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Bayesian Additive Regression Trees (BART) is a flexible machine learn-
ing algorithm capable of capturing nonlinearities between an outcome and
covariates and interactions among covariates. We extend BART to a semi-
parametric regression framework in which the conditional expectation of an
outcome is a function of treatment, its effect modifiers, and confounders. The
confounders are allowed to have unspecified functional form, while treat-
ment and effect modifiers that are directly related to the research question are
given a linear form. The result is a Bayesian semiparametric linear regres-
sion model where the posterior distribution of the parameters of the linear
part can be interpreted as in parametric Bayesian regression. This is useful in
situations where a subset of the variables are of substantive interest and the
others are nuisance variables that we would like to control for. An example of
this occurs in causal modeling with the structural mean model (SMM). Un-
der certain causal assumptions, our method can be used as a Bayesian SMM.
Our methods are demonstrated with simulation studies and an application to
dataset involving adults with HIV/Hepatitis C coinfection who newly initi-
ate antiretroviral therapy. The methods are available in an R package called
semibart.

1. Introduction. The number of antiretroviral medications available to per-
sons living with HIV has grown enormously in the past thirty years—a far cry
from the few that were available in the early 1990s. Despite detailed guidelines
on HIV treatment, challenges in prescribing persist, particularly for individuals
with co-morbidities [National Institutes of Health (2018)]. In the United States ap-
proximately 25% of patients with HIV also have chronic Hepatitis C virus (HCV)
[Centers for Disease Control and Prevention (2017)]. As HCV can lead to liver
damage, clinicians must be mindful when prescribing antriretrovirals to patients
with HIV/HCV coinfection; improving HIV-related outcomes is ineffectual if ac-
companied by a fatal decline in liver function.

In previous work, we estimated the effect that certain mitochondrial toxic nu-
cleoside reverse transcriptase inhibitors (mtNRTIs)—didanosine, stavudine, zal-
citabine, and zidovidine—had on risk of liver decompensation and death when
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used as part of an antiretroviral regimen (compared to antiretroviral regimens con-
taining other NRTIs) [Lo Re et al. (2017)]. While these four drugs are no longer
recommended for initial treatment, they are still used in resource-limited settings
and in salvage regimens. Using Cox marginal structural models, we found that
increased cumulative exposure to mtNRTIs was associated with higher risk of de-
compensation and death. Here, we extend those results and investigate a potential
modifier of the effect—fibrinogen-4 (FIB-4).

FIB-4 is a marker of liver injury in which higher values indicate worse liver
function. In this paper we ask whether the effect of mtNRTIs on the risk of death
(within two years of antiretroviral initiation) changes for individuals with varying
FIB-4 levels. To answer this question, we develop a model that has an interpretable,
parametric form for the mtNRTIs and its interaction with FIB-4 while remaining
nonparametric in the functional form of the confounders.

From a Bayesian standpoint, we can treat the unknown function of the con-
founders as a random parameter, assign it a prior distribution within an appropri-
ate function space that recognizes our prior knowledge (or lack thereof), and then
estimate it using our data. One such prior is the Gaussian process, which induces
flexibility through its covariance function [Rasmussen (2006)]. Alternatively, we
could assume the function of the confounders is approximated by basis functions
like splines or wavelets and assign priors to the coefficients of the bases [Eilers
and Marx (1996), Müller et al. (2015)]. Splines, in particular, have been used ex-
tensively in Bayesian nonparametric and semiparametric regression. For example,
Biller (2000) presented a semiparametric GLM where one variable was modeled
using splines and the remaining variables were part of a parametric linear model.
Holmes and Mallick (2001) developed a flexible Bayesian piecewise regression us-
ing linear splines. The approach in Denison, Mallick and Smith (1998a) involved
piecewise polynomials which were able to approximate nonlinearities. Biller and
Fahrmeir (2001) introduced a varying-coefficient model with B-splines with adap-
tive knot locations.

Alongside these Bayesian methods reside two common procedures to predict
an outcome given an unknown function of covariates: generalized additive mod-
els (GAM) [Hastie and Tibshirani (1990)] and multivariate adaptive regression
splines (MARS) [Friedman (1991)]. GAM allows each predictor to have its own
functional form using splines. However, any interactions between covariates must
be specified by the analyst, which can pose difficulties in high-dimensional prob-
lems with multi-way interactions. Bayesian versions of GAM based on P-splines
exist [Brezger and Lang (2006)] but are not widely available in statistical software
like the frequentist version. MARS is a nonparametric procedure which can auto-
matically detect nonlinearities and interactions through basis functions also based
on splines. A Bayesian MARS algorithm has been developed [Denison, Mallick
and Smith (1998b)], but also lacks accessible off-the-shelf software. A third op-
tion for nonparametric estimation is Bayesian Additive Regression Trees (BART),
which, like MARS, allows for nonlinear relationships between an outcome and
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covariates and interactions between covariates, while taking a Bayesian approach
to estimation [Chipman, George and McCulloch (2010)].

In this paper we introduce a novel Bayesian semiparametric model using BART,
which we call semi-BART. Semi-BART partitions the covariate space into two dis-
tinct subsets: (1) covariates relevant to the research question such as treatment and
effect modifiers (in our example, mtNRTI use and FIB-4) and (2) confounders
or other covariates that are not directly relevant to the research question. Semi-
BART works by modeling treatment and effect modifiers using linear terms and
the confounders with BART. The benefits are easy interpretation of the linear terms
and flexibility for the rest. This contrasts with other methods like GAM/MARS or
linear regression which require either full flexibility or full parametric specifica-
tion. We choose to modify BART rather than other nonparametric models (GAM,
MARS, random forest, etc.) because it has proved successful in practical settings
[van der Laan and Rose ((2011), Chapter 3)], and we wanted a Bayesian method
that allowed for direct inference and easily interpretable credible intervals.

Our goal is to provide a new semiparametric tool for use in diverse settings.
For example, we can use semi-BART to quantify effect modifiers in personalized
medicine applications. We also show how semi-BART is equivalent to a struc-
tural mean model (SMM), making it the first Bayesian SMM. And perhaps most
importantly, we imagine semi-BART to be a practical substitute for commonly
used methods such as linear regression. In the rest of this paper, we provide rele-
vant background to semi-BART (Section 2), show its equivalence to SMMs (Sec-
tion 3), describe computational details (Section 4), perform simulation studies
against competitor models (Section 5), and evaluate FIB-4 as an effect modifier
of mtNRTIs (Section 6).

2. Review of Bayesian Additive Regression Trees. BART is an algorithm
that uses sum-of-trees to predict a binary or continuous outcome given predictors.
For continuous outcomes Y , let Y = ω(X) + ε where ε ∼ N(0, σ 2), and ω(·) is
the unknown function relating the covariates X to the outcome Y . For binary Y we
use a probit link function so that Pr(Y = 1|X) = �(ω(X)), where �(·) is the dis-
tribution function of a standard normal variable. We write the BART sum-of-trees
model as ω(x) = ∑m

j=1 ωj(x;Tj ,Mj), where each ωj (x) is a single tree and Tj

and Mj are the parameters that represent the tree structure and end node param-
eters, respectively. Each individual tree is a sequence of binary decisions based
on X that yield predictions of Y within clusters of observations with similar co-
variate patterns. Typically, the number of trees m is chosen to be large, and each
tree is restricted to be small through regularization priors. This restricts the influ-
ence of any single tree and allows for nonlinearities and interactions that would
not be possible with any one tree. In Figure 1 we provide an example of a BART
fit to a nonlinear mean function y = sin(x) + ε for a univariate predictor x re-
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FIG. 1. Illustration of a BART fit with a univariate predictor space x ∈ [0,2π ] and mean response
y = sin(x) + ε. The solid line is the fit using linear regression, the dashed line is the fit of BART, and
the dashed–dotted line is the fit of a single tree.

stricted to [0,2π ], along with the fits of a single regression tree and linear regres-
sion.

The Markov Chain Monte Carlo (MCMC) algorithm for BART incorporates
Bayesian backfitting [Hastie and Tibshirani (2000)], which we summarize below.
Recall that yi = ∑m

j=1 ωj(xi;Tj ,Mj)+ εi where εi is assumed zero-mean normal

with unknown variance σ 2. The algorithm alternates between updates to the error
variance σ 2 and updates to the trees ωj . To update σ 2, we find the residuals from
the current fit and draw a new value for σ 2. In Chipman, George and McCulloch
(2010) and this paper, we use a conjugate inverse χ2- distribution for the prior of
σ 2, so drawing a new value is also a draw from an inverse χ2- distribution. Second,
the trees ωj are updated one at a time. Starting with ω1, we compute the residu-
als of the outcome by subtracting off the fit of the other m − 1 trees, ω2, . . . ,ωm.
We then propose a modification for the tree ω1, which is either accepted or re-
jected by a Metropolis–Hastings step. We update the trees ω2, . . . ,ωm in the same
fashion. More details are available in the original BART paper [Chipman, George
and McCulloch (2010)]. In the next section, we propose a semiparametric exten-
sion of BART, called semi-BART, where a small subset of covariates have linear
functional form and the rest are modeled with BART’s sum-of-trees.
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3. Semi-BART model.

3.1. Notation. Suppose we have n independent observations. Let Y denote the
outcome, which can be binary or continuous. Let A denote treatment, which can
also be binary or continuous. The remaining covariates we call X. Let L = (A,X).

3.2. Semiparametric generalized linear model. In applied research, often the
effects of only a few covariates are of scientific interest, while a larger number
of covariates are needed to address confounding. Our model imposes linearity on
this small subset of covariates, while retaining flexibility in modeling the rest of
the covariates whose exact functional form in relation to the outcome may be con-
sidered a nuisance. We partition the predictors into two distinct subsets so that
L = L1 ∪ L2 and L1 ∩ L2 = ∅. Here, L1 represents nuisance covariates that we
must control for but are not of primary interest and L2 represents covariates that
are directly pertinent to the research question, such as treatment A and its effect
modifiers. For continuous Y , we write Yi = ω(L1) + h(L2;ψ) + εi , where h(·) is
a parametric function of its covariates in ψ (as in linear regression) but ω(·) is a
function with unspecified form. The errors εi are assumed independent and iden-
tically distributed mean zero and normally distributed with unknown variance σ 2.
More generally, we write g[E(Y |L1,L2)] = ω(L1) + h(L2;ψ), for a known link
function g. We call this the semi-BART model since we estimate ω(·) using BART.
Note that if L1 = L and L2 = ∅, we have a nonparametric BART model. On the
other hand if L1 = ∅ and L2 = L, we have a fully parametric regression model.
While there is no restriction on the dimensionality of L1 and L2, we assume that
L1 is large enough such that BART is a reasonable choice of an algorithm and that
L2 contains only a few covariates that are of particular interest.

3.3. Special case: Structural mean models. We also consider a special case of
our semiparametric GLM from an observational study with no unmeasured con-
founders. In doing so we introduce additional notation specific to this section. As
before, the exposure of interest is denoted A and can be either binary or contin-
uous. The counterfactual Ya denotes the outcome that would have been observed
under exposure A = a. For the special case of binary A, each individual has two
counterfactual outcomes—Y 1 and Y 0—but we observe at most one of the two, cor-
responding to the actual level of exposure received. That is, Y = AY 1 + (1−A)Y 0.

Robins developed structural nested mean models to adjust for time-varying con-
founding with a longitudinal exposure [Robins (1994, 2000)]. In the case of a
point treatment, structural nested mean models are no longer nested and are in-
stead called structural mean models (SMMs). While time-varying confounding
with point treatments is not a concern, SMMs still parameterize a useful causal
contrast—the average effect of treatment among the treated given the covariates
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[Chamberlain (1987), Vansteelandt and Goetghebeur (2003), Vansteelandt and
Joffe (2014)]. Write this as:

(3.1) g
{
E

(
Ya|X = x,A = a

)} − g
{
E

(
Y 0|X = x,A = a

)} = h∗(
x, a;ψ∗)

,

where g is a known link function. In this paper, we provide a Bayesian solution to
(3.1). To do so, we impose some restrictions on h∗(·;ψ∗), requiring that under no
treatment or when there is no treatment effect the function h∗(·;ψ∗) must equal 0.
That is, h∗(x, a;ψ∗) satisfies h∗(x,0;ψ∗) = h∗(x, a;0) = 0. Some examples of
h∗(x, a;ψ∗) are h∗(x, a;ψ∗) = ψa or h∗(x, a;ψ∗) = (ψ1 + ψ2x3)a, when some
covariate x3 modifies the effect of a on y.

While expression (3.1) cannot be evaluated directly due to the unobserved
counterfactuals, two assumptions are needed to identify it with observed data
[Chamberlain (1987), Vansteelandt and Joffe (2014)].

1. Consistency: If A = a, then Ya = Y ;
2. Ignorability: A ⊥ Y 0|X.

The consistency assumption asserts that we actually get to see an individual’s
counterfactual corresponding to the exposure received. Ignorability ensures the ex-
posure A and the counterfactual under no treatment Y 0 are independent given X.
Under these two assumptions together with the parametric assumption of h∗(·),
the contrast on the left-hand side of (3.1) is identified, and the SMM from (3.1)
can be rewritten using observed variables as

(3.2) g
{
E(Y |X,A)

} = ω(L1) + h∗(
L2;ψ∗)

,

where ω(L1) is unspecified and h∗(L2;ψ∗) is a linear function of L2 [Chamberlain
(1987), Vansteelandt and Joffe (2014)]. Note that the left-hand side of (3.1) is non-
parametrically identified with a third assumption, dropping the parametric assump-
tion on h∗(·). That is,

3. Positivity: Pr(A = a|X = x) > 0 ∀x such that Pr(X = x) > 0.

The positivity assumption states that whenever X = x has a positive probability of
occurring, there is positive probability that an individual is treated. This assump-
tion is violated in situations where treatment is deterministic at certain levels of
X = x. For example, we restrict our data analysis to the years 2002–2009 to ensure
positivity. Prior to 2002, our treatment (mtNRTI use) was near ubiquitous because
mtNRTIs were commonly prescribed as first line medications. As a result, if we
were to expand our dataset to include earlier years, we could encounter positivity
violations.

Let us return to the special case where there is effect modification by a baseline
covariate, such as in our data analysis (Section 5) where baseline FIB-4 modi-
fies the effect of treatment (mtNRTI) on death. Let h∗(x, a;ψ∗) = (ψ1 + ψ2x3)a

where a represents a binary indicator of mtNRTI use and x3 represents FIB-4.
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Note that Model (3.2) has no “main effect” for FIB-4. We address this by fitting
the model g{E(Y |X,A)} = {ω(L1) + ψ3x3} + h∗(x, a;ψ∗). This setup still lies
within the bounds of semi-BART, described in Section 3.2. An advantage for hav-
ing a parametric form for x3 is that researchers interested in quantifying x3 as an
effect modifier can also interpret its main effect. In principle we could have in-
cluded the effect of x3 in ω(·), but we would lose interpretability. We explore the
impact of using a linear term for x3 (as opposed to including x3 in ω(·)) using sim-
ulations, which can be found at https://www.github.com/zeldow/semibart-extras or
in the supplementary files [Zeldow, Lo Re III and Roy (2019)].

3.4. Causal effects with BART: Literature review. Hill (2011) previously esti-
mated causal effects on the treated using BART. The methods in that paper corre-
spond to our setting in the case of a continuous outcome, in which interest lies
in the treatment effect averaged over (possibly) heterogeneous individual-level
effects. Semi-BART extends this setup to binary outcomes, continuous-valued
treatment, or where low-dimensional summaries of effect modification are of in-
terest, particularly with continuous effect modifiers. In settings with continuous
outcomes, binary treatment, and no effect modification (or with a binary effect
modifier), the methods presented in Hill (2011) are preferred, whose methods we
include in our simulations.

Green and Kern (2012) also modeled treatment heterogeneity using BART with
survey experiments. Their methodology is similar to that in Hill (2011) in that
effects are calculated using modified datasets. They first fit BART to their dataset,
then create two updated versions of the same dataset. The first version has the effect
modifier set to a reference level and the second version set to another level. Using
the BART fit from the original dataset, they obtain predictions on each of the two
modified datasets and then use those predictions to calculate conditional treatment
effects. A major difference between our method and the above methods are that we
can summarize treatment heterogeneity with a low-dimensional parameter. While
this is not desired or appropriate for every application, in some settings it can be
useful and efficient.

Hahn, Murray and Carvalho (2018) also developed a method to estimate con-
ditional treatment effects using BART, incorporating propensity score estimates to
reduce confounding [Hahn, Murray and Carvalho (2018)]. Like ours, they use a
two-pronged regression strategy consisting of a function representing the impact
of covariates (like our ω(L1)) and a part that repesents treatment effects (like our
h(L2;ψ)). The ideas in Hahn, Murray and Carvalho (2018) diverge from ours in
their intended applications. Hahn, Murray and Carvalho (2018) use a clever prior
and the propensity score to improve causal estimates that are biased due to regular-
ization; our method, on the other hand, is intended to appeal to users who otherwise
would use linear models.

https://www.github.com/zeldow/semibart-extras
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3.5. Computations. The algorithm for semi-BART follows the BART algo-
rithm—briefly reviewed in Section 2—with an additional step. We solve equation
(3.2), where ω(L1) can be written as the sum-of-trees

∑m
j=1 ωj (L1;Tj ,Mj). The

parameter Tj contains the structure of the j th tree; for instance, the covariates and
rules on which the tree splits. The parameters Mj contain the endnode parame-
ters for the j th tree. For example, the mean of the kth endnode of the j th tree is
assumed to be normally distributed with mean μjk and variance σ 2

jk .

For continuous outcomes, we assume independent errors distributed as N(0, σ 2)

with σ 2 unknown and proceed as follows. Initialize all values including the error
variance σ 2, the parameters ψ∗, and the tree structures Tj and Mj for j = 1, . . . ,m

and iterate through the following steps. First, update the m trees one at a time.
Starting with the first tree ω1(·;T1,M1), calculate the residuals by subtracting
the fit of the remaining m − 1 trees at their current parameter values as well as
the fit of the linear part h∗(L2;ψ∗). That is, for the ith individual, we calculate
y∗
i = yi − ω−1(L1i ) − h∗(L2i;ψ∗), where ω−1(L1i ) indicates the fit of the trees

except the first tree. As in Chipman, George and McCulloch (2010), a modifica-
tion of the tree is now proposed. We can grow the tree (breaking one endnode
into two endnodes), prune the tree (collapse two endnodes into one), change a
splitting rule (for nonterminal nodes), or swap the rules between two nodes. We
accept or reject this modification with a Metropolis–Hastings step given the resid-
uals y∗ = {y∗

1 , . . . , y∗
n} [Chipman, George and McCulloch (1998)]. Once we have

updated ω1(·;T1,M1), we update ω2(·;T2,M2) in the same fashion and continue
until all m trees are completed.

Next we update ψ∗ (in our data analysis, this will include a parameter for treat-
ment, a parameter for FIB-4, and a parameter for their interaction), given a mul-
tivariate normal prior for ψ∗ so that p(ψ∗) ∼ MVN(0, σ 2

ψI), where I is the iden-

tity matrix of appropriate dimension and σ 2
ψ is large enough so that the prior is

diffuse. We calculate the residuals after subtracting off the fit of all m trees so
that y∗

i = yi − ω(L1i ). The posterior for ψ is multivariate normal with covari-

ance 	ψ = [LT
2 L2

σ 2 + I
σ 2

ψ

]−1 and mean 	ψ [L2y∗
σ 2 + ψ0

σ 2
ψ

], where y∗ is the n-vector of

residuals [Gelman et al. (2013)].
Lastly, we update the error variance σ 2. We calculate the residuals given

the trees ω(·) and ψ∗ so that y∗
i = yi − ω(L1i ) − h(L2i;ψ∗). With a conju-

gate scaled inverse χ2 distribution for σ 2 (parameters ν0 and λ0), the posterior
is an updated scaled inverse χ2 distribution with parameters νn = ν0 + n and
λn = ν0λ0 + 〈y∗, y∗〉 where 〈 〉 indicates the dot product. These three steps are
repeated until the posterior distributions are well approximated.

Our algorithm for binary outcomes with a probit link uses the underlying latent
variable formulation of Albert and Chib (1993), replacing the step in the algorithm
that updates the error variance σ 2. Full details of the BART portion of the algo-
rithm are available in Chipman, George and McCulloch (2010), whereas our code
for semi-BART is available at https://www.github.com/zeldow/semibart.

https://www.github.com/zeldow/semibart
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4. Simulation. We use simulation to compare the performance of semi-BART
to competitor models when estimating the regression coefficient for simulated
treatment along with the coefficients for its effect modifiers (main effects and
interaction terms with treatment). Our competitors were BART (taken from Hill
(2011)), GAM, and linear regression for continuous outcomes and probit regres-
sion for binary outcomes. For all simulations, we generated 500 datasets at sam-
ple sizes of n = 500 and n = 5000, and we estimated mean bias, 95% credi-
ble/confidence interval coverage, and empirical standard deviation (ESD; defined
as the standard deviation of point estimates from each simulated dataset). For
GAM we used the mcgv package in R along with splines (using the s function
[the function used to define smooth terms within GAM formulae] with default set-
tings) for continuous covariates [Wood and Wood (2015)]. For BART, we used the
bart function from the BayesTree package in R with default settings [Chipman
and McCulloch (2010)]. Other R packages implementing BART are available,
including the bartMachine, dbarts, and bartCause packages. The linear regres-
sion/probit regression models were fit with the lm and glm functions in R. For
semi-BART we used 10,000 MCMC iterations including 2500 burn-in iterations
and m = 50 trees. Data-generating code is available in the Appendix [Zeldow,
Lo Re III and Roy (2019)] and also available on https://www.github.com/zeldow/
semibart-extras.

4.1. Scenario 1: Continuous outcome with binary treatment and no effect
modification. In the first scenario, we generated data with a continuous out-
come, binary treatment, twenty continuous covariates with a block diagonal co-
variance structure, and four independent binary covariates. The data generating
code is available in the Appendix. The outcome was generated from an indepen-
dent normal variable with variance one and mean μ(a, x) = h(a, x;ψ) + ω(x)

where h(a, x;ψ) = ψ1a and ω(x) = 1 + 2x1 + sin(πx2x21) − 2 exp(x22x24) +
log | cos(π

2 x3)| − 1.8 cos(x4) + 3x22|x2|1.5. The parameter ψ1, which encodes the
treatment effect, was set to 2.

The results in Table 1 show that, at the smaller sample size of n = 500, all point
estimates are slightly biased in the same direction, and the 95% coverage proba-
bilities hovered around 95%. Notably, the ESD for the BART-based methods was
over half as small than for GAM or regression. At n = 5000 the bias disappeared,
and the discrepancy in ESD between the BART-based methods and non-BART
methods remained.

4.2. Scenario 2: Continuous outcome with binary treatment and continuous ef-
fect modifier. We randomly generated 30 continuous covariates with mean zero
from a multivariate normal distribution with an autoregressive(1) covariance 	

https://www.github.com/zeldow/semibart-extras
https://www.github.com/zeldow/semibart-extras
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TABLE 1
Results from simulation study (scenario 1) with no effect modifiers. Bias: mean absolute bias across

500 datasets. Cov: Confidence/credible interval covarage (percent of simulations where the true
value falls within the 95% interval). ESD: Empirical standard deviation defined as the standard

deviation of the 500 estimates

Method Parameter Bias Cov. ESD

n = 500
Semi-BART ψ1 −0.02 0.96 0.153
GAM ψ1 −0.02 0.94 0.371
BART ψ1 −0.02 0.94 0.153
Regression ψ1 −0.02 0.95 0.390

n = 5000
Semi-BART ψ1 0.00 0.95 0.036
GAM ψ1 0.00 0.94 0.111
BART ψ1 0.00 0.92 0.037
Regression ψ1 0.01 0.94 0.119

with ρ = 0.5 with the diagonal containing ones. That is,

	 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 · · ·
ρ 1 ρ ρ2 · · ·
ρ2 ρ 1 ρ · · ·
ρ3 ρ2 ρ 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

4.2.1. Part a: Simple treatment mechanism and nonlinear mean function.
Given the covariates x1 − x30, the treatment was generated from a Bernoulli distri-
bution with probability pa = logit−1(0.1 + 0.2x1 − sin(x3)/3 − 0.1x22). The out-
come was generated as independent random normal variables with variance one
and mean μ(a, x) = h(a, x;ψ) + ω(x) where h(a, x) = ψ1a + ψ2a ∗ x1 + ψ3x1
and ω(x) = 1 + sin(πx6x21) − exp(x4x5/5) + log | cos(π

2 x7)| − 1.8 cos(x8) +
0.2x10|x6|1.5. The true values for the parameters are ψ1 = 2, ψ2 = −1, and
ψ3 = 2.

Results for these simulations are shown in Table 2. The estimated parameters
are unbiased and have coverage near 95% for both sample sizes and all estimators.
The ESD for all parameters is smaller with semi-BART than it is with GAM or
linear regression. This improvement of semi-BART over GAM comes from the
fact that covariate interactions are detected in the semi-BART procedure, whereas
they must be prespecified in this implementation of GAM. Note that Hill’s BART
method—part of the simulations in Table 1—was not included since it does not
summarize continuous effect modifiers with a single parameter.
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TABLE 2
Results from simulation study (scenario 2a) for continuous outcomes with a simple treatment

assignment mechanism, a complex outcome process, and a continuous effect modifier. Bias: mean
absolute bias across 500 datasets. Cov: Confidence/credible interval covarage (percent of

simulations where the true value falls within the 95% interval). ESD: Empirical standard deviation
defined as the standard deviation of the 500 estimates. The true parameters are ψ1 = 2, ψ2 = −1,

and ψ3 = 2

Method Parameter Bias Cov. ESD

n = 500
Semi-BART ψ1 −0.01 0.94 0.123

ψ2 0.01 0.94 0.121
ψ3 0.00 0.96 0.095

GAM ψ1 −0.01 0.93 0.135
ψ2 0.01 0.94 0.127
ψ3 0.00 0.93 0.102

Regression ψ1 −0.01 0.94 0.166
ψ2 0.01 0.94 0.167
ψ3 0.00 0.94 0.127

n = 5000
Semi-BART ψ1 0.00 0.95 0.034

ψ2 0.00 0.94 0.033
ψ3 0.00 0.96 0.023

GAM ψ1 0.00 0.94 0.038
ψ2 0.00 0.94 0.039
ψ3 0.00 0.96 0.031

Regression ψ1 0.00 0.95 0.049
ψ2 0.00 0.95 0.049
ψ3 0.00 0.95 0.038

4.2.2. Part b: Complex treatment mechanism and complex mean function. We
also performed these simulations with different treatment and outcome data gen-
erating functions. Here, given the covariates x1 − x30, the treatment was gener-
ated from a Bernoulli distribution with probability pa = logit−1(0.1 + 0.2x1 −
0.5x2 − 0.1x1x2 + 0.3x4 + 0.1x5 + 0.7x4x5 − 0.4x11x22 − 0.4x2

10x15). The out-
come was generated from an independent normal distribution with variance one
and mean μ(a, x) = h(a, x;ψ) + ω(x) where h(a, x) = ψ1a + ψ2a ∗ x1 +
ψ3x1 and ω(x) = 1 − x2 + 2x3 − 1.5x4 − 0.5x5 − 2x6 + x2

3 − x2
6 + 2x3x4 −

x2x6 +0.5x5x6 −0.2x2x3x4 +x6x8x9 −x7x21x24x25 +x10x13x14x26 −x24x
2
25x10 +

3x3x
2
16 − 3x4x

2
17 +x3x4x9x14 −x3x4x9x

2
14 + 1.5x10x21. The true values for the pa-

rameters are ψ1 = 2, ψ2 = −1, and ψ3 = 2.
Results for these simulations are shown in Table 3. At n = 500, semi-BART

yielded biased estimates (average of −0.07) for ψ3, the main effect of the effect
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TABLE 3
Results from simulation study (scenario 2b) for continuous outcomes with a complex treatment

assignment mechanism, a complex outcome process, and a continuous effect modifier. Bias: mean
absolute bias across 500 datasets. Cov: Confidence/credible interval covarage (percent of

simulations where the true value falls within the 95% interval). ESD: Empirical standard deviation
defined as the standard deviation of the 500 estimates. The true parameters are ψ1 = 2, ψ2 = −1,

and ψ3 = 2

Method Parameter Bias Cov. ESD

n = 500
Semi-BART ψ1 0.00 0.92 0.460

ψ2 −0.01 0.92 0.459
ψ3 −0.12 0.90 0.361

GAM ψ1 −0.05 0.95 0.654
ψ2 −0.02 0.92 0.672
ψ3 0.00 0.93 0.520

Regression ψ1 0.36 0.92 0.731
ψ2 −0.03 0.95 0.741
ψ3 −0.01 0.95 0.582

n = 5000
Semi-BART ψ1 0.00 0.96 0.081

ψ2 0.00 0.93 0.090
ψ3 −0.03 0.89 0.071

GAM ψ1 −0.07 0.94 0.213
ψ2 0.00 0.95 0.200
ψ3 0.00 0.97 0.151

Regression ψ1 0.39 0.60 0.230
ψ2 −0.01 0.95 0.220
ψ3 −0.01 0.96 0.166

modifier. On the other hand, GAM and linear regression were unbiased for ψ3 but
had varying degrees of bias for the treatment effect ψ1 of −0.05 and 0.36, respec-
tively. Semi-BART had slight undercoverage for all parameters—90% to 92%. At
n = 5000, semi-BART was unbiased for ψ1 and ψ2, and the bias of ψ3 attenuated
(−0.12 down to −0.03). For GAM and linear regression, the bias of ψ1 persisted.
Coverage rates were all around 95% save for ψ3 using semi-BART, which was at
89%. The ESD was notably smaller for semi-BART than the competitors.

4.3. Scenario 3: Binary outcome with binary treatment and continuous ef-
fect modifier. As in scenario 2, we randomly generated 30 continuous co-
variates with mean zero from a multivariate normal distribution with an au-
toregressive(1) covariance structure with ρ = 0.5 and the diagonal containing
ones. The treatment was generated from a Bernoulli distribution with probabil-
ity pa = logit−1(0.1 + 0.2x1 − sin(x3)/3 − 0.1x22). The outcome was gener-
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TABLE 4
Results from simulation study (scenario 3) for binary outcomes. Bias: mean absolute bias across
500 datasets. Cov: Confidence/credible interval covarage (percent of simulations where the true
value falls within the 95% interval). ESD: Empirical standard deviation defined as the standard

deviation of the 500 estimates. The true parameter values are ψ1 = 0.3, ψ2 = −0.1, and ψ3 = 0.1

Method Parameter Bias Cov. ESD

n = 500
Semi-BART ψ1 0.03 0.92 0.144

ψ2 0.00 0.94 0.140
ψ3 0.00 0.93 0.106

Regression ψ1 −0.01 0.93 0.131
ψ2 0.01 0.94 0.127
ψ3 −0.01 0.94 0.101

n = 5000
Semi-BART ψ1 0.00 0.94 0.039

ψ2 0.00 0.95 0.039
ψ3 0.00 0.94 0.029

Regression ψ1 −0.03 0.84 0.038
ψ2 0.01 0.93 0.036
ψ3 −0.01 0.93 0.029

ated from Bernoulli distribution with probability py(a, x) = φ[h(a, x;ψ)+ω(x)]
with h(a, x;ψ) = ψ1a + ψ2ax1 + ψ3x1 and ω(x) = 0.1 − sin(πx6x21/4) +
exp(x6/5)x11/4 − 0.12x8x9x21 + 0.05x7x9x

2
10. The true values for the parameters

of interest are ψ1 = 0.3, ψ2 = −0.1, and ψ3 = 0.1.
The results for these simulations are shown in Table 4. For semi-BART, there

is some bias on ψ1 at n = 500, but this vanishes at n = 5000. Overall, bias is
small and coverage good for both probit regression and semi-BART. Using probit
regression is slightly more efficient than semi-BART at n = 500 (based on ESD)
but these differences mostly disappear at n = 5000.

4.4. Scenario 4: Misspecified models. Lastly, we examine the properties of
semi-BART when the model is misspecified in two ways: (1) we incorrectly in-
corporate a covariate into the linear part when it should be handled with BART
and (2) we simulate data with a heavy tailed distribution (Student’s t distribution
with 2 degrees of freedom) when all our estimation methods assume a normal error
term.

4.5. Misspecified linear term. For the first misspecified model with the in-
correct linear part, we randomly generated 30 continuous covariates with mean
zero from a multivariate normal distribution with an autoregressive(1) covariance
structure. The treatment was generated from a Bernoulli distribution with probabil-
ity pa = logit−1(0.1 + 0.2x1 − sin(x3)/3 − 0.1x22). The outcome was generated
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TABLE 5
Results from simulation study (scenario 4) for misspecified models in which the linear part contains
too many covariates. We show results for the treatment effect, which is known by design. Bias: mean

absolute bias across 500 datasets. Cov: Confidence/credible interval covarage (percent of
simulations where the true value falls within the 95% interval). ESD: Empirical standard deviation

defined as the standard deviation of the 500 estimates

Method Parameter Bias Cov. ESD

n = 500
Semi-BART ψ1 0.01 0.95 0.143
GAM ψ1 0.00 0.92 0.153
Regression ψ1 0.01 0.96 0.177

n = 5000
Semi-BART ψ1 0.00 0.92 0.041
GAM ψ1 0.00 0.93 0.048
Regression ψ1 0.00 0.95 0.060

from a normal distribution with variance one and mean μ(a, x) = h(a, x;ψ) +
ω(x) with h(a, x;ψ) = ψ1a and ω(x) = 1 + sin(πx6x21) − exp(x4x5/5) +
log | cos(πx7/2)| − 1.8 cos(x8) + 0.2x10|x6|1.5 + x1x2 − 0.5x2

1 − cos(x1). How-
ever, we posited the relationship h(a, x;ψ) = ψ1a + ψ2ax1 + ψ3x1. Since the
effect of x1 is actually contained in ω(x), this is a misspecified model. The true
value of ψ1 was 2.

The results for these simulations are shown in Table 5. All methods have no
bias and good coverage for ψ1. There is a slight improvement in terms of ESD for
semi-BART compared to its competitors.

4.6. Misspecified error term. For the final set of simulations, we used the the
same data-generating mechanism as in scenario 2, save for the error term which
was generated from a t-distribution with 2 degrees of freedom. Results are dis-
played in Table 6. The point estimates remain unbiased, including those from
semi-BART. As we saw in the other simulations, semi-BART has lower ESD for
all point estimates.

5. Data application. To illustrate our method, we analyzed data from the Vet-
erans Aging Cohort Study (VACS) in the years 2002 to 2009, which is a cohort of
patients being treated at Veterans Affairs facilities in the United States. Our study
sample consisted of patients with HIV/Hepatitis C coinfection who were newly
initiating antiretrovirals (including at least one nucleoside reverse transcriptase in-
hibitor [NRTI]) and had at least six months of observations recorded in VACS
prior to initiation. Certain NRTIs are known to cause mitochrondial toxicity. These
mitochrondial toxic NRTIs (mtNRTIs) include didanosine, stavudine, zidovudine,
and zalcitabine [Soriano et al. (2008)]. While these drugs are no longer part of first
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TABLE 6
Results from simulation study (scenario 4) for misspecified models in which the error term is

generated from a heavy-tailed t-distribution with 2 degrees of freedom. Bias: mean absolute bias
across 500 datasets. Cov: Confidence/credible interval covarage (percent of simulations where the

true value falls within the 95% interval). ESD: Empirical standard deviation defined as the standard
deviation of the 500 estimates

Method Parameter Bias Cov. ESD

n = 500
Semi-BART ψ1 −0.01 0.94 0.221

ψ2 −0.01 0.95 0.211
ψ3 0.02 0.96 0.157

GAM ψ1 0.00 0.94 0.352
ψ2 −0.02 0.93 0.349
ψ3 0.02 0.94 0.277

Regression ψ1 0.00 0.95 0.363
ψ2 −0.01 0.95 0.357
ψ3 0.02 0.96 0.281

n = 5000
Semi-BART ψ1 0.00 0.98 0.062

ψ2 −0.02 0.97 0.059
ψ3 0.00 0.95 0.050

GAM ψ1 0.00 0.95 0.102
ψ2 −0.01 0.95 0.103
ψ3 0.01 0.94 0.088

Regression ψ1 0.00 0.96 0.104
ψ2 −0.01 0.96 0.107
ψ3 0.01 0.94 0.092

line HIV treatment regimens, they are still used in resource-limited settings or in
salvage regimens [Günthard et al. (2016)].

Exposure to mtNRTIs may increase the risk of hepatic injury which in turn may
increase the risk of hepatic decompensation and death [Scourfield et al. (2011)].
The goal of this analysis was to determine if initiating an antiretroviral regimen
containing a mtNRTI increased the risk of death within two years of first treat-
ment versus an antiretroviral regimen containing a NRTI that is not a mtNRTI.
VACS data contains a number of variables which possibly confound the relation-
ship between mtNRTI use and death including subject demographics, year of an-
tiretroviral initiation, HIV characteristics such as CD4 count and HIV viral load,
concomitant medications, and laboratory measures relating to liver function.

In a previous analysis, we analyzed the effect that cumulative exposure to mt-
NRTI had on risk of death and liver decompensation [Lo Re et al. (2017)]. Data
were organized longitudinally in month long increments with an indicator of expo-
sure to mtNRTI within that month and another variable indicating the number of
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months cumulatively exposed to mtNRTIs. Using Cox marginal structural models
[Robins, Hernan and Brumback (2000)], we calculated hazard ratios for current ex-
posure and cumulative exposure (no exposure [reference], <1 year, 1–3 years, 3–6
years, >6 years) to mtNRTIs. We found evidence of increased risk of death/liver
decompensation as cumulative exposure to mtNRTIs increased with estimated haz-
ard ratios of >3 for the highest categories of cumulative exposure compared to no
exposure.

One of the covariates included in our analysis is Fibrosis-4 (FIB-4), an index
that measures hepatitic fibrosis with higher values indicating larger injury. Specif-
ically, FIB-4 > 3.25 (no units) indicates advanced hepatic fibrosis. FIB-4 is calcu-
lated as [Sterling et al. (2006)]:

[
age(years) × AST(U/L)

]
/
[
platelet count

(
109/L

) ×
√

ALT(U/L)
]
.

Here, AST stands for aspartate aminotransferase and ALT for alanine aminotrans-
ferase. There is some concern in that mtNRTI use in subjects with high FIB-4 will
result in higher risk of liver decompensation and death than in subjects who have
lower FIB-4. Thus, we consider FIB-4 as a possible effect modifier of the effect of
mtNRTIs on death.

The outcome is a binary indicator of death within a two-year period after the
subject initiated antiretroviral therapy. We considered only baseline covariates for
this analysis. There were some missing values among the predictors that were
handled through a single imputation. Our previous work on this data used multiple
imputation to handle missing covariates but found that results were very similar
across imputations [Lo Re et al. (2017)]. All continuous covariates were centered
at interpretable values. For example, age was centered around 50 years and year of
study entry was centered at 2005.

In the first analysis we sought to determine the effect of mtNRTI use on death
without considering effect modification, and to this extent we fit a Bayesian SMM
with a probit link. The estimand can be written as

(5.1) �−1{
E

(
Ya|X = x,A = a

)} − �−1{
E

(
Y 0|X = x,A = a

)} = ψa,

where Y is the indicator of death, A represents whether mtNRTIs were part of the
antiretroviral regimen at baseline (A = 1 if an mtNRTI was included in the regi-
men), and X all other covariates, including FIB-4. In the second and third analysis,
we considered FIB-4 to be an effect modifier, once as a continuous covariate and
once as a binary indicator which equaled 1 whenever FIB-4 > 3.25. This estimand
can be written as

(5.2) �−1{
E

(
Ya|X = x,A = a

)} − �−1{
E

(
Y 0|X = x,A = a

)} = ψ1a + ψ2ax1,

where x1 corresponds to the appropriate FIB-4 variable.
The analysis was conducted using m = 50 trees with 20,000 total iterations

(5000 burn-in). The prior distribution on the ψ parameters were independent
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Normal(0,42). In the first analysis the mean estimate of the posterior distri-
bution for ψ was 0.15 (95% credible interval [CI]: −0.02, 0.33). Notably the
interval includes 0, but the point estimate indicates that subjects initiating an-
tiretroviral therapy with an mtNRTI had greater risk of death within two years
than subjects initiating therapy without an mtNRTI. We can interpret this coef-
ficient in terms of E(Y 0|X = x,A = a) and E(Y a|X = x,A = a) from equa-
tion (5.1). Figure 2a shows the value of E(Y 1|X = x,A = 1) as a function of
E(Y 0|X = x,A = 1) for ψ = 0.15. As an example, suppose the unknowable quan-
tity E(Y 0|X = x,A = 1) = 0.20. This means that subjects treated with a mtNRTI
(A = 1) with covariates X = x would have had a probability of death of 20% within
two years had they been untreated (A = 0). However, given ψ = 0.15 we see that
if E(Y 0|X = x,A = 1) = 0.20 then E(Y 1|X = x,A = 1) = 0.24, an increase of
4%. One can examine the change in probability for other baseline probabilities
E(Y 0|X = x,A = 1) by examining the graph in Figure 2a.

We conducted a second analysis with FIB-4 as a continuous effect modifier
(centered around 3.25) with the same settings as the previous one. This analysis
corresponds to the contrast from equation (5.2). Here, the estimate for the main
effect of mtNRTI was ψ1 = 0.18 (0.00, 0.36) and the interaction between mtNRTI
use and FIB-4 was ψ2 = 0.07 (0.02, 0.12). The results can be viewed in Figure 2b.
Again, for illustration, consider the special case where E(Y 0|X = x,A = 1) =
0.20. When FIB-4 is 3.25, then E(Y 1|X = x,A = 1) = 0.25. However, when FIB-
4 is 5.25, E(Y 1|X = x,A = 1) = 0.30.

Finally, we did a third analysis with FIB-4 as a binary effect modifier (>3.25 vs.
≤3.25). Here we found that ψ1 = 0.07 (−0.12, 0.26) and ψ2 = 0.38 (0.07, 0.69).
These results can be viewed in Figure 2c. Here, we see that if E(Y 0|X = x,A =
1) = 0.20, then E(Y 1|X = x,A = 1) = 0.22 for subjects with FIB-4 ≤ 3.25 and
E(Y 1|X = x,A = 1) = 0.35 for subjects with FIB-4 > 3.25.

A summary of all estimates, alongside comparisons those derived from probit
regression, is available in Table 7. Runtime for semi-BART in the third analysis
was 8.3 minutes on Ubuntu 18.10 with an Intel Core i7 processor @ 2.70 GHz
with 8GB RAM. Analysis code is provided on https://www.github.com/zeldow/
semibart-extras and in the supplementary files [Zeldow, Lo Re III and Roy (2019)].

6. Discussion. In this paper we presented semi-BART, a new Bayesian semi-
parametric model, alongside an R package for its implementation that is available
on our GitHub repository (https://github.com/zeldow/semibart). To demonstrate
our method, we chose a dataset of individuals co-infected with HIV and HCV who
newly initiated an antiretroviral regimen. Our aim was to quantify the effect that
mtNRTI use and FIB-4 had on two-year death. We found that subjects with higher
values of FIB-4, which indicates a greater degree of liver damage, had increased
risk of death within two years compared to counterparts with lower values of FIB-4
when their antiretroviral regimen contained an mtNRTI.

https://www.github.com/zeldow/semibart-extras
https://github.com/zeldow/semibart
https://www.github.com/zeldow/semibart-extras
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FIG. 2. Results of data application showing the effect of having an mtNRTI in an antiretroviral reg-
imen on two-year death. A = 1 indicates receipt of an mtNRTI and A = 0 indicates no receipt of an
mtNRTI. The x-axis represents E(Y 0|X,A = 1) which is the mean probability of death if the treated
A = 1 had in fact been untreated A = 0 given X. This quantity is unknown so we consider a spec-
trum of reasonable values. The y-axis represents E(Y 1|X,A = 1) and gives the effect of treatment
A on death relative to the x-axis. (a) We show effect of mtNRTI on death with no effect modifiers. If
E(Y 0|X,A = 1) = 0.20 then E(Y 1|X,A = 1) = 0.24. For other values of E(Y 0|X,A = 1), identify
the value on the x-axis, draw a vertical line until it hits the causal curve, then draw a horizontal
line from that point to the y-axis. (b) We consider the effect modification of mtNRTI on death by
continuous FIB-4. Assuming E(Y 0|X = x,A = 1) = 0.20, treatment increases the causal risk of
death to 25% for subjects with FIB-4 = 3.25 (solid line). For subjects with FIB-4 = 4.25 (dotted–
dashed line), the causal risk of death increases to 27%. The causal risk of death for individuals with
FIB-4 = 5.25 (dashed line) is 30%. (c) We consider the effect modification of mtNRTI on death by a
dichotomized FIB-4. The solid line indicates the causal effect curve when FIB-4 ≤ 3.25. Assuming
E(Y 0|X = x,A = 1) = 0.20, we find that treatment increases the mean risk to 22%. The mean risk
of death for individuals with high FIB-4 > 3.25 (dashed line) is even higher at 35%.

Semi-BART allows for flexible estimation of the nuisance component while
being parametric for covariates that are relevant to the research question (treat-
ment, effect modifiers, etc.), providing a viable and intuitive alternative to para-
metric regression. Because of this, we are able to obtain low-dimensional sum-
maries of effect modification with a BART-based method. Under some causal as-
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TABLE 7
Comparison of point estimates 95% confidence/credible intervals from our data analysis using

semi-BART and probit regression. The outcome is a binary indicator of death. ψ1 is the parameter
for the treatment (mtNRTI use) effect and ψ2 is the parameter for the interaction between mtNRTI

use and FIB-4 (binary or continuous)

Analysis Parameter Semi-BART Probit regression

No effect modifier ψ̂1 0.15 (−0.02, 0.33) 0.18 (0.01, 0.35)

Continuous effect modifier ψ̂1 0.18 (0.00, 0.36) 0.20 (0.03, 0.37)
ψ̂2 0.07 (0.02, 0.12) 0.06 (0.01, 0.11)

Binary effect modifier ψ̂1 0.07 (−0.12, 0.26) 0.10 (−0.08, 0.29)
ψ̂2 0.38 (0.07, 0.69) 0.34 (0.04, 0.64)

sumptions, this model can be interpreted as a SMM, which also provides the first
Bayesian SMM. This is particularly useful in the case of binary outcomes where
g-estimation is not possible. Vansteelandt and Goetghebeur (2003) provided ap-
proaches for estimating SMMs with binary outcomes with frequentist procedures;
our method is consistent with their suggestions but incorporates the flexibility of
BART. In the simulations we performed, we saw that semi-BART does particu-
larly well with continuous outcomes where the true generating model has many
nonlinearities.

Our method has some limitations we want to point out for any potential users.
While we provide a framework that is agnostic to the functional form of nuisance
covariates, we impose a more rigid model on the key scientific covariates. It may
well be the case that linear parameterizations are not appropriate for all data ap-
plications so we must take care in using semi-BART, just as we would in using
a standard linear model. On the other hand, the linear predictor in semi-BART is
entirely user-specified and can easily accomodate squared terms, basis expansions,
or any number of flexible reparameterizations.

In our simulations with binary outcomes, we found little difference in our es-
timates using semi-BART versus probit regression. Although it is reassuring that
semi-BART works as well as parametric regression, we want to better understand
the reasons why we are seeing equivalent—rather than superior—performance of
semi-BART for binary outcomes when outcome processes are complex. Futher-
more, our R package only supports a multivariate normal prior for the regression
parameters and an inverse-chi square distribution for the error variance. Users
wanting other types of priors would need to modify the code directly. In the fu-
ture, we also want to extend the semi-BART R package to handle other common
link functions such as logit or log.

From a causal inference perspective, another limitation of our method in the
causal setting is that semi-BART does not currently accommodate instrumental
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variables or longitudinal treatment measures, which are frequently used compo-
nents of structural nested models. Furthermore, semi-BART is not doubly robust.
Double robustness is an attractive feature because it gives the analyst two chances
to get unbiased causal estimates. Typically, we have to either correctly specify
either the outcome process or the treatment process. In semi-BART there is no
modeling of the treatment process so it is the outcome model that must be cor-
rectly specified. There has been research on Bayesian double robust estimation
[Saarela, Belzile and Stephens (2016)] and groundwork has been laid for double
robust estimation of structural nested models (Vansteelandt and Joffe ((2014), see
Section 6.1)), but more work is needed before semi-BART has double robustness
properties.

We feel that semi-BART can benefit researchers across many discplines. In par-
ticular, we hope that semi-BART can be a viable alternative to the researcher who
uses linear regression as the default statistical method in their research. Secondly,
we also hope that researchers who prefer flexible machine learning algorithms,
such as BART, but need interpretable coefficients such as a treatment effect and its
modifiers that semi-BART is a dependable option.
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SUPPLEMENTARY MATERIAL

Supplement A: R code for semi-BART manuscript (DOI: 10.1214/19-
AOAS1266SUPP; .zip). The supplement contains R code for the simulations,
analysis code for our data application, and R code for some additional simula-
tions performed.
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