smallest overall p-values occur for genes with small 01(5) which supports the
conclusion that tests based on the first PC or giving more weights to the first PC are more
powerful in the 1:K setting.

6. Discussions. In this paper we investigate the connections and differences between the
association tests used in the analysis of multiple phenotypes in the K:1 setting and SNP-sets
in the 1:K setting. In the multiple phenotype setting, we aim to assess the associations be-
tween a genetic variant and a group of correlated phenotypes; while in the SNP-set setting,
we aim to assess the associations between a phenotype and a group of SNPs. At the first
glance, these two problems seem to be the same statistically since they both aim at detecting
an association between one variable and a group of variables. However, these two problems
are very different in terms of the performances of various tests. Principal components based
testing procedures have distinctive performance in the two settings. The higher order PC with
small eigenvalues are generally preferred in multiple phenotype association studies, while the
lower order PC with large eigenvalues are generally preferred in the SNP-set setting. A sim-
ilar result holds for variance component tests in both settings. The variance component test
Q®) for multiple phenotypes gives the highest weight to the last PC and, therefore, implic-
itly assumes that the last PC is most informative, while Q5 for SNP-set testing favors the
first PC. The VC tests are more robust than single PC based tests, as they combine evidence
across all the PCs and allow the unknown principal angles to be in between PCs. In practical
data analysis settings, the relatively more robust variance component tests are recommended
for use, such as the SKAT type test for SNP-set level association studies.

In both settings the correlation structures either among a group of SNPs or among multiple
phenotypes play an important role in the performance of each test. Although the investigation
of the statistical powers of a test in high dimensional settings is commonly categorized into
dense and sparse regimes, this simple categorization can be misleading for correlated tests.
A permutation of the signal vector, which would not alter sparsity, can drastically influence
the power of many methods in the presence of correlation, such as for MinP and variance
component tests. Indeed, correlation structure, signal strength and signal sparsity are all im-
portant factors in high-dimensional testing. Further research is required to investigate how
they interplay in their effects on statistical powers of PC-based tests and other tests.

Jolliffe (1982) demonstrated using data examples that principal components with small
variances can be as important as the ones with large variances in principal component re-
gression; however, he did not provide any theoretical explanation for the observed empirical
phenomenon. We have established the importance of principal angles, the angle between the
principal components and the regression coefficient vector, in determining the power of many
popular association tests.

It is worth noting that for the multiple phenotype problem (K : 1 setting), we regress mul-
tiple phenotypes on individual SNPs, following the traditional GWAS strategy. Our goal in
this paper is not to identify which phenotypes that drive associations but to study whether
and how to combine multiple phenotypes can boost power for detecting genetic association
with a SNP. By modeling marginal SNP associations with multiple phenotypes, it is possible
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that the detected associations could be due to the correlation/linkage disequilibrium (LD) of
a detected SNP with a different causal SNP nearby. This is an issue present with the entire
traditional GWAS paradigm of analyzing one SNP at a time. Indeed, association does not
necessarily mean causation. Fine mapping is an active area of research with the goal of iden-
tifying causal variants of genetic associations. The fine mapping effort becomes more feasible
as the field moves into whole genome sequencing studies, such as the Genome Sequencing
Program (GSP) of the National Human Genome Research Institute and the Trans-Omics Pre-
cision Medicine Program (TOPMed) of the National Heart, Lung and Blood Institute.

Though in this paper we considered only the 1:K and K:1 settings, of increasing interest
is the K:J setting, where the association between K outcomes and J predictors is sought. This
leads to a scenario where Z is a K by J matrix as opposed to the K-dimensional vector like
it is in the K:1 and 1:K settings. The models considered in this paper cannot be adequately
adapted to this K:J setting, so future research is needed to allow for the analysis of both
multiple phenotypes and SNP-sets simultaneously.
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