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Spatial prediction of weather elements like temperature, precipitation,
and barometric pressure are generally based on satellite imagery or data
collected at ground stations. None of these data provide information at a
more granular or “hyperlocal” resolution. On the other hand, crowdsourced
weather data, which are captured by sensors installed on mobile devices
and gathered by weather-related mobile apps like WeatherSignal and
AccuWeather, can serve as potential data sources for analyzing environ-
mental processes at a hyperlocal resolution. However, due to the low quality
of the sensors and the nonlaboratory environment, the quality of the observa-
tions in crowdsourced data is compromised. This paper describes methods to
improve hyperlocal spatial prediction using this varying-quality, noisy crowd-
sourced information. We introduce a reliability metric, namely Veracity Score
(VS), to assess the quality of the crowdsourced observations using a coarser,
but high-quality, reference data. A VS-based methodology to analyze noisy
spatial data is proposed and evaluated through extensive simulations. The
merits of the proposed approach are illustrated through case studies analyz-
ing crowdsourced daily average ambient temperature readings for one day in
the contiguous United States.

1. Introduction. In recent years there has been a proliferation of weather-related appli-
cations for mobile devices such as cellphones, iPods and laptops. These applications not only
provide service to the user but also collect and share spatial data on location, ambient tem-
perature, barometric pressure, humidity, etc., captured by the small-scale sensors installed in
the devices. Analyzing and understanding these crowdsourced datasets is becoming an area
of increasing interest.

One use of the mobile sensor-generated data is to analyze and understand atmospheric
processes at very fine spatial resolution. Most of the methodologies in literature for spatial
prediction of weather elements are based on global images coming from satellites or mea-
surements taken at meteorological stations on the ground (e.g., see Thornton, Running and
White (1997); Florio et al. (2004), etc.). But none of these sources are dense enough so that
the variability of the process can be analyzed in “hyperlocal” regions, for example, rectangu-
lar regions inside the population centers with each sides varying approximately in between
25 to 30 miles (0.3° — 0.6° in latitude and longitude). For instance, the ground stations are
generally situated away from localities, for example, at airports or national parks, etc. Hence,
weather-related analysis solely based on ground-station data does not often provide correct
assessment of the variation of the underlying process in the localities. However, in disaster
detection, traffic management and many defense-related activities, prediction of the process
in a very localized region (hyperlocal) is often more important than the global imputation of
the process over a bigger region. Crowdsourced data captured by mobile sensors can serve as
a potential source in these scenarios, especially in regions where the ground weather stations
are sparse but the population density, and hence the density of the mobile devices like cell-
phones, iPads, etc., is relatively high. Recently, a handful of organizations are becoming inter-
ested in providing cost-effective hyperlocal predictions of weather using sensor-generated ge-
ographical information through weather-related mobile apps. For example, the global leader
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in weather information, AccuWeather, launched AccUcast in 2015 (AccuWeather (2015)),
a feature that allows each user to share their local weather information as captured by the
built-in mobile sensors. Other applications include Sunshine (Moynihan (2015)) and Dark
Sky (Dalton (2016)), which turn each app user into a “meteorological station” for gather-
ing and sharing hyperlocal weather information. Mobile sensor generated weather data are
already being used in traffic management, fire detection, etc. In a recent article Sosko and
Dalyot (2017) have used a crowdsourced mobile-sensor data in forest fire detection to den-
sify the static geosensor network (SGN) which is primarily comprised of meteorological
stations with high-performance sensors. Though spatial prediction of daily weather is gener-
ally based on satellite imagery or data from weather stations (Thornton, Running and White
(1997), Vancutsem et al. (2010), Frei (2014)), recent advancement of weather-related mobile
apps and the concurrent business interests call for a new methodology that considers these
crowdsourced weather data to generate more accurate weather prediction in hyperlocal re-
gions. In this article we consider the daily average ambient temperature process and show
that more efficient and reasonable prediction surfaces can be created in hyperlocal regions
with denser but noisy crowdsourced data as compared to a global prediction surface obtained
from high-quality but coarser ground-station data.

1.1. WeatherSignal and NOAA ground-station data. We analyze a static crowdsourced
data set consisting of geocoded daily average ambient temperature readings over the conti-
nental United States on April 30, 2013. These data were gathered by a cellphone application
named WeatherSignal, available both for iOS and Android. In addition to providing in-
formation on current weather and forecasts, the app also gathers geographic and weather in-
formation using cellphone sensors, leading to a huge amount of crowdsourced spatial weather
data from all over the globe. The WeatherSignal application is operated by an orga-
nization named OpenSignal. Through the research partnership program of OpenSignal, we
were provided real-time (in milliseconds) ambient temperature readings captured by various
mobile phones for the above-mentioned day. For each spatial location we have temporally
aggregated the temperature readings to the daily average by taking mean of the regionally es-
timated hourly temperatures throughout the day. The details of the aggregation are explained
elaborately in Section A.1 in the Supplementary Material (Chakraborty, Lahiri and Wilson
(2020)). After the aggregation we have the crowdsourced daily average temperature readings
at 1879 spatial locations in the United States, as shown in Figure 1(a). From the figure it can
be seen that the crowdsourced observations are clumped together in high-population density
regions like Detroit, Chicago, New York and Los Angeles, etc. In Figures 1(c) and 1d we
show hyperlocal versions of the WeatherSignal data for two nearly square hyperlocal regions
at Brooklyn, NY and Los Angeles, CA.

Along with the crowdsourced data from the WeatherSignal app, we also have ground-
station data on the daily average ambient temperature from the National Oceanic and At-
mospheric Administration (NOAA). We used the Global Historical Climate Network Daily
(GHCND) data access tool to retrieve the daily ambient temperature summaries for April 30,
2013, from 2094 stations in the continental United States. We have plotted the ground-station
observations in Figure 1(b).

Comparing Figure 1(a) and Figure 1(b), we can see that the NOAA ground-station data
provides much more spatial coverage than the crowdsourced data in the entire United States
or large parts of the United States, like the East Coast, Midwest, etc., are considered, and
hence for global modeling or building a global prediction surface of the ambient tempera-
ture, the ground-station data is clearly a better choice. However, for hyperlocal prediction of
the spatial process we believe that crowdsourced data has the potential to capture the local be-
havior of the spatial process more accurately. For example, in Figures 1(e) and 1(f) we have
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FI1G. 1. Spatial plots of the crowdsourced and NOAA ground-station data. (¢)—(f) show zoomed “hyperlocal”
versions (each side of these regions vary from 25 to 30 miles approximately) of the crowdsourced WeatherSignal
(c—d) and NOAA station data (e—f).

plotted the available ground-station observations in the same square neighborhoods as the
crowdsourced data in Figures 1(c) and 1(d). In the area around Brooklyn, NY, there are ap-
proximately 90 crowdsourced observations available, whereas the number of ground-station
observations is only one. Motivated by this observation, in this paper we propose a method
to improve the accuracy of the hyperlocal predictions using the available crowdsourced in-
formation in addition to the ground-station data over a bigger surrounding.

1.2. The challenge in analyzing crowdsourced, mobile-sensor data. The challenge in an-
alyzing mobile sensor-generated crowdsourced data lies in the low quality and hence poor
reliability of an unknown proportion of the data. When data are collected from mobile appli-
cations, the readings are prone to contamination for various reasons. The inaccurate observa-
tions can occur due to external factors, low-resolution sensors or a combination of these fac-
tors. For instance, the temperature readings can be affected by battery temperature, whether
the user is indoor or outdoor, the proximity of the device to a hot or cold object, the hetero-
geneity of the sensors used by different devices and many other unknown processes.

To illustrate the varying quality of the observations in the WeatherSignal data, Figure 2
shows the temperature distribution for the two hyperlocal regions shown in Figures 1(c)
and 1(d). The daily average temperature values in the crowdsourced data set vary from nearly
60°F to 90°F in both of the hyperlocal regions for the same day.
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FI1G. 2. Empirical distribution of the crowdsourced average temperatures in the regions from Figure 1 for Brook-
lyn, NY (left) and Los Angeles, CA (right). Blue vertical lines represent the average ground-station values in the
considered regions.
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These temperature distributions show the nature of the noise involved in the crowdsourced
data. Due to the factors associated with the data collection process, a portion of the observa-
tions in the crowdsourced data are either contaminated or not representative of the ambient
temperature which is the outdoor air temperature close to the earth’s surface. Such represen-
tativeness errors for weather data coming from meteorological stations have been considered
previously by Lorenc (1986), Gandin (1988) and Lussana, Uboldi and Salvati (2010). Com-
paring the histograms with the single ground-station observation in both the regions, we can
see that, although there are large deviations, a good proportion of the crowdsourced obser-
vations are “close” to the corresponding ground-station observations (72°F in Brooklyn and
70°F in L.A.) which are collected in laboratory environment with high-quality sensors main-
taining World Meteorological Organization (WMO) standards.

Building models based on the noisy crowdsourced data that ignore the reliability of the
sensor-generated observations can lead to erroneous prediction. For instance, we used leave-
one-out prediction of the observations in the regional block around Brooklyn (Figure 1(c))
using standard techniques of spatial analysis with a reasonable mean and covariance model
(discussed in Section 3.1), and the errors in the predictions ranged from —30°F to 40°F. Sim-
ilar cross-validation approaches have been previously used by Cressie (1993) and Lussana,
Uboldi and Salvati (2010) to identify the “bad” observations. These first-stage analyses moti-
vated us to take the quality of the observations in the WeatherSignal data into consideration.
Lussana, Uboldi and Salvati (2010) proposed to remove observations for which the cross-
validated prediction errors exceed some threshold. But, due to the inclusion of the corrupted
observations at every iteration of the leave-one-out cross-validation, the predictions are not
guaranteed to be a good representation of the true value at that location. Moreover, the leave-
one-out cross-validation approach being computationally expensive, the method proposed by
Lussana, Uboldi and Salvati (2010) is not readily applicable for large crowdsourced weather
data coming from mobile sensors. The “absurd” observations, that is, observations with high
gross error (Lussana, Uboldi and Salvati (2010)), can be identified using some other more
scalable spatial outlier detection techniques (e.g., see Chapter 1 of Cressie (1993); Harris
et al. (2014), etc.) and, thus, can be omitted from the analysis. But in that case it is not
straightforward how to address observations with small to moderate measurement errors.
For instance, using a too strict threshold on the measurement error may lead to deletion of
significant number of observations, resulting in a complete loss of information for specific
locations.

Hence, the new methodology should address the three following challenges. First, in ad-
dition to just identifying high-noise observations, a continuous assessment of the veracity of
all the observations in a geostatistical setting is needed. Second, the definition of veracity
should take into account the behavior of the process in the study region so that the “mislead-
ing” observations can be detected. Third, the veracity assessment of the observations should
be incorporated into the subsequent analysis to allow for robust inference and efficient pre-
diction. Though there are studies (e.g., Allahbakhsh et al. (2013)) in the literature on quality
assessment of crowdsourced data coming from volunteers or paid participants, assessment
of sensor-generated data quality is not common. Sosko and Dalyot (2017) mention an ele-
mentary root mean squared error approach for accuracy measurement using a reference data
set from Israeli Meteorological Stations. However, neither of the above-mentioned papers
provide full geostatistical inference and prediction using noisy crowdsourced data.

In this article we make several contributions. First, we introduce a Veracity Score (VS) to
measure the reliability of the crowdsourced observations on a continuous scale using a ref-
erence data set. Second, we propose a VS-based methodology to incorporate the veracity as-
sessment into standard spatial analysis so that the effect of noisy and misleading observations
is reduced, hence making the estimation and prediction more robust and efficient. Third, we
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show that using the VS-based technique in hyperlocal regions with relatively higher number
of crowdsourced observations can produce a more accurate and efficient prediction surface
as compared to the global prediction surface obtained through the analysis of ground-station
data alone. This paper is organized as follows. In Section 2 we introduce the veracity score
and describe its elementary properties in a relevant geostatistical setting. Section 3 includes
a brief description of the standard approach for analyzing geostatistical data, followed by a
detailed description of the VS-based methodology for estimation and prediction. In Section 4
we describe simulation studies to justify the superiority of VS-based methodology over the
standard approach in the analysis of noisy crowdsourced data. In Section 5 we provide de-
tails of the analysis, estimation and hyperlocal prediction in a case study. Finally, Section 6
summarizes our effort and discusses limitations and possible future works.

2. Defining and measuring veracity. In this section we provide the intuition and moti-
vation for veracity scoring. We denote the sample size as n. We denote the volume of a set
A C R? as | A, that is, the Lebesgue measure of A if it has nonzero volume and the cardinality
of A if A is finite.

2.1. Motivation for veracity scoring. 'To provide motivation for veracity scoring, consider
a very simple yet practical example.

EXAMPLE 2.1. Let Zy, ..., Z, be independent noisy observations with E(Z;) = u and
Var(Z;) = O'l-z fori € {1, ...,n}. The usual sample mean, which is also the o.1.s. estimator for
u, is given by flois = Z, =n~' Y Zi with E(fLois) = p and Var(fiers) = =5 Y7, o 1f

we assume al.z = C - i’, for some constants (w.rt.n) C,b > 0, we have
~ ~ b
Var(iio1s) ~ C(b) - n

for some constant (w.r.t. n) C(b). Instead of the generic sample mean, consider a weighted
average of the observations given by i = (3_7_; v; Z;)/(3_7_, vi), where the weights v; =
i~“ for some constant a > 0, that is, the weights are inversely proportional to the variance of
the noisy observations. Then,

Var(2) ~ C(a, b) - n”~!

for some constant C(a, b). Clearly, if C, a and b are constants w.r.t. to the sample size n, then
a significant gain in efficiency (O (n?~!) as compared to O(n?)) can be achieved for large n
by assigning lower weights to high-variance observations.

If we can find a formulation of the veracity score that is inversely related to the observation
noise variance, we can use it to reduce the effect of the noise in the inference and achieve a
more accurate and efficient estimator.

2.2. Preliminaries. Let {Z(s1), ..., Z(s,)} be the varying-quality observations, for ex-
ample, the crowdsourced data from cell-phone sensors which are observed at irregu-
larly spaced locations S, := {s1,...,8,} C R2. In addition, at spatial locations 7, :=

{t1,...,tn} C R? assume that we have {Y(t;), ..., Y(t,)}, which are high-quality, reliable
observations of the spatial process, for example, measurements from the ground stations. It
is common to assume (Cressie (1993), Gelfand et al. (2010)) that the spatial random field of
interest {Y (s) : s € R?} can be represented as

2.1 Y(s) = pu(s) +€(s),
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where p(s) is a deterministic smooth mean function capturing the large scale variation of
the process, that is, E(Y (s)) = u(s). Here, €(s) is a mean zero spatially correlated residual
process which addresses the small-scale variations over the space. For the varying-quality
Z-process we write the decomposition in equation (2.1) as

(2.2) Z(s) = ju(s) + w(s),

where w(s) is the aggregated noise associated with the observation Z(s). For example, if
we assume that the varying-quality observations arise from an additive-multiplicative noise
model as

(2.3) Z(si) = em; Y (si) +€a;,

where €y, and €4, fori € {1, ..., n} are random variables associated with the multiplicative
and additive noise in the observation Z(s;). Then, the associated w-process will have the
form w(s;) = u(s;)(epm; — 1) + €p;€(S;) + €4,. If there is no multiplicative component €y,
in the contamination, then w(s;) = €(s;) + €4, . In the next subsection, we define a score to
assess the quality or reliability of the observation Z(s;), namely, veracity score.

2.3. Veracity score: Formulation and properties. A good measure of veracity should not
only identify “absurd” observations but also provide a score for each observation on a contin-
uous scale, so that the effect of the “bad” observations can be reduced automatically, making
inference robust against the low-quality observations. Our goal is to formulate a continuous
scoring procedure to measure the veracity of the observations in two different scenarios. The
first scenario assumes a reference data set containing observations with high quality but low
density in the concerned regions is available. The second scenario assumes that we do not
have any high-quality reference information available.

2.3.1. Veracity score with reference data. Consider a hyperlocal regional block like those
in Figures 1(c) or 1(d), and denote it by R C R%. The observation vector with locations inside
R is given as Z := (Z(sy), ..., Z(s,))'. Consider R to be the region of interest for analyzing
the varying-quality observations Z. Consider another regional block D such that R ¢ D C R?
and |R| << |D|. Let the reference data vector with locations inside D be denoted as Y :=
(Y(ty), ..., Y(ty)) . The reference data Y is of high quality and hence reliable representation
of the spatial process of interest, but it has low data coverage in the hyperlocal region of
interest R. So, to get a reasonable sample size for the reference data, we need to consider
the larger region D. We denote a §-neighborhood around a spatial point s € R? as B;(s) with
Bs(s) := (s — 8, s+ 8] for some § € R where the subtraction and addition is componentwise.

Define the VS of the observation Z(s;) as

|Z(Si)—$(si)|>
a+DE) )

where ¢ : R U {0} - R* U {0} is some nonincreasing function such that sup, ¢ (x) < co.
We call ¢ (-) the veracity function with @ € R™ as a regularity parameter. By £(s;), we denote
a reasonable benchmark for the target process at s;, and &; := (£(s;,)., ..., S(sin(i)))/ where
{Siys-- -, Si, ) 1s the set of observation locations in the small §-neighborhood Bs(s;). Finally,
D(x) denotes a robust measure of dispersion of the observations in the vector x. Clearly, the

VS is computed by evaluating the ¢-function at the scaled deviation % and due the

nonincreasing property of ¢ (-); if the deviation is high, we have low VS, and if the deviation
is low, we have high VS.

(2.4) Vi(si) = ¢><
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Now consider the benchmark value, £(s), for the target at location s. If we have high-
quality observations of the Y-process from the reference data at the varying-quality data
sites {sy, ..., sy}, then the obvious choice is to take £(s;) = Y (s;). In practice, as we see
in Figures 1(c) to 1(f), the locations of the ground-station measurements (reference data)
and the crowdsourced data (varying-quality observations) almost always differ significantly.
Hence, to define the benchmark at location s;, we propose to compute a kriging surface,
{s, f(s) :s € D}, of the Y -process using the observation vector Y. Then, we define £(s;) as

(2.5) E(s)) =Y (s) + (1 —v)C(Zi — X)),

where Z; 1= (Z(si)), ... Z(8i,,)) and Y; := (Y (si)), ..., ¥ (s;,,))- Here, C(x) is a robust
measure of central tendency of the values in the vector x, and v € [0, 1] is a mixing parameter
that we discuss in detail later.

If we have a reasonable benchmark, £ (s;), for the spatial process of interest at the location
s; the definition of the VS in equation (2.4) is a transformed measure of the scaled deviation of
the observation Z(s;) from the benchmark value. In the definition of VS, the measure of dis-
persion, D(§;), in the denominator takes the variability in the §-neighborhood into account.
For example, in the analysis of ambient temperature the variation in a small neighborhood
in the mountains is likely to be higher than an area close to sea level. Hence, the statistic
% measures the deviation of the observation from its benchmark relative to the local
Variabililty. In the following sections we use interquartile range (i.e., D(x) = IQR(x)) as the
robust measure of dispersion in equation (2.4) and the sample median (i.e., C(x) = Q2(x)
where Q; is the jth sample quartile) as the robust measure of central tendency in equation
(2.5). There are other robust choices as well, but we use the sample quantile based statistic
because it is familiar to the practitioners and easy to interpret. Also, these choices are the-
oretically justified as the sample quantiles are asymptotically consistent under dependence
(Ghosh (1971), Sun and Labhiri (2006)). The parameter « determines the baseline of the de-
viation. For lower values of o we penalize more, and for higher values we allow for a larger
deviation from the benchmark. We call « the baseline deviation of the VS, and its unit is
same as the process of interest which makes the VS unit free.

We require the veracity function ¢ to have the following properties:

1. ¢(-) is a nonincreasing function with bounded range, ¢ (x) < ¢ (0) < co.
2. ¢(x) L 0asx — oo.

With this formulation, lower values of the VS correspond to the low-quality or less-reliable
observations and high values of the VS correspond to the better quality of the observations.
We use ¢ (x) = exp(—x) for our analysis in the subsequent sections. The advantage of this
function is that the VS lies naturally in [0, 1], and it penalizes exponentially as the scaled de-
viation from the benchmark value increases. We discuss other possible choices in Section B.1
in the Supplementary Material (Chakraborty, Lahiri and Wilson (2020)).

Now we try to interpret the mixing parameter v in the definition of VS. Under the as-
sumption that the estimated mean process fi(s) is smooth and the kriged-residual process
€(s) is a spatially correlated second-order stationary mean-zero process, for a small enough
6 > 0, we can write QQ(SA(,-) ~ l?(s,-) as the variation of the kriged process l?(s) inside the
d-neighborhood is negligible. Hence, we can approximately rewrite the benchmark as

£(s) ~ VY (si) + (1 — v) 02(Zy).

Here, to get a possible approximation the spatial process at location s;, instead of just using
the estimated value Y (s;) from the high-quality reference data over a bigger surrounding,



A STATISTICAL ANALYSIS OF NOISY CROWDSOURCED WEATHER DATA 123

we want to leverage the available varying-quality observations in the hyperlocal region. We
propose to use a mixture of an approximation of the spatial process coming from the refer-
ence data over a bigger region D, that is, Y (s;) and a robust local estimate coming from the
varying-quality observations in the small §-neighborhood B (s;) around the location of inter-
est s;, that is, 02(Z;). Due to the smooth mean and spatially correlated residual process, the
spatial observations in a “small” neighborhood are likely to behave “similarly.” Therefore,
it is sensible to use a robust estimate of the central tendency of the varying-quality observa-
tions in that small neighborhood as the locally estimated approximation of the spatial process
at s;. The mixing parameter v decides the weight of mixing between the estimated process
from the reference data and the local approximation from the varying-quality observations.
The optimal v balances the error in estimation from the reference data and the error in the
approximation of the spatial process using the sample median in the §-neighborhood.

2.3.2. Veracity score without reference data. We propose a similar definition of the VS
when we do not have any high-quality reference observations available. In this scenario our
definition of VS is

(2.6) V(s;) = ¢(M)

a+ D(Z;)

The idea behind the definition given in equation (2.6) is similar to that in Section 2.3.1. As
we do not have information available from a high-quality reference data set, we use only the
locally estimated central tendency as the proxy of the target and the local variation in the
denominator to take the regional variability into account. Note that the definition of the VS
in equation (2.4) approximately equals the VS as given in equation (2.6) if we take v = 0.

The formulations of the VS, both with and without reference data, depend on § which
is a positive scalar equal to half of the length of the neighborhood Bs(s;) used to estimate
the center and dispersion locally. The choice of § should be such that the §-neighborhood
Bs(s;) is small as compared to the region of interest R but at the same time large enough to
have sufficient sample size to provide a good assessment of the quality of the observations.
To make the formulation of VS as well defined, we need the number of points in the §-
neighborhood, n(i), larger than two for each i € {1,2,...,n}. If we do not have enough
data points to compute the measure of dispersion for an observation, we say that the VS is
undefined for those observations.

A similar approach of comparing the observations with a benchmark value has been used to
detect outliers in literature (e.g., see Chapter 1 of Cressie (1993); Papritz (2018a)). Lussana,
Uboldi and Salvati (2010) proposed a benchmark obtained through leave-one-out cross-
validated prediction using the noisy observations. But, as mentioned in Section 1.2, due the
presence of some absurd noise in the training data of the cross-validation, the benchmarks ob-
tained in this technique might themselves be corrupted and hence, are not necessarily robust.
We prefer quantile based local summaries as benchmarks due to its scalability and compu-
tational ease, appeal to the practitioners as well as robustness and asymptotic efficiency (see
Sen (1968)) as compared to some other choices discussed previously.

3. Veracity score methods. Before going to the VS-based version of the spatial analysis,
we briefly describe the standard approach of geostatistical analyses.

3.1. Review of standard analysis of spatial data. For this section we use the model spec-
ified in equations (2.1) and 2.2 as well as the notations stated in Section 2.2. In geostatistics
often the smooth deterministic mean process {u(-)} is modeled under a spatial regression
framework where the mean function is assumed to have a linear form, p(s) = x(s)’ 8, where
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x(-) = (x1("), ..., xp(-)) is a p-dimensional deterministic vector process of known covari-
ates and f denotes the unknown regression parameter vector. To make the inference feasible
from only one replication of the process over the space, some stationarity assumption on
the second-order structure of the residual process {e(s)} is required. One of the most com-
monly used assumptions is that {€(s)} is an intrinsically stationary process with an admissible
parametric variogram function 2y (h; @) = Var{e(s) — €(s +h)} where 0 is the covariance pa-
rameter of interest.

For now, the description of the analysis is given without taking the noisy nature of the
observations into account, so {w(s)} is assumed to be identically equal to {e(s)}. Since
the covariance parameter is unknown, the standard analysis starts with the estimation of
the regression parameters in the linear mean model using ordinary least squares (o.l.s.),
ﬁols = (X’X)"'X'Z where, X := (x(s), ..., X(s,))’. Next, the detrended observations, that
is,e=7Z—-X B ols» are used to estimate the covariance parameter @ using least squares-based
variogram model fitting (Cressie (1993)) based on some generic nonparametric semivari-
ogram estimator (denoted by y (h)), for example, the classical or method-of-moments semi-
variogram estimator proposed by Matheron (1962). For example, the weighted least squares
(w.Ls.) estimator of @ is given as

k
(3.1) Bwis =argmin ) w;{P (h)) =y (h;; 0)},
0 P
j=l1
where w; is the weight corresponding to lag h; and, thy, ..., ht} are the set of discrete lags

for which the nonparametric semivariogram 7 (-) has been computed. For details of variogram
model fitting, see Cressie (1993), Gelfand et al. (2010). Matérn is a popular choice for the
parametric class of admissible variograms as it provides a rich class to choose from (Haskard
(2007)). A comprehensive list of parametric variogram models can be found in Cressie (1993)
and Gneiting (2013).

Once the covariance structure is estimated, one can try to improve the mean parameter
estimates using estimated generalized least squares (e.g.l.s.) estimator, given by Begls =
(X' 'X)"'X'$~1Z where ¥ is the estimated variance of € = (e(s), ..., €(s,;))’. How-
ever, this introduces additional variability due to using the estimated covariance parameters
in the mean estimator and is not necessarily more efficient than the o.L.s. estimator.

The most commonly used method to predict the process at new locations is to predict the
e-process at the given locations by the best linear unbiased predictor (BLUP) given the ob-
served residual vector €, also known as ordinary kriging estimator (Cressie (1993), page 122).
The standard predictor of Y (sg) is

(3.2) Yt (80) = X(80) Boys + €ok (S0).

where €q(So) is the ordinary kriging predictor for €(sg).

The standard approach for estimation and prediction explained is not reliable for analyzing
noisy spatial observations, as both the least squares-based mean parameter estimators (Huber
and Ronchetti (2009)) and the method-of-moments empirical semivariogram estimator are
highly sensitive to the noise (Cressie and Hawkins (1980)) in the data. In the following sec-
tions we propose a way to incorporate the VS into the analysis to make the inference and
prediction robust against the noise in the data.

3.2. Veracity score-based estimation of the mean function. In the standard approach,
as described in Section 3.1, the regression parameter vector § is estimated using the o.l.s.
method. For our approach, instead of simple squared error loss, motivated by Example 2.1,
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we propose to minimize a weighted version of the loss function with the veracity scores as
the corresponding weights. The VS-based estimator of the mean parameter § is given as

A

(3.3) B.s =argmin »  V(s)L(Z(s:), x(s;)'B).
B

i=1

For least squares-based estimators we have L(y, u) = (y — u)?, the squared-error loss func-
tion. The locally estimated veracity scores lessen the effects of “absurd” observations in the
objective function and thus make the estimation of the mean function less sensitive to the
noise. The VS-based approach is adaptive to the quality of the observations and thus lessens
the impact of outliers in the data. To make the estimation more robust to contamination, one
can use any robust loss function instead of squared-error loss in equation (3.3). We have used
an MM-type estimator with a linear quadratic quadratic 1r-function for the robust regression
as discussed in Koller and Stahel (2011). The advantage of using this estimator is that, in
addition to penalizing less for high residuals, the parameters associated with the yr-function
can be tuned to improve the asymptotic efficiency for the estimators. The corresponding op-
timization to solve equation (3.3) can be executed using Iterative Reweighted Least Squares
(IRLS) as discussed in Todorov and Filzmoser (2009).

The assessment of goodness of fit for the estimated linear model is essential. The usual
Multiple R? is not reasonable to use, as the loss function is different from ordinary least
squares. Inspired by the pseudo—R%vLS coined by Willet and Singer (1988), we propose an-
other variant of the coefficient of determination for VS-based regression as

1 V)L(Z (), X(50) o)
" VSHL(Z(si), Z)

i=l

RZ =1—

where Z =n~! > i Z(s;). The idea behind this measure is that instead of using the squared
error loss to compute the total sum of squares and the residual sum of squares, the
proposed R%S uses the robust loss function to measure the total variability in the data
(.e., X' V(s)L(Z(si), 7)) and the variability that is not explained by the model (i.e.,

1 V(S)L(Z(si), x(si) BVS)). Although we do not provide any theoretical justification, it
appears from explanatory analysis with synthetic data and simulations that R%S may provide
an overly optimistic assessment of the goodness of the fit for the model when the Huber’s
loss function or MM-type estimation is used.

3.3. Veracity score-based estimation of the covariance structure. To explore the second-
order structure of the spatial process, we analyze the residuals obtained by detrending the
observations €ys(s;) = Z(s;) — x(s;)’ ﬁvs fori € {1,2,...,n}. When conducting analysis with
varying quality geostatistical data, after the robust estimation of the regression parameters
a portion of the residuals are affected by the presence of measurement error in the data,
and direct analysis of these residuals can result in misleading and inefficient estimation of
the covariance structure. To reduce the noise of the observed residuals, we propose a VS-
based modification of residuals using a local smoothing prior estimation of the covariance
parameters. When we have a high-quality reference data, we define the VS-based smoothed
version of the residuals as

(3.4) E(si) = V(si)T&ys(s) + (1 — V(s)7) 02(&; — Xi By,

where X; := (x(s;)), ..., x(s,-n(i)))/ is the n(i) x p matrix of the covariates corresponding to
the observations in Bs(s;). Here, ¢ is the parameter regulating the degree of the smoothing
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needed. For instance, ¢ = 0 implies no smoothing, and ¢ = 1 implies the convex combination
of the locally-corrected residual and the observed residual. As shown in Figure S4-(a) in the
Supplementary Material (Chakraborty, Lahiri and Wilson (2020)), the parameter g here plays
the role of thresholding for higher ¢, only observed residuals with high VS get significant
weights for the VS-based smoothing, whereas for smaller g the formulation of the smoothed
residuals in equation (3.4) puts significant weights to even the observed residuals with low
VS and thus reducing the degree of smoothing.

If we do not have reference data available, then the analogous smoothed version of the
residuals is given by

(3.5 E(si) = V(si)Péus(si) + (1 = V(s)?) 02(€),

where €; = (€ys(Si), ..., €vs(Si, (,.)))/ . Again, note that the definition in equation (3.4) approx-
imately simplifies to the one in equation (3.5) if v =0.

For poor quality observations, when V (s;) is small, the effect of the observed value of
the residual €ys(s;) is scaled down by V(s;)? (as V(s;) € (0, 1]), and the locally estimated
“benchmark” value of the residual process in the small neighborhood is enforced by (1 —
V(s;)?) in equations (3.4) and 3.5. The effect of VS-based smoothing is illustrated on a
synthetic data set in Section B.2 and Figure S.3 in the Supplementary Material (Chakraborty,
Lahiri and Wilson (2020)).

We propose to use variogram model fitting with the VS-based smoothed version of the
residuals, {€(s;)}7_, to estimate the covariance parameter # robustly. First, a generic nonpara-
metric semivariogram is evaluated at discrete lags using the robust semivariogram estimator
proposed by Cressie and Hawkins (1980),

1 ~ ~ 1
{W Z(si sj)eN(Hu)|€(Si) — E(Sj)|2}4

0.494_

(36) );Vs(hu) =

foruefl,...,K},

where N(H,) =theH :he H,}. H, are small lag classes or bins (see page 34, Gelfand et
al. (2010)), which are often called rolerance regions (see page 70, Cressie (1993)), and these
construct a partition of size K of the lag space H = {s — s’ : s, s’ € R}. The candidate lag for
the tolerance region H, is denoted by h,, which is often taken to be the mean of the observed
lags in the bin or the centroid of the the class H,.

The parameters are estimated using method of weighted least squares as

0= arg;ningwls 0)

3.7 K

N(h,)| 2
= VS hu - hu; 0 ’
arg;mnz {J/(hu, 0)}2 Pvs(hy) =y ( )}

where y(-;0) is some prespecified parametric admissible semivariogram model, as dis-
cussed in Section 3.1. Other robust empirical variogram estimators (e.g., Genton (1998),
Lark (2000)) can also be used instead of the one proposed by Cressie and Hawkins (1980), as
given in equation (3.6), Genton (1998) showed that the robustness properties of the empirical
semivariogram proposed by Cressie and Hawkins (1980) are not enough in the presence of
“absurd” outliers in the data. But, due to the VS-based smoothing in the first stage of the
covariance estimation, the very large measurement errors have already been addressed and,
hence, using Cressie and Hawkins (1980) version of robust variogram estimator is reasonable
here.
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3.4. Veracity score-based spatial prediction. Often the aim for spatial analysis of geo-
statistical data is to predict the process at locations of interest or to create a prediction surface
over a region of interest. To predict the e-process at a new location sp, we can use ordinary
kriging with the VS-based smoothed residuals € = (€(sy), ..., €(s,))" as

1 _1/1—'—1 /
( V)} F_IE,

(3.8) d0 =y +15

where y = ( (50— 515 0vs), ..., ¥(50 — 53 015)) and ([);j =y (s; — 5;: Bys) (see Chapter 3,
Cressie (1993)). The residual kriging variance, which quantifies the prediction uncertainty,
can be estimated as
(1/1’* -1 y)z

1r-11
Finally, we predict the process at sy using the modified version of equation (3.2) as

Var(€(so)) = 65(s0) =y Ty —

(3.9) Yus(S0) = X(50)' Bys + €(S0).

In equation (3.9) both the mean and covariance parameters have been robustly estimated
using the VS-based procedures. The smoothing parameter g for the VS-based smoothing of
the residuals can be chosen using cross-validation.

There are other robust kriging approaches available in literature, for example, Kiinsch
et al. (2011) and Papritz (2018b). Both of these techniques require distributional assumption
on the e-process. Moreover, it is not straightforward to determine how to reduce the effects
of observations that are not noisy but represent some other spatial process. For example,
if in a local region most of the crowdsourced ambient temperatures are captured in indoor
settings, applying the robust procedures directly may lead to misleading estimation of the
model parameters and hence bad prediction of the outdoor ambient temperature. On the other
hand, the VS-based technique can use a benchmark value, possibly obtained from a high-
quality but low-density reference data, to reduce the effects of the “misleading” observations
and thus estimate and predict the process of interest efficiently. Theoretical or numerical
comparison of other robust kriging methodologies with the VS-based technique in case of no
available reference data is beyond the scope of this article.

4. Simulation study. Our simulation study aims to justify the superiority of the VS-
based estimation and prediction methods as compared to the standard approach for analyzing
noisy geostatistical data. We have considered two scenarios here. The first one is when no
reference data is available, and the second one is when a coarser but better quality reference
data is present.

4.1. Without reference data. We take the sampling region for the varying-quality ob-
servations to be R = R, := [0, 1, ]*> where {An}n 1s a sequence of positive real numbers
determining the size of the sampling region. We have assumed that the varying-quality obser-
vations {Z(s1), ..., Z(s,)} are coming from an additive-multiplicative noise model as given
in equation (2.3). To generate the “true” process for simulation purposes, we use the follow-
ing spatial linear model:

4.1 Y(si) = Bo + (Bx, By)'si + Bnh(si) + €(si),

where B := (Bo, Bx, By, Br)’ is the vector of regression parameters; /(s) is the altitude of the
location s; and {e(s)} is a second-order stationary spatially correlated process.
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To define the altitude function over the sampling region, we use the deterministic function
h(s) = H; - Z Zywn(j) f(s; Hj X ;) + H3 where f(-; p,X) denotes the bivariate normal
density with mean w and covariance matrix ¥ and {(1;, ;) : j € {1, ..., Hy}} are fixed set
of vectors and matrices. The residual vector (e(sy), . e(sn))/ are sampled from a second-
order stationary mean-zero Gaussian process with isotropic Matérn covariance given by

,217x d\* d
(4.2) C(d; 0) =02 (@—) K, <@—> +1721(d =0),
[(x) P P

where I" is the gamma function and K, is the modified Bessel function of the second kind
with order « (Abramowitz and Stegun (1972)). The covariance parameter vector of interest
is 0 = (12,02, p, k), where 7 is the nugget effect, o , p, k are the partial sill, range and
smoothness parameters respectively (Haskard (2007), Gelfand et al. (2010)).

To generate noise for the varying-quality observations, we use the following model for

the additive and multiplicative components, denoted by €4 := (€4,, ..., EA,,)/ and €y =
(€m,, ..., €m,) , respectively

Al ifieG A0 ifi € G,
(4.3) m ~ (1) i € Gy, en ~ ) m: e Gy

2 x Beta(orpy, 2py)  O.W., N(0, Gi) o.W.,

where A(x) denotes a degenerate distribution with point mass at —oo < x < 00; variance cor-
responding to the multiplicative component af,l TYES +1 ; Gp C {1,...,n} is a subset of in-
dices and oy, 04 are positive constants. With this model ifi e G, we have No noise associ-
ated with the observation, thatis, Z(s;) = Y (s;).If i ¢ G, then Z(s;) = e, Y (s;) +€a, where
€um; and €4, have positive variance. Also, we have taken {eys,}7_|, {€a,}7_, and {e(s;)}!_, are
independent of each other. We further assume that the proportion of “good” observations is
a constant (w.r.t. n) denote by ¢., that is, |G,|/n =~ q., and 1 — g, is the proportion of noisy
observations in the data. This model is inspired by the crowdsourced data analysis scenario
where only a proportion of observations are “bad.” The choice of multiplicative error dis-
tribution in equation (4.3) restricts its realizations to be in [0, 2] and also ensures that the
multiplicative errors are symmetric around 1.

We set B = (55,1.5,—1,—-0.08)", # = (0,6,0.5,3)". To investigate the robustness of the
VS with increasing noise in the data, we consider three contamination models specified by
the following parameters: (a) o4 =35, ay =2, go = 0.95, (b) 04 =50, apy =0.5, g. =0.9
and (c) o4 = 100, oy = 0.05, g. = 0.8. As we go from model (a) to (c), the noise in the data
increases both in extent and magnitude. For example, with model (a) the variance of a noisy
observation at location s is 0.2(x(s)’ ﬂ)2 + 28.6, and the proportion of such observations is
5%; with model (c) the same variance will be 0.91(x(s)'8 )2 4+10,005.73, and the proportion
of noisy observations rises to 20%.

Next, we analyze the simulation results to compare the performances of VS-based and
standard approach. The choices of the regularity parameters in the VS-based estimation like
the baseline deviation o and the smoothing parameter g are discussed in Section C.1 in the
Supplementary Material (Chakraborty, Lahiri and Wilson (2020)).

In Figure 3 we show boxplots of the VS-based estimator ,BVS and the standard estimator ,6015
for the four regression parameters based on B = 200 simulations with n = 500 samples. The
VS-based technique shows more robustness toward the added noise in the observations. As
we move from noise model (a) to (c), the efficiency of the o.L.s. estimator is heavily compro-
mised, whereas the spread of the VS-based estimates is hardly increased. Section C.2 in the
Supplementary Material (Chakraborty, Lahiri and Wilson (2020)) contains additional simu-
lation results for regression parameter estimation; boxplots if the estimates for n = 100, 3000
(Figures S4 and S5). All of these simulations show similar results to justify the superiority of
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FI1G. 3.  Performance of the VS-based and standard regression parameter estimators for analyzing varying-qual-
ity observations (sample size n = 500) without reference data.

VS-based mean parameter estimation in the analysis of noisy spatial data as compared to the
standard o.l.s method.

We also evaluate the VS-based and standard covariance parameter estimation and show
the results in Table 1. In each of the cases, the estimates of the sill parameter (062 + 72, the
total variance the residual process) obtained by the VS-based methodology is more accurate
by large margins as compared to standard variogram estimation. As the sample size increases
both the bias and standard deviations of the VS-based estimators are closing toward zero
under all the considered noise models. Table 1 clearly establishes the efficiency of VS-based
covariance estimation as compared to the standard approach when some of the observations
are corrupted. For a fixed n, if we move from noise model (a) to noise model (c) the increase
in bias and standard errors of the VS-based sill parameter estimator is prominent, though the
magnitude of increment is much smaller as compared to the standard method of estimation.

Next, we evaluate the VS-based spatial prediction using a 4[A, ] x 4[A,] grid over the
sampling region R as shown in Figure 4(a). We make predictions at these grid points using
both the VS-based and standard approach and evaluate the predictions and kriging by the

TABLE 1
Performance of the VS-based methodology and standard approach in estimating covariance parameters on
varying-quality observations

Noise model n bias.sill.VS bias.sill.Std bias.range.VS bias.range.Std
(a) 100 —0.313 (3.31) 3837.513 (9867.28) —0.296 (0.13) 6.671 (16.1)
500 0.23 (1.16) 623.629 (1644.56) —0.114 (0.06) 3.778 (9.91)
3000 0.344 (0.62) 36.098 (82.01) —0.026 (0.05) 0.307 (3.2)
(b) 100 7.657 (8.13) 17,545.465 (58,680) —0.357 (0.08) 69.945 (454.78)
500 1.747 (1.52) 5135.181 (14,207.51) —0.158 (0.06) 3.711 (11.05)
3000 0.48 (0.96) 1108.544 (3515.95) —0.06 (0.05) 8.377 (52.63)
(c) 100 32.774 (9.51) 6606.713 (27,599.4) —0.39 (0.03) 130.833 (463.05)
500 15.352(6.23) 21,915.533 (63,507.44) —0.241 (0.05) 6.222 (47.09)

3000 2.933 (1.14) 5289.832 (12,192.3) —0.111 (0.04) 4.624 (19.92)
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station).

FI1G. 4.  Example sampling points for the simulations.

following metrics:

RMSPE = % (Pus(s*) — Y (%)%
ResRMSPE = % 2*:(5 (s*) — €(s%))%,

where the sum ) ¢« is over the grid points. We define the performance metrics for the stan-
dard methods analogously. The Root-Mean-Squared-Prediction-Error (RMSPE) measures
the average prediction error over the selected grid, and the Residual-Root-Mean-Squared-
Prediction-Error (ResRMSPE) evaluates the accuracy and efficiency of the kriging on the
selected grid for the spatially correlated residual process, {e(s)}. By Av.RMSPE we denote
% >, RMSPE(b) where RMSPE(b) is the prediction error in the bth simulation iteration. We
define Av.ResRMSPE similarly.

Table 2 summarizes the results which show that the VS-based predictions are much better
than the standard analysis in almost all the cases. As we go from model (a) to model (c) the

TABLE 2
Prediction performance of the VS-based methodology and standard approach on varying-quality observations
without any reference data

VS Std. app.
Noise model n Av.RMSPE Av.ResRMSPE Av.RMSPE Av.ResRMSPE
(a) 100 5.29 (4.04) 0.703 (0.22) 8.61 (15.37) 3.637 (1.82)
500 4.046 (1.03) 0.281 (0.03) 4.826 (8.89) 4.416 (1.33)
3000 3.927 (1.07) 0.141 (0.02) 3.228 (1.37) 5.306 (0.48)
(b) 100 9.67 (6.11) 1.796 (0.77) 37.38 (92.72) 14.717 (6.99)
500 8.478 (5.04) 0.358 (0.07) 28.911 (75.28) 14.267 (7.56)
3000 5.196 (3) 0.15 (0.02) 20.546 (33.01) 14.902 (8.07)
() 100 21.071 (11.29) 5.833 (1.39) 98.585 (206.89) 38.74 (19.03)
500 26.325 (14.35) 1.376 (1.44) 66.6 (152.04) 36.354 (20.06)
3000 13.722 (6.55) 0.23 (0.04) 94.429 (193.5) 31.606 (23.25)
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prediction accuracy has compromised for both the VS-based as well as the standard approach
with much higher impact for the later one. However, in terms of residual kriging efficiency
the VS-based methodology is highly robust as compared to the ordinary kriging using the
residuals obtained from o.l.s.

4.2. With reference data. In this subsection we consider a situation that is more similar
to our case study. In addition to the n varying-quality observations in the hyperlocal region
R = [0, ,]?, we have m-many high-quality observations available over a larger region D =
[0, A, ]%. One example of the sampling points is shown in Figure 4(b). Our goal is to predict
the process within the hyperlocal region R using the varying-quality observations. We again
use a4[A,] x 4[A, ] grid over the hyperlocal region of interest R to evaluate the predictions.
In addition to the predictions obtained by the VS-based and standard methodology on the
varying-quality observations, we also consider the global predictions obtained by using only
the reference data on the larger region as shown in Figure 4(b). For this simulations we have
considered the sample sizes for varying-quality observations to be equal to 50, 100 and 500
because the hyperlocal regions in our case studies do not contain very “large” (not more than
300) number of crowdsourced observations. For the reference data the sample sizes we have
taken m = 100.

In Table 3, first, we compare the performances of the VS-based and standard predictions
using hyperlocal noisy data based on RMSPE for both at the response level (Av.RMSPE)
and residual level (Av.ResRMSPE). Clearly, we can see that VS-based predictions are uni-
formly better than the standard ones in all the considered cases. Next, we compare the VS-
based predictions using hyperlocal noisy data and the predictions obtained by implementing
the standard methodology on the high-quality reference data over a bigger region. We refer
the later one as “Ref. Only.” From Table 3 we see that, at response level (i.e., comparing
Av.RMSPE) and under all noise models, the performance of the VS-based predictor using
varying-quality observations is similar or slightly worse to the “Ref. Only” predictor when
the number of hyperlocal noisy data and the high-quality reference data are comparable (i.e.,
the case when both n» and m = 100.) In case we have larger sample size (n = 500) in the
hyperlocal regions, we see a little gain in prediction efficiency in terms of Av.RMSPE. How-
ever, if we consider the residual kriging performance, that is, the ResRMSPE, the VS-based
technique has outperformed the “Ref Only” kriging for all the cases, even when we have only
n = 50 many varying-quality observations. As the kriging is more efficient when we have ob-
servations closer to the locations of our interest, the varying-quality hyperlocal observations
along with the robust VS-based methodology improves the efficiency of the spatial predic-
tion as compared to the corresponding “Ref. Only” version. Additional details regarding the
simulation results, for example, the parameters of the models and choices of the regularity
parameters, etc., are reported in Section C.1 of the Supplementary Material (Chakraborty,
Lahiri and Wilson (2020)).

5. Case study: Spatial analysis of weather-signal data. In this section we analyze the
WeatherSignal data described in Section 1.1 using the VS-based methodology (Section 3).
Our goal for this noisy crowdsourced data set is to perform structure exploration and then
prediction of the daily average ambient temperature process in hyperlocal regions of interest.

5.1. Building hyperlocal prediction surfaces. Here, we describe the VS-based analysis
of the crowdsourced weather-signal data using the NOAA ground-station data as reference.
We first select a hyperlocal region, as denoted by R in Section 2.3.1, around Los Angeles,
CA, as shown in Figure 5(d). The analysis starts by defining a region large enough to have
sufficient NOAA ground-station observations to build a reasonable global prediction surface



TABLE 3

Performance of hyperlocal predictions using the VS-based methodology, the standard approach and global predictions using reference data only. For these simulations we used
reference data with sample size m = 100

A Std. App. Ref. Only
Noise model n AvRMSPE Av.ResRMSPE Av.RMSPE Av.ResRMSPE Av.RMSPE Av.ResRMSPE
(a) 50 12.26 (12.71) 7.084 (5.08) 1740.696 (9518.03) 1745.244 (9604.81)
100 10.877 (11.61) 6.104 (5.24) 230.117 (918.91) 224.56 (934.89)
500 8.787 (8.05) 6.287 (6.47) 358.694 (1976.29) 352.86 (1975.49)
(b) 50 12.933 (13.1) 8.206 (6.76) 52,829.372 (662,485.91) 52,946.917 (664,727.7)
100 9.907 (10.81) 6.439 (5) 115.222 (923.6) 387.071 (915.98) 9.711 (8.54) 9.017 (7.46)
500 9.005 (8.66) 6.72 (5.06) 26.31 (19.18) 217.784 (15.88)
(©) 50 12.33 (18.51) 8.7 (16.61) 10,198.908 (85,831.41) 9740.72 (85,082.65)
100 10.131 (10.93) 7.093 (5.04) 155.796 (126.08) 412.788 (31.68)
500 9.786 (8.45) 6.402 (5.24) 239.728 (29.49) 27.335 (8.35)
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Crowdsourced Data: West Coast

NOAA Gd.St. Data: California

Pred. Surface: NOAA data only
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FI1G. 5. (a) Crowdsourced observations in CA; (b) Available ground-station observations; (c) Prediction surface
using the standard approach on the ground-station data; (d) Crowdsourced observations in a hyperlocal region
around Los Angeles; (e) ground-station observations in a hyperlocal region around Los Angeles.

around the region of interest. In Figure 5(b) we plot the m = 310 ground-station observations
in California. Using the standard approach on the NOAA ground-station data, as described in
Section 3.1, we build a prediction surface for California and plot it in Figure 5(c). The model
we use to estimate the mean is given by

(5.1) wu(s) = Bo + Bisx + IBysy + ,Bxysxsy + Buh(s),

where s := (sy, sy)’ and h(s) denotes the elevation of the point s. The mean model explains
79% (adjusted R”) of the variability in the ground-station ambient temperatures in California.

We then fit a Matérn covariance to the observed residuals from the mean model estimation.
Details of the variogram estimation are given in Table 4 and Figure 6. We then use standard
kriging methodology with the estimated mean and covariance model to create the prediction
surface {(s, Y (s)) : s € D}, as shown in Figure 5(c).

As we can see in Figure 5(a), the spatial coverage of the crowdsourced data does not
support a global prediction surface over California or even the coast of California. However,
if we consider the 25 x 25 mile region (R) in LA, as shown in Figure 5(d), the density
of crowdsourced data is much higher as compared to only one ground-station observation
(Figure 5(e)). While there is only one ground-station available at Los Angeles International
Airport, the number of crowdsourced observations, {Z(s1), ..., Z(s;)}, in R is n = 80.

The next part of the analysis examines whether we can leverage the additional crowd-
sourced information through the VS-based methodology. We want to explore whether we can
create a more reasonable and efficient prediction surface {(s, I?VS(S)) :s € R} over the region
‘R in Los Angeles as compared to the surface obtained from the analysis of the ground-station
data only, {(s, Y (s)) : s € R}.

TABLE 4
Estimated Matérn parameters

Parameters Estiamtes
partial sill (62) 13.78
range (p) 0.36
nugget (t?) 7.95
smoothness (k) 2.45
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Variogram Fitting, California Noaa Data
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FI1G. 6. Variogram estimation.

The VS-based analysis starts by computing the veracity score of the crowdsourced obser-
vations using the definition in equation (2.4). We set the baseline deviation & = 3. In an ideal
scenario, when the corresponding §-neighborhood has very little variation and IQR(§;) ~ 0,
an observation with 3°F deviation from the corresponding benchmark value has a VS ap-
proximately equal to exp(—1) ~ 0.368, while an observation with a 1°F deviation has a VS
~ (.716. To define the neighborhood for computation of the VS, we take § = 0.08 in the units
of latitude and longitude. To choose a suitable mixing parameter v, we use the function

—1
v(s;))=1-— exp(m m)

where R? is the adjusted R-squared for the estimation of the mean surface using NOAA
ground-station data only and #n(7) is the number of crowdsourced data in the §-neighborhood.
As Figure 7(a) shows, this function is increasing in R2 and decreasing in n(i). v(s;) =1 if
R?=1and v(s;) = 0 if n(i) = oo. With this formulation the mixing parameter takes both the
goodness of fit for the ground-station data and the number of crowdsourced observations used
for local approximation of the target value into account. Using the specified parameters, we
compute the VS for the crowdsourced observations in R and plot their empirical distribution
in Figure 7(b).

We next estimate the mean and covariance of the process. For robust estimation of the
mean function, we use the weighted MM-type estimator, as discussed in Section 3.2, with
the VS of the observations as the corresponding weights. Once the regression parameters
are estimated, for a given smoothing parameter g in equation (3.4), we use the VS-based
smoothing technique to reduce the effects of noise in the residual process as discussed in
Section 3.3. Using the smoothed residuals, we estimate the covariance parameters and use the
estimates to create a prediction surface using VS-based kriging as discussed in Section 3.4.

To make an optimal choice for ¢, we use the reference data. For a prespecified set of values
of g € [0.05, 3], the covariance estimation and kriging are executed at the ground-station
locations that are inside the hyperlocal region R, and the ¢ that minimizes the mean squared

Mixing function Histogram of VS, in LA

1.0

Mixing parameter
count
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T T ' ' ' ' '
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R-sq of NOAA fit vs
(a) (b)

FI1G. 7. Mixing function (a) and the histogram of the veracity scores (b) for the crowdsourced observations in
Los Angeles.
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FIG. 8. Histograms of the observed residuals (a), VS-based smoothed residuals (b) and the VS-based variogram
fitting (c) for optimal ¢ = 0.8.

error of prediction at the stations is chosen to be optimal. In the analysis for the hyperlocal
region around Los Angeles, there is only one station available, so we use the set of points with
VS greater than or equal to 0.8 as test data and minimize leave-one-out cross-validated mean
squared prediction error, that n ! > j (Z(sj) — I}V(s_ J )(s j))2 where I}V(s_ J )(s ) 1s the predicted
value at s; obtained using {Z(s1), ..., Z(Sj—1), Z(Sj+1), ..., Z(sy)} as the training data and
the sum is over the test data set whose cardinality is denoted by 7. In Figures 8(a) and 8(b)
we plot the histograms of the observed residuals from the VS-based robust regression and the
residuals after the VS-based smoothing. The VS-based smoothing clearly reduces the spread
of the residual values by smoothing out the large errors. In Figure 8(c) we show the robust
variogram fitting of the VS-based smoothed residuals for the optimal choice of the smoothing
parameter g = 0.8.

Given these analyses, we construct a prediction surface over the region R using equation
(3.2). In Figure 9, we plot the hyperlocal prediction surfaces obtained by the standard analy-
sis with the NOAA ground-station data only, as well as the one obtained by implementing the
VS-based technique on the crowdsourced observations with the ground-station data as the ref-
erence. Clearly the prediction surface obtained from standard analysis of the ground-station
data (Figure 9(a)) is too smooth to capture the local variability accurately. The prediction sur-
face obtained by the VS-based analysis on crowdsourced data shows more variation across
the space. To highlight the advantage of having crowdsourced observations, we compare the

Pred. Surface w NOAA data only: LA VS-based Pred. Surface: LA
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FIG. 9. (a) Hyperlocal version of the same surface as in Figure 5(c); (b) Prediction surface obtained by the
VS-based technique on the crowdsourced data in Los Angeles; (c) Residual kriging variance for the predictions
using NOAA data only; (d) Residual kriging variance for the predictions using the VS-based predictions with
crowdsourced data; (e) the % increase in the margin of error for the VS-based predictions as compared to the
predictions with NOAA data.
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residual kriging variance surfaces in Figures 9(c) and 9(d). It is prominent from Figure 9(d)
that the VS-based kriging variance is much smaller as compared to the global kriging us-
ing only the ground-station data, especially at locations that are close to the crowdsourced
observations.

In addition, we illustrate the gain in efficiency by plotting the percentage increase in mar-
gin of error (at 95% confidence) for the VS-based predictions from the hyperlocal crowd-
sourced information as compared to the global prediction using ground-station data only,
that is, 100 x (M.E.(¥ys(s)) — M.E.(Y (s)))/(M.E.(¥ (s))) where M.E. denotes the ‘margin
of error’ (half of the length of the prediction interval) to predict the target response Y (s).
To compute the margin of error, we use ad hoc confidence intervals for the residual krig-
ing predictor with =1.96 as the corresponding quantiles and then add the margin of error
of the mean (1.96 x s.e.(x(s)’ ﬁvs)) and the margin of error of the residual kriging predic-
tor (1.96 x /Krig.Var.(€(s))). The margin of error for the standard predictor is computed
similarly. A more theoretically justifiable interval can be obtained through spatial resampling
technique as discussed in Lahiri (2003) but that requires further research and is beyond the
scope of this study. In Figure 9(e) for most of the locations where the predictions have been
carried out, there are decrease in the margin of errors for the VS-based predictions as com-
pared to the global predictions using ground-station data only. At the locations that are close
the crowdsourced observations, the VS-based prediction technique has achieved up to a 50%
gain in efficiency.

The disadvantage of VS-based hyperlocal analysis is that the model is estimated very re-
gionally and, hence, extrapolation of the estimated mean model outside the sample space
is likely to give misleading and inefficient predictions. For example, in Figure 9(b) there are
locations with elevations of more than 500 meters while the maximum elevation in the crowd-
sourced sample is 350 meters. This leads to poor predictions (e.g., ambient temperature less
than 50°F) at some locations, as can be seen in Figure 9(e). Note that, though in those regions
the efficiency of VS-based predictions falls short, the residual kriging variance (Figures 9(c)
and 9(d)) for the VS-based kriging predictor is still less than the global kriging with NOAA
data only. So, the loss in efficiency in VS-based predictions is solely due to the the extrap-
olation of the hyperlocally estimated mean function at points outside the covariate sample
space.

We conduct a similar analysis for another hyperlocal region close to Brooklyn, NY and
plot the results in Figure 10. The prediction surface in Figure 10(c) is obtained by using stan-
dard methodology on 120 ground-station observations over the East Coast, and the surface in
Figure 10(d) is generated through VS-based hyperlocal analysis of the crowdsourced observa-
tions in Figure 10(b). Comparing these two prediction surfaces, we again see that the regional
variation is prominent for the prediction surface obtained from VS-vased hyperlocal analysis
whereas the global analysis generates a surface that is too smooth to accurately capture local
variations. In Figure 10(f) the advantage of having crowdsourced data for hyperlocal predic-
tion of the process is visible, as the kriging variance of the VS-based methodology is much
smaller compared to Figure 10(e), especially in locations close to the crowdsourced observa-
tions. In Figure 10(g) we see up to 33% gain in margin of error by implementing the VS-based
methodology on the crowdsourced data in locations close to the crowdsourced observations.
Similar to the previous analysis of the Los Angeles data, the advantage of the VS-based
hyperlocal predictions is lost if the predictions are attempted at locations too far from the
crowdsourced observations or at locations with elevations outside the range of crowdsourced
sample.

In addition to the VS-based hyperlocal analysis, we have also conducted the analysis for
both of the hyperlocal regions in Los Angeles and Brooklyn with the standard approach
without considering the veracity of the crowdsourced observations and then compared the
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FI1G. 10. (a) Ground-station observations in the selected hyperlocal region; (b) Crowdsourced observations in
the same region; (c) Prediction surface obtained by standard analysis of NOAA ground-station data; (d) Pre-
diction surface obtained by the VS-based technique on the crowdsourced data; (e) Residual kriging variance for
predictions using NOAA data only; (f) Residual kriging variances for the predictions using the crowdsourced data;
(g) Percent increase in the margin of error for the VS-based predictions compared to the predictions with NOAA
data.

predictions with the global prediction surface obtained using reference data only. Comparing
the plots in Figure 11 with Figure 9(e) and Figure 10(g) we can see that, in both Los An-
geles and Brooklyn, the margins of error for the predictions using the standard approach are
larger in all the locations as compared to the global predictions using ground-station data. In
Brooklyn, even at the locations around the crowdsourced observations and with reference to
the global prediction using ground-station data, the margin of error of standard predictions
using the crowdsourced observations have increased by at the least 120%, whereas, as we
have mentioned already, the VS-based methodology has achieved a decrease in the margin of
error up to 33% (Figure 10(g)). Clearly, no gain from the “hyperlocal” analysis is achieved, as
compared to the “global” prediction from the ground-station data, unless the robust VS-based
methodology is employed on the varying-quality crowdsourced data.
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FI1G. 11. The increase in margin of error for the standard approach in hyperlocal regions in Los Angeles (left)
and Brooklyn (right).
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5.2. Validation at the ground stations. The goal of the analysis in this section is to val-
idate the predictions obtained by hyperlocal analysis of crowdsourced data using VS-based
methodology. To do so, we have selected a set of 14 ground stations that satisfy the follow-
ing criteria: (1) there are at least 30 crowdsourced data points available nearby with at least
20 observations with a VS greater or equal to 0.4; (2) the elevation of those stations is not
too far from the range of the local crowdsourced samples. We have conducted 14 hyperlocal
analyses, as described in Section 5.1, for hyperlocal structure exploration of the ambient
temperature and then predicted at those selected ground-station locations to validate the VS-
based predictions. We have omitted these 14 stations beforehand so that these are not used in
defining the “benchmark™ value at the crowdsourced data locations to compute VS; this way
the validation data has no effect on the training phase of the predictions. We have also con-
ducted the same hyperlocal analyses using the standard technique without taking the quality
of the observations into account. The results are compiled in Table 5. The advantage of using
the VS-based techniques as compared to the standard methodology is clear from the results.
The RMSPE of the VS-based predictor for these 14 ground-stations is 3.71 while for the stan-
dard approach it is 4.54. More importantly, the average margin of error (at 95% confidence)
for standard predictor is 13.61, and for the VS-based methodology it is 6.28. Relative to the
standard methodology, on average, the VS-based technique has achieved approximately 54%
gain in efficiency of the predictions.

6. Summary and conclusions. In this paper we have introduced the veracity score to
assess the quality of observations in geostatistical settings. The VS is defined by comparing
the varying quality observations with a benchmark. We used the ground-station data as our
reference to define the benchmark values in the case studies. The similar scoring approach
to assess the veracity of the observations can be used in other contexts as well. We have also
discussed the case when no other reference information is available and propose a version
of VS using locally and robustly estimated measure of center as the benchmark. A robust
approach for modeling varying-quality spatial data using the VS has been proposed and eval-
uated. We have illustrated the VS-based methodology on a crowdsourced data set coming
from the mobile app WeatherSignal using NOAA ground-station data as the reference. Both
the simulation studies in Section 4 and the case studies in Section 5.1 show the advantages of
the VS-based methodology over the standard geostatistical approach when dealing with noisy
spatial data. In addition, by implementing the VS-based methodology on the varying-quality
local crowdsourced data we can achieve a more accurate and efficient hyperlocal predictions
as compared to the global prediction obtained from the analysis of ground-station data only.

In the analysis of crowdsourced data using the VS-based methodology, the model is esti-
mated using observations in a hyperlocal region. Predicting at more distant locations or with
covariates outside the range of the sample may provide misleading predictions, as we have
seen for some of the locations in Figure 9(b) and Figure 10(d). The mean and covariance
models used to explore the structures of the average temperature process are quite simple,
yet reasonable and effective for hyperlocal analysis of ambient temperature. More complex
models like nonlinear regression models (Frei (2014)) and anisotropic covariance (Haskard
(2007)) can be incorporated in the VS-based technique to increase flexibility of the analysis.
The VS-based kriging automatically reduces the impact of the corrupted observations and
thus, it does not require removing the outliers manually (e.g., see Frei (2014)) which is often
not feasible when dealing with large crowdsourced spatial data. In addition, as the veracity
of the observations has been measured nonparametrically using “local” summaries, the pro-
posed VS-based kriging does not require any distributional assumption (e.g., Gaussian, see
Lussana, Uboldi and Salvati (2010)) on the underlying spatial process or the noise associ-
ated with it. The analysis presented in this paper shows that the systematic incorporation of



TABLE 5

Predictions using both the VS-based and standard approach at the ground stations with crowdsourced observations in proximity

STATION_NAME Target temp. PredTemp.VS VS.ME PredTemp.Std Std.ME
CHICAGO OHARE INTERNATIONAL AIRPORT IL US 76 76.01 6.22 76.75 8.74
WASHINGTON DULLES INTERNATIONAL AIRPORT VA US 79 82.80 5.13 75.33 18.35
WASHINGTON REAGAN NATIONAL AIRPORT VA US 80 81.95 7.77 75.52 31.64
MIAMI INTERNATIONAL AIRPORT FL US 79 77.81 0.50 78.57 1.23
LITTLE TUJUNGA CALIFORNIA CA US 68 64.78 6.01 63.74 7.41
LOS ANGELES INTERNATIONAL AIRPORT CA US 68 68.91 3.31 67.87 4.26
BEVERLY HILLS CALIFORNIA CA US 70 67.94 6.27 68.12 7.54
TOLEDO EXPRESS AIRPORT OH US 75 79.45 5.72 79.39 8.18
DETROIT METROPOLITAN AIRPORT MI US 76 78.79 6.66 80.74 9.73
MINNEAPOLIS ST PAUL INTERNATIONAL AIRPORT MN US 70 77.03 6.67 76.97 10.96
CARLOS AVERY MINNESOTA MN US 69 73.33 11.46 74.65 19.05
JFK INTERNATIONAL AIRPORT NY US 72 78.24 3.06 80.82 3.82
ISLIP LI MACARTHUR AIRPORT NY US 74 75.10 6.29 75.61 8.79
AUSTIN BERGSTROM INTERNATIONAL AIRPORT TX US 81 78.87 2.24 86.50 10.19
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VS in the geostatistical analysis helps us capture the local variability of the ambient temper-
ature field by considering crowdsourced data in hyperlocal regions. The VS-based kriging
decreases the margin of prediction errors up to 50% as compared to the global predictions
from ground-station data only. On the other hand, if the same analysis is carried out on the
noisy crowdsourced data with standard kriging, there is no gain in efficiency. In fact, there are
locations, even close to the crowdsourced observations, where the margin of prediction errors
by standard methods are more than 80% higher than the corresponding global predictions.

There are several interesting future directions for this work. First, we have not provided
theoretical justification for the superiority of the VS-based methodology as compared to the
standard approach in the analysis of noisy spatial data. Inspired by the simulations executed
in this work, we believe that under a suitable spatial asymptotic framework (e.g., mixed-
increasing domain, Hall and Patil (1994); Lahiri, Lee and Cressie (2002)) and a fairly general
nonstationary noise model (e.g., the additive-multiplicative model defined in equation (2.3)),
we can theoretically justify the robustness and efficiency of the VS-based methodology (for
details, see Chakraborty and Lahiri (2019)). Second, the methodology discussed in this arti-
cle can be systemically extended to develop a more sophisticated VS-based kriging technique
that incorporates both the ground-station data and the crowdsourced data for spatial predic-
tion. Third, a spatiotemporal VS and corresponding methods for real-time crowdsourced data
can be developed by considering neighborhoods in both space and time.
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SUPPLEMENTARY MATERIAL

Supplement to “A statistical analysis of noisy crowdsourced weather data” (DOI:
10.1214/19-A0OAS1290SUPP; .pdf). This file contains additional details on data preprocess-
ing, the simulations, and the case study. It contains additional plots, tables and discussions to
support our claims and findings in the main article.
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