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Exploratory analysis is an important first step for discovering latent struc-
ture and generating hypotheses in large biological data sets. However, when
the number of variables is large compared to the number of samples, standard
methods such as principal components analysis give results that are unstable
and difficult to interpret.

Here, we present adaptive generalized principal components analysis
(adaptive gPCA), a new method that solves these problems by incorporat-
ing information about the relationships among the variables. Adaptive gPCA
gives a low-dimensional representation of the samples with axes that are inter-
pretable in terms of groups of closely related variables. We show that adaptive
gPCA does well at reconstructing true latent structure in simulated data and
demonstrate its use on a study of the effect of antibiotics on the human gut
microbiota.

1. Introduction. Biological data matrices often come with side informa-
tion about the relationships among the variables. Two examples are microbiome
datasets, which contain bacterial abundances plus information about the phylo-
genetic relationships among the bacteria, and transcriptomic datasets which often
include gene expression levels plus information about gene interactions. In light
of this, many methods have been developed to perform statistical analyses while
taking into account variable structure. In the supervised setting we have the fused
lasso for linearly-structured variables such as those in genomic datasets (Tibshirani
and Wang (2008), Tibshirani et al. (2005), Rinaldo (2009)) and kernel-penalized
regression (Randolph et al. (2018)) for tree-structured variables in microbiome
data. The structure encoded by gene networks has also been used to aid in classifi-
cation of microarray data (Rapaport et al. (2007)), regression analysis of genomic
data (Li and Li (2008)) and understand the differences between experimental con-
ditions or biological states as in gene set enrichment analysis (Subramanian et al.
(2005)).

Fewer methods are available in the unsupervised setting, but some examples
are double principal coordinates analysis (DPCoA), (Pavoine, Dufour and Ches-
sel (2004)), fused-lasso penalized principal components analysis (PCA) (Witten,

Received April 2018; revised October 2018.
1Supported in part by a Stanford Interdisciplinary Graduate Fellowship and the Stanford Bio-X

Fellowship.
Key words and phrases. PCA, microbiome, phylogeny, empirical Bayes.

1043

http://www.imstat.org/aoas/
https://doi.org/10.1214/18-AOAS1227
http://www.imstat.org


1044 J. FUKUYAMA

Tibshirani and Hastie (2009)), weighted and unweighted Unifrac (Lozupone and
Knight (2005), Lozupone et al. (2007)), a number of Unifrac variants (Chen et al.
(2012), Chang, Luan and Sun (2011)) and edge PCA (Matsen and Evans (2013)).
Aside from DPCoA, which can accommodate general variable structures, each
of these methods is tailored to a certain type of structure, either linearly ordered
(fused-lasso penalized PCA) or structured according to a phylogenetic tree (the
Unifrac variants and edge PCA). Many of them are also distance based, limiting
the interpretability of the results when they are used for dimension reduction.

Adaptive generalized principal components analysis (adaptive gPCA) allows
the variable structure to be incorporated at either a fine or coarse scale, applies
to general types of structure on the variables and is interpretable. It encourages
similar variables to have similar loadings on the principal axes, but it adapts to the
data instead of using a fixed level of similarity. It is motivated by a probabilistic
model, making it flexible and extensible to other noise structures.

In Section 2 we introduce a motivating example in which the side information
is particularly important. Section 3 provides a review of generalized PCA, and
Section 4 introduces adaptive gPCA. Section 5 describes some properties and ex-
tensions of adaptive gPCA, and Sections 6 and 7 show the performance of adaptive
gPCA on simulated and real data.

2. Motivating example.

2.1. Overview. The motivation for this method comes from our work with mi-
crobiome data. In a standard microbiome experiment the investigator sequences
the variable segment of a gene that is present in all bacteria and uses clusters of
similar sequences as a proxy for species. The taxa defined in this way are known as
operational taxonomic units (OTUs). Because the sequences on their own are not
informative, they are placed on a reference phylogenetic tree that describes how
the sequences are related to each other and to known bacterial species. The result
of a microbiome experiment is therefore a table containing OTU abundances in
each of the samples along with a phylogenetic tree describing the OTUs, and our
goal is to analyze the OTU abundances in light of the phylogenetic relationships.

2.2. Bacterial species problem. Defining OTUs as sequence clusters can seem
arbitrary (how do you decide how big the clusters should be?), but it is related to
a debate among microbiologists about whether bacterial species reflect real bio-
logical groupings or not. The prospecies side has theoretical justifications for why
we would expect to see biologically meaningful groups of bacteria with smaller
within- than between-group sequence divergence (Cohan (2002)), while the anti-
species side cites the large amount of lateral gene transfer and homologous recom-
bination as well as the amount of genetic dissimilarity within groups traditionally
defined as species (Doolittle and Papke (2006)).
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Although microbiologists may differ on the existence of bacterial species, they
agree on the usefulness of the phylogenetic tree for describing the relationships
between bacteria; see, for example, Brenner, Staley and Krieg (2005), Doolittle and
Papke (2006), Cohan (2002). Therefore, the method we use to analyze these data
should incorporate the phylogeny instead of (implicitly) assuming that the taxa
are all equally distinct. Doing so allows us to worry less about using an arbitrary
sequence similarity cutoff to define taxa and brings the analysis more in line with
biologists’ understanding of bacterial diversity.

2.3. Antibiotic dataset. We focus on a study of the effect of antibiotics on the
composition of the human gut microbiome, described in Dethlefsen and Relman
(2011). In this study 162 stool samples were collected from three individuals be-
fore, during and after administration of two courses of the antibiotic Ciprofloxacin.
OTUs were defined by clustering together sequences with at least 95% sequence
identity using the Uclust software (Edgar (2010)), leading to 2582 OTUs. The
abundance of each OTU was defined as the number of sequences mapping to the
cluster. After defining OTUs, the consensus sequence for each OTU was mapped
to a reference phylogenetic tree from the Silva 100 reference database (Quast et al.
(2013)) giving the phylogenetic relationships among the OTUs.

In addition to the theoretical reasons for using the phylogeny when analyzing
this dataset, there are some study-specific reasons why we would expect incor-
porating the phylogeny to help our analysis. We have 2582 variables (the abun-
dances of the OTUs) and only 162 samples, making the variable loadings from
PCA difficult to interpret and unreliable (Johnstone and Lu (2009)). We do not
expect sparsity in the principal axes because the main divisions in the samples
(differences between individuals and differences due to the antibiotic) should be
associated with changes in abundances of a large number of species. Therefore,
we don’t want to use a sparsity penalty to regularize PCA. On the other hand we
do expect phylogenetically similar taxa to react in similar ways to the antibiotic,
and so regularizing using the phylogeny should help us understand the effect of
the antibiotic.

3. Background: Generalized PCA. Before we introduce adaptive
gPCA we review generalized principal components analysis (gPCA). We follow
the notation from the French multivariate tradition (Holmes (2008)) in considering
gPCA on a triple (X,Q,D), where X ∈ R

n×p is our data matrix of n samples mea-
sured on p variables, and Q ∈ R

p×p and D ∈ R
n×n are positive definite matrices.

The sample scores on the top k gPCA axes of the triple (X,Q,D) are the solutions
to the optimization problem

max
ui∈Rn

uT
i DXQXT Dui , i = 1, . . . , k

s.t. uT
i Dui = 1, i = 1, . . . , k,(1)

uT
i Duj = 0, 1 ≤ i < j ≤ k.
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Similarly, the principal axes for gPCA on the triple (X,Q,D) are given by

max
vi∈Rp

vT
i QXT DXQvi , i = 1, . . . , k

s.t. vT
i Qvi = 1, i = 1, . . . , k,(2)

vT
i Qvj = 0, 1 ≤ i < j ≤ k.

Generalized PCA can be interpreted as PCA in a nonstandard inner product
space or as PCA on observations corrupted with nonspherical noise, and we give
both interpretations below.

3.1. Nonspherical noise. Following Caussinus (1986), recall that PCA can be
formulated as a maximum likelihood problem. Suppose that our observed data
matrix is X ∈ R

n×p , and our model is

X ∼ MN n×p

(
U�VT ,D−1,Q−1)

,(3)

where U ∈ R
n×k and V ∈ R

p×k are orthogonal, � is diagonal and D ∈ R
n×n

and Q ∈ R
p×p are both positive definite. MN n×p denotes a matrix nor-

mal distribution. A random matrix X follows the matrix normal distribution
MN n×p(M,�1,�2) if and only if

vec(X) ∼ Nnp

(
vec(M),�1 ⊗ �2

)
,

where vec denotes the vectorization function and ⊗ represents the Kronecker prod-
uct.

Under the model in (3), if the row scores, principal axes and variances of gPCA
on the triple (X,Q,D) are given by Û, V̂ and �̂, then the maximum likelihood

estimate of U�VT is Û�̂V̂T . The matrix normal distribution allows us to account
for more complicated error structures than the i.i.d. model; we can have correlation
on the rows, on the columns or both. When Q = Ip and D = In, the errors are i.i.d.
N (0,1), and we recover standard PCA.

3.2. Nonstandard inner product. The other interpretation of gPCA on the
triple (X,Q,D) is as PCA in a nonstandard inner product space. We can use Q
and D to define inner products on R

p and R
n as follows:

〈x,y〉Q = xT Qy, x,y ∈ R
p,

〈x,y〉D = xT Dy, x,y ∈R
n.

From the form of the gPCA problem as shown in (1) and (2), we see that gPCA is
simply standard PCA with the standard inner product replaced with the Q- and
D-inner product for the rows and columns respectively. In particular gPCA of
the triple (X, Ip, In) is equivalent to standard PCA. The Supplementary Material
(Fukuyama (2019)) gives some intuition into how to interpret these inner product
spaces.
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3.3. Fraction of variance explained. In gPCA of (X,Q,D), the fraction of
the variance explained by the top generalized principal components is reported in
relation to the Q- or D-inner products. The formula is analogous to the fraction of
the variance explained by the top principal components in PCA. If Xk = Uk�kVT

k

gives the gPCA approximation to X, then the fraction of the variance explained by
the top k generalized principal components is

tr
(
DXkQXT

k

)
/ tr

(
DXQXT )

.(4)

4. New method: Adaptive gPCA. The idea behind adaptive gPCA is to put a
prior on the data encoding our intuition that similar variables have similar behav-
iors; that is, for microbiome data species close together in the phylogenetic tree
respond in the same way to environmental perturbations. We then use gPCA to
obtain a low-dimensional representation of the posterior estimates in this model.
This leads to a structured version of PCA in which similar variables are encour-
aged to have similar loadings. The strength of the prior is a tunable parameter, with
stronger priors corresponding to more globally structured solutions and weaker
priors corresponding to locally structured solutions. The strength of the prior is
chosen automatically by maximum marginal likelihood.

4.1. Data model. Suppose we have the following model for our data matrix X,
which we assume is centered:

μi
i.i.d.∼ N

(
0p, σ 2

1 Q
)
, i = 1, . . . , n,(5)

xi
i.i.d.∼ N

(
μi , σ

2
2 Ip

)
, i = 1, . . . , n,(6)

where μi ∈ R
p , xi ∈ R

p is the ith row of X written as a column vector, and Q ∈
R

p×p is a positive definite matrix. If we choose Q to be a kernel matrix describing
the similarities between the variables, this model incorporates our prior knowledge
about the structure of the variables through Q, and elements of μi corresponding
to similar variables will be positively correlated. We assume that Q is full rank, but
the same analysis can be performed using a rank degenerate Q by replacing Q−1

with Q+, the Moore–Penrose pseudoinverse of Q (Penrose (1955)).
We are interested in the “true” values μi , not the observed data xi ; so we com-

pute the posterior distribution of the μi ’s. Bayes’ rule gives

μi | xi = x ∼Np

(
σ−2

2 Sσ1,σ2x,Sσ1,σ2

)
,(7)

with

Sσ1,σ2 = (
σ−2

1 Q−1 + σ−2
2 Ip

)−1
.(8)

We then want a low-dimensional representation of the posteriors μi | xi . To
do this properly, we need to take into account the nonspherical posterior variance
Sσ1,σ2 and decide what values to use for σ1 and σ2.
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4.2. Generalized PCA on μi | xi . The posterior distributions μi | xi have non-
spherical variance, and so we should use gPCA and not standard PCA to get a low-
dimensional representation of the posteriors. In particular by performing gPCA on
the triple (XSσ1,σ2,S−1

σ1,σ2
, In), we obtain a low-dimensional representation of the

posterior means (the rows of XSσ1,σ2 ), taking into account that they have variance
Sσ1,σ2 .

The triple (XSσ1,σ2,S−1
σ1,σ2

, In) can be simplified to the triple (X,Sσ1,σ2, In)

(Theorem 1 below). Since we do not think X has row covariance S−1
σ1,σ2

, the struc-
tured error interpretation no longer applies, and we should think of this gPCA as
PCA in a nonstandard inner product space.

THEOREM 1. The row scores from gPCA on the posterior estimates μi | xi

from the model given by equations (5)–(6) are the same, up to a scaling factor, as
the row scores from gPCA on (X,Sσ1,σ2, In). The principal axes from gPCA on the
posterior estimates are the same, up to a scaling factor, as the principal axes from
gPCA on (X,Sσ1,σ2, In) premultiplied by Sσ1,σ2 .

PROOF. See the Supplementary Material (Fukuyama (2019)). �

Theorem 1 shows that when we perform gPCA on the posteriors obtained from
the model (5)–(6), different scalings of the prior and the noise variances lead to
gPCAs on the same data matrix with different row inner products.

4.3. Selection of σ1 and σ2. Our second task is to choose σ1 and σ2. They
can be estimated using the model described by equations (5)–(6). The marginal
distribution of xi in that model is

xi
i.i.d.∼ N

(
0p, σ 2

1 Q + σ 2
2 Ip

)
.(9)

Up to a constant factor, the overall log likelihood of the data is therefore

�(X;σ1, σ2) = −n

2
log

∣∣σ 2
1 Q + σ 2

2 Ip

∣∣ − n∑
i=1

1

2
xT

i

(
σ 2

1 Q + σ 2
2 Ip

)−1
xi ,(10)

and we can choose σ1 and σ2 to maximize �(X;σ1, σ2).
This likelihood is not convex, and there is no closed-form solution for the max-

imum, but we can transform it into one-dimensional optimization on the unit in-
terval. Let

r = σ 2
1 /

(
σ 2

1 + σ 2
2
)
, σ 2 = σ 2

1 + σ 2
2 .(11)

Let Q = V�VT be the eigendecomposition of Q where V is an orthogonal matrix
and � is diagonal containing the eigenvalues λ1, . . . , λp . Finally, let x̃i = VT xi
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and x̃ij be the j th element of x̃i . The log likelihood in the new parameterization is

�(X; r, σ ) = −np

2
σ 2 log

∣∣rQ + (1 − r)Ip

∣∣
(12)

− σ−2
n∑

i=1

1

2
xT

i

(
rQ + (1 − r)Ip

)
xi

= −np

2
σ 2

p∑
j=1

log(rλj + 1 − r)

(13)

− σ−2
n∑

i=1

p∑
j=1

1

2

x̃2
ij

rλj + 1 − r
.

Based on the expression above, we can find a closed-form solution for the maxi-
mizing value of σ 2 for any fixed r :

σ 2∗
(r) = 1

np

n∑
i=1

p∑
j=1

x̃2
ij /(rλi + 1 − r).(14)

We can then rewrite the likelihood as a function of r only. It is still nonconvex
and lacks a closed-form solution, but, since we have a single parameter in the unit
interval, the optimization can easily be performed numerically.

4.4. Summary. Putting everything together, adaptive gPCA is the following
procedure:

1. Let X ∈ R
n×p be the centered data matrix, and let Q ∈ R

p×p be a kernel
matrix containing the similarities between the variables.

2. Find σ̂1 and σ̂2 that maximize the likelihood function in equation (10).
3. Let S = (σ̂−2

1 Q−1 + σ̂−2
2 Ip)−1, and perform gPCA on the triple (X,S, I).

The sample scores for adaptive gPCA are given by the row scores of this gPCA,
and the variable scores for adaptive gPCA are given by the column scores of this
gPCA premultiplied by S.

This gives us a structured version of PCA in which similar variables have similar
loadings on the principal axes. In the next section we explain what this structure
looks like and why it occurs.

5. Properties and extensions of adaptive gPCA. In this section we describe
some properties of adaptive gPCA, show how it can be extended to accommodate
other noise structures or uncertainty in the structure of the variables and describe
its relationship with existing methods.
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5.1. Properties.

5.1.1. Global vs. local structure. To describe the adaptive gPCA solutions, we
introduce the concepts of global and local structure. If a solution reflects the global
structure of the variables, the distances between dissimilar variables are preserved,
that is, sets of variables with very dissimilar loadings on the principal axes will also
be very dissimilar according to our prior definition of similarity on the variables. If
a solution reflects the local structure of the variables, the distances between similar
variables are preserved.

In adaptive gPCA we use an inner product from the family Sσ1,σ2 . The family of
inner product matrices Sσ1,σ2 nominally has two parameters, but modulo a scaling
factor only the relative sizes of σ1 and σ2 matter, and we can think of it as one di-
mensional. The endpoints of this family are obtained as σ1/σ2 → 0 or as σ1/σ2 →
∞. As σ1/σ2 → 0, σ−2

1 Sσ1,σ2 → Q, and as σ1/σ2 → ∞, σ−2
2 Sσ1,σ2 → Ip . Using

Q as a row inner product gives the most globally structured solutions, using Ip

gives the most locally structured solutions and using Sσ1,σ2 in between those two
extremes gives solutions with an intermediate type of structure.

The variable loadings from gPCA on the antibiotic dataset with some row inner
products from the Sσ1,σ2 family are illustrated in Figure 1(A). In these plots each
point represents a variable (for this dataset, a bacterial taxon), and the points are
colored by phylum. We see that in gPCA on (X,Q, In), the taxa from different
phyla load in disjoint regions of the principal plane. This corresponds to the taxa
loadings respecting the global structure: taxa from different phyla are very dissim-
ilar from each other, and so they are required to have very dissimilar loadings on
the principal axes.

As we decrease σ2 and/or increase σ1, the local structure is preserved, but the
global structure is lost. In particular, as σ1 increases compared to σ2, closely related
taxa continue to have similar loadings on the principal axes, but taxa from different
phyla are no longer on opposite halves of the principal plane. The smaller amount
of emphasis on the global structure means that the variable loadings continue to be
structured phylogenetically, but at finer scales.

The most locally structured endpoint is obtained as σ1/σ2 → ∞, that is, as the
row inner product approaches Ip . As we see in the facet labeled Ip in Figure 1(A),
when we use this inner product we see no relationship between the phylogeny
and the taxa loadings. This is “locally” structured in the sense that only the zero
distances between each variable and itself are preserved.

5.1.2. Relationship with double principal coordinates analysis. The family of
row inner product matrices Sσ1,σ2 bridges the gap between standard PCA and
double principal coordinates analysis (DPCoA), (Pavoine, Dufour and Chessel
(2004)), a method for incorporating information on the structure of the variables.
DPCoA creates a low-dimensional representation of ecological count data (the
abundances of species at different locations) taking into account information about
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FIG. 1. Plots of the variable loadings from gPCA on (X, ·, In), where X is a data matrix taken from
the antibiotic study. Top panel (A) uses row inner products from the Sσ1,σ2 family, bottom panel (B)
uses row inner products from the αQ + (1 − α)Ip family. The inner product matrix used is given in
the facet label.

the similarities between species. DPCoA takes as input a matrix of Euclidean dis-
tances between the species and a matrix giving the abundance of each species at
each sampling site. It consists of the following steps:

1. Perform a full multidimensional scaling on the similarities between species.
2. Place each sampling site at the center of mass of the species vector corre-

sponding to that site.
3. Perform PCA on the matrix of sampling site coordinates and project both the

sampling site points and the species points onto the PCA axes.

Purdom (2011) showed that DPCoA is equivalent to gPCA using a certain nonstan-
dard inner product for the special case of tree-structured variables, and the result
can be extended to any Euclidean distance structure on the variables. For general
Euclidean distances on the variables, we have the following:
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THEOREM 2. Suppose we have a count matrix X ∈ R
n×p and a set of Eu-

clidean distances between the p variables. We construct a matrix δ ∈ R
p×p con-

taining the squares of the distances between the variables. Let wL = X1/1T X1,
wS = XT 1/1T X1, and for any weight vector w let Pw = I − 1wT and Dw denote
the diagonal matrix with w on the diagonal. Then:

1. The row scores from DPCoA on X using the distances implied by δ are
the same (up to a sign change) as the row scores obtained from gPCA on
(D−1

wL
XPwS

,PwS
(−δ/2)PwS

,DwL
).

2. If the column scores from gPCA on (D−1
wL

XPwS
,PwS

(−δ/2)PwS
,DwL

) are
given by Z, then the column scores from DPCoA on X using the distances implied
by δ are the same (up to a sign change) as P wS

(−δ/2)PwS
Z.

PROOF. See the Supplementary Material (Fukuyama (2019)). �

DPCoA was designed for count data, and it implicitly transforms the counts
to relative abundances and retains the row and column sums as weights provid-
ing information on how accurately the samples were measured (this procedure
is standard in French multivariate analysis of count data; see, e.g., the section
on correspondence analysis in Holmes (2008)). Therefore, the gPCA formulation
of DPCoA uses weighted centering matrices (PwS

) and a column inner product
that weights the rows by their counts (DwL

). In the more general setup we do not
have measures of the precision for the variables or the samples, and so the natural
generalization of DPCoA to noncount data would be to weight all the variables
equally. With this modification the DPCoA triple becomes (XP,P(−δ/2)P, In),
where P = Ip − 1p1T

p/p is a centering matrix. The row inner product matrix here

is equal to limσ1/σ2→0 σ−2
1 Sσ1,σ2 , and the data matrix is simply a standard centered

data matrix. Thus, we see that a slight generalization of DPCoA is the same as
gPCA using the globally structured of the endpoint in the Sσ1,σ2 family of row
inner products.

5.1.3. Comparison with another family of inner product matrices. We just
showed that the family of inner products defined by the model in Section 4.1
bridges the gap between DPCoA and PCA. This might lead us to ask about other
families of inner products with Q and I as endpoints. In particular another way to
interpolate between an inner product matrix Q and the standard inner product Ip is
to use the family αQ+ (1−α)Ip with 0 ≤ α ≤ 1. As with Sσ1,σ2 , the endpoints are
Ip and Q, but path in between is different. The variable loadings on the principal
axes from gPCA using members of this family are plotted in Figure 1(B). Unlike
in the Sσ1,σ2 family, as we move from Q to Ip the local structure is lost while
the global structure is preserved. The taxa loadings using the αQ + (1 − α)Ip

inner product look like a noisy version of the taxa loadings using the Q inner
product. This is undesirable because if the axes given by the gPCA on (X,Q, In)
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were not useful, a noisy version of these axes is unlikely to be much better. We
gain very little at the cost of losing the local structure and interpretability of the
variables. This behavior is discussed further in Section 3 of the Supplementary
Material (Fukuyama (2019)).

5.1.4. Relationship with factor analysis. The model in (5)–(6) used to define
adaptive gPCA gives the same marginal likelihood for the data as the following
confirmatory factor analysis (CFA) model:

ui ∼ N
(
0p, σ 2

1 Ip

)
, i = 1, . . . , n,(15)

xi | ui ∼ N
(
Fui , σ

2
2 Ip

)
, i = 1, . . . , n,(16)

where the columns of F ∈ R
p×p are the prespecified latent factors, defined as

F = VD1/2, where as before V ∈ R
p×p has as columns the eigenvectors of Q,

D ∈ R
p×p is a diagonal matrix with diagonal elements corresponding to the eigen-

values of Q, xi ∈ R
p is the ith row of X, written as a column vector, and ui ∈ R

p

gives the scores of the ith sample on each of the p latent factors.
In model (15)–(16) we can obtain posterior estimates of the ui’s, the sample

scores along the fixed latent factors, and it is natural to ask about the relationship
between the posterior estimates in the factor analysis model and the sample scores
in adaptive gPCA. The posterior means of the sample scores in the CFA model
turn out to be a linear transformation of the posterior means found in equation
(7), specifically, E[ui | xi] = D1/2VT E[μi |xi] (Theorem S1 in the Supplementary
Material, Fukuyama (2019)).

Despite the equivalence between the factor analysis model and the model used
to motivate adaptive gPCA, the factor analysis interpretation does not help us in
our initial task of obtaining a low-dimensional representation of the samples. In the
model defined in equations (15)–(16), we have p latent factors, and so the sample
scores along the latent factors have the same dimensionality as the raw data.

If we wanted a low-dimensional representation of the samples based on a CFA
model, we could imagine two strategies. We could take only the sample scores
along the top k latent factors, or we could modify the model so that it only incor-
porates k latent factors, that is, use the confirmatory factor analysis model

ui ∼ N
(
0k, σ

2
1 Ik

)
, i = 1, . . . , n,(17)

xi | ui ∼ N
(
F(k)ui , σ

2
2 Ip

)
, i = 1, . . . , n,(18)

where F(k) = V(k)D
1/2
(k) , V(k) ∈ R

p×k has as columns the top k eigenvectors of Q,

D(k) ∈ R
k×k is a diagonal matrix with diagonal elements corresponding to the top

k eigenvalues of Q, ui ∈ R
k gives the scores of the ith sample on each of the k

latent factors, and xi is as before.
These two dimension-reduction strategies give the same k-dimensional repre-

sentations of the samples for any value of k. The posterior means of the sample
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scores estimated in model (17)–(18) are the same as the posterior means of the
sample scores estimated in model (15)–(16), restricted to the first k factors, and that
representation is simply a projection onto the top k eigenvectors of Q followed by
a rescaling (Theorem S1 in the Supplementary Material, Fukuyama (2019)). The
scores obtained via these two strategies are not the same as the adaptive gPCA
sample scores, and the space the samples are projected onto does not depend on
the data matrix X. The two CFA-based strategies give to low-dimensional repre-
sentations similar to those given by DPCoA, as shown in Figure S3 and Section 4
of the Supplementary Material (Fukuyama (2019)).

There is, however, a way to obtain the adaptive gPCA sample scores and prin-
cipal axes from the p-factor CFA model defined in equations (15)–(16). If we take
the sample scores from the full-dimensional CFA model and perform a weighted
PCA, where the weight for factor j is taken to be σ−2

1 + σ−2
2 D−1

jj , then the result-
ing sample scores on the top k principal axes are the same as the sample scores
in adaptive gPCA. The principal axes from this weighted PCA are linear combi-
nations of the latent factors, and when rewritten in terms of the original variables
are the same as the principal axes in adaptive gPCA (Theorem S2 in the Supple-
mentary Material, Fukuyama (2019)). We see that here, different values of σ1 and
σ2 lead to different weights, and in particular, when σ2 � σ1, the weights on the
latent factors are approximately equal, whereas when σ1 � σ2, the latent factors
corresponding to the top eigenvectors of Q are downweighted.

Therefore, we see that the added value of adaptive gPCA is that it uses the data
to find the subspace on which to project the samples, whereas the corresponding
confirmatory factor analysis model does not. In CFA, no matter what values of σ1
and σ2 we use, and no matter how many of the latent factors we include when
estimating the covariance, the sample scores along the latent axes will always be
the same (up to a scaling factor that depends on σ1 and σ2). In contrast in adaptive
gPCA, different estimates of σ1 and σ2 lead to different choices principal axes and
therefore different choices of the subspace on which to project the samples.

5.2. Extensions.

5.2.1. Choice of kernel matrix. Q can be any positive definite similarity ma-
trix on the variables. This sort of similarity matrix is often a natural way to encode
relationships between variables; for example, if the variables are the nodes in a
graph, there are many graph kernels available to describe the similarities between
the nodes, mostly based on the graph Laplacian (Kondor and Lafferty (2002)).

We might also start out with distances between variables instead of similarities.
If these distances are Euclidean (a distance matrix on a set of p objects is called
Euclidean if there exists an embedding of p points in Euclidean space such that the
distances between the points match the distances provided), a natural way to create
a positive definite similarity matrix is as follows: Suppose δ ∈ R

p×p is a matrix
with the squared distances between the variables, and let P = Ip − 1p1T

p/p be the
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centering matrix. Then −PδP is a positive definite similarity matrix. This matrix
contains the inner products between points if they are embedded in R

p such that
the distances between them match the distances implied by δ, and they are centered
around the origin.

5.2.2. Uncertainty in the kernel matrix. Another issue in the choice of Q is
what to do if we have uncertainty in the structure of the variables, as we might if
we use a phylogenetic tree that was itself estimated from data. Based on the model
we introduced in Section 4.1, introducing uncertainty into Q is just a question of
rewriting the model with another level:

Q ∼D,(19)

μi ∼ Np

(
0p, σ 2

1 Q
)
, i = 1, . . . , n,(20)

xi ∼ Np

(
μi , σ

2
2 Ip

)
, i = 1, . . . , n,(21)

where D denotes a distribution over positive definite matrices in R
p×p describing

the uncertainty in the variable structure. Adaptive gPCA can easily be modified to
work with this model. In principle we can still write the marginal likelihood of X,
and we can estimate σ2, σ1, and Q by maximum marginal likelihood. Then, instead
of thinking of Q as fixed and performing gPCA on (X, (σ̂−2

1 Q−1 + σ̂−2
2 Ip)−1),

we would perform gPCA on (X, (σ̂−2
1 Q̂−1 + σ̂−2

2 Ip)−1, In). Whether this is com-
putationally feasible would depend on the particular form of the distribution D
describing Q, but, after estimating Q, all of the derivations would procede in the
same way as for fixed Q.

5.2.3. Other noise structures. Adaptive gPCA can also be modified to accom-
modate other noise models but with an additional computational cost. If we retain
the assumption of normal noise but replace the noise covariance with a scalar mul-
tiple of W, that is, change the model given in equations (5)–(6) to

μi
i.i.d.∼ Np

(
0p, σ 2

1 Q
)
, i = 1, . . . , n,(22)

xi
i.i.d.∼ Np

(
μi , σ

2
2 W

)
, i = 1, . . . , n,(23)

following the same argument leads to gPCA on the triple (X, (σ̂−2
1 Q−1 +

σ̂−2
2 W)−1, In), where σ̂1 and σ̂2 are again estimated by maximum marginal like-

lihood. The main difference is that when using W instead of Ip as the noise, the
likelihood computations become more computationally expensive. Recall that the
estimation of σ1 and σ2 required a numerical optimization step, searching for the
best value of a parameter r . When using W �= Ip , checking the likelihood at each
value of r requires the eigendecomposition of a p × p matrix compared with just
one for any number of likelihood evaluations when we use W = Ip .
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6. Simulations. We evaluated the performance of adaptive gPCA on simu-
lated datasets with varying amounts of structure on the principal axes. To match
our motivating example of microbiome abundance data with information about the
phylogenetic relationships between the bacteria, the variables are related to each
other by a phylogenetic tree. We used a random tree (using the function rtree
in the ape package (Paradis, Claude and Strimmer (2004)) in R (R Core Team
(2017)), and the similarity matrix Q ∈ R

p×p encoding the tree structure was

Q = 1sT + s1T − δ,(24)

where s ∈ R
p gives the distance between each leaf node and the root and δ ∈ R

p×p

gives the distance on the tree between the leaf nodes. This definition gives Q with
Qij proportional to the amount of shared ancestry between nodes i and j , and it is
also equal to the covariance matrix of a Brownian motion on the phylogenetic tree.

In our simulations we compared four procedures:

1. PCA, that is, generalized PCA of the triple (X, Ip, In).
2. Generalized PCA of the triple (X,Q, In).
3. Generalized PCA of the triple (X,0.1Q + 0.9Ip, In).
4. Adaptive gPCA.

Generalized PCA of (X,Q, In) is the extension of DPCoA to real-valued data de-
scribed in Section 5.1.2 and corresponds to the limit of our model when the prior
dominates.

We included generalized PCA of (X,0.1Q + 0.9Ip, In) to compare a member
of the “ridged” family described in Section 5.1.1 to adaptive gPCA. There is no
simple way to choose a member of the ridged family automatically, and so we
chose 0.1Q + 0.9Ip because it gave results that were qualitatively intermediate
between using Q and using Ip .

6.1. Simulation A. In the first simulation we generated our data matrix X as
rank-one plus noise:

X = uvT + E,(25)

Eij
i.i.d.∼ N

(
0, σ 2)

, i = 1, . . . , n, j = 1, . . . , p,(26)

u ∼ Nn(0n, In),(27)

v ∼ Np

(
0p,V(m)VT

(m)

)
.(28)

V(m) ∈ R
p×m denotes the matrix whose columns are the top m eigenvectors of Q.

The value of m governs how smooth v is: if m is small, v has coefficients that are
very smooth on the tree, and as m increases the coefficients get more and more
rough. At the extreme case of m = p, V(m)VT

(m) = Ip , and there is no relationship
at all between the coefficients of v and the tree structure.



ADAPTIVE GPCA 1057

FIG. 2. Results from simulation A. Correlations between the true and estimated principal axis (top)
and true and estimated scores (bottom) for different values of m (columns, see text for explanation
of m).

We computed the correlations between the true parameters and the parameters
estimated by the four methods for a range of values of m and σ . Figure 2 shows
the results. Both standard PCA and adaptive gPCA recover the principal axis and
the scores perfectly when there is no noise, but gPCA on (X,Q, In) does poorly
at recovering the principal axis unless there is very strong long-range dependence
in the coefficients of the principal axis (m = 1). gPCA on (X,0.1Q + 0.9Ip, In)

generally does a bit better than gPCA on (X,Q, In), but it never does better than
adaptive gPCA and usually does substantially worse. The performance of all the
methods degrades with increasing noise, but adaptive gPCA does the best when
the axes are at least moderately smooth.
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We extended this simulation to create rank-three and rank-five plus noise matri-
ces to see how well the methods performed when the low-rank structure was not
rank one. The performances of the four methods are qualitatively similar, but in
the rank-three and rank-five cases including information about the structure gives
a bigger improvement over standard PCA than it does in the rank-one case. The
results are shown in Figure 4.

6.2. Simulation B. In the second simulation we used a different noise model
and a different method for choosing principal axes, with the goal of matching
the microbiome example as closely as possible and to demonstrate that normally-
distributed errors are not required for adaptive gPCA to perform well. We again
have a tree T describing the relationships between the variables. Define the func-
tion

desc(b,T ) = {j : species j descends from branch b of T }.(29)

The principal axes are indicator vectors of clades. For any b ∈ T , let v ∈ R
p be

such that

vj =
{

1/
∣∣desc(b,T )

∣∣1/2
j ∈ desc(b,T )

0 otherwise.
(30)

For a given principal axis v, we generate a count matrix C ∈ R
n×p as:

Cij ∼ Pois(uivj + eij ),(31)

ui ∼ Uniform(0,1), i = 1, . . . , n,(32)

eij ∼ Gamma(k,1), i = 1, . . . , n, j = 1, . . . , p.(33)

C is then arcsinh transformed and centered to obtain a matrix X ∈ R
n×p . X is

used as input to the methods being compared. We chose this simulation strategy to
match our microbiome example. We start off with a sparse, heteroskedastic count
matrix, apply an approximate variance-stabilizing transformation and then perform
dimensionality reduction on the variance stabilized data matrix.

For this simulation, we again computed the correlations between the true pa-
rameters and the parameters estimated by the four methods. We did this for several
values of k (which controls the error variance) and every branch b in the tree such
that 50 < |desc(b,T )| < 200. Figure 3 shows the results.

Adaptive gPCA has the best performance of all the methods, and it recov-
ers principal axes corresponding to any of the branches. gPCA on (X,Q, In)

and (X,0.1Q + 0.9Ip, In) are almost identical. Interestingly, the performance of
these two methods depends strongly on the particular branch used (unlike adaptive
gPCA and standard PCA) and is not purely a function of the number of descen-
dants of the branch. We suspect that this is due to these methods being strongly
biased toward one specific principal axis (the top eigenvector of Q; see the Sup-
plementary Material (Fukuyama (2019)) for why this would be). The cases where
they perform well are ones where the true principal axis was similar to the favored
axis while the cases they perform poorly are the opposite.
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FIG. 3. Results from simulation B. Correlations between the true and estimated principal axis
(top) and the true and estimated scores along the principal axis (bottom) for different levels of noise
(columns, labeled by shape parameter k in (33) in the text). For each simulation, the principal axis
is non-zero on all the leaves descending from a certain branch in the tree, and the x-axis gives the
number of non-zero elements.

6.3. Simulation C. To compare how the methods perform when the latent
structure is of higher rank, that is, when X is rank-k plus noise, for k > 1, we
simulated X as follows:

X = UWT + E,(34)

Eij
i.i.d.∼ N

(
0, σ 2)

, i = 1, . . . , n, j = 1, . . . , p,(35)

Uij
i.i.d.∼ N (0,1), i = 1, . . . , n, j = 1, . . . , k,(36)

W·j ∼ N
(
0p,V(m)VT

(m)

)
, j = 1, . . . , k.(37)

U ∈ R
n×k , W ∈ R

p×k and W·j denotes the j th column of W. As described in
Section 6.1, V(m) ∈ R

p×m denotes the matrix whose columns are the top m eigen-
vectors of Q.

We simulated X from this model for k = 3, k = 5 and a range of values of m

and σ . We applied the four methods and computed the RV coefficients (Escoufier
(1973)) between the true and estimated scores on the top k axes and the true and
estimated k-dimensional principal subspace. The RV coefficient is a generalization
of correlation to matrices, and the RV coefficient between two matrices X ∈R

n×p ,
Y ∈ R

q×q is defined as

RV(X,Y) = tr(XXT YYT )√
tr(XT X) tr(YT Y)

.
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FIG. 4. RV coefficients between true and estimated scores and principal axes for rank-3 (top two
rows) and rank-5 (bottom two rows) models.

The results are shown in Figure 4. They are qualitatively similar to the results from
the rank-one simulations, although here the structured methods have more of an
advantage over standard PCA than they do in the rank-one simulations.

6.4. Summary of simulation results. In all of these simulations, the principal
axes are structured according to the tree, but the data is not generated according
to the data model described in Section 4.1. This suggests that adaptive gPCA is
not overly dependent on the data coming from the model we used to motivate it
and can perform well in many situations. In particular it is not dependent on the
data coming from a multivariate normal distribution or having multivariate normal
error structure.

We do see that adaptive gPCA performs best when the true latent axes are fairly
smooth on the tree and can have similar performance to DPCoA when the amount
of noise is large or the latent structure is not very smooth on the tree. However,
there is a simple diagnostic for this situation, the relative sizes of σ1 and σ2. If
σ2 is very large compared with σ1, adaptive gPCA will give similar results to
DPCoA. σ1 being much smaller than σ2 also suggests that the tree-structured prior
is not a very good fit to the data and some caution is warranted in relying on the
probabilistic interpretation.
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7. Real data example. To illustrate adaptive gPCA on real data, we return to
the study described in Section 2. To review, the goal was to understand the effect
of antibiotics on the gut microbiome, and the data set comprises fecal samples
taken from three subjects before, during and after two courses of Ciprofloxacin.
The samples are labeled either “abx” or “no abx.” “abx” corresponds to samples
taken while the subjects were taking the antibiotic or in the first week after the
antibiotic was discontinued, and “no abx” refers to all the other samples. Bacterial
abundances were measured using the procedure described in Section 2. For each
of the samples we have the abundances of 1651 bacterial taxa and a tree describing
the phylogenetic relationships between them.

Since microbiome data come in as heteroskedastic counts, we transformed the
data before applying any of the methods. In general the correct transformation de-
pends on the data-generating process, but for microbiome datasets some common
choices are a started log transformation, a variance-stabilizing transformation from
the package DESeq2 (McMurdie and Holmes (2014), Callahan et al. (2016), Love,
Huber and Anders (2014)) or a centered log-ratio transformation if we are think-
ing of the data as compositional (Fernandes et al. (2014), Filzmoser, Hron and
Reimann (2009)). For the data analyzed in this paper, we used both a started log
and centered log-ratio transform and found comparable results. The figures show
the results using the started log transformation.

We applied adaptive gPCA, DPCoA and standard PCA to this data set. In adap-
tive gPCA the similarity matrix Q used to incorporate the phylogeny is created
in the same way as in the simulations (equation (24)); Qij gives the amount of
shared ancestry between species i and j . For adaptive gPCA the value of r (de-
fined in equation (11)) was estimated as 0.46, indicating that the prior and the data
were given approximately equal weights and that the tree prior is reasonable for
the data.

Figure 5 shows the output from the three methods. The top pair of plots shows
DPCoA, the middle adaptive gPCA and the bottom standard PCA. In each pair the
plot on the left shows the sample scores on the first and second principal axes, and
the plot on the right shows the variable loadings on the first and second principal
axes. All the pairs of plots can be interpreted as biplots, so if a sample has a large
score on, for example. the first principal axis, we expect it to have larger values for
variables that have large loadings on the first principal axis.

The three methods give very different results. Starting with the sample plots,
DPCoA shows a small antibiotic effect, but hardly any subject effect. PCA and
adaptive gPCA completely separate the samples from the different subjects and
give some separation between the abx and no abx samples. The second adap-
tive gPCA axis describes the antibiotic perturbation very well. Plotting the sample
scores along the second axis over time shows that these scores are stable when the
subjects are not taking the antibiotic, drop upon administration of the antibiotic
and return to baseline when the treatment is stopped (Figure 6).
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FIG. 5. Sample (left) and taxon (right) plots for DPCoA (top), adaptive gPCA (middle), and stan-
dard PCA (bottom). Colors in the sample plots represent a binning of the sample points into abx
(either when the subject was on antibiotics or the week immediately after) or no abx (all other
times). The colors in the taxon plots represent phyla.

FIG. 6. A plot of the scores along the second axis from adaptive gPCA by time, plotted for each
of the three individuals. We see very clearly that this axis is capturing taxa that change during the
administration of the antibiotic but which are stable otherwise. The corresponding plots for PCA and
DPCoA are much less compelling.
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The three methods also give very different variable (taxa) loadings. The taxa
loadings in PCA are not associated with the phylogeny. Similar taxa are no more
likely to have similar loadings on the principal axes than dissimilar taxa. On the
other end of the spectrum, the taxa loadings from DPCoA are very constrained
by the tree, and in particular the loadings are such that variables corresponding
to taxa in different phyla are present in disjoint regions in the principal plane.
This corresponds to the global structure imposed by DPCoA that we described
in Section 5.1.1. Adaptive gPCA gives results somewhere in the middle. We see
that phylogenetically similar taxa are more likely to have similar loadings on the
principal axes, but the phenomenon is more local—very closely related taxa have
similar loadings, but distantly related taxa are not necessarily far apart.

A note about the variance explained: as described in Section 3.3, the fraction
of variance explained is reported with respect to the gPCA inner product. Figure 5
indicates that the first DPCoA axes explain a very large fraction of the variance in
terms of the Q inner product, but this is primarily due to Q being approximately
low rank. If we compute the fraction of the variance explained by each of the axes
in terms of the standard inner product instead, we get 20.1% and 14.6% for the
fraction of variance explained by the top two PCA axes, 7.6% and 5.4% for the
first two adaptive gPCA axes and 0.7% and 1% for the top two DPCoA axes. From
this perspective it looks like adaptive gPCA is doing a better job of trading off
between structure in the variables and fraction of variance explained than DPCoA.

Since the purpose of the study was to understand the effect of antibiotics on
the gut microbiome and since the second adaptive gPCA axis seems to describe
the disturbance due to the antibiotic, we looked in more detail at the behavior of
the taxa with large positive or negative loadings on the second adaptive gPCA
axis. The 27 taxa with the largest positive scores along the second adaptive gPCA
axis are all of the genus Faecalibacterium. Although different members of the
genus are present or absent in different subjects, when present they all decline in
relative abundance during antibiotic treatment and rebound when the treatment is
discontinued (see the top row of Figure 7). Consistent with what we see in Figure 6,
Subject E shows much less of a disturbance compared to subjects D and F, and in
subject F the second course of antibiotics yields a much smaller disturbance than
the first.

A similar result holds for the 21 members of the Firmicutes phylum with the
largest negative scores on the second adaptive gPCA axis. The members of this
group are not present in every subject, but when they are present their abundance
tends to increase with the antibiotic treatment.

This analysis shows us the interpretive advantage of adaptive gPCA over stan-
dard PCA and DPCoA. In standard PCA the axes are difficult to interpret because
of the lack of relationship between the phylogenetic structure and the loadings of
the variables on the principal axes. On the other hand DPCoA misses some of
the latent structure we know is present in the data, consistent with the simulations
showing that DPCoA only performs well when the latent axes are very smooth on
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FIG. 7. Normalized abundances for two groups of taxa. Each line represents a taxon, each facet
represents a subject. The top row shows the normalized abundances of each of 27 OTUs with the
largest positive loadings on the second adaptive gPCA axis, and the bottom row shows the normalized
abundances of the 21 Firmicutes with the largest negative loadings on the second adaptive gPCA axis.

the tree. Adaptive gPCA recovers the latent structure well and also has axes that are
interpretable in terms of small groups of related taxa. This sort of structure helps
us understand the underlying biology and can help provide suggestions about what
hypotheses to consider next.

8. Conclusion. In this paper we presented a method for creating a low-
dimensional representation of a data matrix while taking into account side infor-
mation about the relationships between the variables. This is done by imposing a
prior encoding the relationships between the variables and performing PCA on the
resulting posteriors, taking into account the fact that the posteriors have nonspher-
ical variance. We show that performing PCA on the posterior estimates obtained
with this prior corresponds to a generalized PCA, with a one-dimensional family
of gPCAs arising from varying the prior strength. A member of this family can
then be picked by estimating the scalings of the prior and the noise by maximum
marginal likelihood. We call the gPCA obtained in this manner adaptive gPCA.

One major advantage of adaptive gPCA is that it is motivated by a probabilistic
model. This means that the representation of the samples has a simple interpre-
tation as a representation of posterior estimates. Using this model also makes it
conceptually simple to adapt the method to other noise and variable structures.

Other attractive features of adaptive gPCA are that we can obtain the global
solution (i.e., the algorithm does not settle into a local minimum), that we can
choose the amount of regularization to perform without having to resort to poten-
tially time-consuming cross-validation, and that we can use any sort of structure
on the variables.
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Using adaptive gPCA on a real data set shows us some of the practical advan-
tages of the method. We were able to identify the latent structure in the data (the
differences between the individuals and the antibiotic treatment), and we were able
to use the loadings of the variables on the principal axes to understand the biol-
ogy behind this latent structure. For instance, the second adaptive gPCA axis was
related to the administration of the antibiotic, and taxa loading strongly on the
second axis consisted of related groups sharing a response to the antibiotic.

The current implementation of adaptive gPCA has two primary limitations. It
assumes spherical noise, and it assumes that the variable structure is known with-
out error. In Section 5.2 we sketched out how to relax either of those assumptions.
However, both of the suggestions require significantly more development to work
in practice. Using nonspherical noise leads to a much higher computational bur-
den, and relaxing the assumption of known variable structure can be difficult to
estimate in practice.

Adaptive gPCA can be extended in several directions. Information about the
precision with which different variables or samples are measured can be incorpo-
rated as either sample or variable weights. The family of inner products described
in this paper can be imported into other methods that work in nonastandard in-
ner product spaces, such as between- or within-class analysis (Dray, Pavoine and
Aguirre de Cárcer (2015)), to encourage structured solutions. It can be used in
conjunction with sparse gPCA (Allen, Grosenick and Taylor (2014)) for sparse
and structured dimensionality reduction, and combining these with between-class
analysis would give a sparse, structured method for explaining group differences.

An R implementation of adaptive gPCA is available from CRAN and can be
installed in R using the command
install.packages("adaptiveGPCA")
In addition to implementing adaptive gPCA, the package includes a shiny app
(Chang et al. (2016)) that allows users to interactively visualize the effects of dif-
ferent prior strengths. It also includes the antibiotic data used in this paper and a
vignette that reproduces the analysis.
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SUPPLEMENTARY MATERIAL

Proofs and additional discussion (DOI: 10.1214/18-AOAS1227SUPP; .pdf).
The supplemental material provides proofs of the theorems and additional discus-
sion on interpretation of generalized PCA in terms of the eigendecomposition of
the matrix Q.

https://doi.org/10.1214/18-AOAS1227SUPP
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