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A prompt public health response to a new epidemic relies on the ability
to monitor and predict its evolution in real time as data accumulate. The 2009
A/H1N1 outbreak in the UK revealed pandemic data as noisy, contaminated,
potentially biased and originating from multiple sources. This seriously chal-
lenges the capacity for real-time monitoring. Here, we assess the feasibility
of real-time inference based on such data by constructing an analytic tool
combining an age-stratified SEIR transmission model with various observa-
tion models describing the data generation mechanisms. As batches of data
become available, a sequential Monte Carlo (SMC) algorithm is developed
to synthesise multiple imperfect data streams, iterate epidemic inferences
and assess model adequacy amidst a rapidly evolving epidemic environment,
substantially reducing computation time in comparison to standard MCMC,
to ensure timely delivery of real-time epidemic assessments. In application to
simulated data designed to mimic the 2009 A/H1N1 epidemic, SMC is shown
to have additional benefits in terms of assessing predictive performance and
coping with parameter nonidentifiability.

1. Introduction. A pandemic influenza outbreak has the potential to place a significant
burden upon healthcare systems. The capacity to monitor and predict its evolution as data pro-
gressively accumulate, therefore, is a key component of preparedness strategies for a prompt
public health response.

Statistical approaches to real-time monitoring have been used for a number of infectious
diseases including: prediction of swine fever cases (Meester et al. (2002)); online estima-
tion of a time-evolving effective reproduction number R(t) for SARS (Wallinga and Teunis
(2004), Cauchemez et al. (2006)) and for generic emerging disease (Bettencourt and Ribeiro
(2008)); inference of the transmission dynamics of avian influenza in the UK poultry industry
(Jewell et al. (2009)); and forecasting of Ebola (Viboud et al. (2018)).

Typically, however, this work relies on the availability of direct data on the number of new
cases of an infectious disease over time. In practice, direct data are seldom available, as il-
lustrated by the 2009 outbreak of pandemic A/H1N1pdm influenza in the United Kingdom
(UK). More likely, multiple sources of data exist, each indirectly informing the epidemic
evolution and each subject to possible sources of bias. These data typically come from rou-
tine influenza surveillance systems reporting interactions with healthcare services. They are
often: biased towards the more severe cases; subject to the changing healthcare-seeking be-
haviours of the population; contaminated with cases of people experiencing influenza-like
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illness; and heavily influenced by governmental policies. These features call for more com-
plex modelling, requiring the synthesis of information from a range of data sources in real
time.

In this paper we tackle the problem of online inference and prediction in an influenza
pandemic in this more realistic situation. We address this starting from the work of Birrell
et al. (2011) who retrospectively reconstructed the A/H1N1 pandemic in a Bayesian frame-
work using multiple data streams collected over the course of the pandemic. In Birrell et al.
(2011), posterior distributions of relevant epidemic parameters and related quantities are de-
rived through Markov chain Monte Carlo (MCMC) methods which, if used in real time, pose
important computational challenges. MCMC is notoriously inefficient for online inference
as it requires repeat browsing of the entire data history as new data accrue. This motivates
a more efficient algorithm. Potential alternatives include refinements of MCMC (e.g., Jewell
et al. (2009), Banterle et al. (2019)) and Bayesian emulation (e.g., Farah et al. (2014)) where
the model is replaced by an easily evaluated approximation readily prepared in advance of the
data assimilation process. Here, we explore Sequential Monte Carlo (SMC) methods (Doucet
and Johansen (2011)). As batches of data arrive at times t1, . . . , tK , SMC techniques allow
computationally efficient online inference by combining the posterior distribution πk(·) at
time tk, k = 0, . . . ,K with the incoming batch of data to obtain an estimate for πk+1(·).
A further advantage of SMC is that it automatically provides all the posterior predictive dis-
tributions necessary to make one-step-ahead probabilistic forecasts of the incoming data. In
a pandemic context, monitoring the appropriateness of a model is vital to avoid making pub-
lic health decisions on the basis of misspecified models. Through formal assessment of the
quality of these one step ahead forecasts (Held, Meyer and Bracher (2017)), timely checks of
model adequacy and, if necessary, swift adaptations of the model can be made.

Use of SMC in the real-time monitoring of an emerging epidemic is not new. Ong et al.
(2010), Dukic, Lopes and Polson (2012), Skvortsov and Ristic (2012), Dureau, Kalogeropou-
los and Baguelin (2013), Camacho et al. (2015) and Funk et al. (2018), for instance, provide
examples of real-time estimation and prediction for deterministic and stochastic models de-
scribing the dynamics of influenza and Ebola epidemics. These models, again, only include
a single source of information that has either been preprocessed or is free of any sudden or
systematic changes.

In what follows we advance existing literature in three ways: we include a number of data
streams, realistically mimicking current data availability in the UK; we consider the situation
where a public health intervention introduces a shock to the system, critically disrupting the
ability to track the posterior distribution over time; and we demonstrate how the use of SMC
can facilitate online assessment of model adequacy.

The paper is organised as follows: in Section 2 the model in Birrell et al. (2011) is reviewed
focusing on the data available and the computational limitations of the MCMC algorithm in a
real-time context; in Section 3 the idea of SMC is introduced and the algorithm of Gilks and
Berzuini (2001) is described; in Section 4 results are presented from the application of Gilks
and Berzuini’s SMC algorithm to data simulated to mimic the 2009 outbreak and illustrate the
challenges posed by the presence of the informative observations induced by system shocks;
in Sections 5 and 6 adjusted SMC approaches that address such challenges are assessed; we
conclude with Section 7 in which the ideas explored in the paper are critically reviewed and
outstanding issues discussed.

2. A model for pandemic reconstruction. Birrell et al. (2011) estimate the transmis-
sion of a novel influenza virus among a fixed population stratified into A age groups (see
Figure 1). Disease transmission is approximated by a deterministic age-structured Suscepti-
ble (S) Exposed (E) Infectious (I) Recovered (R) model described by a system of differential
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FIG. 1. Schematic diagram showing multiple epidemics surveillance sources linking to an SEIR epidemic model
via an observation and reporting model. The shaded blue boxes represent observed data streams.

equations evaluated at discrete times tk = kδt, k = 0, . . . ,K , with δt = 0.5 days. Under this
discretisation the number of new infections in interval [tk−1, tk) is

(1) �tk,a = Stk−1,aλtk−1,a,

where �tk,a ≡ �tk,a(ξ) for a vector of transmission parameters ξ and

(2) λtk,a ≡ λtk,a(ξ) = 1 −
A∏

b=1

{(
1 − M

(a,b)
tk

R0(ψ)/dI

)Itk,b
}
δt

is the time- and age-varying force of infection, the rate at which susceptible individuals be-
come infected. In (2) R0(ψ) is the basic reproduction number, the expected number of sec-
ondary infections caused by a single primary infection in a fully susceptible population, pa-
rameterised in terms of the epidemic growth rate ψ ; M tk (m) represent time-varying mixing
matrices, parameterised by m, with M

(a,b)
tk

(m) giving the relative rates of effective contacts
between individuals of each pair of age groups (a, b) at time tk , and dL and dI are the mean
latent and infectious periods, respectively. The initial conditions of the system are determined
by a further parameter ν. Fixing dL = 2 days, the vector of transmission dynamics parameters
is ξ = (ψ, ν, dI ,m).

There is no direct information to estimate ξ as the transmission process is unobserved.
Birrell et al. (2011) describe how ξ can be inferred from the combination of different sources
linked to the latent transmission through a number of observational models (see Figure 1).

A first source of information is provided by a series of cross-sectional serological survey
data Ztk,a on the presence of immunity-conferring antibodies in the general population. De-
noting by Na the population size in age group a and ms

tk,a
the number of blood sera samples

tested in time interval [tk−1, tk), it is assumed that

(3) Ztk,a ∼ Bin
(
ms

tk,a
,1 − Stk,a

Na

)

informing directly the number of susceptibles Stk,a ≡ Stk,a(ξ) in age group a at the end of the
kth time step. A second source is the time series of virologically confirmed infections (e.g.,
admission to intensive care) xconf

tk,a
or the number xdoc

tk,a
of consultations at general practitioners
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(GP) for influenza like illness (ILI). Data on consultations are contaminated by a “back-
ground” component of individuals attending GP for nonpandemic ILI, strongly influenced
by a public’s volatile sensitivity to governmental advice. Both xconf

tk,a
and xdoc

tk,a
are assumed to

be realisations of negative binomial distributions here expressed in a mean-dispersion (μ,η)

parameterisation, such that if X ∼ NegBin(μ,η), then E(X) = μ, var(X) = μ(η+1), that is,

(4) Xconf
tk,a

∼ NegBin
(
μconf

tk,a
, ηtk

)
and

(5) Xdoc
tk,a

∼ NegBin
(
μdoc

tk,a
+ Btk,a, ηtk

)
.

In (5) the contamination Btk,a is appropriately parameterised in terms of parameters βB (see
Section 4) and both μconf

tk,a
and μdoc

tk,a
are expressed through a convolution equation, resulting

from the process of becoming infected and experiencing a time delay between infection and
the relevant healthcare event (see Figure 1). This convolution for μdoc

tk,a
is

(6) μdoc
tk,a

= φpdoc
tk,a

k∑
v=0

�tv,af (k − v),

where the (discretised) delay probability mass function f (·) accounts for both the time from
infection to symptoms and the time from symptoms to GP consultation (see Figure 1). Note
that μe

tk,a
≡ μe

tk,a
(θ) where e ∈ {conf,doc} and θ = {ξ , φ,pe

tk,a
, ηtk ,β

B}.
The signal μdoc

tk,a
can only be identified by additional virological data from subsamples of

size mv
tk,a

of the primary care consultations. The number of swabs testing positive for the
presence of the pandemic strain Wtk,a in each sample is assumed to be distributed:

(7) Wtk,a ∼ Bin
(
mv

tk,a
,1 − Btk,a

μdoc
tk,a

+ Btk,a

)
.

2.1. Inference. To estimate θ , Birrell et al. (2011) develop a Bayesian approach and use a
Markov chain Monte Carlo (MCMC) algorithm to derive the posterior distribution of θ on the
basis of 245 days of primary care consultation and swab positivity data, confirmed case and
cross-sectional serological data. Their MCMC algorithm is a naively adaptive random walk
Metropolis algorithm, requiring 7 × 105 iterations, requiring in excess of 6.3 × 106 evalua-
tions of the transmission model and/or convolutions of the kind in equation (6). MCMC is
not easily adapted for parallelised computation, but the likelihood calculations allow for some
small-scale parallelisation. The MCMC were thus optimally run on a desktop computer with
8 parallel 3.6 GHz Intel(R) Core(TM) i7-4790 processors, requiring run times of almost four
hours. Although this run time might not be prohibitive for real-time inference, this implemen-
tation leaves little margin to consider multiple code runs or alternative model formulations. In
a future pandemic there will be a greater wealth of data facilitating a greater degree of strati-
fication of the population (Scientific Pandemic Influenza Advisory Committee: Subgroup On
Modelling (2011)). With increasing model complexity comes rapidly increasing MCMC run
times which can be efficiently addressed through use of SMC methods.

3. An SMC alternative to MCMC. Let Y t denote the vector of all random quantities
in (3)–(7), and let yt be the observed values of Y t . Online inference involves the sequen-
tial estimation of posterior distributions πk(θ) = p(θ |y1:k) ∝ π0(θ)p(y1:k|θ), k = 1, . . . ,K

where π0(θ) indicates the prior for θ . Estimation of any epidemic feature, for example, the
assessment of the current state of the epidemic or prediction of its future course, follows from
estimating θ .
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Suppose at time tk a set of nk particles {θ (1)
k , . . . , θ

(nk)
k } with associated weights

{ω(1)
k , . . . ,ω

(nk)
k }, approximate a sample from the target distribution πk(·). On the arrival

of the next batch of data yk+1, πk(·) is used as an importance sampling distribution to sample
from πk+1(·). In practice, this involves a reweighting of the particle set. The particles are
reweighted according to the importance ratio, πk+1(·)/πk(·), which reduces to the likelihood
of the incoming data batch, that is,

(8) ω
(j)
k+1 ∝ ω

(j)
k

πk+1(θ
(j)
k )

πk(θ
(j)
k )

= ω
(j)
k p

(
yk+1|θ (j)

k

)
.

Eventually, many particles will carry relatively low weight, leading to sample degeneracy as
progressively fewer particles contribute meaningfully to the estimation of πk(·). A measure
of this degeneracy is the effective sample size (ESS) (Liu and Chen (1995)),

(9) ESS
({

ω
(·)
k

}) = (
∑nk

j=1 ω
(j)
k )2

∑nk

j=1 ω
(j)
k

2 .

The ESS is the “required size of an independent sample drawn directly from the target dis-
tribution to achieve the same estimating precision attained by the sample contained in the
particle set” (Carpenter, Clifford and Fearnhead (1999)), and, as such, values of the ESS that
are small in comparison to nk are indicative of an impoverished sample.

This degeneracy can be tackled in different ways. Gordon, Salmond and Smith (1993)
introduced a resampling step, removing low weight particles and jittering the remainder. This
jittering step was formalised by Gilks and Berzuini (2001) using Metropolis–Hastings (MH)
steps to rejuvenate the sample. Fearnhead (2002) and Chopin (2002) provide more general
treatises of this SMC method, with Chopin (2002) labelling the algorithm ‘iterated batch
importance sampling.’ This was extended by Del Moral, Doucet and Jasra (2006) who unify
the static estimation of θ with the filtering problem (estimation of a state vector, xk).

Here, we adapt the resample-move algorithm of Gilks and Berzuini (2001), investigating
its real-time efficiency in comparison to successive use of MCMC. The MH steps rejuve-
nating the sample constitute the computational bottleneck in resample-move as they require
a browsing of the whole data history to evaluate the full likelihood, not just the most re-
cent batch. For fast inference the number of such steps should be minimised, without risking
Monte Carlo error through sample degeneracy. The resulting algorithm is laid out in full
below. It is presumed that it is straightforward to sample from the prior distribution π0(θ).

3.1. The algorithm.

1. Set k = 0. Draw a sample {θ (1)
0 , . . . , θ

(n0)
0 } from the prior distribution, π0(θ), set the

weights ω
(j)
0 = 1/n0,∀j .

2. Set k = k + 1. Observe a new batch of data Y k = yk . Reweigh the particles so that the j th
particle has weight, ω̃

(j)
k ∝ ω

(j)
k−1p(yk|θ (j)

k−1).

3. Calculate the effective sample size. Set ω
∗(j)
k = ω̃

(j)
k /

∑
i ω̃

(i)
k ,∀j . If ESS({ω∗(·)

k }) >

εLnk−1 set θ
(j)
k = θ

(j)
k−1, ω

(j)
k = ω

∗(j)
k , nk = nk−1 and return to point (2), else go next.

4. Resample. Choose nk and sample {θ̃ (j)

k }nk

j=1 from the set of particles {θ (j)
k−1}nk−1

j=1 with

corresponding probabilities {ω∗(j)
k }nk−1

j=1 . Here, we have used residual resampling (Liu and

Chen (1998)). Reset ω
(j)
k = 1/nk .

5. Move: For each j move from θ̃
(j)

k to θ
(j)
k via a MH kernel Kk(θ̃

(j)

k , θ
(j)
k ;γ ). If k < K ,

return to point (2).
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6. End: {(ω(1)
K , θ

(1)
K ), . . . , (ω

(nK)
K , θ

(nK)
K )} is a weighed sample from πK(·).

There are a number of algorithmic choices to be made, including tuning any parameters,
γ , of the MH kernel and the rejuvenation threshold, εL. In a real-time setting it may not
be possible to tune an algorithm “on the fly,” so the system has to work “out of the box,”
either through prior tuning or through being adaptive (Fearnhead and Taylor (2013)). In what
follows we set εL = 0.5 (Jasra et al. (2011)), and we focus on the key factors affecting the
performance of the algorithm in real time, that is, the MH kernel.

3.1.1. Kernel choice.

Correlated random walk. A correlated random walk proposes values in the neighbourhood
of the current particle:

(10) θ∗|θ̃ (j)

k ∼ N
(
θ̃

(j)

k , γ �̄k

)
,

where �̄k is the sample variance-covariance matrix of the weighted sample {ω̃(·)
k · θ (·)

k−1}. The
advantages here are that the parameter γ can be tuned a priori to guarantee a reasonable ac-
ceptance rate, or asymptotic results for the optimal scaling of covariance matrices (Roberts
and Rosenthal (2001), Sherlock, Fearnhead and Roberts (2010)) could be used. Also, the lo-
calised nature of these moves should keep acceptance rates high, leading to quick restoration
of the value of the ESS.

Approximate Gibbs’. An independence sampler that proposes (Chopin (2002))

(11) θ∗|θ̃ (j)

k ∼ N(θ̄k, �̄k),

where θ̄k is the sample mean of the {ω̃(·)
k ·θ (·)

k−1}. Here, proposals are drawn from a distribution
chosen to approximate the target distribution, only weakly dependent on the current position
of the particle. An accept-reject step is still required to correct for this approximation. The
quality of the approximation depends on πk−1(·) being well represented by the current par-
ticle set, there being sufficient richness in the particle weights after the reweighting step and
the target density being sufficiently near-Gaussian. Assuming that the multivariate normal
approximation to the target is adequate (and it should be increasingly so as more data are
acquired) this type of proposal allows for more rapid exploration of the sample space.

For each type of kernel, both block and componentwise (where individual or subgroups of
parameter components are proposed in turn) proposals that use the appropriate conditional
distributions derived from (10) and (11) are considered. However, the kernels considered in
Step 5 of the resample-move algorithm consist of only a single block proposal or a single
proposal for each parameter component.

4. A simulated epidemic. The suitability of the SMC algorithm for real-time epidemic
inference is evaluated against the MCMC algorithm used in Birrell et al. (2011) which is
taken as a gold standard. Comparisons are made through application to data simulated from
the epidemic model in Figure 1. The simulation conditions were chosen so that the resulting
epidemic would mimic the timing and dynamics of the 2009 A/H1N1 pandemic in England.
This epidemic was characterised by two distinct waves of infection with a first peak induced
by an over-summer school holiday and a second peak occurring during the traditional winter
flu season.

We consider two scenarios. In the first direct information on confirmed cases (e.g., hospi-
talisation, ICU admissions) is available; in the second we observe the noisy ILI consultations
(equation (5)). Alongside either of these data, serological data (equation (3)) are available
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FIG. 2. Top row: (A) Number of doctor consultations Xdoc
tk,a

; (B) swab positivity data (Wtk,a ) with numbers rep-
resenting the size of the weekly denominator. Bottom row: (C) serological data (Ztk,a ); (D) pattern of background
consultation rates by age. Arrows between (A) and (C) highlight the timing of some key, informative observations.

and, in the second scenario, there are also virological data taken from a subsample of the ILI
consultations (see equation (7)). Both scenarios use observations made on 245 consecutive
days on a population divided into A = 7 age groups and are characterised by the same un-
derlying epidemic curve, so that the confirmed case and primary care consultation data are
subject to similar trends. For both scenarios we introduce a shock at tk = 83 days, similar
to the 2009 pandemic, where a public health intervention is assumed to change the way the
confirmed cases or consultations occur and are reported. The simulated data for the second
scenario are presented in Figure 2(A)–(C) where the timing of the shock is indicated by the
red arrow linking (A) and (C). Table A1 in the Supplementary Material (Birrell et al. (2020))
presents the model parameters together with the values used for simulation. Note that the
proposed intervention impacts by introducing a changepoint on three groups of parameters:
the dispersion in the count data, η, the proportion of infections that appear in the data p·,
and in Scenario 2 the age-specific (i.e., child and adult specific) background consultation
rates, Btk,a , which develop over time according to a log-linear spline with a discontinuity
at tk = 83. The spline is plotted, by age group, in Figure 2(D) and its parameterisation as
a function of the 9-dimensional parameter βB is given in Section A1 of the Supplementary
Material (Birrell et al. (2020)).

Real-time monitoring of the epidemic will begin after an initial outbreak stage, taken here
to be the first 50 days. An MCMC implementation of the model is carried out at times
tk = 50,70,83,120,164 and 245 days, and the SMC algorithm is then used to propagate
the MCMC-obtained posteriors over the intervals defined by these timepoints. For example,
the MCMC-obtained estimate πMCMC

50 (θ) of π50(θ) will be used as the initial particle set
for the SMC algorithm over the interval 50–70 days. This gives an estimate, πSMC

70|50(θ), for

π70(θ), which is then compared to πMCMC
70 (θ). The similarity between the two distributions

is measured by the Küllback–Leibler (KL) divergence of πSMC
tk |· (θ) from the “gold-standard”

reference distribution, πMCMC
tk

(θ), calculated using multivariate normal approximations to
both distributions.

4.1. Results from a resample-move SMC algorithm. In addition to KL, Table 1 reports
Hellinger and Wasserstein divergences for the posterior distributions from Scenario 1, ob-
tained using each of the three different proposal kernels described in Section 3.1.1. The use
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TABLE 1
Scenario 1: Küllback–Leibler (KL), Hellinger and Wasserstein statistics and likelihood evaluations per day

(“Run Time”) for each resample-move algorithm. Bootstrap standard errors are given in brackets

Proposal Correlated Componentwise Block
Intervals method random-walk approx. Gibbs approx. Gibbs

0–50 KL 2.83 (0.018) 2.58 (0.011) 2.61 (0.011)
Hellinger 0.852 (0.0012) 0.833 (0.0010) 0.835 (0.00091)

Wasserstein 19,700 (670) 12,700 (280) 12,300 (220)
Run Time 18,200 16,800 8000

51–70

KL 2.00 (0.016) 0.908 (0.013) 1.32 (0.018)
Hellinger 0.768 (0.0021) 0.546 (0.0032) 0.643 (0.0032)

Wasserstein 1710 (57) 112 (2.5) 230 (3.7)
Run Time 21,000 21,000 8000

71–83

KL 4.44 (0.12) 0.929 (0.037) 1.60 (0.037)
Hellinger 0.804 (0.0033) 0.404 (0.0063) 0.513 (0.0042)

Wasserstein 409 (14) 0.936 (0.065) 1.35 (0.077)
Run Time 26,923 26,923 7692

84–120

KL 16.3 (0.39) 6.58 (0.19) 2.09 (0.085)
Hellinger 0.955 (0.0012) 0.865 (0.0026) 0.497 (0.0055)

Wasserstein 10.5 (0.27) 8.66 (0.20) 0.249 (0.0075)
Run Time 20,811 17,027 10,000

121–164

KL 0.106 (0.010) 0.113 (0.0086) 0.122 (0.0077)
Hellinger 0.165 (0.0081) 0.169 (0.0067) 0.172 (0.0051)

Wasserstein 0.0342 (0.0045) 0.0441 (0.0049) 0.0355 (0.0049)
Run Time 3182 3182 4773

165–245

KL 0.339 (0.013) 0.471 (0.025) 1.15 (0.035)
Hellinger 0.274 (0.0047) 0.296 (0.0065) 0.424 (0.0046)

Wasserstein 0.0976 (0.0097) 0.0406 (0.0044) 0.109 (0.0046)
Run Time 8642 9506 9136

of the three divergences ensures that inference is not being unduly influenced by the par-
ticular characteristics of any single chosen metric. The correlated random walk (10) has the
highest KL over the intervals up to 120 days. Beyond 120 days the divergence between dis-
tributions πk and πk+1 is small, and the random-walk proposals become progressively more
able to bridge the gap. The componentwise approximate Gibbs scheme (11) generally out-
performs the block updates. Figure 3 illustrates the performance of the approximate Gibbs
componentwise proposal kernel comparing the SMC- and MCMC-obtained scatterplots for
the parameter components ψ and ν at tk = 70 (A), tk = 120 (B) and tk = 245 (C). There is
close correspondence between the SMC and MCMC obtained distributions at tk = 70 and
tk = 245 but substantial departure at tk = 120. This is the only interval for which the block
updates perform better (in terms of divergence, Table 1). All of the above findings are con-
sistent irrespective of the metric used. As a result, for ease of presentation we will work with
the more familiar KL only from here on. Similar phenomena are observed for Scenario 2
but with magnified KL discrepancies due to the increase in dimensionality (see Table B2,
Supplementary Material (Birrell et al. (2020))).

Irrespective of the kernel chosen, it is clear that the basic resample-move SMC algorithm
cannot handle the “shock” in the count data occurring at tk = 83, which leads to step changes
in some model parameters. The marginal posterior distributions for the new parameter com-
ponents move rapidly from day 84 as probability density shifts away from uninformative
prior distributions. For Scenario 1 the 84–120 day interval is the only one over which the
block-update approximate Gibbs method gives the best performance (see KL divergence in



82 P. J. BIRRELL ET AL.

FIG. 3. Comparison of SMC-obtained posteriors and MCMC-obtained posteriors at tk = 70 (A), tk = 120 (B)
and tk = 245 (C) days via scatter plots for the parameters ψ and ν. The grey points in both the left and the right
panels represent the MCMC-obtained sample at the beginning of the interval, with the overlaid coloured points
representing the SMC or MCMC-obtained samples at the end of the interval. In the SMC-obtained samples, the
colour of the plotted points represents the weight attached to the particle, with the red particles being those of
heaviest weight.

Table 1). This arises due to the comparatively low acceptance of the single full block pro-
posals, ensuring that the ESS remains below εLnk and leading to further rejuvenations at
each following time. This frequent rejuvenation better enables the tracking of the shifting
posterior distributions over time (slightly reducing the advantage of this algorithm in terms
of computation time, Table 1). Alternatively, componentwise updates lead to a set of nearly
unique particles with ESS ≈ nk and fewer subsequent rejuvenations. However, even with the
block updates, good correspondence between the SMC- and MCMC-obtained posteriors is
not achieved after the shock in Scenario 1 until tk ≈ 100, and not at all in Scenario 2.
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From these initial results it is clear that a modified algorithmic formulation is needed for
computationally efficient inference when target posteriors are highly non-Gaussian and/or
are moving fast between successive batches of data as a consequence of highly informative
observations.

5. Extending the algorithm-handling informative observations. A key feature of any
improved SMC algorithm must be that the ESS retains its interpretation given in Section 3.
For example, as the scaling of a random-walk proposal tends to zero (i.e., γ ↓ 0 in equation
(10)), acceptance rates will be close to unity, resulting in a set of mostly unique particles and
a high value for the ESS. However, in cases where there has been a loss of particle diversity at
the resampling stage (because many particles are sampled numerous times) this would give a
highly clustered posterior sample, barely distinguishable from the set of resampled particles
and definitely not as informative as an independent sample of size nk . Here, the ESS, as
calculated from the particle weights, is no longer a reliable guide to the quality of the sample.

We look at three possible improvements to the resample-move algorithm of Section 3 to
produce an information-adjusted (IA) SMC algorithm that safeguards the ESS as a good mea-
sure of the quality of the sample: we address the timing of rejuvenations; we reconsider the
choice of kernels used in the rejuvenations, and we address the problem of choosing the num-
ber of iterations we need to run the MCMC sampler before the sample is fully rejuvenated.

5.1. Timing the rejuvenations: A continuous-time formulation. If there is large diver-
gence between consecutive target distributions πk and πk+1, the estimation of intermediate
distributions will allow the particle set to move gradually between the two targets (Del Moral,
Doucet and Jasra (2006)). These intermediate distributions are generated via tempering (Neal
(1996)), introducing gradually the new batch of data into the likelihood at a range of “tem-
peratures,” τ ∈ [0,1]. These distributions are denoted πk,τ (θ) ∝ πk(θ){p(yk+1|θ)}τ .

We choose to think of data yk+1 arriving uniformly over the (k + 1)th interval and denote

ω
(j)
k+τ,τ0

to be the weight attached to a particle at an intermediate time tk+τ when the previous
rejuvenation took place at time tk+τ0 , with τ0 = 0 corresponding to no prior rejuvenation
within the interval (tk, tk+1]. Then, for 0 ≤ τ0 ≤ τ ≤ 1 and indicator function for an event A

denoted 1A,

ω̃
(j)
k+τ,τ0

= (
ω

(j)
k + (

1 − ω
(j)
k

)
1τ0>0

)
p

(
yk+1|θ (j))τ−τ0 .

Therefore, if ESS({ω̃(j)
k+1,τ0

}nk

j=1) < εLnk a further rejuvenation would be proposed at time τ ∗,

such that τ ∗ = arg minτ∈(τ0,1){ESS(ω̃
(j)
k+τ,τ0

) − εLnk}2.

5.2. Choosing kernels-hybrid algorithms. As discussed in Section 4.1, each of the possi-
ble MH kernels has its own distinct strengths. These can be exploited by using a combination
of kernels. Full block approximate-Gibbs updates are efficient at reducing the clustering that
forms around resampled particles. Adding a random walk step would allow the proposal of
values outside the space spanned by the principal components of �̄k , something of particular
necessity if the ESS is very small and �̄k is close to singularity.

This motivates a hybridisation of the proposal mechanism, done either by using mixture
proposals, for example, a mixture between the approximate Gibbs’ proposals and full block
ordinary random walk Metropolis proposals (Kantas, Beskos and Jasra (2014)) or, as will be
used in the remainder, by augmenting full block approximate Gibbs updates with componen-
twise random walk proposals.
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5.3. How many MH iterations? Multiple proposals and intraclass correlation. In the
MH-step of the algorithm, there are effectively nk parallel MCMC chains. Making proposals
until all chains have attained convergence would be an inefficiency. The distribution govern-
ing the starting states of these chains forms a biased sample from the target distribution ob-
tained through sampling importance resampling (Chopin (2002)). It then seems a reasonable
requirement that we carry out MH steps until the chains have collectively “forgotten” their
starting values. This can be monitored through an estimate of an intraclass correlation coef-
ficient (ICC), ρ. First, the particle set is divided into I clusters, each of size di, i = 1, . . . , I ,
defined by the parent particle at the resampling stage. For example, if a particular particle
is resampled five times, it defines a cluster in the new sample with di = 5. The analysis of
variance intraclass correlation coefficient, rA (Donner and Koval (1980), Sokal and Rohlf
(1981)), is used to estimate ρ. This estimate is dependent on the mean squared error in a
univariate summary statistic, gij = g(θ ij ), calculated for the j th particle in the ith cluster,
θ ij both within and between clusters. Here, we choose the “attack rate” of the epidemic, the
cumulative number of infections caused by the epidemic:

(12) g(θ) =
∑∞

t=1
∑A

a=1 �t,a(θ)∑A
a=1 Na

.

Details of the calculation of rA are in Section C of the Supplementary Material (Birrell et al.
(2020)).

Prior to the MH phase of the algorithm, there is no within-class variation, and rA = 1.
However, with each iteration of the chosen MH sampler, ρ will decrease and, in general, so
will its estimate rA. We aim to choose a sufficiently small positive threshold, r∗

A, to be the
point beyond which there is no longer any value in carrying out further MH proposals to
rejuvenate the sample, as particles spawned from different progenitors become indistinguish-
able from each other. Ideally, this threshold is as large as is practicably possible to minimise
the number of rejuvenations required and, accordingly, we test our algorithms with thresh-
olds r∗

A = 0.1,0.2,0.5. In principle, stopping rules that are based, even indirectly, on the
number of accepted proposals can induce bias into the particle-based approximations to the
target density. However, here the dependence is sufficiently weak to be of little concern as
the stopping time of each chain is dependent on the number of accepted proposals in nk − 1
independent chains as well as itself.

6. Results from IA SMC algorithms. Here, we focus mainly on the intervention-
spanning day 83–120 interval. In what follows, a hybrid algorithm is adopted, using combina-
tions of three thresholds for rA with both the continuous and discrete sequential algorithms.

6.1. Scenario 1: Confirmed case and serological data. MCMC samples were obtained
using data up to and including tk = 84,85,86,87,90,100,110 and 120, with Figure 4 and
Table 2 summarising the results. In Figure 4(A) KL discrepancies between πSMC

tk |83 (θ) and

πMCMC
tk

(θ) are plotted over time for each combination of algorithm and threshold. To cali-
brate these KL divergences, a further 40 MCMC chains were obtained at each of these times.
The KL divergences between these posterior distributions from the original reference MCMC
analysis were then calculated. This formed a distribution of KL values that are typical of
MCMC samples from our target distribution. If πSMC

tk |tl (θ) attains the gold standard, then it
should return a KL divergence that could feasibly come from this distribution. Therefore,
we generate a “KL target” (see Table 2), the 95% quantile of these sampled KL values and
diagnose significant difference in the MCMC and SMC-obtained distributions when their KL
divergence is larger than this KL target.
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FIG. 4. (A) Kullback–Leibler divergence over time; (B) Number of proposals required at each rejuvenation time
by algorithm.

Performance of the continuous-time algorithm appears strongly linked to the acceptance
rate of the block approximate Gibbs’ proposals. This acceptance rate is particularly low (1–
2%) prior to tk = 87 when it undergoes a step change to 15–20%. In contrast, the acceptance
rates for the discrete-time algorithm are consistently around 5% throughout, as seen from
the constant number of iterations required over time (Figure 4(B)). As a result, from day 87
onwards, far fewer proposals are required in total for the continuous-time algorithm, even if
the number of rejuvenation times increases.

6.2. Scenario 2: Primary care consulation and serology data. Focusing on the better-
performing continuous-time IA algorithm, similar performance to Scenario 1 can be observed
(Table 3). The algorithm again suffers from acceptance rates for the approximate-Gibbs’ pro-
posals which, though initially adequate, fall to 0.3% on day 89, illustrated by a peak of over
250 proposals per rejuvenation and over 400 proposals per day in Figures 5(A) and (B), re-
spectively. This low rate is driven by the highly non-Gaussian distribution for the dispersion

TABLE 2
Performance in Scenario 1 of the information-adjusted SMC algorithms over the interval 83–120 days (discrete

and continuous) by ICC threshold

ICC threshold 0.5 0.2 0.1 ICC threshold 0.5 0.2 0.1

84 Days (KL target = 0.732) 90 Days (KL target = 0.159)
Continuous 1.95 3.46 3.48 Continuous 0.805 0.036 0.113
Discrete 1.22 1.31 1.51 Discrete 1.22 1.05 0.970

85 Days (KL target = 0.135) 100 Days (KL target = 0.135)
Continuous 0.862 2.03 1.68 Continuous 0.691 0.120 0.050
Discrete 1.50 1.18 1.02 Discrete 1.15 0.942 0.832

86 Days (KL target = 0.365) 110 Days (KL target = 0.122)
Continuous 0.780 2.01 2.02 Continuous 0.776 0.167 0.080
Discrete 1.78 1.37 1.24 Discrete 1.01 0.719 0.630

87 Days (KL target = 0.276) 120 Days (KL target 0.119)
Continuous 0.282 0.358 0.043 Continuous 0.666 0.278 0.084
Discrete 1.26 0.887 0.696 Discrete 0.888 0.498 0.552
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TABLE 3
Performance in Scenario 2 of the information-adjusted SMC algorithm over the interval 83–120 days in
continuous time where the algorithms differ in the inclusion of the η parameters in the block proposals.

Parameter βB is omitted from the KL calculations

ICC threshold 0.5 0.2 0.1 ICC threshold 0.5 0.2 0.1

84 Days (KL target = 6.06) 90 Days (KL target = 0.120)
Continuous 2.92 2.87 2.83 Continuous 1.80 0.35 0.066
Cts. Reduced 2.97 2.85 2.86 Cts. Reduced 2.10 0.093 1.42

85 Days (KL target = 1.90) 100 Days (KL target = 0.182)
Continuous 3.05 3.00 2.98 Continuous 0.157 0.102 0.089
Cts. Reduced 3.06 2.97 2.98 Cts. Reduced 0.107 0.084 0.070

86 Days (KL target = 1.94) 110 Days (KL target = 0.0936)
Continuous 3.28 3.24 3.25 Continuous 0.159 0.077 0.111
Cts. Reduced 3.27 3.22 3.26 Cts. Reduced 0.197 0.037 0.035

87 Days (KL target = 5.44) 120 Days (KL target = 0.101)
Continuous 2.54 2.45 2.42 Continuous 0.136 0.044 0.071
Cts. Reduced 2.51 2.48 2.44 Cts. Reduced 0.100 0.042 0.055

parameter η2 which has an unbounded gamma prior and is not well identified from the data.
To improve acceptance rates, a “cts. reduced” scheme is devised in which the dispersion pa-
rameters are omitted from the block approximate-Gibbs updates and proposed separately. In
terms of the resulting KL divergences, there is no significant drop in performance between the
continuous and the “cts. reduced” algorithms (Table 3). The “cts. reduced” proposal scheme
requires far fewer iterations of the Metropolis–Hastings algorithm over the interval 84–90
days, maintaining acceptance rates of about 10% over this period. On day 90 the “cts. re-
duced” scheme does give an anomalously high KL value (1.42). Closer inspection found this
to be the result of three particles with extremely small values for η. With these three particles
removed, the KL divergence falls to 0.086. Over time, as the target distribution converges to
a multivariate normal distribution, the number of moves required for both methods equalise
and the benefit of the “cts. reduced” proposal scheme vanishes (Figure 5(B)).

The scatter plots of Figure 6 give a sequence (over time) of marginal posterior distributions
for two parameters, (βB

3 , βB
9 ), of the background consultation rate model, obtained from the

“cts. reduced” SMC scheme and MCMC. These parameters are only weakly identifiable in
the immediate period after tk = 83, and a clear discrepancy between the MCMC- and the
SMC-obtained posterior scatters emerges. The SMC distributions, being based on many short

FIG. 5. (A) Number of MH-steps required by the continuous-time SMC algorithms per rejuvenation over time;
(B) Total number of MH-steps required by the continuous-time SMC algorithms per time interval; (C) The com-
putation time required for model runs on each day using MCMC (blue line) and SMC (red line).
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FIG. 6. The evolution over time of the marginal joint posterior for two components of the parameter vector
βB . Comparison between SMC-obtained and MCMC-obtained posterior distributions. Grey points indicate the
distribution at the start of the interval.

MCMC chains, cover the full posterior distribution adequately at each tk . The MCMC has
difficulty mixing, at tk = 85,86 in particular, resulting in scatters concentrated in a subregion
of the full marginal support.

Not only does SMC offer an improvement in terms of posterior coverage in the presence
of partial identifiability, but its daily implementation is also faster, as shown in Figure 5(C).
The run time for SMC decreases almost linearly with increased parallelisation, and so the
particles (and hence the parallel MCMC chains) are distributed across 255 Intel(R) Xeon(R)
CPU E5-262 2.0 GHz processors on a high-performance computing cluster. This represents
modest parallelisation compared to what might be used in a real pandemic. Figure 5 shows
that, not only is SMC more computationally efficient on day 84, the day requiring the most
MH-updates to rejuvenate the sample, but also the run-times decrease over time, in contrast
to the increasing MCMC run times as more data have to be analysed. On days where the
sample does not require rejuvenation, run times are negligible.

7. Discussion. This paper addresses the substantive problem of online tracking of an
emergent epidemic, assimilating multiple sources of information through the development of
an information-adjusted SMC algorithm. When incoming data follow a stable pattern, this
process can be automated using standard SMC algorithms, confirming current knowledge
(e.g., Dukic, Lopes and Polson (2012), Ong et al. (2010)). However, in the likely presence of
interventions or any other event that may provide a system shock, it is necessary to adapt the
algorithm appropriately.

Using a simulated epidemic where a public health intervention provides a sudden change to
the pattern of case reporting, we have constructed a more robust SMC algorithm by tailoring:
(1) the choice of rejuvenation times through tempering; (2) the choice of the MH-kernel by
combining local random walk and Gibbs proposals; (3) a stopping rule for the MH steps based
on intraclass correlations to minimise the number of iterations within each rejuvenation.

The result is an algorithm that is a hybrid of particle filter and population MCMC (Geyer
(1991), Liang and Wong (2001), Jasra, Stephens and Holmes (2007)), is robust to possi-
ble shocks, improves over the plain-vanilla MCMC in terms of run times needed to derive
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accurate inference and can automatically provide all the distributions needed for posterior
predictive measures of model adequacy.

7.1. Benefits of SMC.

Model run times. From a computational point of view, the SMC algorithm is faster than the
plain vanilla MCMC as it is highly parallellisable. However, this may be an unfair compari-
son as we could have considered more sophisticated MCMC algorithms, as exemplified in an
epidemic context by Jewell et al. (2009). The use of differential geometric MCMC (Girolami
and Calderhead (2011)), nonreversible MCMC (Bierkens, Fearnhead and Roberts (2016)) or
MCMC using parallelisation (Banterle et al. (2019)) could improve run times. However, as
MCMC steps are the main computational overhead of the SMC algorithm, any improvements
to the MCMC algorithm’s efficiency may also improve the SMC. As target posteriors attain
asymptotic normality, it should be progressively easier for SMC to move between distribu-
tions over time, as can be seen in Figure 5(C) where the daily running time decreases as data
accumulate. For any MCMC algorithm the opposite will be generally true.

Predictive model assessment. A fundamental goal of real-time modelling is to provide on-
line epidemic forecasts with an appropriate quantification of the associated uncertainty. The
real-time assessment of the predictive adequacy of a model becomes key and can be carried
out through the evaluation of one-step-ahead forecasts based on posterior predictive distri-
butions p(yk+1|yk) (Dawid (1984)). Such assessments can be made informally through, for
example, probability integral transform (PIT) histograms (Czado, Gneiting and Held (2009)).
In the example of Section 6.2, Figure 7(A) shows the PIT histogram for one-step-ahead pre-
diction of primary care consultations for all age groups for successive analyses in the range
84–245 days. A good predictive system would give a uniform histogram and, though the his-
togram here is not entirely uniform, it shows no consistent under or overestimation nor any
clear signs of overdispersion.

More formally, proper scoring rules (Gneiting and Raftery (2007)) can be used to as-
sess the quality of forecasts, including through formal tests of prediction adequacy (Seillier-
Moiseiwitsch and Dawid (1993)). Many different scoring rules exist, but to illustrate a benefit
of an SMC algorithm consider the logarithmic score defined for a predictive distribution p(·)
and a subsequently realised observation y, to be

slog(P, y) = − log
(
p(y)

)
.

FIG. 7. (A) PIT histograms for the one-step-ahead predictions of GP ILI consultation data, calculated over
162 × 7 time and strata combinations. (B) and (C) Comparison of the observed GP data with posterior predictive
distributions obtained using the SMC and MCMC algorithms at day 90 and 164, respectively. Solid lines give
posterior medians of the distributions, and the dotted lines give 95% credible intervals for the data.
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Under an SMC scheme for one step ahead forecasts, these are

slog(P, y) = − log
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yk+1|y1:k
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Weights ω
(j)
k and ω̃

(j)
k+1 are routinely calculated as part of the SMC algorithm in Section 3.1

(equation (8)) whereas additional computation is required if the posterior is derived using
MCMC. If the MCMC analyses are not carried out with every new batch of data, then these
are not readily available. For further details on the calculation and interpretation of these
posterior predictive methods, see Section E of the Supplementary Material (Birrell et al.
(2020)).

Figures 7(B) and (C) present longer-term (three week) forecasts for the consultation data
obtained via both SMC and MCMC from days 90 and 164 onwards. Whereas in (B) the
forecasts are close enough to be identical, there is a divergence in the predictive intervals
from tk = 178 onwards, a changepoint in the model for the background ILI rate.

Identifiability. As observed in Section 6.2, the SMC algorithm is better at exploring the full
posterior distribution in the presence of parameter nonidentifiability around changepoints.
The background ILI rate is modelled using a piecewise log-linear curve (equation (1)) in the
Supplementary Material (Birrell et al. (2020)) with linear interpolation giving the value of the
curve at intervening points. This results in log-consultation rates in the three days following
the change point on day 83 that include the respective sums (neglecting the age effects)
μ + α84, μ + 0.98α84 + 0.02α128, μ + 0.96α84 + 0.04α128. This makes parameters μ and
α84 only weakly identifiable over this period, inducing convergence problems for MCMC
(see Figure 6). Further evidence for this is given in Figure 7(C) by the divergence of the
prediction intervals at breakpoint tk = 178 and in Table D3 in the Supplementary Material
(Birrell et al. (2020)) where the KL calculations of Table 3 are repeated but with background
parameters included. The marked increases in the KL targets from day 90 onwards is a result
of significant discrepancy between the MCMC chains. Jasra et al. (2011) claim that, for their
example, SMC may well be superior to MCMC, and this is one case where this is certainly
true. The population MCMC carried out in the rejuvenation stage achieves good coverage of
the sample space, without the individual chains having to do likewise. Reparameterisation
may improve the MCMC, but this would also be of benefit to the SMC rejuvenation steps.

Early warning. Changepoints that lead to the lack of identifiability discussed above may
coincide with public health interventions. In this paper it is assumed that such times are
known, and we have been concerned with the adaptation of inferential procedures to ensure
that they can be operated in a semiautomatic fashion at such times.

In general, such changepoints will need to be detected in real time and may be indica-
tive of a change in the underlying epidemic dynamics or in healthcare-seeking behaviours,
both of which are of great interest to healthcare managers. A sudden drop in the ESS can
raise a flag that the model is no longer suitable and may require modification. Both Whiteley,
Johansen and Godsill (2011) and Nemeth, Fearnhead and Mihaylova (2014) discuss auto-
mated approaches for the sequential detection of changepoints. However, when considering
a complex mechanistic epidemic model, a more fundamental adaptation may be required.
Sequential application of MCMC as data arrive over time would not automatically detect this
without carrying out a series of exhaustive post hoc diagnostic checks.



90 P. J. BIRRELL ET AL.

7.2. Final considerations. In answer to the question initially posed, we have provided
a recipe for online tracking of an emergent epidemic using imperfect data from multiple
sources. We have discussed many of the challenges to efficient inference, with particular fo-
cus on scenarios where the available information is rapidly evolving and is subject to sudden
shocks. Throughout we have inevitably made pragmatic choices and alternative strategies
could have been adopted. The choice of the MH-kernels used for rejuvenation is an example.
There are many options to tweak the performance of the “vanilla” kernels presented here, in-
cluding simply scaling the covariance matrix in the approximate-Gibbs moves (West (1993)),
treating the composite proposals of Section 5.2 as a single mixture (Kantas, Beskos and Jasra
(2014)), using recent developments in kernel SMC methods to design local covariance ma-
trices (Schuster et al. (2017)) and incorporating an adaptive scheme to select an optimal
SMC kernel and any tuning parameters (Fearnhead and Taylor (2013)). Equally, we could
have adopted multivariate analogues for the intra-class correlation coefficient (e.g., Ahrens
(1976), Konishi, Khatri and Rao (1991)) to define a rejuvenation stopping rule; or we could
have opted for a particle set expansion by increasing nk as a possible alternative to running
long MCMC chains for each particle when new parameters are introduced in the model, for
example, through a shock.

We have shown above that the benefits of SMC for online inference extend beyond com-
putational efficiency. It is not claimed, however, that SMC is beneficial when inference is car-
ried out offline, using the full available data. Over the course of any outbreak, the richness of
data may grow, interventions may occur and models of increased complexity may be needed.
It is therefore important to retain the capacity to fit new models efficiently. Methods such
as Hamiltonian MCMC (Girolami and Calderhead (2011)), likelihood-tempered SMC algo-
rithms (Kantas, Beskos and Jasra (2014)), emulation (Farah et al. (2014)), variational (Blei,
Kucukelbir and McAuliffe (2017)) and Kalman-filtering approaches (Shaman and Karspeck
(2012)) represent potential alternatives to achieve this.

We have focused on an epidemic scenario that has the potential to arise in the UK. Never-
theless, our approach addresses modelling concerns common globally (e.g., Wu et al. (2010),
Shubin et al. (2016), te Beest et al. (2015)) and can form a flexible basis for real-time mod-
elling strategies elsewhere. Real-time modelling is, however, more than just a computational
problem. It does require the timely availability of relevant data, a sound understanding of
any likely biases and effective interaction with experts. In any country only interdisciplinary
collaboration between statisticians, epidemiologists and database managers can turn cutting
edge methodology into a critical support tool for public health policy.
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