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Humans are routinely exposed to mixtures of chemical and other envi-
ronmental factors, making the quantification of health effects associated with
environmental mixtures a critical goal for establishing environmental policy
sufficiently protective of human health. The quantification of the effects of
exposure to an environmental mixture poses several statistical challenges. It
is often the case that exposure to multiple pollutants interact with each other
to affect an outcome. Further, the exposure-response relationship between
an outcome and some exposures, such as some metals, can exhibit complex,
nonlinear forms, since some exposures can be beneficial and detrimental at
different ranges of exposure. To estimate the health effects of complex mix-
tures, we propose a flexible Bayesian approach that allows exposures to in-
teract with each other and have nonlinear relationships with the outcome. We
induce sparsity using multivariate spike and slab priors to determine which
exposures are associated with the outcome and which exposures interact with
each other. The proposed approach is interpretable, as we can use the poste-
rior probabilities of inclusion into the model to identify pollutants that interact
with each other. We utilize our approach to study the impact of exposure to
metals on child neurodevelopment in Bangladesh and find a nonlinear, inter-
active relationship between arsenic and manganese.

1. Introduction. The study of the health impacts of environmental mixtures, including
both chemical and nonchemical stressors, on human health is a research priority in the envi-
ronmental health sciences (Braun et al. (2016), Carlin et al. (2013), Taylor et al. (2016)).
In the past, the majority of health effect studies upon which environmental regulation is
based estimate the independent association between an outcome and a given exposure, ei-
ther marginally or while controlling for co-exposures. However, exposure to mixtures of
chemicals is a real world scenario, and it has been argued that chemical mixture effects are
possible even when each chemical exposure is below its no observable adverse effect level
(Kortenkamp et al. (2007)).

Accordingly, there has recently been a renewed focus on the development of statistical
methods for the analysis of the effects of chemical mixtures, or, more generally, environmen-
tal mixtures defined to include both chemical and nonchemical (such as diet or psychosocial
factors) stressors on health. Recent work on this topic has recognized that investigations on
these effects may focus on a variety of research questions of interest, including the identifica-
tion of individual exposures driving this effect, identification of interactions among chemicals
on health and the estimation of the cumulative health effects of exposure to multiple agents.
Recent reviews of relevant statistical methods useful for analyzing the resulting data have
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highlighted that the choice of statistical method will depend on the primary objective of the
study (Braun et al. (2016)), and recent work in this area has developed both Bayesian and
frequentist methods that implement forms of regularization, variable selection, dimension re-
duction, statistical learning or smoothing in various combinations to address these questions
in the presence of correlated exposures (see Lazarevic et al. (2019) for an excellent review).
Notably, there is a gap in this literature in terms of methods that directly quantify the strength
of evidence supporting interactions among individual chemicals on a health outcome in the
data. For instance, Bayesian kernel machine regression (BKMR; Bobb et al. (2015), Bobb
et al. (2018)) can estimate cumulative health effects of exposure to multiple agents, pro-
vide variable importance scores for each individual chemical and estimate selected summary
statistics that reflect interactions among some chemicals at given levels of others. However,
it does not yield overall variable importance scores for interactions among chemicals within
the larger mixture of exposures.

Other approaches allow for interactions between exposures, perhaps with some variable
selection technique applied, but these approaches are often based on models assuming sim-
ple, linear associations between exposures or other strong parametric assumptions. It has been
recently shown that in some settings, such as in studies on the impacts of exposure to metal
mixtures on neurodevelopment in children, the exposure-response relationship between the
multivariate exposure of interest and a health outcome can be a complex, nonlinear and non-
additive function (Bobb et al. (2015), Henn, Coull and Wright (2014), Henn et al. (2010)).
Therefore, there is a need for statistical approaches that can handle complex interactions
among a large number of exposures. Even in settings with a relatively small number of expo-
sures, the number of potential interactions can become large, making some form of variable
selection or dimension reduction necessary. In this paper we provide a Bayesian approach to
this problem that allows for nonlinear effects on the outcome, can identify important expo-
sures among a large mixture and can identify important interactions among the elements of a
mixture.

1.1. Review of statistical literature. There exists a vast statistical literature on high-
dimensional regression models, including approaches to reduce the dimension of the covari-
ate space. The LASSO (Tibshirani (1996)) utilizes an L1 penalty on the absolute value of
regression coefficients in a regression model which effectively selects which variables should
be included in the model by setting some coefficients equal to zero. Many approaches have
built upon this same methodology (Zou (2006), Zou and Hastie (2005)); however, these all
typically rely on relatively simple, parametric models. More recently, a number of papers
(Bien, Taylor and Tibshirani (2013), Hao, Feng and Zhang (2014), Lim and Hastie (2015),
Zhao, Rocha and Yu (2009)) have adopted these techniques to identify interactions, although
these approaches are only applicable to linear models with pairwise interactions. While sim-
ilar ideas for nonlinear models were used by Radchenko and James (2010), these analyses
were restricted to pairwise interactions. Moreover, quantification of estimation uncertainty
can be quite challenging in high dimensions.

A number of approaches have been introduced that embed variable selection within nonlin-
ear regression models. Shively, Kohn and Wood (1999) utilized variable selection in Bayesian
nonparametric regression based on an integrated Wiener process for each covariate in the
model and then extended these ideas in Wood et al. (2002) to nonadditive models that allowed
for interactions between covariates. They utilized the BIC approximation to the marginal
likelihood in order to calculate posterior model probabilities which requires enumerating all
potential models. Even when the number of covariates in the model is not prohibitively large,
inclusion of just two-way interactions can lead to a massive number of possible models.
Reich, Storlie and Bondell (2009) utilized Gaussian process priors for all main effects and
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two-way interactions within a regression model and performed variable selection in order
to assess which covariates are important predictors of the outcome. They do not allow for
explicit identification of higher-order interactions, as all remaining interactions are absorbed
into a function of the covariates that accounts for higher-order interactions. Yau, Kohn and
Wood (2003) and Scheipl, Fahrmeir and Kneib (2012) utilized variable selection in an addi-
tive regression model framework with interaction terms within a Bayesian framework, though
one must specify the terms that enter the model a priori and there can be a large number of
potential terms to consider. Qamar and Tokdar (2014) used Gaussian processes to separately
model subsets of the covariate space and used stochastic search variable selection to iden-
tify which covariates should enter into a given Gaussian process function, implying that they
interact with each other. While this approach can be used to capture and identify complex
interactions, it relies on Gaussian processes and therefore does not scale to larger data sets.

Complex models that allow for nonlinearities and interactions are becoming popular in the
machine learning literature, with Gaussian process (or kernel machine) regression (O’Hagan
(1978)), support vector machines (Cristianini and Shawe-Taylor (2000)), neural networks
(Bengio et al. (2003)), Bayesian additive regression trees (BART, Chipman, George and Mc-
Culloch (2010)) and random forests (Breiman (2001)) being just a few examples. Bobb et al.
(2015) used Bayesian kernel machine regression to quantify the health effects of an envi-
ronmental mixture. This approach imposed sparsity within the Gaussian process to flexibly
model multiple exposures. While these approaches and their many extensions can provide ac-
curate predictions in the presence of complex relationships among exposures, they typically
only provide a variable importance measure for each feature included in the model and do
not allow for formal inference on higher-order effects. An important question remains how
to estimate the joint effect of a set of exposures that directly provides inference on interac-
tions while scaling to larger data sets without requiring a search over such a large space of
potential models involving higher-order interactions. Further, full Markov chain Monte Carlo
(MCMC) inference in kernel machine regression does not scale with the sample size, limiting
its applicability in large sample settings. While one can potentially use approximate Bayesian
methods, such as variational inference to simplify computation, these methods are only ap-
proximate and can yield biased estimators for some parameters (Guo et al. (2016), Miller,
Foti and Adams (2016)).

1.2. Our contribution. In this paper we introduce a Bayesian semiparametric regression
approach that addresses several of the aforementioned issues as it allows for nonlinear inter-
actions between variables, identifies interactions between variables and scales to larger data
sets than those handled by traditional Gaussian process regression. We will introduce sparsity
via spike and slab priors (George and McCulloch (1993), Mitchell and Beauchamp (1988))
within a semiparametric regression framework that reduces the dimension of the parameter
space while yielding inference on interactions among individual exposures in the mixture.
Section 2 introduces the motivating data set looking at exposure to metals in Bangladesh.
Section 3 introduces our model formulation and discusses various estimation issues. Sec-
tion 4 discusses some results about our prior distribution. Section 5 illustrates the proposed
approach through simulated data and compares it with existing approaches. Section 6 esti-
mates the health effects of environmental exposures on neurodevelopment in Bangladeshi
children. We will conclude with some final remarks in Section 7.

2. Chemical mixtures and neurodevelopment in Bangladesh. To study the health im-
pact of chemical mixtures on neurodevelopment, we examine a study of 375 children in
Bangladesh whose mothers were potentially exposed to a variety of chemical pollutants dur-
ing pregnancy. The outcome of interest is the z-score of the motor composite score (MCS),
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a summary measure of a child’s psychomotor development derived from the Bayley Scales
of Infant and Toddler Development, Third Edition (BSID-III) (Bayley (2006)). The expo-
sure measures are log-transformed values of arsenic (As), manganese (Mn), and lead (Pb)
measured in umbilical cord blood which is taken to represent prenatal exposure to these met-
als. As potential confounders of the neurodevelopment-exposure associations, we will also
control for the following covariates: gender, age at the time of neurodevelopment assess-
ment, mother’s education, mother’s IQ, an indicator for which clinic the child visited and the
HOME score, which is a proxy for socioeconomic status. Previous studies have examined
these data (Bobb et al. (2015), Valeri et al. (2017)) and found harmful associations between
the exposures and the MCS score. Further, these studies have suggested a possible interac-
tion between arsenic and manganese, though it was unclear whether this was simply random
variation or a true signal. The assessment of interactions within environmental mixture data
is an important problem (Henn, Coull and Wright (2014)), as the identification of exposures
that interact with one another can help identify groups of exposures, or exposure profiles, that
have particularly strong effects on health. The ability to identify them and assign measures of
uncertainty around the existence of interactions is important and will represent an important
aspect of our proposed approach.

2.1. Preliminary analyses. Before examining any associations with the outcome, we first
look at the Pearson correlation among the log exposure values. Manganese and lead are un-
correlated, manganese and arsenic have a correlation of 0.58 and arsenic and lead have a
correlation of −0.37. Next, we evaluate marginal associations between the exposures and
outcome, unadjusted for any additional covariates or co-exposures. Table 1 shows these re-
sults. We see that all three exposures have significant marginal correlations with the MCS
score. We also evaluate whether a linear or nonlinear relationship between the MCS score,
and the exposures was favored by the data by looking at AIC values. The nonlinear AIC
value is obtained by regressing the MCS score against a three degree of freedom spline basis
representation of the exposures. We see that for arsenic the nonlinear model is favored, while
the linear model is favored for the other two exposures. Arsenic concentrations are positively
associated with MCS score, which could possibly be due to unmeasured confounding by,
say, nutrients, due to the fact that a significant exposure pathway of arsenic exposure in this
population is diet.

Next, to highlight the importance of the new methodology, we propose to address the pres-
ence of interactions between environmental exposures, and we analyze the data using current
state of the art approaches for the analysis of chemical mixtures. Specifically, we use the
Bayesian Kernel Machine Regression approach (BKMR, Bobb et al. (2015)) which is now
widely used within the environmental epidemiological literature (Braun (2017), Harley et al.
(2017)). BKMR allows for nonlinear relationships, interactions among exposures and adjusts
for additional covariates measured in the population. We use the bkmr package in R, gener-
ating 25,000 Markov chain Monte Carlo (MCMC) scans and the default prior specification in

TABLE 1
Marginal relationship between the exposures and the MCS score in the Bangladesh data. Linear AIC represents
the AIC of the linear model between the MCS score and the exposures, while nonlinear AIC represents the AIC of
a linear model between the MCS score and a three degree of freedom spline basis representation of the exposures

Exposure Correlation with outcome Linear AIC Nonlinear AIC

Arsenic 0.46 (0.37,0.53) 972.67 966.93
Lead −0.17 (−0.27,−0.07) 1050.05 1053.51
Manganese −0.39 (−0.47,−0.3) 999.67 1001.81
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TABLE 2
Posterior inclusion probabilities for the three exposures analyzed in the Bangladesh data

Exposure Posterior inclusion probability

Pb 0.69
Mn 0.74
As 0.81

the package. Table 2 shows the posterior inclusion probabilities for the three metal exposures
generated by this model.

These measures quantify the amount of uncertainty regarding the importance of each of the
three exposures in predicting MCS score but do not reflect whether or not the three exposures
interact in their effects on the outcome. One could get posterior inclusion probabilities such
as these if all three exposures have distinct, important main effects or if there is a three-way
interaction between them. To begin to address this question, one can visualize the estimated
exposure response curves between these exposures. We visually inspect the relationship that
manganese and arsenic have on the MCS score. In particular, Figure 1 shows the relationship
between manganese and the MCS score while fixing arsenic at different quantile levels (0.1,
0.5 and 0.9). If there is an interaction between these two variables then these curves would
differ across the different quantiles of arsenic, whereas if there were no interaction, then
the shape of the three curves would not differ. We see that there is some variability in the
shape of the curves, particularly for the 0.5 quantile, which has an inverted U shape. This
suggests the possibility of an interaction between manganese and arsenic; however, this can
not be concluded definitively given the combination of the posterior inclusion probabilities
and the exposure-response curves. This shows the importance of new statistical methodology
to identify these interactions

3. Model formulation. Throughout, we assume that we observe Di = (Yi,Xi,Ci) for
i, . . . , n, where n is the sample size of the observed data, Yi is the outcome, Xi is a p-
dimensional vector of exposure variables and Ci is an m-dimensional vector of covariates for

FIG. 1. Exposure response curve between manganese and MCS score at different quantiles of arsenic.
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subject i. Building on the construction of Wood (2006), we assume that we have low rank
bases that represent smooth functions for each of the exposures. For instance, the main effect
of X1 and an interaction effect between X1 and X2 could be modeled as follows:

f (X1) = ˜X1β1 f (X1,X2) = ˜X1β1 + ˜X2β2 + ˜X12β12,

respectively, where ˜X1 = [g1(X1), . . . , gd(X1)] and ˜X2 = [q1(X2), . . . , qd(X2)] represent
d-dimensional basis function expansions of X1 and X2, respectively. ˜X12 = [g1(X1)q1(X2),

g1(X1)q2(X2), . . . , gd(X1)qd(X2)] represents a d2-dimensional basis expansion of the inter-
action between X1 and X2. In this work, we specify g() and q() to be natural spline basis
functions of X1 and X2, respectively. For simplicity, we let the degrees of freedom for each
exposure all be set to d , though this can easily be extended to allow the degrees of freedom
to vary across exposures. Importantly, the construction above enforces that main effect terms
are a subset of the terms included in the interaction terms. As we include higher-order in-
teractions, we impose the constraint that all lower level interactions between the exposures
in that interaction term are included in the basis expansion. To ease the presentation of our
model, we use subscripts to denote the order of the interaction to which a coefficient applies.
For instance, β12 refers to parameters associated with two-way interaction terms between X1
and X2 (excluding main effect terms), while β1 refers to the main effect parameters for X1.
This process could be trivially extended to any order interaction up to a p-way interaction
which is the maximum possible interaction in our model. We will use the following model
formulation:

Yi ∼ Normal
(
f (Xi ) + Ciβc, σ

2)
,

f (Xi ) =
k∑

h=1

f (h)(Xi ),(3.1)

f (h)(Xi ) =
p∑

j1=1

˜Xij1β
(h)
j1

+
p∑

j1=2

∑
j2<j1

˜Xij1j2β
(h)
j1j2

+ · · · ,

where the dots in the final line indicate that the summation extends all the way through p-way
interactions. Our main goal is the estimation of f (Xi ) and the identification of important ex-
posures within Xi . We are representing f (Xi) as the sum of k different functions f (h)(Xi ),
where k is a number chosen to be sufficiently large so that all exposure effects can be cap-
tured by the model. This model is both over parameterized and not identifiable without any
additional constraints. This over parameterization occurs because the model allows for all
possible interactions of any order which includes far too many parameters to reasonably esti-
mate. It is not identifiable because each of the k functions has the same functional form and
the regression coefficients for a particular function f (h)(Xi ) are only identifiable up to a con-
stant. To reduce the dimension of the parameter space and to identify parameters of interest,
we will adopt the following prior specification for the regression coefficients:

P
(
β

(h)
S |ζ ) =

(
1 − ∏

j∈S

ζjh

)
δ0 +

(∏
j∈S

ζjh

)
ψ1

(
β

(h)
S

)
,

where S is some subset of {1,2, . . . , p},
P (ζjh) = τ

ζjh

h (1 − τh)
1−ζjh1

(
Ah �⊂ Am∀m or Ah = {}),

where Ah = {j : ζjh = 1}.
Here, ζ = {ζjh} is a matrix of binary indicators of whether the exposure j is included in the
hth function in the model. One of our main goals is to identify important exposure effects and
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interactions between exposures, and these can be seen immediately from {ζjh} which tells us
both which exposures and which interactions are included in a particular function. We use
spike and slab priors to eliminate exposures from the model, and in this paper we consider
the spike to be a point mass at 0, while the slab, ψ1(), is a multivariate normal distribution
centered at 0 with covariance �β . We let �β be a diagonal matrix with σ 2σ 2

β on the diagonals.
The prior distribution for ζjh is a Bernoulli distribution with parameter τh. This prior is

accompanied by an indicator function, 1(Ah �⊂ Am ∀m or Ah = {}), which reflects the fact
that each function either contains information from a unique set of exposures or is removed
from the model completely. If a function only contained exposures that were all included in
another function, then it would be providing redundant information and it is not needed, so
we preclude this from happening by introducing this indicator function. More details on this
indicator function and its implications for sampling can be found in the following section. Full
details of posterior sampling from this model can be found in Section 3 of the Supplementary
Material (Antonelli et al. (2020)).

3.1. Identifiability of variable inclusion parameters. Two scientific goals in the study
of environmental mixtures are to identify which exposures are associated with the outcome
and to identify interactions among exposures. To this end, our prior encodes the condition
that, for any two sets of variables Ah and Am included in functions h and m, either Ah �⊂
Am and Am �⊂ Ah or one of the two is an empty set. An illustrative example of why this
condition is necessary is a scenario in which all elements of ζ are zero with the exception of
ζ11 and ζ12. In this scenario the first exposure has a nonzero effect in both the first and second
functions of the model, that is, β

(1)
1 and β

(2)
1 are both nonzero. Regardless of the values of

β
(1)
1 and β

(2)
1 , this model could be equivalently expressed with one function, rather than two.

For instance, while β
(1)
1 = −β

(2)
1 represents the same model as β

(1)
1 = β

(2)
1 = 0, inference

regarding ζ would differ across these two models. In the first scenario it would appear that
the first exposure is associated with the outcome, even, if in truth, it is not. Our conditions
avoid this scenario by ensuring that there are no functions that simply contain subsets of
the exposures found in another function, and, therefore, ζ will provide a meaningful and
interpretable measure of the importance of each exposure and potential interaction.

Another issue affecting our model selection indicators is that low-order interactions are
subsets of the models defined by higher-order interactions. For example, if the true model is
such that there exists a main effect of both X1 and X2 but no interaction between them, we
could mistakenly estimate that there is an interaction between exposure 1 and 2 simply due
to the main effects. (Wood (2006), Reich, Storlie and Bondell (2009)) addressed this issue
in similar contexts by utilizing constraints that force the two-way interaction between X1
and X2 to only include information that is orthogonal to the main effects of the individual
exposures. In our context, this is not so much an issue of identifiability but rather an issue with
MCMC chains getting stuck in local modes. When exploring the model space via MCMC,
we could accept a move that includes the two-way interaction, which is a local mode, and
never be able to leave this model, even if the simpler model is the true model.

To avoid this scenario, we simply need to search the model space in a particular manner.
We will illustrate this in the case of a two-way interaction as follows:

ζp1
=

⎛
⎝1 0 0 0

0 0 0 0
0 0 0 0

⎞
⎠ ζp2

=
⎛
⎝1 0 0 0

1 0 0 0
0 0 0 0

⎞
⎠ ζp3

=
⎛
⎝1 0 0 0

0 1 0 0
0 0 0 0

⎞
⎠ .

Imagine that, at a given iteration of an MCMC, ζ = ζp1
, and we look to update ζ21 which

indicates whether exposure 2 enters into function 1. If we do this naively, we simply could
compare models ζp1

and ζp2
, which would result in a choice of ζp2

, even if there were
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only main effects of X1 and X2 and no interaction between them. If, however, we update
ζ22 at the same time, we also evaluate model ζp3

. If the true relationship is a main effect
of the two exposures, then model ζp3

will be favored by the data, and we will estimate ζ
accurately. If the truth is a two-way interaction between X1 and X2, then ζp2

will be favored
by the data. This setting generalizes to higher-order interactions and illustrates how we can
avoid misleading conclusions about interactions. Whenever we propose a move to a higher-
order interaction, we must also evaluate all lower-order models that could lead to incorrectly
choosing the higher-order model. While proposing moves in this manner keeps the MCMC
from getting stuck at incorrect models, it needs to be carefully constructed to maintain a
valid sampler. In Section 6 of the Supplementary Material (Antonelli et al. (2020)), we prove
that this strategy can be tailored in such a way that the sampler is reversible and, therefore,
maintains the correct target distribution.

3.2. Selection of spline degrees of freedom. An important tuning parameter in the pro-
posed model is the number of degrees of freedom, d , used to flexibly model the effects of the
p exposures. Throughout, we will make the simplifying assumption that the degrees of free-
dom is the same for all exposures, though this can be relaxed to allow for differing amounts
of flexibility across the marginal functions. We propose the use of the WAIC model selec-
tion criterion (Watanabe (2010), Gelman et al. (2004)) to select d . If we let s = 1, . . . , S

index samples from the posterior distribution of the model parameters and let θ represent all
parameters in the model, the WAIC is defined as

WAIC = −2

(
n∑

i=1

log

(
1

S

S∑
s=1

p
(
Yi |θ s)) −

n∑
i=1

var
(
logp(Yi |θ)

))
.

The WAIC approximates leave one out cross validation and, therefore, provides an assess-
ment of model fit based on out of sample prediction performance. We first draw samples
from the posterior distributions of the model parameters under a range of values for d and
then select the model that minimizes WAIC. While this is not a fully Bayesian approach to
choosing d , we will see in Section 5 that this approach still leads to credible intervals with
good frequentist properties.

3.3. Prior choice. There are a number of hyperparameters that need to be chosen to
complete the model specification. First, one must choose an appropriate value for �β , which

controls the amount of variability and shrinkage of β
(h)
S for those coefficients originating

from the slab component of the prior. We will make the simplifying assumption that �β is a
diagonal matrix with σ 2σ 2

β on the diagonals. It is well known that variable selection is sen-
sitive to the choice of this parameter (Reich, Storlie and Bondell (2009)), so it is crucially
important to select an appropriate value. We propose the use of an empirical Bayes strategy
where we estimate σ 2

β and then obtain posterior samples conditional on this value. A descrip-
tion of the algorithm for finding the empirical Bayes estimate is available in Section 4 of the
Supplementary Material (Antonelli et al. (2020)). One could alternatively put a hyper prior
on σ 2

β for a fully Bayesian analysis, though we have found that the empirical Bayes strategy
works better in practice, so we restrict attention to that case.

We also must select a value of τh, the prior probability of an exposure being included
in function h. We will assume that τh ∼ Beta(M,γ ) and set M and γ to fixed values. One
can choose values to induce a desired level of sparsity in the model; however, in practice,
the appropriate degree of sparsity is typically not known and, therefore, in order to accom-
modate higher-dimensional data, we choose values that scale with the number of exposures.
We will set γ = p which allows the prior amount of sparsity to increase as the number
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of exposures increases. This strategy closely resembles other existing approaches in high-
dimensional Bayesian models, such as those proposed by Zhou et al. (2015) and Ročková
and George (2018). We will discuss the implications of scaling the prior with p in Section 4.

The only remaining prior distributions to specify are for βC and σ 2. For both parameters
we specify diffuse, conjugate priors. In the case of βC , this means independent normal prior
distributions with very large variances. For the residual variance σ 2 we specify an inverse
gamma distribution with both parameters set to 0.001.

3.4. Lower bound on slab variance. One issue with the aforementioned empirical Bayes
estimation of σ 2

β is that it will be estimated to be very small if there is little to no association
between the exposures and the outcome. This result can lead to problems in the estimation
of ζ . If the prior variance for the slab is very small, then it is almost indistinguishable from
the spike, since in this case it approximates a point mass at zero. In this situation, updating
ζjh becomes essentially a coin flip for all j and h which will lead to high posterior inclusion
probabilities, even when there is no true association. To avoid this, we estimate a lower bound,
above which we believe that any high posterior inclusion probabilities reflect true signals in
the data.

To estimate this lower bound, we first permute the rows of Y , thereby breaking any asso-
ciations between the exposures and the outcome. We run our MCMC algorithm for a small
number of iterations on the permuted data and keep track of the probability that ζjh = 1 when
τh = 0.5 for all h. We do this for a decreasing grid of potential values for σ 2

β , and we take as

our lower bound for σ 2
β the smallest value of σ 2

β such that a prechosen threshold is met. Ex-

amples of such criteria include the smallest value of σ 2
β such that the probability of including

a main effect for any of the exposures is less than 0.25 or the smallest value such that the prob-
ability of any two-way interaction is less than 0.05. Alternatively, because one can calculate
the average false discovery rate for each value of σ 2

β , one can use this strategy to implement
Bayesian counterparts to traditional multiple testing adjustments that control frequentist er-
ror rates, such as the false discovery rate. It is important to note that this false discovery rate
control is conditional on a fixed value of τh, which we choose to be 0.5. In practice, we let τh

be random and estimated from the data. Nonetheless, this procedure should provide a reason-
able lower bound for σ 2

β . If strict control of false discovery rate is required, then one could
specify a truncated prior for τh such that it is never greater than the value of τh used for the
calculation of the lower bound (i.e., 0.5). It is important to note that this procedure is very
fast computationally, generally taking only a small fraction of the computation time as the
full MCMC for one data set.

To illustrate how this approach works for a given analysis, we simulated data with no
associations between the exposure and outcome. In this case, the empirical Bayes estimate
of σ 2

β will be very small as it is roughly estimated to be the average squared value of the
nonzero coefficients in β . Figure 2 shows the posterior inclusion probabilities averaged over
all exposures in this example as a function of σ 2

β . The gray region represents the area where

false positives start to arise because σ 2
β is too small, and we see that the empirical Bayes

estimate is contained in this region. If we proceed with the empirical Bayes estimate, then
we would conclude that all of the exposures had posterior inclusion probabilities near 0.5,
incorrectly indicating they are important for predicting the outcome. Our permutation strategy
to identifying a lower bound is able to find a value of σ 2

β that avoids high posterior inclusion
probabilities for exposures with null associations with the outcome. In practice, we estimate
both the lower bound and empirical Bayes estimate and proceed with the maximum of these
two values which, in this simulated case, is the lower bound.
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FIG. 2. Illustration of empirical Bayes estimate and lower bound estimate of σ 2
β .

4. Properties of prior distributions. A primary goal in many analyses of the health ef-
fects of an environmental mixture is to identify interactions among exposures on risk. There-
fore, it is important to understand the extent to which the proposed prior specification induces
shrinkage on the interaction terms. Both τh and �β dictate the amount of shrinkage. We uti-
lize empirical Bayes to select �β . Therefore, here we focus on the role of τh which directly
controls the probability that a j th order interaction is nonzero in the model. The prior for this
parameter can be controlled through selection of M and γ . We examine the probability that a
j th order interaction is zero by deriving the probability that the first j covariates are included
in an interaction term, as this probability will be the same for any other interaction of the
same order.

LEMMA 4.1. Assuming Model 3.1, the prior probability that there does not exist a func-
tion, k′ in the model such that ζ1k′ = ζ2k′ = · · · = ζjk′ = 1 and ζj+1k′ = · · · = ζpk′ = 0 is(

1 − �(j + M)�(p + γ − j)

�(p + γ + M)

)k

.(4.1)

Section 5 of the Supplementary Material (Antonelli et al. (2020)) contains a proof of this
result which is useful because it expresses the probability of an interaction of any order being
zero as a function of M and γ . This result can guide the user in specifying values of M and
γ that best represents prior beliefs. It has been noted in the literature that a desirable feature
of the prior is to place more shrinkage on higher-order interactions (Gelman et al. (2008),
Zhou et al. (2015)). Therefore, we use (4.1) to derive conditions that accomplish this type of
shrinkage. Specifically, Theorem 4.2 provides a default choice of γ that specifies the amount
of shrinkage on an interaction term to be an increasing function of the order of that term.

THEOREM 4.2. Assuming Model 3.1, such that τh ∼ Beta(M,γ ), then the probability in
Lemma 4.1 increases as a function of j if γ ≥ p + M − 1.

Section 5 of the Supplementary Material (Antonelli et al. (2020)) contains a proof of
this result, which shows that higher-order interactions are more aggressively forced out



ESTIMATING THE HEALTH EFFECTS OF MIXTURES 267

of the model under either the standard Beta(1,p) prior, which is often used in high-
dimensional Bayesian models (Ročková and George (2018), Zhou et al. (2015)) or, if γ ≥
p + M − 1, which shrinks higher-order interactions even more aggressively than this beta
prior. In practice, a common prior choice for τh is Beta(M,p), with M being some constant
that does not change with the number of exposures. Nonetheless, this result shows that one
can achieve stronger penalization of higher-order interaction terms as long as we scale the
prior with p.

5. Simulation study. Here, we present results from a simulation study designed to assess
the operating characteristics of the proposed approach in a variety of settings. In all cases
we take the maximum of the empirical Bayes and lower bound estimates of σ 2

β . For each
simulated data set, we fit the model for values of d ∈ {1,2,3,4,5,6} and run a Gibbs sampler
for 10,000 iterations with two chains, keeping every eighth sample and discarding the first
2000 as burn-in. We present results for each value of d , the value that is selected based on the
WAIC, the spike and slab GAM (ssGAM) approach of Scheipl, Fahrmeir and Kneib (2012)
and for the Bayesian kernel machine regression (BKMR) approach of Bobb et al. (2015). We
assess the performance of the various models by calculating the mean squared error (MSE)
and 95% credible interval coverages of the true relationship between the exposures and the
outcome, f (X1, . . . ,Xp), at all observed values of the exposure. We also assess the ability
of the proposed model to identify nonzero exposure effects and interaction terms.

5.1. Polynomial interactions. First, we generate data with a sample size of n = 200 and
generate m = 10 covariates, C, from independent standard normal distributions. We generate
p = 10 exposures, X, from a multivariate normal distribution with mean μX . We will let
the mean of X be a linear function of the covariates, that is, μX = Cα. We let all pairwise
correlations between the exposures be 0.6 which is the average pairwise correlation among
the exposures in the NHANES data analyzed in Section 1 of the Supplementary Material
(Antonelli et al. (2020)). The marginal variances are set to 1 for all exposures. We set the
residual variance to σ 2 = 1. For the outcome, we use a polynomial model that contains both
a linear and a nonlinear interaction term as follows:

Y = 0.7X2X3 + 0.6X2
4X5 + CβC + ε.

For exact values of α and βC , see Section 2 of the Supplementary Material (Antonelli et al.
(2020)). Figure 3 presents the results of the simulation study. The top left panel of Figure 3
shows the matrix of posterior probabilities that a pair of exposures interact with each other.
Specifically, cell (i, j) of this heatmap shows the posterior probability that exposures i and
j interact with each other in the model averaged over all simulations. Results show that the
model correctly identifies the pairs (X2,X3) and (X4,X5) as interacting with each other. The
top right panel shows the average 95% credible interval coverage of f (Xi) for each approach
considered. Our model, based on WAIC, achieves nearly the nominal coverage indicating
that we are accounting for all sources of uncertainty. The bottom left panel highlights the
ability of our procedure to estimate the marginal effect of X4, which has a quadratic effect
on the outcome, while holding constant the values of other exposures. The grey lines, which
represent individual simulation estimates, reflect the true relationship, denoted by the red
line. Finally, the bottom right panel of Figure 3 presents the mean squared error of the global
effect estimates of f (Xi). Results show that well chosen values of d , including the automated
choice using WAIC, lead to the best performance among the methods considered.
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FIG. 3. Results of the quadratic simulation. The top left panel shows the posterior probabilities of exposures
interacting with each other for the model selected by the WAIC. The top right panel shows the 95% credible inter-
val coverages of f (Xi). The bottom left panel shows the estimated marginal functions of X4 on Y for the model
selected by the WAIC, where the red line represents the truth and the grey lines represent individual estimates
from separate simulations. The bottom right panel shows the MSE in estimating f (X) for all models considered.

5.2. High-dimensional data with three-way interaction. Now, we present a scenario with
n = 10,000 and p = 100 to highlight that our approach can handle large sample sizes and
large exposure dimensions. We will generate the exposures from independent uniform ran-
dom variables. We generate one additional covariate, C, from a standard normal distribution,
and we set the residual variance to σ 2 = 1. The outcome model is closely related to one
that was explored in Qamar and Tokdar (2014) and corresponds to a model that includes a
three-way, nonlinear interaction as follows:

Y = 2.5 sin(πX1X2) + 1.5 cos
(
π(X3X4 + X5)

) + 2(X6 − 0.5) + 2.5X7 + ε.

It is clear that the relationship between the exposures is nonlinear and nonadditive. We do
not show results for BKMR due to the sample size limitation from using Gaussian processes.
Further, there are a large number of exposures considered here, as there are 4950 possible
two-way interactions and 161,700 possible three-way interactions. For this reason, we do not
include ssGAM in this simulation as it requires specifying the form of the linear predictor,
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FIG. 4. Results of the high-dimensional simulation. The top left panel shows the posterior probabilities of the
three-way interaction between X3, X4 and X5 for all models. The top right panel shows the 95% credible interval
coverages of f (Xi). The bottom left panel shows the estimated marginal functions of X4 on Y for the model
selected by the WAIC, where the red line represents the truth and the grey lines represent individual estimates
from separate simulations. The bottom right panel shows the MSE in estimating f (X) for all models considered.
The MSE for d = 1 is too large to be seen on the plot.

and there are too many terms to consider. Our approach considers interactions of any order,
though it does not require prespecification of which terms to consider and aims to find the
correct model among all possible interactions. Figure 4 shows results from this scenario.
The top left panel shows the posterior probability of a three-way interaction between X3, X4

and X5. This probability is 1 for all models except for d = 6, which does not capture this
interaction. The top right panel shows the 95% credible interval coverages of f (Xi). We see
that the coverage is low for d = 1 and d = 2, which are not sufficiently flexible to capture
the true function, while the coverage is low for d = 6 since it does not capture the three-way
interaction. Importantly, the model chosen by WAIC achieves the nominal coverage level.
The bottom left panel of Figure 4 shows the estimated marginal effect of X4 on the outcome,
fixing the other exposures. Results suggest that in almost all cases the method accurately
estimates the true effect which is close to linear in the range of the data we are looking at.
The bottom right panel of Figure 4 shows that the MSE of the model chosen by WAIC is
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TABLE 3
WAIC and posterior inclusion probabilities for differing degrees of freedom

d WAIC Pb Mn As Interaction between Mn and As

1 922.79 0.83 0.79 0.86 0.21
2 922.16 0.76 0.82 0.97 0.43
3 910.77 0.78 0.99 1.00 0.82
4 902.96 0.94 0.98 1.00 0.96
5 901.39 0.92 1.00 1.00 0.94

competitive, or better, than any individual choice of d , suggesting that WAIC is an effective
method for choosing the degrees of freedom for the spline terms.

6. Analysis of Bangladesh data. Here, we analyze the data on metal mixtures and neu-
rodevelopment introduced in Section 2. We applied our proposed approach to identify the
complex relationship between the three metal exposures and neurodevelopment. We ran the
Markov chain for 40,000 iterations with M = 3, γ = p, a0 = 0.001, b0 = 0.001 and a nonin-
formative, normal prior on βc. We ran the model for values of d ∈ {1,2,3,4,5}. Convergence
of the MCMC was confirmed using trace plots and PSR values, and these results can be seen
in Section 7 of the Supplementary Material (Antonelli et al. (2020)).

6.1. The importance of the degrees of freedom. Here, we evaluate the impact that the
degrees of freedom d had on the analysis. Table 3 shows the WAIC values for each of the
values of d considered, the corresponding main effect posterior inclusion probabilities for
each exposure as well as the posterior inclusion probability for the two-way interaction be-
tween manganese and arsenic. The WAIC values strongly indicate that linear models are not
appropriate for this data, as higher degrees of freedom lead to lower WAIC values and, there-
fore, better model fits. One of the most telling takeaways from Table 3 is the correspondence
between WAIC values and the posterior inclusion probabilities for the two-way interaction
between manganese and arsenic. Models with higher degrees of freedom lead to lower WAIC
values and higher posterior inclusion probabilities for the two-way interaction. It appears that
the lower values of d are not adequate for capturing the interaction between manganese and
arsenic, and this leads to poorer fits to the data. The marginal inclusion probabilities for each
exposure are more stable across d; however, these go up slightly from d = 1 to d = 5 as well.
Overall, the WAIC indicates that d = 5 provides the best fit to the data, and we will therefore
present results from this model from this point onward.

6.2. Posterior inclusion probabilities. One feature of the proposed approach is the ability
to examine the posterior distribution of ζ in order to identify whether individual exposures
are important for outcome prediction, whether there is evidence of an interaction between two
metals or any higher-order interactions. Figure 5 shows the posterior probability of two-way
interactions between all metals in the model and the marginal posterior inclusion probability
for each metal exposure. Figure 5 provides strong evidence that each exposure is associated
with a child’s MCS score. This confirms the preliminary results of Section 2 that showed
associations between each of the three exposures and the MCS score. A key distinction of
the results here and those seen in Section 2 is that it also provides strong evidence of an
interaction between Mn and As, as well as moderate evidence of an interaction between Pb
and As. Not shown in the figure is the posterior probability of a three-way interaction among
Pb, Mn and As, which was estimated to be 0.0005.
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FIG. 5. The left panel contains posterior inclusion probabilities for two-way interactions, and the right panel
shows the marginal inclusion probabilities for each exposure.

6.3. Visualization of identified interactions. Now that we have identified interactions in
the model, we plot posterior predictive distributions to assess the form of these associations.
Figure 6 plots the relationship between Mn and MCS for different values of As while fixing
Pb at its median. At the median level of As, we estimate an inverted U-shaped effect of Mn
on MCS scores. This matches results seen previously in a kernel machine regression analysis
of these data Bobb et al. (2015) which provided graphical evidence of an interaction between
Mn and As on the MCS score but didn’t provide a measure of the strength of this interaction.

We also examine surface plots that show the exposure-response relationship between As,
Mn and MCS across the range of As and Mn values, not just specific quantiles. Figure 7
shows both the posterior mean and pointwise standard deviations of this relationship. We
see that the median levels of Mn and As are the most beneficial toward children in terms of
their MCS score which corresponds to the hump in the middle panel of Figure 6. This is a
somewhat unexpected result given that As is not beneficial, even at low levels, and could be
due to residual confounding (Valeri et al. (2017)). The posterior standard deviations of this
estimate indicate that the uncertainty around this surface is the smallest in the center, where
most of the data is observed, and greater on the fringes of the observed data, where we are
effectively extrapolating effects.

FIG. 6. Posterior means and pointwise 95% credible intervals of the effect of manganese on MCS at different
quantiles of arsenic while fixing lead at its median.



272 J. ANTONELLI ET AL.

FIG. 7. Posterior means and standard deviation of the relationship between manganese and arsenic on MCS.
The black dots represent the location of the observed data points.

7. Discussion. We have proposed a flexible method for analyzing complex, nonlinear
associations between multiple exposures and a continuous outcome. Our method improves
upon existing methodology for environmental mixtures in several ways. By not relying on
Gaussian processes to introduce flexibility in the exposure-response relationship, our ap-
proach can handle larger data sets on the order of tens of thousands of subjects. The spike
and slab formulation of our model also allows for formal inference on the presence of in-
teractions among exposures, an important question in environmental epidemiology. Previous
studies have used graphical tools and inference on summary statistics characterizing the ef-
fects of one pollutant given the levels of others to identify interactions between pollutants.
While useful, these approaches do not provide uncertainty assessment of the interaction as
a whole. Moreover, it can be difficult to visualize higher-order interactions. Once we have
samples of the ζ matrix, we can easily perform inference on more complex features of the
model such as higher-order interactions and whether or not exposures are more likely to enter
the model together or separately. We have illustrated the strengths of this approach through
simulated data and a study of the health effects of metal mixtures on child neurodevelopment
in Bangladesh.

A natural question that arises in the application of our method is how does it perform on
higher-dimensional mixtures in real-world settings. We evaluated a situation with both a large
sample size and number of exposures in Section 5.2 of our simulation study and found that it
performs well at identifying higher-order interactions. To further illustrate this point, we have
analyzed a secondary data set from the National Health and Nutrition Examination Survey
(NHANES), which has a larger sample size and more exposures than the Bangladesh data.
The results of this study can be found in Section 1 of the Supplementary Material (Antonelli
et al. (2020)).

Throughout the manuscript we have assumed that the relationship between the exposures
and outcome is constant across levels of the covariate space C. In some cases, there is interest
in understanding if the exposure effect varies across levels of particular covariates such as age
or gender, which is frequently referred to as treatment effect heterogeneity. This could easily
be explored using our model if the covariates are continuous. The covariates of interest can
be placed with the exposures inside of the main f () function, and our approach will be able
to identify if any of these covariates modify the exposure effect. Identifying treatment effect
heterogeneity in the presence of categorical covariates is not immediately applicable within
our modeling framework, but it provides a topic of future research.

In the modeling framework we focused on a high-dimensional X and assumed that the
number of covariates in C was relatively small, meaning we do not need to impose any
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shrinkage on βC . If the number of covariates is large as well, then shrinkage or spike and
slab priors would need to be adopted. If interest is in estimation of f (X), this could lead to
what is called regularization induced confounding (RIC, Hahn, Murray and Carvalho (2017),
Hahn et al. (2018)). RIC occurs because shrinkage leads to biased estimates of the coefficients
in βC , and this bias leads to confounded estimates of the exposure effects of interest. Future
work would look to extend the ideas here to the more difficult setting of a high-dimensional
C when RIC could affect inference of the effects of interest. This would require reducing the
shrinkage of the elements in C that are most associated with the elements of X in a manner
that removes RIC bias.

While our formulation enables the analysis of much larger data sets, there are some disad-
vantages relative to fully nonparametric techniques such as Gaussian processes. Our model
requires us to specify the functional form of the relationships between the predictors and
the outcome a priori. In the current implementation, we employed natural splines to flexi-
bly model these relationships. While other formulations are possible, any formulation would
require a subjective choice. Further, one must select the number of degrees of freedom of
the splines, and we have restricted this number to be the same for all exposures across all
features. This can be a limitation if some of the functions to be estimated are quite smooth
while others are more complicated. Our approach is also not fully Bayesian, as we use the
WAIC to select the degrees of freedom. However, our simulations show the proposed es-
timation procedure yields uncertainty estimates that are accurate in all of the scenarios we
considered. Future extensions could consider a data-adaptive approach to the selection of the
degrees of freedom for each function or the utilization of other flexible structures that are
both computationally fast and do not require prespecification of the functional forms of the
exposure-response functions.

Software. An R package implementing the proposed methodology is available at
github.com/jantonelli111/NLinteraction.
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SUPPLEMENTARY MATERIAL

Additional data analyses, technical details and convergence diagnostics (DOI: 10.
1214/19-AOAS1307SUPP; .pdf). These additional materials contain the additional data anal-
ysis looking at environmental exposures in the NHANES study, additional simulation results,
derivations of empirical Bayes estimates, full details of the MCMC sampling, a proof of re-
versibility for our MCMC algorithm, a proof of Theorem 4.2, and convergence diagnostics
for the data analyses.
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