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Chromosome conformation capture experiments such as Hi-C are used
to map the three-dimensional spatial organization of genomes. One specific
feature of the 3D organization is known as topologically associating domains
(TADs), which are densely interacting, contiguous chromatin regions playing
important roles in regulating gene expression. A few algorithms have been
proposed to detect TADs. In particular, the structure of Hi-C data naturally
inspires application of community detection methods. However, one of the
drawbacks of community detection is that most methods take exchangeabil-
ity of the nodes in the network for granted; whereas the nodes in this case,
that is, the positions on the chromosomes, are not exchangeable. We pro-
pose a network model for detecting TADs using Hi-C data that takes into
account this nonexchangeability. In addition, our model explicitly makes use
of cell-type specific CTCF binding sites as biological covariates and can be
used to identify conserved TADs across multiple cell types. The model leads
to a likelihood objective that can be efficiently optimized via relaxation. We
also prove that when suitably initialized, this model finds the underlying TAD
structure with high probability. Using simulated data, we show the advantages
of our method and the caveats of popular community detection methods, such
as spectral clustering, in this application. Applying our method to real Hi-C
data, we demonstrate the domains identified have desirable epigenetic fea-
tures and compare them across different cell types.

1. Introduction. In complex organisms, the genomes are very long polymers
divided up into chromosomes and tightly packaged to fit in a minuscule cell nu-
cleus. As a result, the packaging and the three-dimensional (3D) conformation of
the chromatin have a fundamental impact on essential cellular processes includ-
ing cell replication and differentiation. In particular, the 3D structure regulates the
transcription of genes at multiple levels (Dekker (2008)). At the chromosome level,
open (active) and closed (inactive) compartments alternate along chromosomes
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(Lieberman-Aiden et al. (2009)) to form regions with clusters of active genes and
repressed transcriptional activities, the latter typically partitioned to the nuclear
periphery (Sexton et al. (2012), Smith et al. (2016)). At a smaller scale, chromatin
loops make long-range regulations possible by bringing distant enhancers and re-
pressors close to their target promoters.

Recently, one specific feature of chromatin organization known as topologically
associating domains (TADs) has attracted much research attention. TADs are con-
tiguous regions of chromatin with high levels of self-interaction and have been
found in different cell types and species (Dixon et al. (2012), Sexton et al. (2012),
Hou et al. (2012)). A number of studies have shown TADs contain clusters of
genes that are co-regulated (Nora et al. (2012)) and may correlate with domains
of histone modifications (Le Dily et al. (2014)), suggesting TADs act as functional
units to help gene regulation. Disruptions of domain conformation have been as-
sociated with various diseases including cancer and limb malformation (Lupiáñez
et al. (2015), Meaburn et al. (2009)).

While it is not possible to completely observe the 3D conformation, in the past
decade several chromosome conformation capture technologies have been devel-
oped to measure the number of ligation events between spatially close chromatin
regions. Hi-C is one of such technologies and provides genome-wide measure-
ments of chromatin interactions using paired-end sequencing (Lieberman-Aiden
et al. (2009)). The output can be summarized in a raw contact frequency matrix
M , where Mij is the total number of read pairs (which are interacting) falling into
bins i and j on the genome. These equal-sized bins partition the genome and range
from a few kilobases to megabases depending on the data resolution. Since TADs
are regions with high levels of self-interactions, they appear as dense squares on
the diagonal of the matrix.

A number of algorithms have been proposed to detect TADs, most of which
rely on maximizing the intra-domain contact strength. This includes the earlier
methods by Dixon et al. (2012) and Sauria et al. (2014), which summarize the 2D
matrix as a 1D statistic to capture the changes in interaction strength at domain
boundaries; and methods that directly utilize the 2D structure of the matrix to con-
trast the TAD squares from the background (Filippova et al. (2014), Lévy-Leduc
et al. (2014), Malik and Patro (2015), Weinreb and Raphael (2016), Rao et al.
(2014)). All of these methods use an optimization framework and apply standard
dynamic programming to obtain the solution. The algorithms typically involve a
number of tuning parameters with the number of TADs chosen in heuristic ways.
More recently, Cabreros, Abbe and Tsirigos (2016) proposed to view the contact
frequency matrix as an weighted undirected adjacency matrix for a network and
applied community detection algorithms to fit mixed-membership block models.

Statistical networks provide a natural framework for modelling the 3D structure
of chromatin as we can consider it as a spatial interaction network with positions
on the genome as nodes. Network models have gained much popularity in numer-
ous fields including social science, genomics and imaging; the availability of Hi-C
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data opens new ground for applying network techniques, such as community de-
tection, in order to answer important questions in biology. One of the drawbacks
of community detection is that most of the methods take exchangeability of the
nodes in the network for granted. However, modelling Hi-C data is a typical situa-
tion where the nodes, that is, the positions on the genome, are not exchangeable. In
particular, since TADs are contiguous regions, treating TADs as densely connected
communities imposes a geometric constraint on the community structure.

In this paper, we propose a network model for detecting TADs that incorpo-
rates the linear order of the nodes and preserves the contiguity of the communities
found. Our main contributions include: (i) It has been observed empirically TADs
are conserved across different cell types, but explicit joint analysis remains incom-
plete. Our likelihood-based method easily generalizes to allow for joint inference
with multiple cell types. (ii) It has been postulated that CTCF (an insulator protein)
acts as anchors at TAD boundaries (Nora et al. (2012), Sanborn et al. (2015)). Em-
pirically, TAD boundaries correlate with CTCF sites, and modifications of bind-
ing motifs can lead to TAD disappearance (Sanborn et al. (2015)). Our model is
flexible enough to include the positions of CTCF sites as biological covariates.
(iii) We account for the existence of nested TADs. (iv) The core of our algorithm
is based on linear programming, making it fast and efficient. (v) In addition, we
provide theoretical justifications by analyzing the asymptotic performance of the
algorithm and using automated model selection for choosing the number of TADs.
The latter saves the need for many tuning parameters. Among these, (i) and (ii) are
unique features of our method with biological significance.

The rest of the paper is organized as follows. We introduce the model and the es-
timation algorithm with asymptotic analysis in Section 2. In addition, we describe
a post-processing step for testing the enrichment of contact within any TAD found.
In Section 3, we first use simulated data to demonstrate the necessity of taking into
account the linear ordering of the nodes and compare our method with other TAD
detection algorithms. We next present the results of real data analysis for multiple
human cell types, individually and jointly, using a publicly available Hi-C dataset
(Rao et al. (2014)). We end the paper with a discussion of the advantages of our
method and aspects for future work.

2. Methods. In this section, we describe a hierarchical network model for
detecting nested TADs in a Hi-C contact frequency matrix using cell-line specific
CTCF peaks as covariates. At each level of the hierarchy, we show the parameters
can be estimated efficiently via coordinate ascent and provide asymptotic analysis
of the algorithm. In addition, the model and algorithm can be adapted to identify
TADs conserved across multiple cell lines. As further confirmation that the TADs
found by the algorithm indeed correspond to regions of the genome with enriched
interactions, we post process the candidate regions by performing a nonparametric
test.
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2.1. Model description. We consider a hierarchical model with a set of maxi-
mally nonoverlapping TADs at each level. In this section, we focus on describing
the model for the base (outermost) level. The model and parameter estimation for
the nested levels are identical and will be mentioned at the end of Section 2.2.

Let M denote a n×n contact frequency matrix. M is first thresholded at the qth
quantile to produce a binary adjacency matrix A. Thresholding has been a common
practice in network modeling to handle weighted matrices, despite the information
loss it incurs. At canonical sequencing depth, the signal to noise ratio in Hi-C data
is typically high and the resolution is relatively low. Thresholding can improve the
signal to noise ratio. We examine the effect and sensitivity of the choice of q in
Section 3.

As mentioned in the Introduction, experimental evidence suggests TAD bound-
aries tend to coincide with CTCF binding. This motivates us to incorporate the
presence of CTCF into our model. Let Y ∈ {0,1}n be a binary vector with ones at
positions where CTCF binding occurs. We will treat Y as an available covariate,
which can be obtained from ChIP-seq data which is cell-type specific.

Let X denote a n × n binary matrix such that Xab = 1 if (i) Ya = 1, Yb = 1 and
(ii) there is a TAD between position a and b. Xab is always 0 when YaYb = 0.
This enforces the model to generate TADs which always have CTCF peaks at their
boundaries. Thus X ∈ {0,1}n×n denotes a binary latent matrix which encodes the
positions of all TADs. Also note that, it is possible to have YaYb = 1, but Xab = 0,
that is, there was no TAD formed between two CTCF binding sites.

We denote by the parameter vector � = (β, {αab : Xab = 1}) the probabilities
of edges between nodes. If a ≤ i < j ≤ b for Xab = 1, then P(Aij = 1) = αab.
(Note that we allow for a different edge probability for each TAD.) Otherwise
P(Aij = 1) = β , which is also referred to as the background probability. The di-
agonal of A is set to 0. For simplicity we have assumed the connectivity within
each TAD and the background is uniform, although the TADs may contain nested
sub-TADs and can be heterogeneous. In general the contact frequency decreases
as a function of the distance between two loci. For now one can think of the ho-
mogeneity assumption as approximating the actual distribution with a piecewise
constant function, and we make use of the original weights in the post-processing
step (Section 2.4). Finally, our model does not require the exact number of TADs,
but only an upper bound on it. We will make this more concrete in Section 2.2.

REMARK 2.1. We demonstrate our model using a concrete example. The cor-
responding edge probability matrix is shown in Figure 1. In this example Yi = 1
for i ∈ {3,6,12,18}. We show positions where YaYb = 1 by red dots at the in-
tersection of the grid lines, where the grid lines show the positions of the CTCF
sites. Only Xab at these positions are allowed to be one, since according to our
model, TADs can only form between two CTCF sites. In this example, there are
two TADs between 3 and 6 and between 12 and 18, that is, X3,6 = 1, X12,18 = 1.
The edge probabilities may differ between the two TADs. The model naturally
enforces contiguous clusters, and one cannot have a TAD with a hole inside.
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FIG. 1. Example of a probability matrix configuration.

2.2. Parameter estimation. Knowing (X,Y,�), the maximization of the log
likelihood for A can be written as

max
X∈{0,1}n×n,�

logp(A;X,Y,�)

= 1

2

∑
i �=j

∑
a<b

YaYbXabIi,j∈[a,b]
(
Aij log

αab

1 − αab

+ log(1 − αab)

)

+ 1

2

∑
i �=j

(
1 − ∑

a<b

YaYbXabIi,j∈[a,b]
)(

Aij log
β

1 − β
+ log(1 − β)

)
(2.1)

s.t.
∑
a<b

YaYbXab ≤ K

and
∑

c≤a≤d

YcYdXcd ≤ 1 for all a s.t. Ya = 1,

where I is an indicator.
The first constraint upper bounds the total number of TADs at this level, while

the second constraint ensures there is at most one TAD covering each position, thus
making the TADs nonoverlapping. The likelihood implies it suffices to consider
Xab at positions such that both Ya = 1 and Yb = 1, and X is effectively a m × m

matrix, where m = ∑
a Ya . In this way the covariate vector Y helps reduce the

search to a smaller grid.
We maximize the likelihood by considering a relaxed objective function and

performing coordinate ascent. First note that taking the derivative of logp(A;X,

Y,�) with respect to αab, the estimate of αab does not depend on the other param-
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eters and is given by

α̂ab =
∑

i,j∈[a,b] Aij

(b − a + 1)(b − a)
.(2.2)

Therefore it remains to maximize the likelihood with respect to β and X. Since di-
rect maximization of (2.1) over X subject to the constraints involve combinatorial
optimization, we propose the following relaxed optimization,

max
β,π∈[0,1]n×n

L(A,Y,β,π)

:= max
β,π∈[0,1]n×n

{
1

2

∑
i �=j

∑
a<b

YaYbπabIi,j∈[a,b]

×
[
Aij log

α̂ab

(1 − α̂ab)
+ log(1 − α̂ab)

]

+ 1

2

∑
i �=j

(
1 − ∑

a<b

YaYbπabIi,j∈[a,b]
)

×
[
Aij log

β

1 − β
+ log(1 − β)

]}
,

s.t.
∑
a<b

YaYbπab ≤ K

and
∑

c≤a≤d

YcYdπcd ≤ 1 for all a s.t. Ya = 1.

(LP-OPT)

The objective and constraints have the same form as (2.1) but with π ∈ [0,1]n×n

replacing X ∈ {0,1}n×n. Again since πab = 0 if YaYb = 0, the size of π to be
estimated is effectively m × m. This relaxed version can be solved via alternating
maximization, also denoted by LP-OPT.

1. For each fixed β , (LP-OPT) is linear in π and can be maximized efficiently
using linear programing.

2. For each fixed π , the objective is maximized at

(2.3) β̂ =
∑

i,j Aij − ∑
a,b πabYaYb

∑
i,j∈[a,b] Aij

n(n − 1) − ∑
a,b πabYaYb(b − a + 1)(b − a)

.

The above two steps are iterated until convergence in β .
So far we have described the model and parameter estimation for the outermost

level of TADs. Within each of these TADs, we can repeat the same algorithm to
detect the secondary (nested) level of TADs and continue iterating.

The likelihood approach allows the method to be easily extended to model con-
served TADs across multiple cell lines. Assuming the cell lines are independent,
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the joint log likelihood can be written as the sum,

logp
({A�};X,Y, {��}) = ∑

�

logp(A�;X,Y,��),(2.4)

where X represents the latent positions of common TADs, Y is the set of CTCF
peaks common to all cell lines; A� and �� are the adjacency matrix and model
parameters specific to cell line �. Similar to the single cell line case, the parameters
can be estimated by using a plug-in estimator for each α� and alternating between
maximizing over π and β�, where π is the relaxed form of X.

2.3. Theoretical guarantees. In this section, we analyze the theoretical prop-
erties of the algorithm and discuss the asymptotic performance of the estimates.
Given that we have relaxed the original likelihood, it is natural to first check
whether the solutions of (2.1) and LP-OPT agree. We have the following lemma
stating optimizing the relaxed objective is essentially equivalent to optimizing the
original one.

LEMMA 2.2. For every given β ,

max
π∈�

L(A,Y,β,π) = max
X∈X L(A,Y,β,X),(2.5)

where � is the feasible set in LP-OPT and X is the feasible set in (2.1).

PROOF. Given β , updating π is equivalent to maximizing the function

L(A,Y,�,π)

= 1

2

∑
i �=j

∑
a<b

YaYbπab1i,j∈[a,b]
[
Aij log

α̂ab(1 − β)

(1 − α̂ab)β
+ log

1 − α̂ab

1 − β

]

+ constant

:= l(A;π,β) + constant.

(2.6)

Recalling α̂ab is independent of all the parameters, l(A;π,β) is linear in π . Fur-
thermore, the feasible set for π given in LP-OPT is a convex polyhedron with
vertices at X. Since the optimum for a linear function on a convex polyhedron is
always attained at the vertices, it follows then maximizing l(A;π,β) with respect
to π is equivalent to maximizing l(A;X,β), which is the original objective. �

The above lemma implies it is valid to analyze the solution of (2.1) even though
the algorithm solves a relaxed problem. Furthermore, the optimal π for each run
of step 1 in the algorithm belongs to the feasible set X and defines a set of valid
TAD positions (hence no thresholding is needed).

Next we analyze the asymptotics of the alternating optimization algorithm given
a reasonable starting value β0 and the upper bound K for the following setting.
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We consider the most general case where each position is allowed a CTCF peak
so Ya will be omitted for the rest of the section. We focus on a single level of
the hierarchical model and assume the n × n adjacency matrix A contains K∗
TADs with {α∗

1 , . . . , α∗
K∗} as their connectivity probabilities. Note that to simplify

notation, we have changed the subscript for α to a single index. The background
has connectivity probabliity β∗. Let {[s1, t1], . . . , [sK∗, tK∗]} be the TAD locations
with the corresponding sizes {n∗

1, . . . , n
∗
K∗}; t0 = 0, sK∗+1 = n+1 for convenience.

We consider the case where K∗ is fixed, n∗
k/n → pk > 0 for all k. In addition the

sizes of the inter-TAD regions also follow (sk+1 − tk − 1)/n → qk . Denote the
number of inter-TAD regions G∗. Define KL(s‖t) = s log( s

t
) + (1 − s) log(1−s

1−t
).

Assume the given β satisfies the following assumption:

ASSUMPTION 2.3. β∗ < β < mink α∗
k .

ASSUMPTION 2.4. For large enough n,(
(sj − ti − 1)2 − ∑

i<k<j

(
n∗

k

)2
)
KL

(
β∗‖β)

<
∑

i<k<j

(
n∗

k

)2
KL

(
α∗

k‖β)

for all j > i + 1. Note here (sj − ti − 1) is the segment between the end of the ith
TAD and the beginning of the j th TAD.

Note that when β = β∗, Assumption 2.4 is trivially satisfied.

THEOREM 2.5. Starting with β(0) satisfying Assumptions 2.3 and 2.4, for any
fixed K and K large enough such that K ≥ K∗ + G∗, the optimal X satisfies

exp
{
max
X∈X l

(
A;X,β(0))} = exp

{
l
(
A;X0, β

(0))}(1 + oP (1)
)
,(2.7)

where X0 is such that Xsk,tk = 1 for all 1 ≤ k ≤ K∗ and Xti+1,si+1−1 = 1 for all
0 ≤ i ≤ K∗. Furthermore, at the next iteration β(1) = β∗ + OP (n−1/2).

We defer the proof to the Appendix. We have the following remarks.

1. Note that each X ∈ X partitions the nodes into K + 1 classes, given the
partition the distribution of the edges follows a block model and the proofs utilize
relevant techniques in this literature.

2. The theorem states that given an appropriate initial β(0), the optimal con-
figuration found by the algorithm includes all the TADs as well as the inter-TAD
regions. In the next section, we propose a nonparametric test to check enriched
interactions within each candidate region called by the algorithm.

3. More importantly, the same optimal X0 is found for any choice of fixed K ,
K being large enough. This implies the overfitting problem does not pose a serious
concern here since increasing K does not always lead to an increase in the number
of candidate TADs. In practice, a reasonable way to choose K is to increase it
incrementally until the number of candidate TADs found starts to saturate.
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2.4. Post-processing. After our algorithm detects the (possibly nested) TAD’s,
our goal is to see if these indeed have higher contact frequencies than the sur-
rounding region or the parent TAD. Recall that the contact frequency matrix M

has nonnegative weights which are truncated to generate the adjacency matrix of
the network. These weights Mij , typically decay as d = |i − j | grows. In order to
detect TAD’s with significantly enriched contact frequencies over the surrounding
region, we assume the model in equation (2.8). The main idea is that within a TAD,
they decay slowly, whereas in the surrounding regions of a TAD they decay faster.
Once we have detected the TADs using our linear program, we use these weights
to prune weakly connected TADs. Consider the base level; let us assume that we
have identified a TAD between positions a and b on the genome. Let the upper tri-
angular region of the this TAD be denoted by R. Now consider the upper triangular
region of the square between a − a−b

2 and b + a−b
2 . Denote this by S. We assume

the following simple model that dictates how the weights decay within and outside
a TAD. Consider two monotonically decaying functions f,g :N →R

+ ∪{0}, such
that f (d) > g(d) ∀d ∈N, that is, f (d) dominates g(d) for any d .

Mij =
{
f

(|i − j |) + εij , i, j ∈ R,

g
(|i − j |) + εij , i, j ∈ S \ R.

(2.8)

Here εij are pairwise independent noise random variables.

Testing. In order to perform a test, for all d ∈ {1, . . . , (b − a)}, we calculate

f̂ (d) =
∑

|i−j |=d,i,j∈R Mij

b − a + 1 − d
, ĝ(d) =

∑
|i−j |=d,i,j∈S\R Mij

b − a
.

Now we take the two sequences f̂ and ĝ and do a nonparametric rank test (two-
sample Wilcoxon test) to determine whether f̂ dominates ĝ; if the p-value is
smaller than a chosen threshold, we consider the TAD to have significant en-
richment over its surrounding neighborhood. Otherwise we discard the TAD. For
nested TADs, we are interested in determinig whether a TAD found inside a parent
TAD (call this T0) is significant. In such cases, the surrounding region S may go
across T0. So we simply truncate the outer region so that it does not cross outside
T0.

3. Results. We first demonstrate key properties of our inference algorithm via
simulation experiments, and then provide elaborate real data results.
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FIG. 2. (a) The y axis shows the estimated number of clusters K , whereas the x axis shows in-
creasing values of K . (b) shows the clustering for input K = 30.

3.1. Simulations.

Data simulated under the simple model. First following the basic model de-
scribed in Section 2 and equation (2.1), we present two sets of experiments to
(a) show the robustness of our algorithm LP-OPT to the prespecified number of
clusters, and (b) compare with the Spectral Clustering (SC) algorithm. For all the
simulations in this setting, all TADs have the same linkage probability α and the
background has linkage probability β .

In our first set of experiments (Figure 2(a) and (b)), we show that with some-
what balanced (but not necessarily equal) block-sizes, LP-OPT returns the cor-
rect TAD’s along with some holes, as shown in Theorem 2.5. Recall that, in
our linear program, we use a constraint to specify an upper bound on the num-
ber of TADs. This constraint is given by

∑
ij πij ≤ K , where

∑
ij πij represents

the number of TADs. In Figure 2(a) we plot
∑

ij πij after one iteration of the
linear program, for the adjacency matrix in Figure 2(b). To be concrete, we set
n = 1000, α = 0.2, β = 0.05 and three TADs of sizes 270, 200 and 220. We also
created CTCF sites at every 10 nodes for this experiment. We see that even though
K is increased to 30, the estimated number of clusters levels off at 7, which is
precisely three TADs plus four inter-TAD regions, which illustrates our asymp-
totic result from Theorem 2.5. These TADs detected by LP-OPT are illustrated
in Figure 2(b). While one can come up with simple tests to eliminate the “spuri-
ous” TADs, we saw that for real data, our post processing step (see Section 2.4)
eliminates them effectively for both the base level and nested TADs.

In the second set of simulations (Figure 3(a), (b)), we show that SC often yields
clusters with holes, that is, clusters that are not contiguous, whereas we do not.
SC is one of the most commonly used algorithms for community detection in
networks. It involves performing spectral decomposition on a similarity matrix
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FIG. 3. Clusters identified by (a) LP-OPT and (b) SC. In (a) and (b) different colored squares
correspond to different clusters detected by the algorithms. The ideal setting is to see a whole TAD
encompassed by one square.

obtained from the data. For networks, one typically uses the normalized adja-
cency matrix defined as D−1/2AD−1/2 where D is the diagonal matrix of de-
grees, that is, D = diag(di), di = ∑

j Aij . Now for clustering the nodes into K

blocks, one applies k-means clustering to the top K eigenvectors (Rohe, Chatter-
jee and Yu (2011)). For Figure 3(a) and (b), we set n = 240, four TADs with sizes
(70,40,30,50). The fifth cluster is the background. We use α = .5, β = .25. In or-
der to have a fair comparison, we do not include CTCF sites for LP-OPT, since SC
is not designed to use them either. For both methods, we assume the correct num-
ber of blocks is given. In order to be as favorable as possible to SC, we use 4 top
eigenvectors, and use k-means with k = 5 on these eigenvectors, since the back-
ground minus the TADs is one cluster. The results from conventional SC (choosing
five top eigenvectors and using k-means with k = 5) are worse and hence omitted.
For SC the plot reflects the clusterings returned: the colors correspond to different
clusters. A square corresponds to a maximal contiguous set of nodes assigned to
a cluster. For example, the last TAD (190–240) is assigned to the cyan cluster by
SC. However, SC also assigns some nodes from the penultimate TAD (160–190)
to this cluster, and moreover the small cyan boxes show that there are many nodes
from the last TAD, which are assigned to other clusters, that is, in this setting, SC
is unable to create a contiguous cluster will all nodes from one TAD.

We want to point out that while we did the above experiments for Figure 3(a)
without the CTCF sites for fairness, including the CTCF sites greatly improves the
computational time of LP-OPT. To be concrete, we simulated 10 random networks
with the above setting, and obtained the clusterings with and without the CTCF
sites. With CTCF sites LP-OPT converges in 0.5 seconds on average, whereas
without CTCF sites, the average computation time is 58 seconds.

In Section S1.1 of the Supplementary Material (Wang et al. (2019)) we include
additional comparison with SC for varying signal to noise ratio.
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Data simulated using real data distribution. We next used a more realistic
framework to simulate Hi-C data for chromosome 21 at a resolution of 40 kb,
a typical resolution at which Hi-C data are analyzed. TAD positions were gen-
erated artificially and contact frequencies were sampled using empirical distribu-
tions from a real Hi-C dataset on chromosome 21 provided in Rao et al. (2014).
A detailed description of the framework can be found in Section S1.2 of the Sup-
plementary Material. CTCF sites were generated as the union of the true TAD
boundaries and randomly sampled positions along the chromosome.

Our procedure led to a 1204 × 1204 contact frequency matrix, which was pro-
cessed using a moving window of length 300 with an overlap of 50. The contact
frequencies in each 300×300 segment were thresholded at the qth quantile to pro-
duce a binary adjacency matrix. Between two adjacent windows, any TADs called
by the algorithm falling into overlapping regions are resolved as follows. (i) If the
end point of the TAD is the last CTCF site in the first window, it is extended to
the first CTCF site in the second window (similarly if the start point of the TAD
is the first CTCF site in the second window; (ii) If one TAD is contained in an-
other, the nested one is taken; (iii) If two TADs have a significant overlap (Jaccard
index > 0.8, defined in Section 3.2), they are merged by taking the intersection.
A similar procedure is used on the real data (Section 3.2).

Table 1 compares the TADs found by our algorithm with ground truth using
normalized mutual information (NMI) for different choices of the threshold q and
an increasing number of randomly sampled CTCF positions. Note that the last
column corresponds to the case where every position is a CTCF site, since the
data generated contains 42 true TADs. In other words, we do not provide the al-
gorithm with partial ground truth. As expected, the performance is better when
partial ground truth is supplied but remains overall stable for reasonable choices
of q . Figure 4 displays a 24 mb segment of the simulated data with TADs found
by our method. LP-OPT was run without additional CTCF information and still
achieved high similarity with ground truth.

In comparison, under similar thresholding levels SC achieves a NMI around
0.86–0.89 when the correct cluster number K = 43 (the last cluster being the
background) is given, and the TADs found contain holes as described above. In

TABLE 1
Normalized mutual information measuring the quality of the TADs found vs. ground truth

Normalized mutual information

# Random CTCF sites 50 100 300 600 940

q = 0.88 0.90 0.91 0.90 0.89 0.89
q = 0.9 0.94 0.92 0.92 0.91 0.92
q = 0.95 0.97 0.98 0.95 0.93 0.92
q = 0.98 0.98 0.96 0.89 0.87 0.86
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FIG. 4. chr21:1–24000000, a 24 mb segment. TADs identified by LP-OPT compared with ground
truth. Note that LP-OPT was run without CTCF information thresholded at 95th quantile.

addition, we compare our method with two recently proposed TAD detection algo-
rithms, 3DNetMod (Norton et al. (2018)) and MrTADFinder (Yan, Lou and Ger-
stein (2017)), which are both based on community detection methods in network
analysis. The best NMI achieved by MrTADFinder for a range of tuning parameter
values is 0.55. 3DNetMod had difficulty finding TADs on this dataset. These two
methods will be included for comparison in the subsequent real data analysis. More
details and visual comparisons can be found in Section S1.2 of the Supplementary
Material.

3.2. Real data. Using the deep-coverage Hi-C data provided in Rao et al.
(2014), we ran LP-OPT to identify cell-type specific TADs in five cell types
(GM12878, HMEC, HUVEC, K562, NHEK) and common TADs conserved in
all of them. We present here a comprehensive analysis of the results from chro-
mosome 21. Similar analysis was also performed on chromosome 1, the results of
which can be found in Section S2.2 of the Supplementary Material. Following Rao
et al. (2014), the raw contact frequency matrix was normalized using the matrix
balancing algorithm in Knight and Ruiz (2013). Using data with 10 kb resolution,
the contact frequency matrix of this chromosome has more than 4800 bins. CTCF
peaks for each cell type were obtained from the ENCODE pipeline (ENCODE
Project Consortium (2012)) and converted into a binary vector of the same resolu-
tion as the contact frequency matrix, where each entry represents whether or not
the corresponding genome bin contains at least one CTCF peak. This led to around
900 nonzero entries in each cell type. In the combined analysis for common TADs,
we took the intersection of the cell-type specific CTCF binary vectors, so an entry
is one only when the genome bin contains at least one CTCF peak in all cell types.

We performed TAD calling for three levels, each level with its own quantile
thresholding parameter. At the base level, we processed the chromosome using
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a moving window of length 300 (3 mb) with an overlap of 50. The contact fre-
quencies in each 300 × 300 segment was thresholded at 90% quantile (q1 = 0.9)
to produce a binary adjacency matrix. Note that by using a moving window, we
avoided using one universal threshold for the entire chromosome, which contains
active and inactive regions with different chromatin interaction patterns. Any over-
laps between two adjacent windows are resolved using the rules described in Sec-
tion 3.1. The TADs called at the base level were then post-processed using the
nonparametric test described in Section 2.4, and only those passing a p-value cut-
off (in this case 0.05) were retained for further TAD calling. For the second level,
we thresholded the contact frequencies inside the base-level TADs at 50% quan-
tile (q2 = 0.5), followed by running the algorithm and post-processing. The same
steps were followed for the third level with q3 = 0.5. For all three levels, the p-
value cutoff was chosen to be 0.05. As a side note, correcting for multiple testing
at a false discovery rate (FDR) of 0.05 made almost no difference at the base level.
However, the same FDR cutoff led to fewer TADs being called at the nested lev-
els. This is unsurprising as the power of the nonparametric test decreases as the
number of data points available decreases at the nested levels.

The combined analysis for conserved TADs was performed in the same way,
using the algorithm described in Section 2.2. The nonparametric test was run on
the called regions for all cell types, and we required all the p-values to be smaller
than the cutoff 0.05.

Choice of thresholds. We first checked the robustness of the results using
different thresholding levels and biological replicates. Table 2 shows the num-
ber of TADs identified under different scenarios and with significant overlap. To
compare two TADs S,T from two different sets, we measure the Jaccard index
J (S,T ) = |S∩T |

|S∪T | . When the Jaccard index is high enough, there is a one-to-one
correspondence between TADs in the two sets. The first two rows in the table show
different thresholds at the base level still lead to quite consistent results. Varying
q2, q3 between 0.4–0.6 does not lead to noticeable changes and the results are
hence omitted. Since two biological replicates (primary and replicate) are avail-
able for GM12878, we examined the consistency between them and the combined
data, and the results are shown in row 3 and 4 of the table. Finally, as the current
results were obtained using normalized data, we compared them with the case us-
ing the raw contact frequency matrix (row 5). This case still shows a reasonable
degree of consistency despite having the lowest amount of overlap among all.

Enrichment of histone marks at boundaries. One of the most commonly
used criteria for checking the accuracy of TAD boundaries is to count the num-
ber of histone modification peaks nearby (Filippova et al. (2014), Weinreb and
Raphael (2016)) and taking higher levels of histone activity as indicators for
the start and end points of TADs. The histone data are available in Kellis et al.
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TABLE 2
Number of TADs detected under different scenarios and with significant overlap

# TADs

q1 = 0.85 (GM12878) q1 = 0.9 (GM12878) Jaccard index > 0.7
85 81 70

q1 = 0.85 (HMEC) q1 = 0.9 (HMEC) Jaccard index > 0.7
123 114 103

Primary (GM12878) Replicate (GM12878) Jaccard index > 0.7
90 83 74

Primary (GM12878) Combined (GM12878) Jaccard index > 0.7
90 81 80

Normalized (GM12878) Raw (GM12878) Jaccard index > 0.7
81 94 61

(2014) and the processed data were downloaded from https://sites.google.com/
site/anshulkundaje/projects/encodehistonemods. From bin indices, we obtain the
coordinates of TAD boundaries by taking the midpoint of every genome bin. Ta-
ble 3 shows the average number of peaks within 15 kb upstream or downstream
from each detected boundary point for various types of histone modification. We
compared LP-OPT with 3DNetMod (Norton et al. (2018)), MrTADFinder (Yan,
Lou and Gerstein (2017)) and the Arrowhead domains originally reported in Rao
et al. (2014). We found that MrTADFinder produced domains quite different from
the other three methods (Figure S3 in the Supplementary Material) and the do-
main boundaries show less enrichment of histone marks. We have thus omitted the
method from further comparison. The tuning parameters for 3DNetMod were cho-
sen so that the number of TADs found is roughly comparable to the other two meth-
ods. In Table 3, counting the number of times each method achieves the highest
enrichment, LP-OPT and 3DNetMod outperform Arrowhead with LP-OPT being
slightly better than 3DNetMod. In addition, we note that LP-OPT is significantly
faster than 3DNetMod, taking about 10 minutes on chromosome 21 (and 40 min-
utes on chromosome 1) using one core on a 3.1 GHz Intel Core i5 processor. In
comparison, 3DNetMod takes more than 40 minutes on chromosome 21 (and four
hours on chromosome 1) requiring four cores on the same processor. The results
of 3DNetMod are also quite sensitive to the choice of tuning parameters.

Conserved and cell-type specific TADs. Although commonly used, the met-
ric in Table 3 does not consider epigenetic features inside each TAD, which are
particularly important for confirming shared regulatory structures and mecha-
nisms across different cell types. We first examine the histone modification peaks
within highly conserved TADs, which are defined as (i) TADs identified in the
combined analysis of all cell types (denote this set Ic), and (ii) if for S ∈ Ic,

https://sites.google.com/site/anshulkundaje/projects/encodehistonemods
https://sites.google.com/site/anshulkundaje/projects/encodehistonemods
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TABLE 3
Average number of histone modification peaks ±15 kb upstream or downstream from the boundary

points

GM12878

# domains H3k9ac H3k27ac H3k4me3 Pol II

LP-OPT 81 1.35 1.68 1.16 1.29
Arrowhead 96 1.40 1.60 1.29 1.22
3DNetMod 129 1.36 1.82 1.25 1.06

HUVEC

# domains H3k9ac H3k27ac H3k4me1 H3k4me3

LP-OPT 106 1.07 1.16 2.17 0.84
Arrowhead 59 1.02 1.08 2.06 0.83
3DNetMod 125 0.96 1.08 1.82 0.68

HMEC

# domains H3k9ac H3k27ac H3k4me1 H3k4me3

LP-OPT 114 1.06 1.49 3.05 0.73
Arrowhead 44 1.02 1.46 3.09 0.81
3DNetMod 122 0.92 1.24 2.67 0.77

NHEK

# domains H3k9ac H3k27ac H3k4me1 H3k4me3

LP-OPT 112 1.21 1.32 2.70 0.92
Arrowhead 78 0.99 1.12 2.19 0.68
3DNetMod 136 1.42 1.55 2.91 1.03

K562

# domains H3k9ac H3k4me1 H3k4me3 Pol II

LP-OPT 91 0.76 2.31 0.98 0.62
Arrowhead 82 0.57 1.82 0.82 0.55
3DNetMod 101 0.79 2.25 0.95 0.71

maxT ∈Ii
J (S, T ) > 0.7 for all i, where Ii is the set of TADs identified in cell

type i. Out of the 50 TADs found in the combined analysis, 29 of them satisfy (ii).
Figure 5 shows the signal tracks for all five cell types inside one of the 29 con-

served TADs (chr21:35275000–35725000) for two types of histone modifications
(UCSC genome browser). The signal peaks are visibly correlated between cell
types. Using ChIP-seq signals from the ENCODE pipeline, the average pairwise
correlations between cell types for this TAD were calculated for different histone
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FIG. 5. Histone signal tracks within chr21:35275000–35725000.

modifications. For H3k9ac, H3k27ac, H3k4me1 and H3k4me3, the average cor-
relations are 0.69, 0.80, 0.58, 0.89 respectively. Figure 6 compares the average
pairwise correlations inside all 29 conserved TADs with 50 randomly chosen re-
gions of length 290 kb (median length of the conserved TADs) on chromosome
21 for two instances of histone modification. The two-sample Wilcoxon test has
p-values 0.05 and 0.006 for H3k27ac and H3k4me1; the results for H3k9ac and
H3k4me3 are similar.

Having analyzed TADs with consistent overlaps across all cell types, we now
consider TADs which are specific to individual cell types. A TAD is considered
specific to that cell type i if (i) S ∈ Ii ; (ii) maxT ∈Ij

J (S,T ) < 0.4 for all j �= i.

FIG. 6. Comparing conserved TADs with random regions on chr21; pairwise correlations between
all cell types for (a) H3k27ac and (b) H3k4me1.
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FIG. 7. (a) Signal tracks for H3k9ac within chr21:22375000–22695000, a TAD identified as spe-
cific to K562; (b) Signal tracks for H3k4me1 within chr21:26265000–26415000, a TAD identified as
specific to GM12878.

This criterion leads to 28 TADs, each specific to one of the cell types. The me-
dian length of these TADs is 210 kb, smaller than that of the conserved TADs.
As an illustration, Figure 7 shows the histone modification tracks inside two TADs
specific to K562 and GM12878 respectively. In these two regions, the histone mod-
ifications show a higher level of activity for the two specific cell types. To evaluate
whether this is a systematic trend, we next calculated the total signal level for each
of the 28 TADs under different types of histone modifications. For each type, we
counted the number of TADs which have the highest total signal level in the cell
type they are associated with. Comparing to a null distribution under which the
cell type with the highest total signal levels is selected randomly, we computed
the p-values using a binomial distribution in Table 4. This suggests the cell-type
specific TADs tend to be regions with more active histone modifications.

Without CTCF information. As a final remark, we tested whether LP-OPT
could reproduce consistent results without CTCF information. Applying the al-

TABLE 4
For each type of histone modification, the number of TADs (out of 28) such that they have the

highest total signal level in the cell type they are associated with

H3k9ac H3k27ac H3k4me1 H3k4me3

# TADs with the highest total signal level 13 16 18 10
p-value 1.5 × 10−3 1.7 × 10−5 4.2 × 10−7 3.9 × 10−2
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gorithm to a 5 mb segment of chromosome 21 (chr21:26000000–31000000) using
GM12878 data, 15 TADs were identified (vs. 13 TADs with CTCF covariate) at
the same p-value cutoffs. 11 pairs of these have a Jaccard index greater than 0.7,
suggesting the results are reasonably stable. However, we also note the computa-
tional time in this case is significantly longer, as the search space for optimization
is considerably larger without incorporating the CTCF sites.

4. Discussion. The 3D structure of chromatin provides key information for
understanding the regulatory mechanisms. Recently, technologies such as Hi-C
have revealed the existence of an important type of chromatin structure known as
TADs, which are regions with enriched contact frequency and have been shown to
act as functional units with coordinated regulatory actions inside. In this paper, we
propose a statistical network model to identify TADs treating genome segments
as nodes and their interactions in 3D as edges. Unlike many traditional networks
with exchangeable distributions, our model incorporates the linear ordering of the
nodes and guarantees the communities found represent contiguous regions on the
genome. Our method also achieves two important biological goals: (i) Consider-
ing the empirical observation that TADs boundaries tend to correlate with CTCF
binding sites, our method offers the flexibility to include CTCF binding data (or
other ChIP-seq data) as biological covariates. (ii) The likelihood-based approach
allows for joint inference across multiple cell types. On the theoretical side, we
have shown asymptotic convergence of the estimation procedure with appropriate
initializations. In practice, we observe the algorithm always converges in a few
iterations. Due to the linear nature of the algorithm, our method is computation-
ally efficient; it takes less than 10 minutes to complete the computation on chr21
with CTCF information on a laptop, whereas methods like TADtree (Weinreb and
Raphael (2016)) can take up to hours.

Some areas for future work include extending the theoretical analysis to in-
creasing K , and considering modelling higher order interactions between TADs.
Our current way of finding conserved and cell-type specific TADs involves com-
puting overlaps between domains and choosing heuristic cutoffs. While we have
shown using epigenetic features that the conserved and cell-type specific TADs
found have desirable features, it would be more ideal to statistically model the
extent of overlaps between different types of TADs.

APPENDIX: PROOFS

Each X ∈ X partitions the nodes into K + 1 classes, thus we define the cor-
responding node labels as Z = (Z1, . . . ,Zn), with Zi = k if Zi ∈ [sk, tk], Zi =
K∗ + 1 if Zi does not fall inside any TAD. The set of feasible Z is a subset of
{1, . . . ,K∗ + 1}n and can be seen as the latent node labels in a block model. Let X
and Z be the feasible sets for X and Z respectively. X∗ and Z∗ are the true latent
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positions and the corresponding node labels. Following block model notations, de-
fine a (K∗ + 1) × (K∗ + 1) matrix H ∗, where Hk,k = α∗

sk,tk
for 1 ≤ k ≤ K∗, and

H ∗
k,l = β∗ otherwise. For any label Z, let R(Z,Z∗) be the confusion matrix with

Rk,l

(
Z,Z∗) = 1

n

n∑
i=1

I
(
Zi = k,Z∗ = l

)
.

Finally set E = n × n matrix of 1.
With appropriate concentration, it suffices to consider l(A;π,β) at expectation

E(A). Define

G(R,β) =
K∗∑
k=1

(
RERT )

k,kKL

(
(RH ∗RT )k,k

(RERT )k,k

∥∥∥β)
(A.1)

for some Z ∈ Z and its corresponding R. For simplicity of notation, we assume A

has diagonal entries generated in the same way as nondiagonal entries, which does
not affect the asymptotic results. We have the following lemma for the maximum
of G(·, β).

LEMMA A.1. Suppose β satisfies Assumptions 2.3 and 2.4. Then for all K ≥
K∗ + G∗ and n large enough,

max
Z∈Z G

(
R

(
Z,Z∗)

, β
) = 1

n2

K∗∑
k=1

(
n∗

k

)2
KL

(
α∗

k‖β)

+ 1

n2

K∗∑
i=0

(si+1 − ti − 1)2KL
(
β∗‖β)

.

The maximum is unique at R0 such that Xsk,tk = 1 for all 1 ≤ k ≤ K∗ and
Xti,si+1 = 1 for all 0 ≤ i ≤ K∗. Furthermore, for any R1 �= R0 and n large enough,

(A.2)
∂G((1 − ε)R0 + εR1, β)

∂ε

∣∣∣
ε=0+ ≤ −C < 0

for some C > 0.

PROOF. For each feasible Z, let {[l1,m1], . . . , [lK,mK ]} be the corresponding
TAD positions defined by Z. For each row of R(Z),

(
RERT )

k,kKL

(
(RH ∗RT )k,k

(RERT )k,k

‖β
)

≤ max

{(
(mk − lk)

2

n2 −
K∗∑
i=1

R2
ki

)
KL

(
β∗‖β)

,

K∗∑
i=1

R2
kiKL

(
α∗

k

∥∥∥β)}(A.3)
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by Assumption 2.3 and the convexity of K(·‖β). Also for the kth row of R, define

ik = min
{
i : [si, ti] ∩ [lk,mk] �=∅

}
,

jk = max
{
i : [si, ti] ∩ [lk,mk] �=∅

}
.

(A.4)

We first consider the case where the set above is nonempty. For two adjacent
rows k and k + 1, it suffices to consider the case jk = ik+1. Denote Sk,k+1 =∑k+1

l=k (RERT )l,lKL(
(RH ∗RT )l,l
(RERT )l,l

‖β). By (A.3), Sk,k+1 is upper bounded by one of

the following:

1. ((mk+1 − lk)
2/n2 − ∑k+1

q=k

∑jq

l=iq
R2

ql)KL(β∗‖β).
2.

jk−1∑
l=ik

R2
klKL

(
α∗

l ‖β) + R2
k,jk

KL
(
α∗

jk
‖β)

+
(
(mk+1 − lk+1)

2/n2 −
jk+1∑

l=ik+1

R2
k+1,l

)
KL

(
β∗‖β)

,

which is itself upper bounded by

jk−1∑
l=ik

R2
klKL

(
α∗

l ‖β)

+ max

{(
(mk+1 − sjk

)2 − (n∗
jk

)2

n2 −
jk+1∑

l=ik+1+1

R2
k+1,l

)
KL

(
β∗‖β)

,

(n∗
jk

n

)2
KL

(
α∗

jk
‖β) +

(
(mk+1 − tjk

)2

n2 −
jk+1∑

l=ik+1+1

R2
k+1,l

)
KL

(
β∗‖β)}

.

3. (
(mk − lk)

2/n2 −
jk∑

l=ik

R2
k,l

)
KL

(
β∗‖β)

+ R2
k+1,ik+1

KL
(
α∗

ik+1
‖β) +

jk+1∑
l=ik+1+1

R2
k+1,lKL

(
α∗

l ‖β)
.

Similar to the case above, this is bounded by

jk+1∑
l=ik+1+1

R2
k+1,lKL

(
α∗

l ‖β) + max

{(
(tjk

− lk)
2 − (n∗

jk
)2

n2 −
jk−1∑
l=ik

R2
kl

)
KL

(
β∗‖β)

,
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(n∗
jk

n

)2
KL

(
α∗

jk
‖β) +

(
(sjk

− lk)
2

n2 −
jk−1∑
l=ik

R2
k,l

)
KL

(
β∗‖β)}

.

4.
∑k+1

q=k

∑jq

l=iq
R2

qlKL(α∗
l ‖β).

If the set in (A.4) is empty,

(
RERT )

k,kKL

(
(RH ∗RT )k,k

(RERT )k,k

∥∥∥β)
=

(
mk − lk

n

)2
KL

(
β∗‖β)

≤ (sl+1 − tl)
2KL

(
β∗‖β)

for some 1 ≤ l ≤ K∗.
The above cases show for any Z ∈ Z , an upper bound for G(R(Z,Z∗), β) is of

the form
L∑

k=1

(
(sjk

− tik )
2 − ∑

ik<l<jk
(n∗

l )
2

n2 · KL
(
β∗‖β))

+ ∑
l∈I

(n∗
l )

2

n2 KL
(
α∗

l ‖β)
,

(A.5)

where I is an index set such that I ⋂L
k=1[ik, jk] = ∅. By Assumption 2.3, this is

bounded by

1

n2

K∗∑
k=1

(
n∗

k

)2
KL

(
α∗

k‖β) + 1

n2

K∗∑
i=0

(si+1 − ti − 1)2KL
(
β∗‖β)

with equality achieved only at R0 for any K ≥ K∗ + G∗. The second part of the
lemma can be checked with differentiation. �

Let [lk,mk] be the kth domain in a configuration Z corresponding to the kth
row in R. Next we state a concentration lemma for the averages α̂lk,mk

(Z). Denote
Olk,mk

(Z) = (mk − lk)
2α̂lk,mk

(Z) and 
k(Z) = Olk,mk
(Z)/n2 − (RH ∗RT (Z))k,k .

LEMMA A.2. For ε ≤ 3,

(A.6) P

(
max
Z∈Z max

1≤k≤K

∣∣
k(Z)
∣∣ ≥ ε

)
≤ 2(K)n+1 exp

(−C1
(
H ∗)

ε2n2)
.

Let Z0 ∈ Z be a fixed set of labels, then for ε ≤ 3m/n,

P

(
max

Z:|Z−Z0|≤m
max

1≤k≤K

∣∣
k(Z) − 
k(Z0)
∣∣ > ε

)

≤ 2

(
n

m

)
(K)m+1 exp

(
−C2

(
H ∗)n3ε2

m

)
.

(A.7)

C1(H
∗) and C2(H

∗) are constants depending only on H ∗.
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PROOF. The proof follows from Bickel and Chen (2009) with minor modifi-
cations. �

PROOF OF THEOREM 2.5. Suppose β(0) satisfies Assumptions 2.3 and 2.4.
We consider the most general setup where every position is a CTCF binding site.
The likelihood objective is given by

l
(
A;Z,β(0))

= 1

2

K∑
k=1

∑
i �=j,

i,j∈[lk,mk]

[
Aij log

α̂lk,mk
(Z)(1 − β(0))

(1 − α̂lk,mk
(Z))β(0)

+ log
1 − α̂lk,mk

(Z)

1 − β(0)

]
(A.8)

= 1

2

K∑
k=1

(mk − lk)
2KL

(
α̂lk,mk

(Z)‖β(0)).
Let R0 (and the corresponding X0, Z0) be the optimal configuration in Lemma A.1.

We first consider X far away from X0. Define

Iδn = {
X ∈ X : G(

R(X),β(0)) − G
(
R0, β

(0)) < −δn

}
,

where δn is a sequence converging to 0 slowly. First by (A.6) in Lemma A.2,∣∣l(A;X,β) − n2G
(
R(X),β

)∣∣
≤ Cn2

K∑
k=1

∣∣∣∣Olk,mk
(X)

n2 − (
RH ∗RT (X)

)
k,k

∣∣∣∣
= oP

(
n2−γ )

(A.9)

for some γ < 1/2. It follows then

l
(
A;X,β(0)) − l

(
A;X0, β

(0))
≤ oP

(
n2−γ ) − n2δn

and

exp
{

max
X∈Iδn

l
(
A;X,β(0)) − l

(
A;X0, β

(0))}(A.10)

≤ ∑
X∈Iδn

exp
{
l
(
A;X,β(0)) − l

(
A;X0, β

(0))}(A.11)

≤ exp
(
oP

(
n2−γ ) − n2δn + n logK

) = oP (1)(A.12)

choosing δn → 0 slowly enough.
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Next consider the case X ∈ I c
δn

and X �= X0. By (A.7) in Lemma A.2,

P

(
max
X �=X0

∥∥
(Z) − 
(Z0)
∥∥∞ > ε|Z − Z0|/n

)

≤
n∑

m=1

P

(
max

Z:|Z−Z0|=m

∥∥
k(Z) − 
k(Z0)
∥∥∞ > ε

m

n

)

≤
n∑

m=1

2nmKm+1 exp(−Cmn) → 0.

(A.13)

It follows then if |Z − Z0| = m, ‖
(Z)−
(Z0)‖∞
m/n

= op(1), and 1
n2 ‖O(Z) −

O(Z0)‖∞ ≥ m
n
(C + oP (1)) since ‖RH ∗RT (Z) − RH ∗RT (Z0)‖∞ ≥ C m

n
. Note

that in the set I c
δn

, |Z − Z0| → 0. Then (A.2) implies

G
(
R(Z),β(0)) − G

(
R0(Z0), β

(0)) < −C
m

n
(A.14)

if |Z −Z0| = m. Since G(R,β(0)) is the population version of 1
n2 l(A;R,β(0)) and

O(Z)/n2 approaches RH ∗RT (Z) uniformly in probability, by the continuity of
the derivative,

1

n2

(
l
(
A;R(Z0), β

(0)) − l
(
A;R(Z),β(0))) = P (m/n)(A.15)

for |Z − Z0| = m. It follows then

exp
{

max
X∈I c

δn
,X �=X0

l
(
A;X,β(0)) − l

(
A;X0, β

(0))}

≤ ∑
X∈I c

δn
,X �=X0

exp
{
l
(
A;X,β(0)) − l

(
A;X0, β

(0))}

≤
n∑

m=1

(
n

m

)
(K + 1)me−P (mn) = oP (1).

(A.16)
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SUPPLEMENTARY MATERIAL

Supplementary information for “Network modelling of topological do-
mains using Hi-C data” (DOI: 10.1214/19-AOAS1244SUPP; .pdf). The supple-
mentary material includes code for TAD calling and the TAD coordinates called
on chr1 and chr21 as the txt files. Additional simulations and real data results can
be found in the supplementary file Wang et al. (2019).

https://doi.org/10.1214/19-AOAS1244SUPP
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