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An important objective in vaccine studies entails identifying an immune
response which is predictive of disease risk. Nonparametric methods are de-
veloped for inference on immune response thresholds that are associated with
specified levels of disease risk, including where the risk level is zero. This
threshold is defined as the minimum immune response value above which
disease risk is less than or equal to the desired level. The proposed nonpara-
metric methods are compared to previously developed parametric methods
in simulation studies. The methods are extended for use in studies that only
measure the immune response in a subset of participants, such as case-cohort
or case-control studies, and with right censored time to disease outcomes.
Finally, these methods are used to estimate neutralizing antibody thresholds
for virologically confirmed dengue risk using data from two recent dengue
vaccine trials.

1. Introduction. Infectious disease is one of the most prevalent causes of
death globally. In 2010 approximately 15 million deaths worldwide were caused
directly by infectious disease (Dye (2014)). Historically, the use of vaccines to
reduce the burden of infectious diseases has been extremely effective. Previ-
ously devastating illnesses such as smallpox and measles have been dramatically
reduced, and sometimes eradicated completely, due to vaccination (Centers for
Disease Control and Prevention (2014)). However, infectious diseases such as
HIV/AIDS, malaria and tuberculosis continue to cause millions of deaths world-
wide as their treatment and prevention have proved difficult (Centers for Disease
Control and Prevention (2014)). As a result, it is imperative that the effectiveness
of vaccines continues to be studied.

One goal of vaccine research entails finding an immune response which is pre-
dictive of the clinical outcome of interest. Here we consider a binary outcome
which is generically referred to as disease. The inferential goal is to estimate the
minimum immune response value above which the risk of disease is less than or
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equal to some specified value (e.g., 0.01%). This value of immune response is re-
ferred to as a risk threshold and the specified risk upper bound is referred to as a
risk level. Inference about these thresholds can be useful to regulatory agencies,
policymakers and public health officials in assessing disease risk in a vaccinated
population. In particular, for the sake of cost and efficiency, studies of new for-
mulations of existing vaccines and studies of existing vaccines in new populations
often collect data only on immune responses and do not also assess disease out-
comes. In these studies, estimated risk thresholds can be used to predict disease
risk for the new vaccine formulation or in the new population.

There are two common approaches employed in vaccine efficacy trials to iden-
tify immune response thresholds of risk. The first approach entails fitting para-
metric or semiparametric models to quantify an immune response’s association
with disease risk (e.g., Chan et al. (2002), Dunning (2006), Jokinen and Åhman
(2004), Storsaeter et al. (1998), White et al. (1992), Haynes et al. (2012)) and these
methods can be adapted for inference on risk thresholds. However, such models
are subject to misspecification, especially when drawing inference about immune
response thresholds associated with zero disease risk. The second approach con-
siders specifically the zero risk threshold. This approach (e.g., Andrews, Borrow
and Miller (2003), Borrow, Balmer and Miller (2005), Jódar et al. (2003), Black
et al. (2011)) assumes the existence of an immune response threshold which per-
fectly discriminates whether an individual is protected from disease. In addition,
disease risk is assumed to be independent of vaccination status given the immune
response, that is, Prentice’s (Prentice (1989)) full mediation condition for a valid
surrogate endpoint is assumed. In contrast, this paper introduces methods for in-
ference about risk thresholds corresponding to specified disease risk levels which
are nonparametric and do not require Prentice’s full mediation condition to hold.

The remainder of this paper’s structure is as follows. Section 2 details inference
about a risk threshold in a standard vaccine study design. Section 3 describes sim-
ulation studies evaluating the inferential methods described in Section 2. Section 4
extends the methods to studies where the immune response is only measured in a
subset of participants, such as case-cohort or case-control studies, and where some
individuals’ disease outcomes are censored. Section 5 presents an application of
these methods to two recent dengue vaccine trials. Section 6 concludes the paper
and offers further discussion.

2. Methods.

2.1. Risk threshold. Suppose a vaccine is evaluated in a randomized trial, pos-
sibly placebo-controlled, in which all participants are initially disease-free and n

individuals receive vaccine. (Unless indicated otherwise, the methods described
below only utilize data observed from the n vaccinated individuals. Thus the meth-
ods can also be applied in observational cohort studies where a random sample of
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n vaccinated individuals is followed prospectively.) Let Z denote treatment as-
signment with Z = 1 denoting vaccine and Z = 0 denoting control, where control
refers to a placebo or absence of treatment. Suppose there is an immune response
associated with the likelihood of developing disease. Let S denote an individual’s
immune response, with S measured after the individual receives their assigned
treatment (vaccine or control). Let Y denote an individual’s outcome, with Y = 1
denoting disease and Y = 0 otherwise; assume Y is measured some time after S.
While for simplicity we assume that all n participants have S measured before Y

occurs, under a random censoring assumption the methods also apply for inference
on participants at-risk for Y when S is measured.

For risk level c ∈ [0,1], define the risk threshold when vaccinated to be

vc = inf
{
v : Pr(Y = 1|Z = 1, S ≥ v) ≤ c

}
.

In other words, the risk of disease is no greater than c in the stratum of individuals
with immune response at least vc. Such thresholds are useful for understanding
the risk of disease in a vaccinated population. For example, suppose c = 0.01 and
Pr(S ≥ vc|Z = 1) = 1; then the risk of disease in the vaccinated population is at
most 1%. As described in the Introduction, these thresholds have utility in assess-
ing disease risk at the population level in settings where only immune response
data are available.

An alternative target parameter might be valt = inf{v : Pr(Y = 1|Z = 1, S =
v) ≤ c}. This alternative parameter has a straightforward interpretation at the indi-
vidual level, providing an upper bound on disease risk for an individual with im-
mune response valt. However, this parameter does not have a straightforward pop-
ulation level interpretation, and thus is of less utility to regulatory agencies or pol-
icymakers regarding the population level disease risk when vaccinated. An excep-
tion is in settings where it is plausible to assume there is a monotonic relationship
between the immune response and disease risk, that is, Pr[Y = 1|S = v,Z = 1] is
a nonincreasing function of v. If monotonicity is assumed, then disease risk would
be at most c in the stratum of individuals with immune response at least valt. Below
nonparametric methods are proposed which do not require such a monotonicity as-
sumption, and thus vc is the target parameter of interest.

Below, methods are considered for estimation and confidence intervals (CIs) of
vc. Assume n independent copies of (S,Y ) are observed in the vaccinated individ-
uals. The estimators of vc considered below are motivated by the equalities

(1) Pr(Y = 1|S ≥ v) = Pr(Y = 1, S ≥ v)

Pr(S ≥ v)
=

∫ ∞
v Pr(Y = 1|S = s) dFS(s)∫ ∞

v dFS(s)
,

where FS(s) is the cumulative distribution function (CDF) of S. Here and else-
where distributions are conditional on Z = 1 unless stated otherwise. The denom-
inator of (1) can be estimated consistently by

∑n
i=1 I (Si ≥ v)/n. Nonparametric

and parametric estimators for the numerator of (1) are considered below, which in
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turn lead to estimators of vc. For now assume c > 0; the special case where c = 0
is considered in Section 2.2.

Note Pr(Y = 1, S ≥ v) can be estimated consistently by
∑n

i=1 I (Yi = 1, Si ≥
v)/n, which motivates the following proposed nonparametric estimator of vc:

(2) v̂c = min
{
Sj :

∑n
i=1 I (Yi = 1, Si ≥ Sj )∑n

i=1 I (Si ≥ Sj )
≤ c, j ∈ {1, . . . , n}

}
.

In words, v̂c is the minimum v of the set of observed immune responses such that
in the stratum of individuals with immune response at least v, the proportion de-
veloping disease is no greater then c. Note that v̂c is not well defined for c such that
the estimated disease risk conditional on S ≥ Sj exceeds c for all j = 1, . . . , n. In
particular, let P̂r(Y = 1|S ≥ Sj ) = ∑n

i=1 I (Yi = 1, Si ≥ Sj )/
∑n

i=1 I (Si ≥ Sj ) and
p̂min = min{P̂r(Y = 1|S ≥ Sj ) : j = 1, . . . , n}. For c < p̂min, v̂c is not well defined
because the right side of (2) equals the minimum of the empty set. Examples from
two simulated data sets are shown in Figure 1. These data were generated from
logistic regression models of the form Pr[Y = 1|S ≥ v] = expit(β0 + β1v) for dif-
ferent values of β0 and β1, where expit denotes the inverse of the logit function. In
the left panel of Figure 1, p̂min = 0 such that v̂c is well defined for all c ∈ [0,1]. On
the other hand, in the right panel of Figure 1, p̂min > 0 so v̂c is only well defined
for c ∈ [p̂min,1]. Note that v̂c being well defined is separate from existence of vc,
as v̂c not being well defined may be a result of sampling variation or insufficient
sample size.

FIG. 1. Panels (a) and (b) display nonparametric estimates of disease risk conditional on S ≥ v

for each observed v from two simulated data sets. These estimates are denoted P̂r(Y = 1|S ≥ v). For
each data set, the minimum of these estimates is denoted by p̂min.
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The estimator v̂c is compared with parametric methods that estimate p(v) =
Pr(Y = 1|S = v) using a regression model, denoted p̂(v). These parametric esti-
mators of vc are of the form

(3) min
{
Sj :

∑n
i=1 I (Si ≥ Sj )p̂(Si)∑n

i=1 I (Si ≥ Sj )
≤ c, j ∈ {1, . . . , n}

}
.

Following Storsaeter (Storsaeter et al. (1998)), p(v) may be modeled by p(v) =
expit(β0 +β1v). Define the parametric estimator v̂l

c by (3) with p̂(v) = expit(β̂0 +
β̂1v), where β̂0 and β̂1 are maximum likelihood estimators of β0 and β1.

Dunning’s scaled logit model (Dunning (2006)) suggests another parametric
estimator. Suppose individuals are either immune or susceptible to disease. Let λ

denote the risk of disease given an individual is susceptible. Let π(v) denote the
probability an individual is susceptible given an immune response v and suppose
p(v) = λπ(v), where π(v) = expit(β0d + β1dv). Denote the parametric estimator
corresponding to Dunning’s scaled logit model by v̂d

c , defined as (3) with p̂(v) =
λ̂ expit(β̂0d + β̂1dv), where λ̂, β̂0d , and β̂1d are maximum likelihood estimators of
λ, β0d and β1d .

For each of the three estimators described above, a corresponding (1−α) CI for
vc can be computed using the bootstrap percentile method (Efron and Tibshirani
(1993)) as follows. First, B independent bootstrap samples, each consisting of n

copies of (S,Y ), are drawn with replacement from {(S1, Y1), . . . , (Sn, Yn)}. Then
for each of the B samples, the estimator for vc is calculated. A (1 − α) CI for vc is
given by the α/2 and (1 − α/2) percentiles of the B estimates of vc.

2.2. Threshold for zero risk. Recall v0 is the lowest immune response thresh-
old above which an individual has no risk of disease when vaccinated. When v0
exists, the distribution of S given Y = 1 is truncated with an upper truncation point
at v0 such that fS(v|Y = 1) = 0 for v ≥ v0, where fS(v|Y = 1) is the conditional
density of S given Y = 1. The parametric models discussed in Section 2.1 imply
nonzero values for Pr(Y = 1|S = v) for all v. As a result, these models are guaran-
teed to be misspecified when finite v0 exists. While these parametric models could
be extended to allow for zero-risk above some truncation point, the corresponding
threshold estimators would not in general be expected to perform well when the
parametric component of the model is misspecified. Below, three nonparametric
estimators of v0 are considered instead.

The first nonparametric estimator is v̂0, the estimator v̂c from Section 2.1 when
c = 0. Suppose there are m vaccinated individuals who develop disease (i.e.,
Y = 1) and let Sv(1) < Sv(2) < · · · < Sv(m) denote their ordered immune response
values. Then v̂0 = min{Sj : Sj > Sv(m), j = 1, . . . , n}.

The second nonparametric estimator considered uses Cooke’s (Cooke (1979))
method for estimating an upper truncation point, defined as

ṽ0 = Sv(m) +
m−1∑
i=1

(i/m)m(Sv(i+1) − Sv(i)).
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This estimator is motivated by the general result that

(4) v0 = E(Sv(m)) +
∫ v0

0
Fm(s) ds,

where Fm(s) is the CDF of Sv(m). Due to independence, Fm(s) = {F(s)}m where
F(s) is the CDF of S given Y = 1. Plugging in the sample maximum and empirical
CDF F̂ (s) into the right side of (4) yields ṽ0. Cooke (Cooke (1979)) also derived
an asymptotic (1−α) CI for an upper truncation point, adopted here for v0. This in-
terval is denoted (Lc

0,U
c
0 ), where Lc

0 = Sv(m) +{(α/2)−1 − 1}−1(Sv(m) −Sv(m−1))

and Uc
0 = Sv(m) + {(1 − α/2)−1 − 1}−1(Sv(m) − Sv(m−1)).

Another approach to drawing inference about v0 was proposed by Siber et
al. (Siber et al. (2007)). Unlike the methods described above, this approach re-
quires data from both vaccinated and control individuals. A key assumption of
Siber et al.’s method is that Pr(Y = 1|Z = z, S ≤ v0) = Pr(Y = 1|S ≤ v0) and
Pr(Y = 1|Z = z, S > v0) = Pr(Y = 1|S > v0) for z = 0,1 (i.e., disease sta-
tus is independent of treatment conditional on the immune response). In other
words, Prentice’s (Prentice (1989)) full mediation condition for a valid surrogate
endpoint is assumed. Define vaccine efficacy (VE) as VE = 1 − pv/pc, where
pv = Pr(Y = 1|Z = 1) and pc = Pr(Y = 1|Z = 0). Let v̂s

0 denote the estima-
tor of v0 proposed by Siber et al. To calculate v̂s

0, VE is first estimated using
the sample proportions of disease for vaccine and control, denoted p̂v and p̂c

respectively. Under the Prentice mediation assumption above, VE = 1 − Pr(S ≤
v0|Z = 1)/Pr(S ≤ v0|Z = 0). Thus, if v0 were known, VE could be estimated
by 1 − P̂r(S ≤ v0|Z = 1)/P̂r(S ≤ v0|Z = 0), where P̂r(S ≤ v0|Z = z) denotes
the proportion of individuals in treatment arm z with immune response less then
or equal to v0. Therefore, v̂s

0 is calculated by determining the immune response
v such that p̂v/p̂c = P̂r(S ≤ v|Z = 1)/P̂r(S ≤ v|Z = 0). Siber et al. also pro-
posed a (1 − α) CI for v0, denoted (Ls

0,U
s
0 ). Let (LVE,UVE) be a (1 − α) CI

for VE. Then Ls
0 is calculated by determining the immune response v such that

LVE = 1 − P̂r(S ≤ v|Z = 1)/P̂r(S ≤ v|Z = 0). The upper limit Us
0 is calculated

analogously using UVE. This method has some disadvantages. It requires data on
both vaccine and control and the assumption of Prentice’s full mediation condition
may not hold in practice. Furthermore, v̂s

0 may not exist or be unique.

3. Simulation studies.

3.1. Inference on vc for c > 0. This section reports the results of simulation
studies evaluating the methods described in Section 2 for constructing point esti-
mates and 95% CIs for specified risk thresholds. For inference on vc for c > 0,
data were simulated for n independent vaccinated individuals. Immune response S

was generated from a gamma distribution with mean and variance 4. Disease out-
come Y given S was generated from a Bernoulli distribution with Pr(Y = 1|S = v)
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according to one of the four following models. The logit model was defined by
Pr(Y = 1|S = v) = expit(β0 + β1v) for 0 ≤ v < ∞. The probit model was defined
by Pr(Y = 1|S = v) = �(β0p +β1pv) for 0 ≤ v < ∞ where �(·) is the CDF of the
standard Normal distribution. The step model was defined by Pr(Y = 1|S = v) = γ

for 0 ≤ v ≤ v0, 0 < γ < 1 and Pr(Y = 1|S = v) = 0 otherwise. Finally, the scaled
logit model was defined by Pr(Y = 1|S = v) = λ expit(β0d +β1dv) for 0 ≤ v < ∞
with λ = 0.5. Each model’s parameters were determined by fixing the marginal
disease risk when vaccinated, that is, pv . For the logit, probit and scaled logit
models, the slope parameter was set to −5 to reflect a higher immune response
being associated with lower risk of disease. For each model, 1000 datasets were
generated each with sample size n = 12,500. For each dataset, v̂c, v̂l

c and v̂d
c from

Section 2 were calculated and corresponding 95% CIs for vc were computed using
the bootstrap percentile methods with B = 2000.

Table 1 presents the simulation results for each of the four models of Pr(Y =
1|S = v). The reported results include the empirical bias of each estimator, the
average CI widths and the empirical CI coverage rates for each model.

In general, the empirical bias of v̂c was negligible and the corresponding CIs
had coverage rates approximately equal to the nominal level 0.95. In contrast, the
parametric estimator v̂l

c performed poorly when the assumed model was misspec-
ified, with v̂l

c having substantial bias and the associated CIs failing to achieve the
nominal coverage level. While the parametric estimator v̂d

c had low bias for all
models, the associated CIs had coverage rates well below 0.95 in some scenar-
ios when the assumed model was misspecified. In scenarios where the parametric
models were correctly specified, CIs based on the nonparametric estimator tended
to have similar width to CIs computed using the parametric estimator, indicating
minimal loss of efficiency associated with using the nonparametric estimator.

3.2. Inference on v0. For inference on v0, data were simulated for n inde-
pendent individuals, assigned to vaccine or control in a 1:1 allocation. Immune re-
sponse S was generated from a gamma distribution with mean and variance 4 when
vaccinated and with mean and variance 2 when assigned control. Disease outcome
Y given S and Z was generated from a Bernoulli distribution using the logit, pro-
bit and step models. The logit model was defined by Pr(Y = 1|Z = 0, S = v) =
expit(γ0 + γ1v) for 0 ≤ v < ∞ and Pr(Y = 1|Z = 1, S = v) = expit(β0 + β1v)

for 0 ≤ v ≤ v0 with γ0 = β0 and β1 = −5. The probit model was defined by
Pr(Y = 1|Z = 0, S = v) = �(γ0p + γ1pv) for 0 ≤ v < ∞ and Pr(Y = 1|Z =
1, S = v) = �(β0p + β1pv) for 0 ≤ v ≤ v0 with γ0p = β0p and β1p = −5. Fi-
nally, the step model was defined by Pr(Y = 1|Z = z, S = v) = ω for 0 ≤ v ≤ v0,
0 < ω < 1 and Pr(Y = 1|Z = z, S = v) = 0 otherwise for z = 0,1. Each model’s
parameters were determined by fixing the marginal disease risks when assigned
control and when vaccinated, that is, pc and pv . For each model, 1000 datasets
were generated each with sample size n = 25,000. For each dataset, v̂0, ṽ0 and
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TABLE 1
Results of simulation study described in Section 2.1 based on 1000 simulated datasets each with
sample size 12,500 where Bias denotes empirical bias, Width denotes average CI width and Cov
denotes empirical CI coverage rate. The proposed nonparametric estimator is denoted by v̂c , the

parametric estimator based on a logistic regression model by v̂l
c and the parametric estimator

based on Dunning’s scaled logit model by v̂d
c

v̂c v̂l
c v̂d

c

Model pv c vc Bias Width Cov Bias Width Cov Bias Width Cov

Logit 0.01 0.001 1.31 0.00 0.30 0.93 0.00 0.23 0.94 −0.01 0.24 0.93
0.005 0.82 0.00 0.20 0.95 0.00 0.19 0.95 0.00 0.19 0.96
0.009 0.47 −0.02 0.38 0.96 −0.02 0.38 0.96 −0.02 0.38 0.96

0.1 0.009 2.00 0.00 0.10 0.96 0.00 0.08 0.96 0.00 0.08 0.96
0.01 1.98 0.00 0.10 0.96 0.00 0.08 0.96 0.00 0.08 0.96
0.05 1.43 0.00 0.09 0.94 0.00 0.08 0.95 0.00 0.08 0.95

Probit 0.01 0.001 1.00 0.00 0.13 0.95 0.01 0.12 0.94 0.00 0.12 0.94
0.005 0.73 0.00 0.14 0.95 −0.01 0.13 0.95 0.00 0.13 0.95
0.009 0.47 −0.01 0.33 0.95 −0.01 0.33 0.95 −0.01 0.33 0.95

0.1 0.009 1.82 0.00 0.06 0.95 −0.01 0.05 0.93 −0.01 0.05 0.93
0.01 1.80 0.00 0.06 0.95 −0.01 0.05 0.93 −0.01 0.05 0.93
0.05 1.41 0.00 0.07 0.96 0.00 0.07 0.96 0.00 0.07 0.96

Step 0.01 0.001 1.16 0.00 0.05 0.94 0.28 0.17 0.00 −0.01 0.04 0.88
0.005 0.97 0.00 0.15 0.94 −0.10 0.20 0.42 −0.01 0.13 0.94
0.009 0.61 −0.04 0.53 0.94 −0.15 0.41 0.73 −0.05 0.51 0.95

0.1 0.009 2.39 0.00 0.03 0.94 0.70 0.14 0.00 −0.01 0.03 0.76
0.01 2.38 0.00 0.04 0.94 0.64 0.14 0.00 −0.01 0.03 0.77

0.1 0.05 1.95 0.00 0.11 0.94 −0.17 0.14 0.00 −0.01 0.09 0.92

Scaled 0.01 0.001 1.43 0.00 0.29 0.95 0.10 0.25 0.69 −0.01 0.25 0.95
0.005 0.94 0.00 0.21 0.94 −0.03 0.22 0.91 0.00 0.20 0.94
0.009 0.57 −0.04 0.47 0.94 −0.08 0.42 0.91 −0.04 0.47 0.94

0.1 0.009 2.48 0.00 0.11 0.94 0.48 0.15 0.00 0.00 0.09 0.95
0.01 2.45 0.00 0.10 0.95 0.45 0.14 0.00 0.00 0.09 0.95
0.05 1.84 0.00 0.11 0.95 −0.10 0.13 0.13 0.00 0.11 0.95

v̂s
0 were calculated and 95% CIs for v0 were computed using the bootstrap per-

centile method with v̂0 and B = 2000, and the methods from Cooke and Siber et
al. Table 2 presents the simulation results.

In general, the difference in bias between ṽ0 and v̂0 was negligible. The boostrap
CIs corresponding to v̂0 never reached the nominal coverage level 0.95. Cooke’s
(Cooke (1979)) method generally performed well in terms of bias and CI coverage,
except for the probit model simulations when pv = 0.01, in which case the estima-
tor was biased and the CI coverage was lower then 0.95. In general, the estimator
v̂s

0 performed poorly when the assumed models were misspecified (logit and probit
models), with v̂s

0 having substantial bias and the associated CIs failing to achieve
the nominal coverage level.
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TABLE 2
Results of simulation study described in Section 2.2 based on 1000 simulated datasets each with

sample size 25,000 and a 1:1 vaccine:control allocation where Bias denotes empirical bias, Width
denotes average CI width and Cov denotes empirical CI coverage rate. The proposed

nonparametric estimator is denoted by ṽ0, Siber’s estimator by v̂s
0 and the maximum immune

response value for the vaccinated and diseased sample by v̂0

v̂0 ṽ0 (Lc
0,Uc

0 ) v̂s
0 (Ls

0,Us
0 )

Model (pc,pv) v0 Bias Width Cov Bias Width Cov Bias Width Cov

Logit (0.10, 0.01) 2.00 −0.18 0.25 0.00 −0.13 4.33 0.93 −0.80 0.24 0.00
(0.30, 0.10) 2.00 0.00 0.01 0.65 0.00 0.08 0.94 0.45 0.19 0.00

Probit (0.10, 0.01) 2.00 −0.73 0.14 0.00 −0.70 2.80 0.78 −0.77 0.25 0.00
(0.30, 0.10) 2.00 0.00 0.01 0.34 0.00 0.16 0.96 0.46 0.19 0.00

Step (0.10, 0.01) 1.20 0.00 0.01 0.75 0.00 0.12 0.95 0.00 0.25 0.98
(0.30, 0.10) 2.47 0.00 0.00 0.84 0.00 0.04 0.95 0.00 0.20 0.96

4. Extensions.

4.1. Background. The methods in Section 2 assume each individual’s immune
response and disease status are observed. However, in some studies this assump-
tion may not hold. Two examples are studies with nested subsampling of S by de-
sign and with right censoring of Y . Common subsampling designs are case-control
and case-cohort designs. Here case refers to individuals who develop disease dur-
ing the study, and control refers to individuals who are disease-free at the end of
study follow-up. There are multiple types of case-control studies (Vandenbroucke
and Pearce (2012)), and in this section we consider extensions of the methods
above for the “cumulative case-control study” type, for which S is measured for
all cases and for a random sample of controls (Cornfield (1951), Vandenbroucke
and Pearce (2012)).

The extended methods also apply for a case-cohort sampling design, for which
S is measured for all individuals randomly sampled into a subcohort at enroll-
ment and also for all cases not sampled into the subcohort (Prentice (1986)). Our
methods do not apply for case-control studies with risk-set sampling of S, which
sample one or more control participants at each point in time when an event Y = 1
occurs (Vandenbroucke and Pearce (2012)). In rare event studies such as our moti-
vating application of preventive vaccine efficacy trials, risk-set sampling provides
negligible benefits compared to cumulative case-control sampling, and cumulative
case-control or case-cohort studies are the norm for vaccine efficacy trials.

In addition, in some studies the time to disease is right censored for some indi-
viduals, for example, due to loss to follow-up. Methods for this scenario need to
account for missing data from right censoring as well as to the subsampling design.
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4.2. Methods. Consider the vaccinated sample from the trial detailed in Sec-
tion 2.1. We describe the methods for cumulative case-control sampling. Among
individuals with Y = 0, proportion p0 are randomly selected, by Bernoulli or with-
out replacement sampling, to form the control group, denoted G0. Similarly, a pro-
portion p1 of individuals with Y = 1 are randomly selected to form the case group,
denoted G1. Denote the union G0 ∪G1 by G. For individual i, let Mi = 1 if i ∈ G

and Mi = 0 otherwise for i = 1, . . . , n. For now, suppose Y is observed for all n

individuals but S is observed only for individuals in G.
As in Section 2, point estimation and a corresponding (1 − α) CI for vc are

desired. The scenario where c = 0 is not considered in this section. To adjust for
the missing immune response data, individuals are weighted by their probabil-
ity of being selected into G conditional on Y using inverse probability weighting
(Horvitz and Thompson (1952)). For individual i, let p0 = Pr(i ∈ G|Yi = 0) and
let p1 = Pr(i ∈ G|Yi = 1). Denote the corresponding empirical proportions by p̂0
and p̂1 respectively. Then following Robins et al. (Robins, Rotnitzky and Zhao
(1995)), the weight for individual i, denoted Wi , is defined as Wi = 1/p̂0 if Yi = 0
and Wi = 1/p̂1 if Yi = 1. The weighted nonparametric estimator v̂w

c is defined as

v̂w
c = min

{
Sj :

∑n
i=1 WiI (Mi = 1)I (Yi = 1, Si ≥ Sj )∑n

i=1 WiI (Mi = 1)I (Si ≥ Sj )
≤ c, j ∈ {1, . . . , n}

}
.

This nonparametric estimator is compared to parametric estimators of the form

(5) min
{
Sj :

∑n
i=1 WiI (Mi = 1)I (Si ≥ Sj )p̂(Si)∑n

i=1 WiI (Mi = 1)I (Si ≥ Sj )
≤ c, j ∈ {1, . . . , n}

}
,

where p(v) = Pr(Y = 1|S = v) is estimated by a parametric regression model,
denoted p̂(v). Estimators v̂wl

c and v̂wd
c are defined by (5) using the logit and scaled

logit models respectively from Section 2.1 for p(v). The regression parameters for
p(v) are estimated using weighted maximum likelihood with weight WiI (Mi = 1)

for individual i. Except in the special case where the sampling probabilities are the
same for the disease and nondiseased group, not weighting will in general lead to
biased estimates of p(v). The bootstrap percentile method is used to construct a
(1 − α) CI for vc.

The estimator v̂w
c and corresponding bootstrap CI can also be used for a cumu-

lative case-cohort design or for a two-phase sampling design, which is defined as
an extension of the cumulative case-control design that uses stratified random sam-
pling of cases and controls within strata of a discrete covariate V with K levels that
is measured in all n participants (Breslow et al. (2009)). For the latter extension,
the estimated inverse probability weights Wi are now defined using p̂yk that are
estimates of Pr(i ∈ G|Yi = y,Vi = k), which again may be obtained as empirical
fractions.

For the methods to provide valid point and confidence interval estimation of the
full population-level parameters p(v) and vc (i.e., as if S had been measured in
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all n participants), the bootstrap is used with sampling type (Bernoulli or without-
replacement) the same as that used for the observed data set. Validity of the meth-
ods relies on consistent estimation of (p0,p1) or the pyk , which is readily achieved
in studies where the investigator designs which individuals to sample from (barring
a substantial amount of happenstance missing data).

Now suppose that the n individuals are monitored starting at time 0 for incident
disease. Let Ti denote the time until disease or survival time. Suppose survival
times are subject to right censoring and let Ci denote the censoring time for in-
dividual i. Assume Ti is independent of Ci , and that we observe min{Ti,Ci} and
δi = I (Ti ≤ Ci), where δi = 0 indicates censoring. Consider some time t0 > 0
and suppose the outcome of interest is Yi = I (Ti ≤ t0), that is, disease by t0. Let
V (t0|S ≥ v) = 1 − Pr(Y = 1|S ≥ v) denote the survival function at time t0, condi-
tional on S ≥ v. In this scenario, v̂w

c needs to be adjusted since it ignores the right
censoring. The proposed nonparametric estimator v̂wk

c is defined as

v̂wk
c = min

{
Sj : 1 − V̂w(t0|S ≥ Sj ) ≤ c, j ∈ {1, . . . , n}},

where V̂w(t |S ≥ v) is the weighted Kaplan–Meier estimator (Pepe and Fleming
(1989)) of V (t |S ≥ v) with weight WiI (Mi = 1, Si ≥ v) for individual i. The
bootstrap percentile method is used to construct a (1 − α) CI for vc.

Note in the preceding paragraph that Yi is defined for a particular time point t0.
Thus the corresponding immune response threshold vc, that is, the target parameter
of inference, is also (implicitly) defined in terms of t0. More generally, we can
consider the target parameter of interest to be a function of time, say vc(t), and the
approach described above can be used to draw inference about vc(t) by evaluating
v̂ck over a grid of values of t .

4.3. Simulation studies. The methods in Section 4.2 were examined in simu-
lation studies with and without right censoring. Data were simulated for n indepen-
dent vaccinated individuals. Immune response S was generated as in Section 3.1
and 1000 datasets were generated each with sample size n = 12,500.

First, the simulations without right censoring are discussed. For these simula-
tions, Y was generated as in Section 3.1. Define n0 = ∑n

i=1 I (Yi = 0). For each
dataset, cumulative case-control sampling was done, where subsets G0 and G1
were selected without replacement of size �p0n0	 from those with Y = 0 and
�p1(n − n0)	 from those with Y = 1 respectively, where p0 = 0.2 and p1 = 1
and �·	 denotes the floor function. Then, v̂w

c , v̂wl
c and v̂wd

c were calculated as
well as 95% bootstrap CIs with B = 2000. Simulation results are presented in
Table 3.

The results were similar to those in Table 1. In general, the empirical bias of
v̂w
c was negligible and the corresponding CIs had coverage rates approximately

equal to the nominal level 0.95. In contrast, the parametric estimator v̂wl
c performed

poorly when the assumed model was misspecified, with v̂wl
c having substantial
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TABLE 3
Results of first simulation study described in Section 4.3 based on 1000 simulated datasets each
with sample size 12,500 where Bias denotes empirical bias, Width denotes average CI width and

Cov denotes empirical CI coverage rate. The proposed weighted nonparametric estimator is
denoted by v̂w

c , the weighted parametric estimator using logistic regression by v̂wl
c and the

weighted parametric estimator using Dunning’s scaled logit model by v̂wd
c

v̂w
c v̂wl

c v̂wd
c

Model pv c vc Bias Width Cov Bias Width Cov Bias Width Cov

Logit 0.01 0.001 1.31 0.00 0.29 0.95 0.00 0.26 0.94 −0.02 0.26 0.94
0.005 0.82 0.00 0.20 0.96 0.00 0.20 0.96 0.00 0.20 0.95
0.009 0.47 −0.02 0.38 0.95 −0.02 0.39 0.95 −0.01 0.39 0.95

0.10 0.009 2.00 0.00 0.10 0.96 0.00 0.10 0.95 0.00 0.10 0.94
0.010 1.98 0.00 0.10 0.96 0.00 0.10 0.96 0.00 0.10 0.96
0.050 1.43 0.00 0.09 0.97 0.00 0.10 0.96 0.00 0.09 0.96

Probit 0.01 0.001 1.00 0.00 0.14 0.96 0.00 0.15 0.95 −0.01 0.13 0.95
0.005 0.73 0.00 0.14 0.96 −0.01 0.14 0.95 0.00 0.13 0.96
0.009 0.47 −0.02 0.33 0.96 −0.02 0.33 0.96 −0.01 0.34 0.96

0.10 0.009 1.82 0.00 0.06 0.95 −0.01 0.06 0.92 −0.01 0.06 0.92
0.010 1.80 0.00 0.06 0.95 −0.01 0.06 0.93 −0.01 0.06 0.93
0.050 1.41 0.00 0.08 0.98 0.00 0.08 0.97 0.00 0.08 0.97

Step 0.01 0.001 1.16 0.00 0.05 0.94 0.28 0.25 0.00 0.00 0.05 0.91
0.005 0.97 0.00 0.15 0.95 −0.10 0.21 0.51 −0.01 0.16 0.95
0.009 0.61 −0.04 0.50 0.96 −0.15 0.39 0.83 −0.05 0.49 0.96

0.10 0.009 2.39 0.00 0.03 0.94 0.69 0.24 0.00 0.00 0.04 0.86
0.01 2.38 0.00 0.04 0.97 0.64 0.23 0.00 0.00 0.04 0.88
0.05 1.95 0.00 0.12 0.97 −0.16 0.16 0.01 0.00 0.12 0.96

Scaled 0.01 0.001 1.43 0.01 0.29 0.94 0.10 0.30 0.76 0.00 0.26 0.96
0.005 0.94 0.00 0.21 0.95 −0.03 0.23 0.93 0.00 0.22 0.97
0.009 0.57 −0.03 0.44 0.95 −0.07 0.41 0.94 −0.03 0.44 0.95

0.10 0.009 2.48 0.00 0.11 0.95 0.48 0.24 0.00 0.00 0.10 0.95
0.010 2.45 0.00 0.11 0.95 0.44 0.23 0.00 0.00 0.10 0.95
0.050 1.84 0.00 0.12 0.97 −0.10 0.16 0.22 0.00 0.12 0.97

bias and the associated CIs failing to achieve the nominal coverage level. The
parametric estimator v̂wd

c had low bias for all models, however the associated CIs
had coverage rates below 0.95 in some scenarios when the assumed model was
misspecified. The widths of CIs corresponding to v̂w

c were nearly identical to the
widths of CIs corresponding to v̂c in Table 1, indicating a minimal loss in efficiency
due to case-control sampling.

Next, results from simulations with right censoring are presented. Survival times
were generated using accelerated failure time (AFT) models, adapted from Chan
et al. (Chan et al. (2002)). In particular, T was generated by log(T ) = β0 +β1S +ε

where S was generated from a gamma distribution with mean and variance 4 and
ε was generated from either a standard Normal distribution or logistic distribution
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TABLE 4
Results of second simulation study described in Section 4.3 based on 1000 simulated datasets each
with sample size 12,500 where Bias denotes empirical bias, Width denotes average CI width and

Cov denotes empirical CI coverage rate. The proposed weighted nonparametric estimator is
denoted by v̂wk

c and the weighted nonparametric estimator which ignores censoring by v̂w
c

v̂wk
c v̂w

c

Model pv c vc Bias Width Cov Bias Width Cov

Log-Normal 0.01 0.001 1.43 −0.01 0.40 0.93 −0.19 0.32 0.37
0.005 0.91 −0.01 0.34 0.94 −0.47 0.46 0.01
0.009 0.50 −0.03 0.49 0.96 −0.30 0.13 0.01

0.10 0.009 2.19 0.00 0.17 0.95 −0.20 0.13 0.00
0.01 2.16 0.00 0.17 0.96 −0.21 0.13 0.00
0.05 1.49 0.00 0.15 0.96 −0.44 0.20 0.00

Logistic 0.01 0.001 2.41 0.01 1.10 0.93 −0.28 0.76 0.65
0.005 1.32 0.01 0.58 0.96 −0.46 0.70 0.13
0.009 0.64 −0.02 0.71 0.96 −0.44 0.16 0.02

0.10 0.009 2.88 0.00 0.35 0.94 −0.27 0.27 0.06
0.01 2.82 0.00 0.33 0.95 −0.27 0.26 0.03
0.05 1.71 0.00 0.21 0.96 −0.44 0.23 0.00

(location parameter 0 and scale parameter 1). To reflect an increasing survival
time for higher immune response values, β1 was set to 2 and β0 was determined
after fixing pv . Disease outcome Y was defined by Y = I (T ≤ t0) with t0 = 40.
Censoring time C was generated as min{E, t0} where E followed an exponential
distribution with mean t0. Sets G0 and G1 were generated using p0 = 0.2 and
p1 = 1 respectively. Given c, for each dataset, v̂wk

c and v̂w
c were computed along

with 95% bootstrap CIs with B = 2000.
Table 4 presents the simulation results for each AFT model. In general, the

empirical bias of v̂wk
c was negligible and the corresponding CIs had coverage rates

approximately equal to the nominal level 0.95. In contrast, v̂w
c generally had high

bias and the corresponding CIs failed to achieve the nominal coverage level, which
is expected since v̂w

c does not account for the right censoring.
The simulation study above was repeated with sample size 6500. Results (not

shown) were similar to those in Table 4, except the CIs had larger average widths
and coverage of the CIs corresponding to v̂wk

c was slightly below the nominal level
(89% for the log-normal model, and 87% for the logistic model).

5. Application.

5.1. Data. In this section, the methods described above are used to estimate
neutralizing antibody thresholds for virologically confirmed dengue risk levels us-
ing data from two recent dengue vaccine trials. With an estimated 390 million
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dengue infections per year and anti-viral treatment for dengue unavailable, con-
tinued research on dengue vaccination is important (World Health Organization
(2017a)). CYD14 and CYD15 were Phase 3 placebo-controlled studies aimed at
evaluating the efficacy and safety of the dengue vaccine CYD-TDV in children.
Following these two studies, CYD-TDV became the first dengue vaccine to be
licensed, beginning with Mexico in 2015 (World Health Organization (2017b)).

CYD14 was conducted in five Asian-Pacific countries (Indonesia, Malaysia,
Philippines, Thailand and Vietnam), with participants 2–14 years old (Capeding
et al. (2014)). CYD15 was conducted in five Latin American countries (Columbia,
Brazil, Mexico, Puerto Rico and Honduras), with participants 9–16 years old
(Villar et al. (2015)). The protocols for these two studies were harmonized. For
both studies, participants were randomized in a 2:1 ratio to CYD-TDV vaccine
or placebo. Participants received doses at the start of the study (month 0), at
month 6 and at month 12 with follow-up visits at months 13 and 25. The pri-
mary endpoint was time until virologically confirmed dengue disease from any of
four serotypes between months 13 and 25 (referred to simply as “dengue” below).
The primary objective was to estimate vaccine efficacy against dengue occurring
between months 13 and 25 in the per-protocol population (those with dengue oc-
curring between months 0 and 13 were excluded). Both studies used a case-cohort
sampling design where a subset of participants was randomly selected for neutral-
izing antibody titers measurement before the first dose and at months 7, 13 and 25.
All cases (dengue) also had antibody titers measured. The magnitude of neutraliz-
ing antibodies to each of the four serotypes represented in the CYD-TDV vaccine
were measured as 50% neutralization titer at the log10 scale; thus participants in
the case-cohort subset had four PRNT50 values.

Pooled analysis of participants 9–16 years old from both trials indicated that an-
tibody response was positively associated with VE and that vaccination was asso-
ciated with decreased dengue risk (Moodie et al. (2018)) (here and in Section 5.2,
antibody response refers to the average of the four serotype-specific antibody titers
from the month 13 measurements in the case-cohort subset). In a pooled analysis
of participants 9–16 years old from both trials, the estimated VE was 65.6% (95%
CI of 60.7%, 69.9%) using a Cox regression model with vaccine status and study
participation as covariates (Hadinegoro et al. (2015)).

5.2. Results. Motivated by these results, risk thresholds when vaccinated were
estimated using the CYD14, CYD15 and pooled CYD14 and CYD15 (CYD14/15)
data. The participants included in the statistical analysis were those who did not
develop dengue and were not right censored prior to month 13 and had titers mea-
sured, that is, the case-cohort subset. These participants were analyzed according
to the treatment group to which they were randomized, irrespective of per-protocol
criteria. For the pooled analysis, only participants between 9 and 16 years old were
included because 9 and older is the indication for the licensed vaccine. When an-
alyzing the CYD14 and CYD15 data individually, there were no age restrictions.
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The analysis included 6454 participants in CYD14 with 104 cases, 13,376 partic-
ipants in CYD15 with 183 cases and 16,623 participants in CYD14/CYD15 with
216 cases. For CYD14, CYD15, and CYD14/CYD15, 1145, 1458, and 2088 par-
ticipants respectively had measured antibody data.

Let Y denote dengue status, with Y = 1 denoting presence of dengue between
months 13 and 25. Figures 2(a)–2(c) display estimates of Pr(Y = 1|Z = 1, S ≥ v)

for each observed antibody response v in the vaccine arm for CYD14, CYD15
and CYD14/CYD15 respectively. Estimates were computed using the weighted
Kaplan–Meier estimator in Section 4.2 to account for case-cohort sampling and
right censored outcomes, with weights equal to the inverse of the sample pro-
portions having an observed antibody response in the strata of individuals with
and without dengue. These proportions were 1 among individuals with dengue for
each dataset and were 0.164, 0.100, 0.114 for CYD14, CYD15 and CYD14/15 re-
spectively among individuals without dengue. All three figures indicate decreasing
dengue risk as antibody response increases. Figures 2(d)–2(f) show estimates and
95% CI for risk thresholds over a range of risk levels for CYD14, CYD15 and
CY14/15. Due to the case-cohort sampling and right censoring, point estimates
and CIs were constructed using v̂wk

c as described in Section 4.2 with B = 5000.

6. Discussion. In this paper, nonparametric methods for inference on risk
thresholds were presented and examined through simulation studies. Extensions
of these methods for studies with subsampling of the immune response, such as
case-cohort and cumulative case-control and two-phase studies, and with right cen-
soring of the outcome, were also considered. Simulation studies were presented
demonstrating that the proposed nonparametric estimators tended to have mini-
mal bias and the corresponding bootstrap CIs typically cover at approximately the
nominal level. In contrast, estimators and CIs based on parametric models or Siber
et al. (Siber et al. (2007)) tended to not perform well empirically when the addi-
tional underlying assumptions did not hold.

The nonparametric methods were used for inference on neutralizing antibody
risk thresholds for specified risk levels of virologically confirmed dengue for the
CYD-TDV vaccine. In new populations adopting the CYD-TDV vaccine, these
risk thresholds may be helpful for policymakers and public health officials in esti-
mating the risk of dengue based solely on the distribution of antibody concentra-
tions. Similarly, these risk thresholds may be helpful in indirect evaluation of new
candidate dengue vaccines on the basis of antibody titer data alone by providing
initial estimates of disease risk by titer thresholds; one application is informing
Go/No-Go decisions for down-selecting vaccines for advancement to efficacy tri-
als.

In some settings it may be of interest to draw inference about immune response
risk thresholds within certain subgroups. In this case the proposed method can be
used by restricting the analysis to participants with particular (baseline) covariate
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FIG. 2. Panels (a), (c) and (e) show estimated disease risk conditional on S ≥ v by log10 titer at
month 13 when vaccinated for 9–16 years olds in CYD14 and CYD15 pooled (CYD14/15), CYD14 all
ages, and CYD15 all ages, respectively. These estimates were calculated for each observed antibody
response v in the data and are denoted by P̂r(Y = 1|Z = 1, S ≥ v). Panels (b), (d), and (f) show
estimates (red points) and 95% CIs for risk thresholds over a range of risk levels for CYD14/15,
CYD14 and CYD15 respectively.

values, resulting in estimates of covariate-specific risk thresholds. This would al-
low indirect evaluation of vaccine efficacy for subpopulations of interest or for new
populations whose covariate distributions differ from those studied in the original
efficacy trial(s). In particular, if a covariate that is correlated with both the immune
response and disease has a different distribution in the two settings (e.g., if the new
population is older), then the covariate-conditional thresholds would be needed for
predicting vaccine efficacy in immune response threshold subgroups in the new
population.
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There are several possible avenues of future research related to the methods
considered here. For example, unlike the frequentist approach used in this paper,
Bayesian methods could be developed for inference about thresholds of risk. Ad-
vantages of a Bayesian approach would include (i) not relying on asymptotic ap-
proximations and (ii) allowing prior information on thresholds to be incorporated
into the inference. On the other hand, a disadvantage of the Bayesian approach is
that the results will depend on the (subjective) choice of the prior.

Another possible area of further research would be to extend the methods de-
veloped here to allow for diagnostic uncertainty. Throughout this paper it was as-
sumed that the true disease status is observed for each individual. However, in
some settings the presence of disease may be measured with error. Extensions of
the proposed methods to allow for diagnostic uncertainty will naturally depend on
the particular setting under consideration, for example, whether the sensitivity and
specificity of the diagnostic instrument are known, whether a validation subsam-
ple is available where the true disease status is known, and so forth. Existing mea-
surement error methods, such as multiple imputation (Cole, Chu and Greenland
(2006)), could potentially be combined with the nonparametric approach devel-
oped here.

Future research could entail extending the nonparametric method presented here
to the setting where it is assumed the risk threshold is a monotonic function of im-
mune response. If this monotonicity assumption is correct, nonparametric methods
that leverage this assumption would be expected to outperform the approach in this
paper. That said, the nonparametric methods considered here have the appealing
property of not relying on such a monotonicity assumption, and thus should pro-
vide valid inference regardless of whether such an assumption holds.

Future research could also examine developing confidence bands for a set of risk
levels. The CIs presented here provide only pointwise coverage. Lastly, methods
for testing for the existence of risk thresholds is a possible area of future research.
There has been some development on methods for this type of inference for a risk
level of zero (Chen et al. (2013)), however for general risk thresholds no such
methods exist.

R code corresponding to this manuscript is available at http://github.com/
kmdono02/Risk_Threshold (Donovan, Hudgens and Gilbert (2019)). The repos-
itory includes R functions to compute the proposed nonparametric estimators, as
well as code to recreate some of the simulation studies in this paper.
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SUPPLEMENTARY MATERIAL

R code for computation of nonparametric estimators for thresholds of
risk (DOI: 10.1214/18-AOAS1237SUPP; .zip). We provide a repository which
includes R functions to compute the proposed nonparametric estimators, as well
as code to recreate some of the simulation studies in this paper.
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