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Activity spaces are fundamental to the assessment of individuals’ dy-
namic exposure to social and environmental risk factors associated with mul-
tiple spatial contexts that are visited during activities of daily living. In this
paper we survey existing approaches for measuring the geometry, size and
structure of activity spaces, based on GPS data, and explain their limita-
tions. We propose addressing these shortcomings through a nonparametric
approach called density ranking and also through three summary curves: the
mass-volume curve, the Betti number curve and the persistence curve. We
introduce a novel mixture model for human activity spaces and study its
asymptotic properties. We prove that the kernel density estimator, which at
the present time, is one of the most widespread methods for measuring ac-
tivity spaces, is not a stable estimator of their structure. We illustrate the
practical value of our methods with a simulation study and with a recently
collected GPS dataset that comprises the locations visited by 10 individuals
over a six months period.

1. Introduction. Collecting and statistical modeling of data on human movement in
time and space is an important research endeavor in many fields, such as spatial epidemiology,
demography and population science, urban design and planning, transportation research and
environmental psychology (Apostolopoulos and Sonmez (2007), Chen et al. (2016), Dobra
et al. (2017), Entwisle (2007), Hurvitz et al. (2014), Richardson et al. (2013)). Mapping in-
dividuals is difficult because a person’s residence does not reflect their interaction with the
physical and social environment (Kwan (2009)). Individuals spend considerable time away
from their residences and traverse multiple administrative boundaries in their daily activities
(Kwan (2013), Zenk et al. (2011)). For this reason, it is paramount to trace an individual
through multiple spatial contexts to study environmental risk factors for disease (Cummins
et al. (2007)). Statistical analyses that connect individuals to places by focusing on residential
neighborhoods or administrative boundaries (e.g., census tracts) cannot capture short term but
repetitive exposures to neighborhood-based risk factors (e.g., risk of violence or density of
alcohol outlets). Going beyond the residential neighborhood of a person by collecting fine-
grained positional data about where people actually spend time is especially relevant in stud-
ies that relate individual health to locally variable environmental factors (Basta, Richmond
and Wiebe (2010)).

As human beings are inherently mobile, data about their spatiotemporal trajectories of
travel are needed to construct relevant representations of their activity spaces. The notion
of activity space has been introduced in the social sciences (Golledge and Stimson (1997))
and has its roots in the space-time-travel geography in which an individual’s movements in
time and space are conceptualized as space-time prisms (Hégerstrand (1963, 1970)). Activity
spaces measure individual spatial behavior and capture individuals’ experience of place in
the course of their daily living through their observed location choices (Golledge (1999)).
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They have been used to study the influence of the built environment on individuals’ health-
care accessibility (Sherman et al. (2005)). Activity spaces play a role in the study of social
exclusion of individuals with low use of physical space which are less likely to be engaged
in society (Schonfelder and Axhausen (2003)). Questions of interest relate to whether such
individuals concentrate spatially or whether they are randomly scattered in the population?
Are these individuals socially excluded from certain parts of the physical environment which
could lead, for example, to lower chances of securing a job or higher costs of living? Activity
spaces have also been used, among many applications, to assess segregation (Wong and Shaw
(2011)), to measure exposure to food environments (Christian (2012), Kestens et al. (2010))
and to understand the geographic mobility patterns of older adults (Hirsch et al. (2014)).

Until about 15 years ago, research on activity spaces relied on locational data from
travel diaries in which participants shared information about the trips they took in the past
(Schonfelder and Axhausen (2003, 2004)). However, places outside the home neighborhood
that are not socially significant are harder to be remembered and, consequently, they will
be more likely to be missing from surveys. Smartphone-based location traces have recently
become available for the study of human mobility and have proven particularly interesting,
by providing the possibility of recording movements over time of individual people and ag-
gregate movements of whole populations (Dobra, Williams and Eagle (2015), Williams et al.
(2015)). This exciting new type of data holds immense promise for studying human behav-
ior with precision and accuracy never before possible with surveys or other data collection
techniques (Richardson et al. (2013)). Many high-resolution smartphone-based GPS location
datasets have already been successfully collected and, subsequently, employed to assess hu-
man spatial behavior and spatiotemporal contextual exposures (Kwan (2012), Matthews and
Yang (2013), Perchoux et al. (2013)), to characterize the relationship between geographic
and contextual attributes of the environment (e.g., the built environment) and human energy
balance (e.g., diet, weight, physical activity) (Berrigan et al. (2015), Zenk et al. (2011)), to
study segregation, environmental exposure and accessibility in social science research (Kwan
(2013)) or to understand the relationship between health-risk behavior in adolescents (e.g.,
substance abuse) and community disorder (Basta, Richmond and Wiebe (2010), Wiehe et al.
(2013, 2008)). The wide array of completed and ongoing GPS studies provide key evidence
that many people feel comfortable having their movements tracked (Zenk et al. (2012)).

In this paper we survey existing approaches for measuring the geometry, size and structure
of activity spaces based on GPS data such as ellipses, shortest-path spanning trees and kernel
density estimation, and explain the disadvantages of their use. To correct their shortcomings,
we put forward a set of tools for measuring human activity spaces that comprise a nonpara-
metric approach, called density ranking, and three types of summary curves. These curves
fall within the broader domain of topological data analysis which is a flexible framework for
detecting the structure and creating lower-dimensional summaries of distributions of com-
plex or high-dimensional datasets (Carlsson (2009), Chazal and Michel (2017), Edelsbrunner
and Harer (2008), Edelsbrunner and Harer (2010), Ghrist (2014), Kaczynski, Mischaikow
and Mrozek (2004), Lum et al. (2013), Wasserman (2016, 2018)). The summary curves we
discuss are based on level sets of density ranking which is closely related to level sets of a
probability density function and the minimum volume set (Cadre, Pelletier and Pudlo (2013),
Nuiiez Garcia et al. (2003), Polonik (1997), Scott and Nowak (2006)).

The structure of the paper is as follows. In Section 2 we describe the GPS data we use to
motivate and illustrate our developments. This is a never before analyzed dataset that com-
prises the spatiotemporal trajectories of daily living over a six months period of 10 individuals
from a rural area. In Section 3 we present background on human activity spaces and describe
existent methods for measuring them. In Section 4 we present density ranking, and in Sec-
tion 5 we discuss three types of summary curves: the mass-volume curve, the Betti number
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curve and the persistence curve. In Section 6 we introduce a novel mixture model for activ-
ity spaces and study its asymptotic properties. In Section 7 we present a simulation study.
In Section 8 we apply density ranking and summary curves to the GPS data described in
Section 2. Finally, in Section 9 we comment on the relevance of the proposed set of tools in
the context of health research. We provide R scripts that implement our proposed methods at
https://github.com/yenchic/density_ranking.

2. GPS data. We employ data from a GPS pilot study that involved three men and seven
women that reside in a rural region. The study took place in 2016 with the approval of the
local biomedical research ethics committee. These data have not been analyzed before. Each
study participant was provided with a GPS-enabled Android smartphone for a period of six
months. The smartphones together with their voice and data plans, whose costs have been
covered by the pilot study, served as an effective incentive for study participation and adher-
ence to the data collection protocol. The participants were asked to carry the smartphones
with them at all times and also to keep them operational by regularly charging them. All
10 participants have been compliant with the protocol of the study and have returned their
devices at the end of the study period.

The Android smartphones employ an assisted GPS system which produces accurate coor-
dinate data with less battery power (allowing a phone to remain charged for at least 48 hours)
than traditional GPS devices (e.g., GPS trackers). The positional data that were recorded
contain timestamps, smartphone unique identifiers, latitude and longitude coordinates and
information related to the accuracy of the reported coordinates (e.g., satellite connectivity).
The smartphones were registered with a mobile device management (MDM) software that al-
lowed the study personnel to manage, secure, monitor and track the smartphones from an easy
to use online dashboard. The positional data were securely transmitted to a study database
residing on a secure server over cellular or wireless networks using state of the art encryption
techniques every time the smartphones had a data connection. The data were deleted from
the smartphones immediately after transmission. This protocol guarantees that no confiden-
tial positional information could be accessed if a smartphone was lost or stolen.

The ages of the study participants were between 34 and 48 years. They share the same
place of work. Their residences are located within a short commute of a couple of kilometers.
The rural study area has a township in which most stores and markets are located. The local
road network comprises a major primary road that traverses the township and several sec-
ondary roads. There are additional unpaved roads about which we did not have GIS data. The
data comprise between 3500 and 8500 GPS locations for each of the 10 study participants.
The MDM software installed on the phones was set to transmit a new location every time a
device moved more than 250 meters. For this reason, more locations were recorded for those
participants that traveled more. Figure 1 shows the GPS locations recorded for one of the
study participants who was most active in the rectangular area shown in red in the left panel
but also took several trips to more distant locations.

3. Existent approaches for measuring human activity spaces. Activity spaces repre-
sent the spatial areas within which an individual has direct contact during their daily travels.
However, people do not move randomly in space. Due to the various preferences, needs,
knowledge, constraints and limitations of movement, the areas visited by an individual are
concentrated around one, two or more anchor locations that serve as origin and destination
hubs of the routes followed by an individual. The anchor locations have key material or sym-
bolic meaning for an individual: they include their home and work locations, together with,
for example, the location of a child’s school, favorite market and grocery store, a preferred
entertainment venue or an airport. The probability of visiting a particular spatial location de-
creases as a function of its distance to the anchor locations and depends on its relative position
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F1G. 1. Plots of the GPS data from one study participant. The left panel displays the complete GPS records of
this individual. The latitude (x-axis) and longitude (y-axis) coordinates were shifted and scaled to preserve the
privacy of the study participants. The middle panel represents the zoom-in area of the rectangular region shown
in red in the left panel. In the right panel, the relevant GIS data was superimposed on the GPS locations: primary
(blue) and secondary (purple) roads, the workplace (red triangle) of the study participants and the location of the
township of the study area (red cross).

with respect to the most frequent directions of daily travel. The shape, structure and spatial
extent of activity spaces are a function of the spatial configuration of the anchor locations and
of the routes traveled between and around them (Schonfelder and Axhausen (2003)).

Characterizing the activity space of an individual involves: (i) determining the number
and the spatial configuration of the anchor locations; (ii) identifying the places the individ-
ual is most likely to experience, in addition to the anchor locations, and differentiating these
places from other places which the individual is considerably less likely to come in direct
contact with; (iii) mapping the spatial configuration of these locations; and (iv) developing
measures that quantify the geometry and spatial structure of the individual’s activity space.
Such measures capture the individual’s degree of mobility while accounting for the under-
lying preferences for certain travel routes. Activity spaces are not designed to capture the
maximal area in which an individual is active. Instead, they consist of one, two or more spa-
tially contiguous areas structured around the anchor location in which an individual regularly
engages in activities of daily living, together with the routes used by the individual to travel
between these areas.

We denote by 7 = {T1, T», ..., T,} the GPS positional data of an individual. The jth
location is T = (x;, y;, tj) where x; denotes latitude, y; denotes longitude and 7; denotes
the time when the location (x;, y;) was visited. We assume that #{ <, < --- <1,. The set
of visited locations X = {X1, X», ..., X}, where X; = (x;, y;), is the projection of 7 onto
the latitude and longitude coordinates. The times when the locations were visited together
with the order in which locations were visited are lost through this projection. Information
about the routes traveled by an individual are comprised in 7 but are absent in X'. The set of
anchor locations are denoted by A = {A1, A, ..., Ap,}. We note that A is not necessarily a
subset of X since some anchor locations might need to be inferred from possibly noisy GPS
measurements.

The existent literature has introduced several approaches for characterizing activity spaces.
We describe them below, together with their advantages and limitations.

3.1. Ellipses. This appears to be one of the earliest and most popular methods for
measuring activity spaces which has been concurrently developed in several research do-
mains such as biological habitat research, transportation research and human geography
(Schonfelder and Axhausen (2003, 2004)). Ellipses are fit to the set of visited locations X’
based on knowledge of the most relevant anchor locations in A such as residence and work-
place.
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There are two kinds of ellipses: the standard deviational, or confidence ellipse, and the
home-work ellipse (Chaix et al. (2012)). The standard deviational ellipse is determined based
on the assumption that the locations X follow a bivariate normal distribution. This distri-
bution can be centered around a central location determined as the arithmetic mean of the
unique coordinates in X" or the weighted average by the frequency of visits at some locations.
Since these averages might not designate an actual real-world address, the central location
can be an anchor location, typically the home location which is recognized as the focal point
of the lives of most people. The major axis of the standard deviational ellipse is the regression
line of the latitude on the longitude coordinates, thus, the orientation of the ellipse reflects the
sign of the correlation between coordinates. It is customary to report one and two standard
deviational ellipses corresponding to 68% and 95% coverage probabilities (Sherman et al.
(2005)).

The home-work ellipses differ from the standard deviational ellipses in that they are de-
fined with respect to two anchor locations which become the two focal points of the ellipse.
Typically, the focal points of the ellipse are selected to be the home and work locations. This
defines the major axis of the ellipse. Its minor axis is determined by selecting one additional
visited location, which could be another anchor location, or the most distant location in X’
from the two focal points (Newsome, Walcott and Smith (1998)).

Measures that describe an activity space represented through the space inside an ellipse
are the area of the ellipse, which expresses the extent of the activity space, and the ratio of
the length of the major and minor axes which represents the relative extent to which an indi-
vidual deviates from its most frequently used route (e.g., home to work and back) (Newsome,
Walcott and Smith (1998)).

One major disadvantage of representing activity spaces through ellipses are their relatively
inflexible geometry: the spatial distribution of activity locations is constrained to the shape
of the ellipse. Locations inside the ellipse are considered to be likely places of daily activi-
ties, while the locations outside the ellipse are viewed as unlikely travel locations. This is a
problem because the actual shape of activity spaces could be quite different than that of an
ellipse and could comprise nonoverlapping spatial regions. Moreover, ellipses could suggest
larger activity spaces since they capture the underlying variability of locations and are not
robust to outliers. In addition, an ellipse imposes a symmetry of the activity space around its
center even if half of the area covered by the ellipse does not contain any locations in X'. To
get around these issues, Schonfelder and Axhausen (2004) proposed using amalgamations
of ellipses constructed around two or more anchor locations (e.g, one ellipse having home
location as its center, and another ellipse having the work location as its center), while Rai
et al. (2007) have shown how to fit three other curved geometrical shapes: the Cassini oval,
the bean curve and the superellipse which comprises a circle and an ellipse. Selecting one
of these shapes is based on particular assumptions about the form of the activity space: one,
two, three or four clusters of locations with or without intermediate locations between them.
Nevertheless, determining which (if any) of these assumptions is appropriate for a certain
spatial pattern of locations X’ cannot be done without performing a visual inspection which
is problematic for applications that involve a large number of mobility profiles.

3.2. Minimum convex polygons. In this approach the activity space of an individual is
defined as the area delimited by the smallest convex polygon that contains all the locations in
X. This method has been applied to study both animal and human activity spaces (Buliung
and Kanaroglou (2006), Fan and Khattak (2008), Lee et al. (2016), Worton (1987)). Although
the determination of minimum convex polygons is computationally straightforward, they can-
not properly capture the shape of an individual’s activity space which is typically irregular
due to certain areas in the proximity of the locations in X being very unlikely to be visited
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(e.g., inaccessible or undesirable locations). As such, they identify activity spaces as being
spatially larger than other approaches (Hirsch et al. (2014)). Other shortcomings of minimum
convex polygons include: (i) the anchor locations A and other most frequently visited loca-
tions are not represented or even identified; (ii) they imply that an individual is active in only
one contiguous spatial area; and (iii) outlier locations in X’ can significantly change the cov-
erage and the shape of the resulting activity spaces. The spatial extent of minimum convex
polygons is typically measured using their area and perimeter, while their shape is measured
through their compactness (Harding, Patterson and Miranda-Moreno (2013), Manaugh and
El-Geneidy (2012)). This is a measure of how circular a polygon is defined as the ratio be-
tween the area and the perimeter squared, multiplied by 4. Its values range from near 1 (a
polygon very close to a circle) to near O (an elongated polygon close to a line). The shape of
ellipses can also be measured using their compactness scores.

3.3. Shortest-path spanning trees. This method employs a more realistic representation
of human travel: individuals most often move via road networks instead of by apparition or
“as crow flies” from one place to another. As opposed to the other three approaches, which
employ only the locations X, the shortest-path spanning trees are constructed with respect to
a road network that spans the reference area and also with respect to the order in which the
locations in X were visited. The routes followed by an individual during their daily travels
are approximated by projecting the locations in X’ on the road network, then by connecting
each pair of consecutive locations (seen as an origin-destination trip) by the shortest path on
the road network between them (Schonfelder and Axhausen (2003, 2004)). Golledge (1999)
argues that road networks affect the individuals’ perception and knowledge of places; there-
fore, activity spaces should be based on the paths followed by the travelers. As such, the
activity space of an individual is represented by the spanning tree that covers the part of the
network defined by the union of the shortest road network paths that connect consecutive vis-
ited locations. The spanning tree can be measured using its length or using the total area of
buffers with a fixed length (e.g., 200 meters) around the road network segments. These buffers
attempt to capture the space around the road network segments that might be known to an
individual by walking around (Kim and Ulfarsson (2015)). Anchor locations and segments
that are more intensely used on the road network can be determined based on the visitation
frequencies.

An advantage of the shortest-path spanning trees is that this approach moves away from
the assumption that individuals have a continuous knowledge about the space around and
between the locations they visit; ellipses and minimum convex polygons are based on this
assumption. Their shortcomings come from their dependence on the availability of road net-
work data. Such data might not have been collected at all or have lower quality in rural areas
or in low resource countries. Moreover, if the visited locations are recorded at larger time in-
tervals, approximating the route followed by an individual by the shortest path between two
consecutive locations might be crude: the individual might have traveled significantly more
than the shortest path would indicate.

3.4. Kernel density estimation. This approach considers raster grid cells that partition a
wider area that includes the set of visited locations X which is seen as a point pattern. An
activity surface over this wider area is generated by assigning a value to each cell in the raster
based on the distances from the center of the cell to the locations X (Buliung (2001), Kwan
(2000)). The probability that the individual that visited the locations X was also active in a
particular cell is proportional to the value assigned to that cell. The kernel density estimator
(KDE) is the sum of “bumps” centered at the locations X. The estimate of the bivariate
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density at grid point x (also referred to as the intensity at x) is given by (Silverman (1986))

1 & d;
M) P =—53 k(42)
i=1

Here, K (-) is a kernel, 4 is the bandwidth or smoothing parameter and d; (x) is the distance
between the grid point x and the ith visited location X; = (x;, y;) € X. The most usual choice
for K (-) is a radially symmetric unimodal probability density function such as the bivariate
normal density. However, since the number of visited locations X could be very large for
some GPS studies, it is preferable to employ a kernel that does not require evaluating the
value of the kernel at all points in A" for every grid point. For example, consider the quartic
(biweight) kernel function (Silverman (1986))

1 2
—(1 =23 ifjzl <1,
K> (z) = dz( )
0 otherwise,
where B, = fHXIISI (1—|x[*)? dx is the normalizing constant to ensure that K»(-) is a density

function. With this choice, the KDE from equation (1) becomes

N 1 di (x)\*\?
2) PO =25 2. <1—< - ))

=2 G () <h

Thus, locations in X outside a circle with radius A centered at x are dropped in the evaluation
of p(x). The probabilities of visiting grid cells that are at larger distances from the most
frequently visited areas will be smaller compared to the probabilities of visiting grid cells that
are at smaller distances. The choice of bandwidth /4 is very important as larger bandwidths
give more smoothing. However, for the KDE in equation (2), / also represents the maximum
distance of spatial interaction between locations. Therefore, the choice of A for a particular
application could reflect the understanding of proximity and neighborhood in daily travel for
the area in which the location data was collected (Schonfelder and Axhausen (2003)).

In the KDE approach, the activity space of an individual comprises all the grid cells with an
estimated probability (density) of visitation above a certain threshold t; > 0. The anchor lo-
cations can be identified as those grid cells with an estimated probability density of visitation
above a second threshold t; € (77, 00). Kernel density estimation can identify activity spaces
of any shape and can also estimate the corresponding anchor locations which is something
the ellipse and the minimum convex polygon methods cannot do. The shortest-path spanning
trees rule out locations that are not on the road network on which they were defined. For this
reason, the KDE approach seems to be the most flexible existent approach for activity space
determination. Measuring the resulting activity spaces can be done by calculating the area
covered by the grid cells included in them. It is possible to eliminate some of these areas,
if they are known to be unfavorable to activities of daily living (e.g., heavy industrial and
utility areas), thereby refining the shape of the activity spaces (Schonfelder and Axhausen
(2003, 2004)).

4. Density ranking. Despite its flexibility in measuring activity spaces, kernel density
estimation sometimes fails to yield adequate results when applied to GPS datasets. Consider
the left panel of Figure 2 in which we show the KDE of locations from the region in the middle
panel of Figure 1. Although it correctly identifies two peaks with the highest concentration
of locations, the KDE does not capture much of the underlying structure of the GPS data.
In this section we discuss an alternative to KDE, called density ranking, that captures much
more of the underlying mobility patterns of this individual; see the middle and right panels
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FIG. 2. A comparison between KDE and density ranking. In the left panel, we display the density contours from
the KDE associated with the locations shown in the middle and right panels of Figure 1. In the middle panel,
we show the contours identified by density ranking. In the right panel, we superimpose GIS data to the density
ranking contours.

of Figure 2. It is apparent that many finer structures are not discernible using KDE, but they
can be easily recognized when using density ranking. The KDE map only shows two grid
cells that have high intensity: the workplace and another location that might be the home of
this individual. On the other hand, the density ranking maps show the existence of numerous
other grid cells located on the spatial trajectory followed by this individual. These regions
represent the location of the township, road intersections or road segments.

Density ranking is a quantity derived from the KDE defined as

n
G(x) = % 2 _1(B(X) <p()),
i=1

where I(-) is the indicator function. The density ranking function &(x) is the fraction of
observations in X = {X1, X», ..., X,;} whose estimated density is lower than the estimated
density of the given point x. This function was called the «-function in Chen (2019). The
density ranking function &(x) is a probability-like quantity that takes values between 0 and
1. It has a natural relationship with the rank of the data points with respect to the KDE p. Let
R, = Z:;l I(P(X ;) <P(X;)) be the rank of X; with respect to p. We have R; = 1 if X; has
the lowest density, and R; = n if X; has the highest density. Then,

_ R;

a(Xi)=—

n

which implies that the density ranking at each observed data point is just the relative ranking
of that point.

Density ranking has a straightforward interpretation related to the locations visited by an
individual: for a point x with @(x) = 0.8, the probability density (measured by the KDE p) at
point x is higher than the probability density of 80% of all observed GPS locations. We say
that x is in the region of the fop 20% activity. Given a level y € [0, 1], the level set of density
ranking

A},:{x:(’x‘(x)zl—y},

can be interpreted as the area of the top y x 100% activities. The set Ky is the region within
the contours of level 1 — y. Note that Zy is related to the minimum volume set (Nufiez Garcia
et al. (2003), Polonik (1997), Scott and Nowak (2006)) and can be interpreted as a density
level set with a probability content of y (Cadre, Pelletier and Pudlo (2013)). In this view, X,,
can be interpreted as an estimator of the smallest (in terms of volume) area covering at least
y X 100% activities.
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As explained in Section 3.4, given two prespecified levels 11, 7o with 1] < 13, the activity
space based on the KDE p comprises the grid cells x with p(x) > 71. The anchor locations are
those grid cells x with p(x) > 7. Similar definitions of activity spaces and anchor locations
can be given based on density ranking. We choose two levels y1, 2 € (0, 1) with y» < y1. We
define Kyl to be the top y1 x 100% activity space or y1-activity space. Then, anchor locations
are defined as the y;-activity space. Choosing particular levels for the determination of human
activity spaces or anchor locations can be done by examining the top 90, 80, ..., 10% activity
spaces. In Section 7 we show that the summary curves we introduce in the next section can
be used to guide the choice of levels.

5. Summary curves. Based on density ranking, we obtain a two-dimensional function
(a map) of human activity spaces. However, comparing maps associated with the activity pat-
terns of multiple individuals is not straightforward without adequate summaries of the shape
of these functions. To define such summaries, we use tools from topological data analysis
(Chazal and Michel (2017), Edelsbrunner and Harer (2008), Wasserman (2016)). Specifi-
cally, we describe three types of summary curves that quantify the shape of a two dimensional
function. These curves provide additional information about the geometry, size and structure
of human activity spaces.

5.1. Mass-volume curves. Given a level y, the size of the region A}, can be used to
quantify an individual’s mobility in terms of the spatial extent of the y-activity space. We
measure size with the mass-volume function (Clémengon and Jakubowicz (2013), Clémengon
and Thomas (2018), Nuifiez Garcia et al. (2003)) which is defined as

V(y) = Vol(A,),

where Vol(A) = [, dx is the volume of the set A. For example, if an individual has V(0.2) =
3 kmz, we say that the top 20% activities of this individual occur within a region of size
3 km~.

We subsequently define the mass-volume curve V= {(y, \7()/)) :y € [0, 1]} which de-
scribes how the volume of the y-activity space A\y evolves when we vary the level y. Mass-
volume curves can be used to compare the degree of mobility of two individuals. Consider
two example individuals with mass-volume curves f/\1 and Vz such that 171 (yo) > \72()/0) for
some level yp € [0, 1]. We say that first individual has a higher mobility than the second
individual in terms of the top yp x 100% activities.

5.2. Betti number curves. The mass-volume curve quantifies the activity space in terms
of its size, but it does not provide any information about the shape of the activity space. Key
concepts from topological data analysis (Chazal and Michel (2017), Edelsbrunner and Harer
(2008), Wasserman (2016)) turn out to be very useful for this purpose. Two points in a set
S are connected if and only if there exists a curve inside S that connects them. The set S is
connected if any two points in the set are connected. The connected components of S are the
induced partition from this relation. The connected components of S are a partitioning of S
into subregions. Each connected component must not overlap with other connected compo-
nents and must be connected. Two points that belong to two different connected components
of § cannot be connected with a curve inside S.

We consider the connected components of the y-activity space A},. We define the Betti
number function

B(y) = number of connected components of A,

and the Betti number curve E ={(y, E (y)) :y €10, 1]}. This curve captures how the number
of connected components of the y-activity space changes with the level y. Note that the Betti
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FI1G. 3. Anillustration of how the Betti number curve (middle panel) and the persistence curve (right panel) are
computed for the function shown in the left panel.

number function is related to the number of local maxima of @(x) and p(x). In the cluster
analysis literature, the value E (y) is interpreted as the number of clusters (Hartigan (1975),
Rinaldo and Wasserman (2010)). The Betti number curve is closely related to the barcode
plot in topological data analysis (Ghrist (2008), Wasserman (2016)).

We provide an example in Figure 3. The left panel shows a univariate function with four
local maxima that correspond to levels b1, b2, b3, b4, and four local minima that correspond
to levels di, dy, d3, ds. A level set A\y comprises those regions where the function has a
value above 1 — y. A new connected component is created when, as y increases from 0
to 1, it passes one of by, by, b3, bs. An existing connected component disappears when y
passes one of dy, da, d3, ds. Each of the orange vertical line segments represents a connected
component: its upper and lower ends correspond to the birth and death time of this connected
component, respectively. The middle panel shows the Betti number curve that corresponds
to the function in the left panel. The Betti number curve goes up when the level y hits the
density ranking value of a local maximum and may drop when passing through the density
ranking value of a local minimum or a saddle point. In this example, the Betti number curve
increases whenever it passes b1, ba, b3, b4 and decreases when it passes d1, d», d3, d4. For a
given value y, the Betti number functlon ,B (y) tells us the number of connected components
in the top y x 100% activity region A . For example, if ﬁ(O 2) =2, the region of top 20%
activities has two disjoint components. ThlS implies that the individual’s top 20% activities
are concentrated around two areas that could correspond with the locations of this person’s
home and workplace. Individuals that record higher values of the Betti number function are
those who tend to repeatedly visit a larger number of spatially distinct locations.

5.3. Persistence curves. The previous two types of curves focus refer to specific y-
activity spaces. Next, we define a third type of curve called a persistence curve that simultane-
ously considers all levels y € [0, 1]. The concept of persistence plays a key role in persistent
homology, a branch of topological data analysis (Chazal and Michel (2017), Edelsbrunner
and Harer (2008), Wasserman (2016)). The persistence curve is related to the accumulated
persistence function (Biscio and Mgller (2019)). The Betti number curve and the persistence
curve can be viewed as functional summaries of topological features (Berry et al. (2018)).

We first define the persistence of a connected component. When we vary the level y, new
connected components may be created and existing connected components may disappear
by merging with other connected components. We define the birth time of a connected com-
ponent to be the level when this component is created and its death time to be the level at
which this component disappears. A connected component is created at the level of the den-
sity ranking of a local mode and is often eliminated at the level of the density ranking of
a local minimum or a saddle point. When two connected components merge into one, we
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apply the following seniority rule (Chazal and Michel (2017), Wasserman (2016)): the older
one (created at a lower level) stays alive while the younger one (created at a higher level) is
eliminated. We define the death time of the connected components at level y =0 to be 0.

In the left panel of Figure 3, the two end points of an orange line segment correspond to the
birth (creation) and death (elimination) of a connected component. The corresponding levels
of the end points, b, and dy, are the birth time and death time of that connected component.
There is a direct relationship between birth and death times and the Betti number curve: the
Betti number increases by 1 whenever it passes the birth time of a connected component,
and it decreases by 1 when it passes the death time of a connected component. In Figure 3,
two connected components are created at levels by and b;, and are eliminated at levels d
and d»>. At b and b;, the Betti number increases by 1, and it decreases by 1 at d; and d>.
Since b < by, the connected component created at b is older than the connected component
created at b>. When the two connected components merge at level d» € (b3, d1), the connected
component created at b1 remains, while the connected component created at b; is eliminated.

For each connected component, its persistence (also called life time) is the difference be-
tween the birth and the death time. In Figure 3 the length of an orange line segment is the
persistence of that connected component. We define the persistence function

0(t) = number of connected components whose persistence > ¢

and the persistence curve p = {(¢, p(t)) : t € [0, 1]}. An example persistence curve is shown
in the right panel of Figure 3. The persistence curve is a nonincreasing curve since we are
thresholding on the life time of connected components. There will always be a connected
component with a life time close to 1 because, by definition, the data point with the highest
KDE value has rank equal to the sample size n, making its density ranking equal to 1. Due to
the resolution of the underlying grid used, it is possible to see a connected component with
life time close to but less than 1.

The persistence curve provides new information about the spatial distribution of the activ-
ity space. Unlike the mass-volume curve or Betti number curve that describes characteristics
of level sets A\y\ at particular levels y, the persistence curve characterizes the collection of
all level sets {A,, : y € [0, 1]}. This is because, in order to compute the persistence of each
connected component, we need to consider various levels to determine its persistence. An in-
dividual has a high-persistence curve when the corresponding density curve has many highly
persistent connected components. These are regions this individual repeatedly visits: most
likely, these represent their anchor locations. This type of information is not directly related
to a particular y-activity space. Instead, it is a quantity describing patterns across activity
spaces at different levels.

6. A mixture model for human activity spaces. In this section we propose a statistical
model that captures the most significant features of human activity spaces. We denote by
Pgps the probability distribution that defines the activity space of an individual. Note that
the model we consider is a working model that provides insights on the data analysis; it may
not reflect the actual data generating process. The observed locations X = {X1, ..., X, } are
assumed to be independent samples from Pgps. We write this distribution as a mixture with
three components

3) Paps(x) = moPo(x) + m1P1(x) + m2Pa(x),

where Pg(x) is an atomic distribution, Pj(x) is a one-dimensional distribution, P,(x) is a
two dimensional distribution and o + 71 + 72 = 1 with 7; > 0 are proportions. The three
components of the mixture (3) represent the key elements of the activity space represented by
Pgps: Po is a distribution that puts probability on the anchor locations A4; Py is a distribution
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describing the roads ‘R used by an individual when traveling between anchor locations; and
P, is a distribution describing the areas O around the anchor locations in which an individual
moves. Although Py and P; do not have conventional probability density functions, they
admit a generalized density function called the Hausdorff density (Mattila (1995), Preiss
(1987)). Let B(x, r) be the ball centered at x with a radius » > 0. For a positive integer s, the
s-dimensional Hausdorff density (s-density) at x given Pgps is

Paps(B(x,r))
Cs-rs ’

where C; is the volume of an j-dimensional unit ball (Co =1, C; =2 and C; = 7). We
denote by pg, p1 and p> the zero, one and two-dimensional Hausdorff densities given Pg, P
and P,. Namely, po(x) is a mass at point x, pj(x) is a one-dimensional density value at x,
and py(x) is a two-dimensional density value at x. Furthermore, .4, R and O represent the
support of pg, p1 and p», respectively.

We define the dimension w(x) of a point x with respect to Pgps as follows:

Hs(x) = lim

0 ifxedA,
4) w@x) =11 ifx eR\A,
2 ifx¢ AUR.

The dimension of an anchor location is 0. The dimension of a location on a road inside the
activity space that is not an anchor location is 1. The dimension of all the other locations is 2.

The following result shows that there are two equivalent ways to define the dimension
w(x):

THEOREM 1. Given assumption (S) from the Supplementary Material (Chen and Dobra
(2020)), Section 3, the definition of w(x) in equation (4) is equivalent with the following two
definitions:

w(x) = max{s : Hy(x) <o0,s =0, 1,2},
and
0 ifpo(x) >0,

wx) =11 ifpo(x)=0,p1(x) >0,
2 ifpo(x) =0,p1(x) =0,p2(x) > 0.

The proof of Theorem 1 is given in Supplementary Material (Chen and Dobra (2020)),
Section 4. Using w(x) and p;(x), j =0, 1, 2, we define a ranking comparison between two
points x| and xo. We write x| > xp if

w(x1) < w(x), or w(x)=w(x2), Pw)X1) > Pwlx)(x2).

To compare two points, we first compare their dimension. The point that has a higher dimen-
sion is ranked higher. If both points have the same dimension, we compare their density value
in that dimension. Then, the population quantity that density ranking is approximating is

(&) a(x) =Pgps(x = X1),

where X is a random variable with distribution function Pgps. Theorem 1 is needed to
prove the next result that shows that &(x) is a consistent estimator of «(x) which explains
why density ranking yields stable results in measuring human activity spaces.
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THEOREM 2. Given assumptions (K1-2), (S) and (P1-2) from the Supplementary Mate-
rial (Chen and Dobra (2020)), Section 3, and

logn — 00, h — 0, we have

/ @) — ()2 dPaps(x) 5 0,
/\a(x) —a)[*dx 5 0.

The proof of Theorem 2 is given in the Supplementary Material (Chen and Dobra (2020)),
Section 4.

The collection of anchor locations A and roads connecting anchor points R are of key
interest and must be properly recovered from GPS data. Next, we show that the level set of
o (x), under suitable choices of level, will be a consistent estimator of .4 and R. Recall that
A\y = {x:&(x) > 1 — y} is the level set of density ranking.

THEOREM 3. Given assumptions (K1- 2) (P) and (S0) from the Supplementary Material
(Chen and Dobra (2020)), Section 3, and

logn — 00, h — 0, we have

Paps(AryAA) £o.

where for sets A and B, AAB = (A\B) U (B\A) is their set difference and Pgps(A) =
P(X1 € A), where X is has distribution Pgps. Moreover, if we further assume (S1) from the
Supplementary Material (Chen and Dobra (2020)), Section 3, we have

~ P
Peps(Ary+m A(AUR)) = 0.

The proof of Theorem 3 is given in the Supplementary Material (Chen and Dobra (2020)),
Section 4. The set difference A is a conventional measure of the difference between two sets.
Applying the probability Pgps to the set difference is a common measure of the convergence
of a set estimator (Doss and Weng (2018) Mason and Polonik (2009), Qiao (2017), Rigollet
and Vert (2009)). Theorem 3 shows that Ano and A,,O+m are c0n51stent estimators of A and
AUR, respectively. With this fact, we can use the difference A;-[O_l,_n—l \Ano as an estimator of
R. Namely, Az, can be used to recover the anchor locations, and A, \Am) can be used to
reconstruct the sections of the roads covered by an individual’s activity space.

Finally, we show that under the mixture model in equation (3), the KDE p(x) diverges
with a probability tending to 1 at any anchor location or any point on a road connecting two
anchor points.

THEOREM 4. Under assumptions (K1-2) from the Supplementary Material (Chen and
Dobra (2020)), Section 3 and h — 0, we have E(p(x)) — oo for any x € AUR.

The proof of Theorem 4 is given in the Supplementary Material (Chen and Dobra (2020)),
Section 4. This result shows why the KDE does not give a stable estimator of .4 and R which
explains why, for the activity space in Figure 2, the KDE does not properly detect its structure.

7. Simulation study. We consider an example individual whose activity space has three
anchor locations .4: home (located at (0, 0)), office (located at (0, 2)) and gym (located at
(2, 0)); see Figure 4. We assume that the anchor locations .4 are connected by three straight
segments of road R. The individual spends 60% of their time in the anchor locations and
30% of their time traveling on the roads. In the rest of their time, this individual walks in the
neighborhoods around their office and home, but never walks in the vicinity of their gym.
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FI1G. 4. Activity space for the simulation study, and scatter plot of n = 8000 locations sampled from the mixture
model (6). The anchor locations are shown as follows: home (red diamond), office (red triangle) and gym (red
cross).

When the individual is at an anchor location, they spend 50% of their time at home, 30% of
their time at work, and 20% of their time at the gym. For this individual’s activity space, the
mixture model in equation (3) is written as (79 = 0.6, w1 = 0.3, 7o = 0.1):

(6) Paps(x) = 0.6P¢(x) + 0.3P(x) + 0.1P2(x),
with
Po(x) =0.558(0,0)(x) +0.38(0,2) + 0.28(2,0)-

Here, 8(4,)(x) is a function that puts a point mass at (a, b). The time in which the individual
travels between the anchor locations is divided as follows: 30% on the road between home
and gym, 20% on the road between gym and office and 50% on the road between home and
office. We assume that the individual travels with the same speed on all road segments. For
70% of their total walk time, the individual moves uniformly within the square [—0.5, 0.5] x
[—0.5, 0.5] centered at their home, and for remaining 30% the individual moves uniformly
within the square [1.6, 2.4] x [—0.4, 0.4] centered at their office. With these assumptions, the
distributions P and P; in equation (6) are completely specified.

We generate n = 8000 samples from the mixture model (6); see Figure 4. We use a smooth-
ing bandwidth of 0.5 to compute the density ranking. The corresponding contours (top left
panel of Figure 5) show a very good agreement with the anchor locations and the road seg-
ments (top right panel of Figure 5). We determine two level sets of density ranking (see the
bottom panels of Figure 5): 20.6 (7m0 = 0.6) and 20.9 (o + 71 = 0.9) corresponding with
the mixture weights in Eq. (6). We see that ;1\0.6 recovers all three anchor locations A4, while
A\o.g recovers the anchor locations and the road segments .A U R. This is consistent with our
theoretical results, in particular, with Theorem 3.

We compare the relative performance of kernel density estimation and density ranking by
simulating n = 8000 samples from the mixture model (6) 100 times. For density ranking, we
determine the level sets {A;\\y :y =0.05,0.10,...,0.95}. For kernel density estimation, we
determine the level sets {A} max, p(x) : ¥ = 0.05,0.10, ..., 0.95}. For each simulation experi-
ment and each of level set A, we calculate the distances Pgps(AA.A) and Pgps(AA(AUR)).
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FIG. 5. Analysis of simulated data. Top left panel: Contours of density ranking. Top right panel: The anchor
locations and the road segments superimposed on the density ranking contours. Bottom left panel: The level set
Ag.¢ of density ranking. Bottom right panel: The level set Agg of density ranking.

These distances represent the error of estimating the anchor locations A and the combined
anchor locations and road segments .AUR with the level set A. The average estimation errors
are displayed in Figure 6. The standard errors of the curves in Figure 6 are extremely small
(0.003-0.005) and have been omitted.

For the purpose of estimating the anchor locations .4, the left panel of Figure 6 shows that
the level sets from both kernel density estimation and density ranking work well, although
the level sets from density ranking achieve a smaller error for levels below g = 0.6 which
represents the true percentage of time spent in the anchor locations by the example individual.
However, for the purpose of recovering the combined anchor locations and road segments
AUR, the level sets from density ranking are significantly more accurate compared to the
level sets from kernel density estimation.

In Figure 7 we display the three summary curves presented in Section 5. Each panel con-
tains 100 curves corresponding with each simulation replicate, but many of these curves
overlap. The mass-volume curve and the Betti number curve (left and middle panels) are
flat around the intervals [0, 0.3], [0.3, 0.5] and [0.5, 0.6]. These flat regions provide insight
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FI1G. 6. Errors for detecting the anchor locations A (left panel) and the combined anchor locations and road
segments AU R (right panel) in the simulation study. The x-axis shows the level y. In the left panel, the y-axis
shows the error Pgps(Ay AA). In the right panel, the y-axis shows the error Pgpg(Ay A(AUR)).

about the existence of anchor locations: [0, 0.3] is for home, [0.3, 0.5] is for work, [0.5, 0.6]
is for gym. The persistence curve (right panel) also indicates that there are three connected
components with high persistences. Each connected component is associated with an anchor
point.

The summary curves allow us to choose the density ranking level to recover the anchor
points. For example, the flat region at [0.5, 0.6] of the mass-volume curve and the Betti num-
ber curve correspond to the valley in the error curves in the left panel of Figure 6. As such,
using level sets Zy with y € [0.5,0.6] to estimate A yields the smallest estimation errors.
Thus, the summary curves are very informative about the choice of ranking thresholds to
employ in the identification of anchor points.

8. Analysis of GPS data. We illustrate the application of our methodology to the GPS
data from the pilot study described in Section 2.

8.1. Density ranking. We apply density ranking based on the KDE in equation (2) with a
smoothing bandwidth £ of 200 meters. This choice implies that every observed GPS location
will affect its neighborhood up to a distance of 200 meters. In the Supplementary Material
(Chen and Dobra (2020)), Section 1, we compare several smoothing bandwidths: 7 = 200
seems to give an appropriate amount of smoothing for these data.

Mass—-Volume Curve Betti Number Curve Persistence Curve
°4 24 3
/ B
= z %
[} Qo |
- c o3
' g g g
®© £2 £
E. , 8 881
299 | ° °
[<} | (5} Qo
> i - =
i [} @
< ! e o]
o J <[ c
! Q Q
o o
— wo |
o [Sha
v #* #*
o 4 o 7 :‘—\;
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
v Y persistence

F1G. 7. Summary curves from the 100 simulated datasets. The left panel shows the mass-volume curve, the
middle panel shows the Betti number curve and the right panel shows the persistence curve. The three flat regions
in the left and middle panels correspond to the three anchor points A.
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FIG. 8. Maps showing the density ranking of the locations recorded for each of participant in the GPS pilot
study. The location of the workplace of the study participants is marked with a red triangle, while the location of
the center of the township in the study area is marked with a red cross.

We consider GPS locations that belong to the zoom-in area shown in Figure 1 since this
area contains most locations of the study participants. The density ranking of each study
participant is shown in Figure 8. The pattern of density ranking varies from individual to
individual. Study participants 2, 4 and 6 have more widespread GPS location distributions,
while study participants 1 and 5 recorded GPS locations that seem to be more clustered. There
are two key locations shared by all study participants: the workplace and the location of the
center of the township. The density ranking of all study participants is high at the locations
of the workplace and the township along the road that connects them.
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1=0.2 v=0.5

F1G. 9. The top activity spaces at levels y =0.2,0.5, 0.8 from density ranking of the study participants. Colors
indicate different individuals. The bottom right panel also shows the primary and secondary roads. There are two
key locations shared by all study participants: The workplace (red triangle) and the location of the center of the
township (red cross).

In Figure 9 we overlap the top activity spaces of the study participants at three levels:
y =0.2,0.5 and 0.8. The workplace was included in all top 20% activity spaces (top left
panel), while the township was included in all top 50% activity spaces (top right panel).
Paths that follow several local roads are included in most of the top 80% activity spaces
(bottom panels). Except for the workplace and the township, the rest of the top 20% activity
spaces of the study participants are not overlapping: these regions are probably indicative of
the locations of their homes.

8.2. Mass-volume curve. In Figure 10 we give the mass-volume curves of the study par-
ticipants. We plot the function log V (y) instead of V(y) since the size of activity space
evolves rapidly when y changes. The gray curve which corresponds to study participant 9
dominates the others in the range of y € [0.1, 0.7], while the purple curve which corresponds
to individual 6 takes over when y > 0.7. This means that study participant 9 has the highest
degree of mobility when we consider the activity space of top 10-70% activities. Individual
6 has the highest degree of mobility in terms of the activity space of top 70% or higher ac-
tivities. The reason why these two curves dominate the others can be seen in Figure 8. The
regions Ky for y € [0.1,0.7] correspond to where the density ranking is between 0.3-0.9
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F1G. 10. The mass-volume curves of the study participants measured on the log scale.

(1 — y) which is the region with a darker color. The contours associated with study partici-
pant 9 have a wider region with darker color compared to others. When we consider regions
with y > 0.7, we are looking at regions with a lighter color. In this case we see that the den-
sity ranking of individual 6 spans a larger area compared to others. The mass-volume curves
flatten out when the log size of the area is roughly below —2. This is due to the resolution
of the raster grid of cells used to compute the size of the level sets. The corresponding cal-
culations cannot be performed if the size of the level sets falls below the resolution of the
grid.

8.3. Betti number curve. Figure 11 shows the Betti number curves of the study par-
ticipants. There are three curves that dominate the others for different ranges of y. When
y < 0.5, the gray curve associated with study participant 9 dominates the others. When
0.5 <y < 0.7, the orange curve (study participant 4) dominates. When 0.7 < y, the pur-
ple curve (study participant 6) is the highest. This means that when we consider the activity
spaces of top 50% activity (or an even higher level of activity), the activity space of study
participant 9 has the largest number of connected components. This can actually be seen in
Figure 8: the darker regions in density ranking of study participant 9 have more distinct con-
nected components. The contours of density ranking of study participants 4 and 6 have many
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FI1G. 11. The Betti number curves of the study participants.
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FI1G. 12.  The persistence curves of the study participants. The left panel shows the full range of the persistence
curve, and the right panel is the zoom-in version of the gray dashed box in the left panel.

small bumps, resulting in a large number of connected components. The black and green
curves associated with study participants 1 and 5 are smaller than 50. This is the result of
their density ranking contours (Figure 8) being very concentrated. Unlike the density ranking
of study participants 4, 6 and 9 that have many little bumps, the contours of study participants
1 and 5 do not have a spurious distribution which keeps their Betti number curves at lower
values.

Based on Figure 11, we say that study participants 4, 6 and 9 have a higher degree of
mobility, while study participants 1 and 5 have lower mobility in terms of the number of
connected components of their activity spaces. Remark that the higher degree of mobility
of study participant 4 becomes apparent based on the Betti number curve but is not evident
based on the mass-volume curve.

8.4. Persistence curve. Figure 12 presents the persistence curves of the 10 study partic-
ipants. The left panel displays the persistence curve in the full range, and the right panel is
the zoom-in version with the range of y-axis restricted to the interval [0, 40]. In the left panel
we see that the purple curve (study participant 6) dominates the others when the range of
persistence is within [0, 0.2]. This range corresponds to many small bumps in its distribution
of density ranking; see Figure 8. These small bumps create several connected components
with short life spans: they all merge with other connected components quickly, so they have
small persistence. These connected components with short life spans contribute to the larger
values of the persistence curve. The fact that study participant 6 has many small and spurious
bumps in their density ranking implies that this person repeatedly visits a larger number of
locations. It is possible that this study participant has a job that involves driving on a daily
basis.

In the right panel of Figure 12, the dark green curve that corresponds to study participant
8 stands out. This means that study participant 8 has more persistent connected components
when we threshold on the persistence with a level above 0.4. This also implies that the activi-
ties of study participant 8 have several modes. From the density ranking distribution of study
participant 8 (Figure 8), we see that this individual has several distinct connected components
isolated from each other, confirming that this individual’s activities have several modes. This
is not evident from the mass-volume curve and the Betti number curve. Therefore, the persis-
tence curve reveals key information about human mobility which complements the informa-
tion provided by the other two types of curves we discussed.



MEASURING HUMAN ACTIVITY SPACES 429

9. Discussion. In this paper we described the key elements of human activity spaces
(anchor locations, roads and areas around anchor locations), and proposed a mixture model
for representing these elements. We discussed density ranking as an alternative to KDE, pre-
sented three types of summary curves and demonstrated their relevance for determining the
geometry, size and structure of human activity spaces. We remark that these summary curves
can also be calculated based on the KDE. However, using kernel density estimation instead of
density ranking is not advisable since, as we proved in Section 6, the KDE’s expectation di-
verges at anchor locations and along road segments. Density ranking has a powerful property
that guarantees its convergence even when the underlying distribution contains lower dimen-
sional structures (Chen (2019)). For this reason it is more appropriate to employ density
ranking as opposed to KDE in the determination and measurement of human activity spaces
from GPS data. As we illustrate in the Supplementary Material (Chen and Dobra (2020)),
Section 2, density ranking is preferable to KDE when creating maps of GPS locations: find-
ing an appropriate transformation of the KDE that will help create an informative map of an
activity pattern could be challenging. Transforming the KDE into density ranking preserves
the relevant information in the location data and offers a simple, generally applicable solution
to this problem.

The collection of high resolution movement data of individuals over long periods of time
is possible thanks to today’s technological advances. Smartphones are an especially versatile
device that an ever-growing proportion of people from most countries carry around every
day. At the present time GPS datasets collected from smartphones are recorded as part of
federally funded studies from many research fields. This collection effort will, without doubt,
continue to expand in the coming years and will provide detailed information about where
people spend their time. The methods we presented in this paper could constitute a key com-
ponent of these studies that will help translate raw GPS locations into meaningful, easily
interpretable information about individuals’ daily selective mobility. We demonstrated that
density ranking and summary curves have substantial advantages over existent methods for
activity space determination since they are not constrained to a fixed geometrical shape, allow
the determination of anchor locations and roads used for travel, are less influenced by outlier
locations and are not dependent on the availability of quality road network data.

Human activity spaces are fundamental for health research (Perchoux et al. (2013)), and
can be interpreted as indicators of social activity, self-confidence and knowledge about the
physical environment. They capture the dynamics of the geographic context (Kwan (2012))
which is critical in assessing individuals’ exposure to social and environmental risk factors
over multiple neighborhoods that are visited during activities of daily living. In particular,
they are one of the foundation constructs of contextual expology (Chaix et al. (2012), Kwan
(2009)). This is a subdiscipline that focuses on modeling the individuals’ spatiotemporal
patterns of exposure and on the derivation of related multiplace environmental exposure vari-
ables. The premise is that even individuals from the same residential community could spend
different amounts of time away from their home and travel to locations with different charac-
teristics. This leads to various levels of exposure to spatially-varying risk factors. Contextual
expology creates customized exposure measures based on the shape, spatial spread and con-
figuration of the activity space of each person by taking into account their spatial polygamy
(Matthews (2008, 2011)), that is, the amount of time spent at, around or traveling between
their anchor locations. Density ranking and summary curves could be used in developing
much needed exposure measures to contextual or environmental influences that take into ac-
count the spatiotemporal patterns of human mobility (Kwan (2013)).

An open research question relates to linking sociodemographic characteristics of individu-
als with their activity spaces and studying the interactions that might exist between the char-
acteristics of places and the characteristics of individuals that visit these places (Schonfelder
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and Axhausen (2003)). Research on activity spaces could lead to more effective individual-
tailored interventions that take into consideration multiple geographic contexts. Such inter-
ventions could provide customized information to individuals about sources of healthy food,
outdoor places to walk or to exercise or local social events based on their own spatial mobility
patterns.
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SUPPLEMENTARY MATERIAL

Additional proofs, explanations and figures (DOI: 10.1214/19-A0AS1311SUPP; .pdf).
In this online Supplementary Material (Chen and Dobra (2020)), we give the proofs of the
theoretical results presented in the paper. We also provide additional explanations and numer-
ical results.

REFERENCES

APOSTOLOPOULOS, Y. and SONMEZ, S. (2007). Population Mobility and Infectious Disease. Springer, New
York.

BASTA, L. A., RICHMOND, T. S. and WIEBE, D. J. (2010). Neighborhoods, daily activities, and measuring
health risks experienced in urban environments. Soc. Sci. Med. 71 1943-1950.

BERRIGAN, D., Hipp, J. A., HURVITZ, P. M., JAMES, P., JANKOWSKA, M. M., KERR, J., LADEN, F.,
LEONARD, T., MCKINNON, R. A. et al. (2015). Geospatial and contextual approaches to energy balance
and health. Ann. of GIS 21 157-168.

BERRY, E., CHEN, Y.-C., CISEWSKI-KEHE, J. and FAsY, B. T. (2018). Functional summaries of persistence
diagrams. Preprint. Available at arXiv:1804.01618.

Biscio, C. A. N. and M@LLER, J. (2019). The accumulated persistence function, a new useful functional sum-
mary statistic for topological data analysis, with a view to brain artery trees and spatial point process applica-
tions. J. Comput. Graph. Statist. 28 671-681. MR4007749 https://doi.org/10.1080/10618600.2019.1573686

BULIUNG, R. N. (2001). Spatiotemporal patterns of employment and non-work activities in Portland, Oregon. In
ESRI International User Conference, San Diego, CA.

BULIUNG, R. N. and KANAROGLOU, P. S. (2006). Urban form and household activity-travel behavior. Growth
Change 37 172-199.

CADRE, B., PELLETIER, B. and PUDLO, P. (2013). Estimation of density level sets with a given probability
content. J. Nonparametr. Stat. 25 261-272. MR3039981 https://doi.org/10.1080/10485252.2012.750319

CARLSSON, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46 255-308. MR2476414
https://doi.org/10.1090/S0273-0979-09-01249-X

CHAIX, B., KESTENS, Y., PERCHOUX, C., KARUSISI, N., MERLO, J. and LABADI, K. (2012). An interactive
mapping tool to assess individual mobility patterns in neighborhood studies. Am. J. Prev. Med. 43 440-450.

CHAZAL, F. and MICHEL, B. (2017). An introduction to topological data analysis: Fundamental and practical
aspects for data scientists. Preprint. Available at arXiv:1710.04019.

CHEN, Y.-C. (2019). Generalized cluster trees and singular measures. Ann. Statist. 47 2174-2203. MR3953448
https://doi.org/10.1214/18- A0S1744

CHEN, Y.-C. and DOBRA, A. (2020). Supplement to “Measuring human activity spaces from GPS data with
density ranking and summary curves.” https://doi.org/10.1214/19- AOAS1311SUPP.

CHEN, C., Ma, J., SusiLO, Y., Liu, Y. and WANG, M. (2016). The promises of big data and small data for
travel behavior (aka human mobility) analysis. Transp. Res., Part C, Emerg. Technol. 68 285-299.

CHRISTIAN, W. J. (2012). Using geospatial technologies to explore activity-based retail food environments.
Spatial and Spatio-Temporal Epidemiology 3 287-295.

CLEMENCON, S. and JAKUBOWICZ, J. (2013). Scoring anomalies: A m-estimation formulation. In Artificial
Intelligence and Statistics 659-667.


https://doi.org/10.1214/19-AOAS1311SUPP
http://arxiv.org/abs/arXiv:1804.01618
http://www.ams.org/mathscinet-getitem?mr=4007749
https://doi.org/10.1080/10618600.2019.1573686
http://www.ams.org/mathscinet-getitem?mr=3039981
https://doi.org/10.1080/10485252.2012.750319
http://www.ams.org/mathscinet-getitem?mr=2476414
https://doi.org/10.1090/S0273-0979-09-01249-X
http://arxiv.org/abs/arXiv:1710.04019
http://www.ams.org/mathscinet-getitem?mr=3953448
https://doi.org/10.1214/18-AOS1744
https://doi.org/10.1214/19-AOAS1311SUPP

MEASURING HUMAN ACTIVITY SPACES 431

CLEMENCON, S. and THOMAS, A. (2018). Mass volume curves and anomaly ranking. Electron. J. Stat. 12
2806-2872. MR3855357 https://doi.org/10.1214/18-EJS1474

CUMMINS, S., CURTIS, S., DIEZ-ROUX, A. V. and MACINTYRE, S. (2007). Understanding and representing
‘place’ in health research: A relational approach. Soc. Sci. Med. 65 1825-1838.

DOBRA, A., WILLIAMS, N. E. and EAGLE, N. (2015). Spatiotemporal detection of unusual human population
behavior using mobile phone data. PLoS ONE 10 1-20.

DOBRA, A., BARNIGHAUSEN, T., VANDORMAEL, A. and TANSER, F. (2017). Space-time migration patterns
and risk of HIV acquisition in rural South Africa. AIDS 31 137-145.

Doss, C. R. and WENG, G. (2018). Bandwidth selection for kernel density estimators of multivariate level sets
and highest density regions. Electron. J. Stat. 12 4313-4376. MR3892342 https://doi.org/10.1214/18-ejs1501

EDELSBRUNNER, H. and HARER, J. (2008). Persistent homology—a survey. In Surveys on Discrete and
Computational Geometry. Contemp. Math. 453 257-282. Amer. Math. Soc., Providence, RI. MR2405684
https://doi.org/10.1090/conm/453/08802

EDELSBRUNNER, H. and HARER, J. L. (2010). Computational Topology: An Introduction. Amer. Math. Soc.,
Providence, RI. MR2572029

ENTWISLE, B. (2007). Putting people into place. Demography 44 687-703.

FAN, Y. and KHATTAK, A. (2008). Urban form, individual spatial footprints, and travel: Examination of space-use
behavior. Transp. Res. Rec. 2082 98-106.

GHRIST, R. (2008). Barcodes: The persistent topology of data. Bull. Amer. Math. Soc. (N.S.) 45 61-75.
MR2358377 https://doi.org/10.1090/S0273-0979-07-01191-3

GHRIST, R. (2014). Elementary Applied Topology. CreateSpace Independent Publishing Platform.

GOLLEDGE, R. G. (1999). Human wayfinding and cognitive maps. In Wayfinding Behavior (R. G. Golledge, ed.)
5-45. The Johns Hopkins Univ. Press, Baltimore, MD.

GOLLEDGE, R. G. and STIMSON, R. J. (1997). Spatial Behavior. The Guildford Press, New York.

HAGERSTRAND, T. (1963). Geographic measurements of migration. In Human Displacements: Measurement
Methodological Aspects (J. Sutter, ed.), Monaco.

HAGERSTRAND, T. (1970). What about people in regional science? Pap. Reg. Sci. 24 7-21.

HARDING, C., PATTERSON, Z. and MIRANDA-MORENO, L. F. (2013). Activity space geometry and its effect
on mode choice. In Transportation Research Board 92nd Annual Meeting, Washington DC.

HARTIGAN, J. A. (1975). Clustering Algorithms. Wiley Series in Probability and Mathematical Statistics. Wiley,
New York. MR0405726

HIRSCH, J. A., WINTERS, M., CLARKE, P. and MCKAY, H. (2014). Generating GPS activity spaces that shed
light upon the mobility habits of older adults: A descriptive analysis. Int. J. Health Geogr. 13 51.

HurviTZ, P. M., MOUDON, A. V., KANG, B., SAELENS, B. E. and DUNCAN, G. E. (2014). Emerging tech-
nologies for assessing physical activity behaviors in space and time. Front. Public Health 2.

KACzyNsKI, T., MISCHAIKOW, K. and MROZEK, M. (2004). Computational Homology. Applied Mathematical
Sciences 157. Springer, New York. MR2028588 https://doi.org/10.1007/b97315

KESTENS, Y., LEBEL, A., DANIEL, M., THERIAULT, M. and PAMPALON, R. (2010). Using experienced activity
spaces to measure foodscape exposure. Health Place 16 1094-1103.

KiM, S. and ULFARSSON, G. F. (2015). Activity space of older and working-age adults in the Puget Sound
region. In Transportation Research Board 94nd Annual Meeting, Washington DC.

KWAN, M. P. (2000). Interactive geovisualization of activity-travel patterns using three-dimensional geographical
information systems: A methodological exploration with a large data set. Transp. Res. 8C 185-203.

KWAN, M.-P. (2009). From place-based to people-based exposure measures. Soc. Sci. Med. 69 1311-1313.

KWAN, M.-P. (2012). The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 102 958-968.

KWAN, M.-P. (2013). Beyond space (as we knew it): Toward temporally integrated geographies of segregation,
health, and accessibility. Ann. Assoc. Am. Geogr. 103 1078—1086.

LEE, J. H., DAVIS, A. W., YOON, S. Y. and GOULIAS, K. G. (2016). Activity space estimation with longitudinal
observations of social media data. Transp. 43 955-977.

LuM, P. Y., SINGH, G., LEHMAN, A., ISHKANOV, T., VEIDEMO-JOHANSSON, M., ALAGAPPAN, M., CARLS-
SON, J. and CARLSSON, G. (2013). Extracting insights from the shape of complex data using topology. Sci.
Rep. 3 1236.

MANAUGH, K. and EL-GENEIDY, A. M. (2012). What makes travel ‘local’: Defining and understanding local
travel behavior. J. Transp. Land Use 5 12-27.

MASON, D. M. and POLONIK, W. (2009). Asymptotic normality of plug-in level set estimates. Ann. Appl.
Probab. 19 1108-1142. MR2537201 https://doi.org/10.1214/08- AAP569

MATTHEWS, S. A. (2008). The salience of neighborhood. Am. J. Prev. Med. 34 257-259.

MATTHEWS, S. A. (2011). Spatial polygamy and the heterogeneity of place: Studying people and place via ego-
centric methods. In Communities, Neighborhoods, and Health: Expanding the Boundaries of Place (L. M. Bur-
ton, S. A. Matthews, M. C. Leung, S. P. Kemp and D. T. Takeuchi, eds.) 35-55. Springer, New York, NY.


http://www.ams.org/mathscinet-getitem?mr=3855357
https://doi.org/10.1214/18-EJS1474
http://www.ams.org/mathscinet-getitem?mr=3892342
https://doi.org/10.1214/18-ejs1501
http://www.ams.org/mathscinet-getitem?mr=2405684
https://doi.org/10.1090/conm/453/08802
http://www.ams.org/mathscinet-getitem?mr=2572029
http://www.ams.org/mathscinet-getitem?mr=2358377
https://doi.org/10.1090/S0273-0979-07-01191-3
http://www.ams.org/mathscinet-getitem?mr=0405726
http://www.ams.org/mathscinet-getitem?mr=2028588
https://doi.org/10.1007/b97315
http://www.ams.org/mathscinet-getitem?mr=2537201
https://doi.org/10.1214/08-AAP569

432 Y.-C. CHEN AND A. DOBRA

MATTHEWS, S. A. and YANG, T.-C. (2013). Spatial polygamy and contextual exposures (SPACEs): Promoting
activity space approaches in research on place and health. Am. Behav. Sci. 57 1057-1081.

MATTILA, P. (1995). Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge
Studies in Advanced Mathematics 44. Cambridge Univ. Press, Cambridge. MR1333890 https://doi.org/10.
1017/CB0O9780511623813

NEWSOME, T. H., WALCOTT, W. A. and SMITH, P. D. (1998). Urban activity spaces: Illustrations and applica-
tion of a conceptual model for integrating the time and space dimensions. Transp. 25 357-377.

NUNEzZ GARCIA, J., KUTALIK, Z., CHO, K.-H. and WOLKENHAUER, O. (2003). Level sets and mini-
mum volume sets of probability density functions. Internat. J. Approx. Reason. 34 25-47. MR2017778
https://doi.org/10.1016/S0888-613X(03)00052-5

PERCHOUX, C., CHAIX, B., CUMMINS, S. and KESTENS, Y. (2013). Conceptualization and measurement of
environmental exposure in epidemiology: Accounting for activity space related to daily mobility. Health Place
21 86-93.

PoLONIK, W. (1997). Minimum volume sets and generalized quantile processes. Stochastic Process. Appl. 69
1-24. MR1464172 https://doi.org/10.1016/S0304-4149(97)00028-8

PREISS, D. (1987). Geometry of measures in R”: Distribution, rectifiability, and densities. Ann. of Math. (2) 125
537-643. MR0890162 https://doi.org/10.2307/1971410

Q1a0, W. (2017). Asymptotics and optimal bandwidth selection for nonparametric estimation of density level
sets. Preprint. Available at arXiv:1707.09697.

RAI R. K., BALMER, M., RIESER, M., VAZE, V. S., SCHONFELDER, S. and AXHAUSEN, K. W. (2007).
Capturing human activity spaces: New geometries. Transp. Res. Rec. 2021 70-80.

RICHARDSON, D. B., VoLkow, N. D., KWAN, M.-P., KAPLAN, R. M., GoODCHILD, M. F. and
CROYLE, R. T. (2013). Spatial turn in health research. Science 339 1390-1392.

RIGOLLET, P. and VERT, R. (2009). Optimal rates for plug-in estimators of density level sets. Bernoulli 15
1154-1178. MR2597587 https://doi.org/10.3150/09-BEJ 184

RINALDO, A. and WASSERMAN, L. (2010). Generalized density clustering. Ann. Statist. 38 2678-2722.
MR2722453 https://doi.org/10.1214/10- AOS797

SCHONFELDER, S. and AXHAUSEN, K. W. (2003). Activity spaces: Measures of social exclusion? Transp. Policy
10 273-286.

SCHONFELDER, S. and AXHAUSEN, K. W. (2004). On the variability of human activity spaces. In The Real and
Virtual Worlds of Spatial Planning (M. Koll-Schretzenmayr, M. Keiner and G. Nussbaumer, eds.) 237-262.
Springer, Berlin, Heidelberg.

ScotT, C. D. and NOWAK, R. D. (2006). Learning minimum volume sets. J. Mach. Learn. Res. T 665-704.
MR2274383

SHERMAN, J. E., SPENCER, J., PREISSER, J. S., GESLER, W. M. and ARCURY, T. A. (2005). A suite of methods
for representing activity space in a healthcare accessibility study. Int. J. Health Geogr. 4 24-24.

SILVERMAN, B. W. (1986). Density Estimation for Statistics and Data Analysis. Monographs on Statistics and
Applied Probability. CRC Press, London. MR0848134 https://doi.org/10.1007/978-1-4899-3324-9

WASSERMAN, L. (2016). Topological data analysis. Available at arXiv:1609.08227.

WASSERMAN, L. (2018). Topological data analysis. Annu. Rev. Stat. Appl. 5 501-535. MR3774757
https://doi.org/10.1146/annurev-statistics-031017-100045

WIEHE, S. E., CARROLL, A. E., LIU, G. C., HABERKORN, K. L., HOCH, S. C., WILSON, J. S. and FORTEN-
BERRY, J. D. (2008). Using gps-enabled cell phones to track the travel patterns of adolescents. Int. J. Health
Geogr. 7 22-22.

WIEHE, S., KWAN, M.-P., WILSON, J. and FORTENBERRY, J. (2013). Adolescent health-risk behavior and
community disorder. PLoS ONE 8 e77667.

WILLIAMS, N. E., THOMAS, T. A., DUNBAR, M., EAGLE, N. and DOBRA, A. (2015). Measures of human
mobility using mobile phone records enhanced with gis data. PLoS ONE 10 1-16.

WONG, D. W. S. and SHAW, S.-L. (2011). Measuring segregation: An activity space approach. J. Geogr. Syst.
13 127-145.

WORTON, B. J. (1987). A review of models of home range for animal movement. Ecol. Model. 38 277-298.

ZENK, S. N., SCcHULZ, A. J.,, MATTHEWS, S. A., ODOMS-YOUNG, A., WILBUR, J., WEGRZYN, L.,
GIBBS, K., BRAUNSCHWEIG, C. and STOKES, C. (2011). Activity space environment and dietary and phys-
ical activity behaviors: A pilot study. Health Place 17 1150-1161.

ZENK, S. N., SCHULZ, A. J., ODOMS-YOUNG, A., WILBUR, J., MATTHEWS, S. A., GAMBOA, C., WE-
GRZYN, L. R., HOBSON, S. and STOKES, C. (2012). Feasibility of using global positioning systems (GPS)
with diverse urban adults: Before and after data on perceived acceptability, barriers, and ease of use. J. Phys.
Act. Health 9 924-934.


http://www.ams.org/mathscinet-getitem?mr=1333890
https://doi.org/10.1017/CBO9780511623813
http://www.ams.org/mathscinet-getitem?mr=2017778
https://doi.org/10.1016/S0888-613X(03)00052-5
http://www.ams.org/mathscinet-getitem?mr=1464172
https://doi.org/10.1016/S0304-4149(97)00028-8
http://www.ams.org/mathscinet-getitem?mr=0890162
https://doi.org/10.2307/1971410
http://arxiv.org/abs/arXiv:1707.09697
http://www.ams.org/mathscinet-getitem?mr=2597587
https://doi.org/10.3150/09-BEJ184
http://www.ams.org/mathscinet-getitem?mr=2722453
https://doi.org/10.1214/10-AOS797
http://www.ams.org/mathscinet-getitem?mr=2274383
http://www.ams.org/mathscinet-getitem?mr=0848134
https://doi.org/10.1007/978-1-4899-3324-9
http://arxiv.org/abs/arXiv:1609.08227
http://www.ams.org/mathscinet-getitem?mr=3774757
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1017/CBO9780511623813

	Introduction
	GPS data
	Existent approaches for measuring human activity spaces
	Ellipses
	Minimum convex polygons
	Shortest-path spanning trees
	Kernel density estimation

	Density ranking
	Summary curves
	Mass-volume curves
	Betti number curves
	Persistence curves

	A mixture model for human activity spaces
	Simulation study
	Analysis of GPS data
	Density ranking
	Mass-volume curve
	Betti number curve
	Persistence curve

	Discussion
	Acknowledgments
	Supplementary Material
	References

