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COHERENCE-BASED TIME SERIES CLUSTERING
FOR STATISTICAL INFERENCE AND VISUALIZATION

OF BRAIN CONNECTIVITY
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King Abdullah University of Science and Technology (KAUST)

We develop the hierarchical cluster coherence (HCC) method for brain
signals, a procedure for characterizing connectivity in a network by cluster-
ing nodes or groups of channels that display a high level of coordination
as measured by “cluster-coherence.” While the most common approach to
measure dependence between clusters is through pairs of single time se-
ries, our method proposes cluster coherence which measures dependence be-
tween pairs of whole clusters rather than between single elements. Thus it
takes into account both the dependence between clusters and within chan-
nels in a cluster. The identified clusters contain time series that exhibit
high cross-dependence in the spectral domain. Simulation studies demon-
strate that the proposed HCC method is competitive with the other feature-
based clustering methods. To study clustering in a network of multichannel
electroencephalograms (EEG) during an epileptic seizure, we applied the
HCC method and identified connectivity on alpha (8,12) Hertz and beta
(16,30) Hertz bands at different phases of the recording: before an epilep-
tic seizure, during the early and middle phases of the seizure episode. To
increase the potential impact of HCC in neuroscience, we also developed
the HCC-Vis, an R-Shiny app (RStudio), which can be downloaded from
https://carolinaeuan.shinyapps.io/hcc-vis/.

1. Introduction. Brain signals, for example, electroencephalograms (EEGs),
are often viewed as mixtures of oscillations with varying amplitudes across loca-
tions on the scalp. Thus, it is natural to study these signals using the frequency
domain approach of time series. There exists a direct relationship between energy
distribution among different frequency bands and brain activity. The frequency
bands of interest in neuroscience are in the range of (0,50) Hertz (Hz), where
the frequency bands are named as follows: delta (0,4) Hz, theta (4,8) Hz, al-
pha (8,12) Hz, beta (12,30) Hz and gamma (30,50) Hz (Buzsáki and Draguhn
(2004)). Energy in the lower frequency bands, delta and theta, are typically related
to resting state of the brain, while activities in the higher frequency bands, alpha
and beta, are more likely linked to cognitive activity. A first approach to study
brain connectivity (i.e., the dependence between brain signals in a network) is via
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covariance, correlation or precision matrices, which is commonly used on func-
tional magnetic resonance imaging (fMRI) data. Among dependency measures in
the frequency domain, coherence and partial coherence are the most commonly
used in the study of EEG signals (Bowyer (2016), Cribben and Yu (2017), Decker,
Fillmore and Coherence (2017), Fiecas et al. (2010), Ombao and Van Bellegem
(2008)). Coherence is the analog of cross-correlation between two time series in
the frequency domain. Since there is a one to one correspondence between the co-
variance matrix and the spectral matrix, the dependence between time series can
be characterized either through the temporal or frequency domain.

EEGs are multivariate times series recordings from many electrodes placed on
the scalp that reflect electrical activity of neuronal populations on the scalp. To
quantify connectivity between brain regions, we need to measure dependency or
coherence between sets of time series. One approach to explore the connectivity
between signals is to set a threshold for the observed coherence values; then, two
signals are connected if the observed coherence exceeds the threshold. This pro-
cedure is simple and computationally fast. However, this procedure could produce
groups having time series or signals with low levels of dependence. As an alter-
native, we propose to study brain connectivity in a network through clustering.
Compared to the first approach, clustering methods will produce groups of time
series that show a high dependence between channels within a cluster and low
dependence between different clusters. With this approach, clusters of time series
with high dependence in the frequency domain correspond to connected brain re-
gions. Moreover, a clustering method based on the spectral features of the EEG
data will produce groups of brain signals that are easily interpreted. In this paper,
we propose a new time series clustering method based on coherence to describe
brain connectivity.

The primary contributions of this paper are the following: (1) We propose a
divergence measure that is based on coherence between groups rather than pair-
wise between channels in each group. Thus, the measure automatically takes into
account the dependence between channels within each cluster. (2) The HCC al-
gorithm identifies highly connected brain regions through the clusters produced.
(3) We propose new visualization tools for the clustering produced by the HCC
method. These are implemented in the HCC-Vis, an interactive Shiny App, which
is useful for the neuroscience research.

The use of spectral features of time series for discrimination and classification
has attracted the attention of many researchers. A review of different methods for
clustering time series can be found in Caiado, Maharaj and D’Urso (2016). Among
the existing clustering methods for time series, Caiado, Crato and Peña (2006)
were the first to propose the use of periodograms of time series to define similarity
in hierarchical clustering. A more recent study proposed the hierarchical spectral
clustering (HSM) method (Euán, Ombao and Ortega (2018)), which also considers
the spectral density for the classification of time series. Unlike classic hierarchi-
cal methods, the HSM method does not need a linkage function between clusters,
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since when merging clusters all the time series contained in the cluster are used
to update the spectral density estimation, and the dissimilarity between clusters is
computed by using the updated spectral densities. The general goal is to identify
clusters of time series with similar spectral densities or similar oscillatory patterns
(spectrally synchronized). Another classification method is based on the discrete
wavelet transform (DWT) of the time series (see Maharaj, D’Urso and Galaged-
era (2010), D’Urso and Maharaj (2012)), for a more robust clustering result un-
der nonstationary variances. The DWT dyadically segments the frequency axis
through the repeated application of filtering. This method also produces clusters
of time series with similar spectra. Model-based clustering (D’Urso, De Giovanni
and Massari (2016)) and fuzzy clustering methods for time series on frequency
domain (Maharaj and D’Urso (2011)) are also present in the literature. However,
the similarity in spectra or waveforms does not necessarily imply a dependence
between the time series; it is possible to have two time series generated from the
same model with the same spectral density but independent.

Our goal is to develop a method that identifies clusters of channels or time series
such that the within-cluster dependence (as measured by coherence) is high and
the dependence between clusters is low. Therefore, coherence plays a central role
in this paper. Maharaj and D’Urso (2010) proposed coherence-based clustering
procedures for classifying time series, hierarchical and nonhierarchical methods;
among the hierarchical clustering, they proposed to measure the similarity between
clusters with average coherence or minimum coherence. They showed that coher-
ence could identify linearly related groupings of time series, even in cases with
nonstationary variances. However, their measures based on average and minimum
coherence are pairwise measures between elements of different clusters and do not
take into account the dependence among all channels within a cluster. To address
the within-cluster dependence, we need to generalize coherence to measure the
dependence between two clusters of time series.

In the literature, we can find two proposed extensions of coherence: block
coherence (Nedungadi, Ding and Rangarajan (2011)) and canonical coherence
(Takahashi, Baccalá and Sameshima (2014)). Block coherence at frequency
ω between two sets of multivariate time series, X and Y, is defined as 1 −

det(SX,Y(ω))

det(SX(ω))det(SY(ω))
, where S(ω) denotes the spectral matrix. However, block co-

herence could sometimes mischaracterize the nature of dependence between a pair
of clusters because it would give a high value even when the dependence is driven
only by a small number of channels (see Illustration 1 in Section 3). To overcome
this limitation, canonical coherence was proposed. Canonical coherence projects
a block of time series into canonical variables, then computes the block coherence
between the canonical variables from different blocks. This procedure improves
the block coherence, but the identified clusters may lack interpretability. In this
paper, we develop a new notion of coherence, cluster coherence, that measures the
dependence between groups of time series. Since cluster coherence is defined by
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the pairwise coherence matrix, the observed dissimilarity values can be interpreted
regarding the original signals. Then, we apply the cluster coherence in a hierarchi-
cal algorithm. The HCC method can be applied to any set stationary or locally
stationary times series in the time domain to identify clusters whose members
show high dependency.

The rest of this paper is organized as follows. Section 2 introduces the frequency
analysis of multivariate time series. In Section 3, we first present the cluster co-
herence measure with comparisons to average coherence and introduce the HCC
clustering algorithm, and then we propose a bootstrap procedure to test the signif-
icance of the HCC clustering results. In Section 4, we conduct simulation studies
to compare the performance of the HCC method with other time series cluster-
ing methods and to evaluate the power of the proposed bootstrap test. Finally, in
Section 5, we study an EEG recorded during an epileptic seizure to identify brain
regions connected in the alpha and beta bands.

2. Spectral analysis for multivariate time series. Let X(t) = (X1(t), . . . ,

XN(t))T be a N -variate stationary time series with mean 0 and covariance ma-
trix function �(·) with absolutely summable elements denoted by γj,k(·). Then,
for j, k = 1, . . . ,N , the function fj,k(ω) = ∑∞−∞ γj,k(h)e−i2πωh, −1

2 ≤ ω ≤ 1
2 , is

called the cross spectrum or cross spectral density of Xj(t) and Xk(t) for j �= k

and the auto-spectrum for j = k (see Brockwell and Davis (2006), Shumway and
Stoffer (2011)). The matrix

S(ω) =

⎛
⎜⎜⎜⎝

f1,1(ω) f1,2(ω) · · · f1,N (ω)

f2,1(ω) f2,2(ω) · · · f2,N (ω)
...

. . .
. . .

...

fN,1(ω) fN,2(ω) · · · fN,N(ω)

⎞
⎟⎟⎟⎠

is called the spectral density matrix of X(t) at frequency ω. Statistical inference
in frequency analysis of multivariate time series is based on the periodogram
which we now define. Let {X(1), . . . ,X(T )} be an observed time series; then
the periodogram matrix at the frequencies wj = j/T is defined to be I(ωj ) =
1
T
(
∑T

t=1 X(t)e−it2πωj )(
∑T

t=1 X(t)e−it2πωj )∗, where ∗ denotes complex conjugate
transpose. Although the periodogram is not a consistent estimator of the spectral
density, consistent estimators can be constructed by smoothing the periodogram
(see Brockwell and Davis (2006), Chapter 11, Shumway and Stoffer (2011), Chap-
ter 4). Notice that contrary to the univariate case, the cross spectrum is not con-
strained to be positive. It is in fact complex-valued. However, the spectral ma-
trix needs to be a positive definite spectral density matrix. To preserve positive-
definiteness of the spectral matrix estimator, the classic procedure is to use the
same degree of smoothness in all the spectral estimates. If it is not reasonable to
assume the same degree of smoothness for all spectral functions, there exist non-
parametric methods based on the Cholesky to estimate the spectral matrix with
different degree of smoothness (see Pawitan (1996), Rosen and Stoffer (2007)).
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Let {dW1(ω), . . . ,dWN(ω)} be the zero mean orthogonal increment processes
in the univariate spectral representation, that is, Xj(t) = ∫

eit2πω dWj(ω) for
j = 1, . . . ,N . The cross spectrum and auto-spectrum satisfy that fj,k(ω)dω =
E[dWj(ω)dWk(ω)] = cov(dWj(ω),dWk(ω)), for j, k = 1, . . . ,N . If ω1 �= ω2,
then E[dWj(ω1)dWk(ω2)] = 0. Thus, the coherence at frequency ω is defined as

(2.1) κj,k(ω) = |fj,k(ω)|2
fj,j (ω)fk,k(ω)

, −1

2
≤ ω ≤ 1

2
,

which measures the correlation between dWj(ω) and dWk(ω). In this paper, we
call that two time series are dependent if they are correlated in the frequency do-
main, that is, κj,k(ω) > 0 at a single frequency or in a frequency band. The co-
herence matrix of X(t) at frequency ω, C(ω), is equal to one in the diagonal and
κj,k(ω) in the off-diagonal elements.

Under stationarity, coherence could vary across frequencies but remains con-
stant across time. The concept of evolutionary coherence has been studied by
Ombao and Van Bellegem (2008). An alternative to coherence for studying func-
tional connectivity is partial coherence, which measures the direct linear associ-
ation between any pair components of a multivariate time series after removing
the linear effects of the other components (Fiecas and Ombao (2011), Fiecas et al.
(2010)). In this paper, we will focus on coherence and how to extend this con-
cept to measure dependency between clusters of EEG signals (or multivariate time
series).

3. Hierarchical cluster coherence method. In this paper, we will refer to the
electrode located at the scalp as a channel and in the case of multiple electrodes as
a multichannel.

We propose the hierarchical cluster coherence (HCC) method to describe brain
connectivity. The HCC method uses a hierarchical algorithm to identify clusters
containing highly dependent time series in the frequency domain, based on our
coherence-based measure of similarity. First, we define the cluster coherence be-
tween two groups of time series and illustrate the advantages over other measures
of dependency between clusters. Then, we present the HCC clustering algorithm.

3.1. Cluster coherence. Consider the N -variate stationary time series X(t) as
two different blocks of time series, that is, X(t) = [X1(t) X2(t)], where X1(t) and
X2(t) are stationary multivariate time series of dimension n1 and n2 = N − n1,
respectively. We can think of X1(t) as a collection of time series in one cluster
and X2(t) as a second collection of time series in a different cluster. Consider the
coherence matrix of X(t), as a block matrix for each ω, that is,

C(ω) =
(

C1,1(ω) C1,2(ω)

C2,1(ω) C2,2(ω)

)
,(3.1)
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where Cj,j (ω) is the coherence matrix of Xj (t), j = 1,2, and Cj,k(ω) is
the coherence between elements of Xj (t) and elements of Xk(t), j �= k. Let
{λ1

1(ω), . . . , λ1
n1

(ω)} and {λ2
1(ω), . . . , λ2

n2
(ω)} be the normalized eigenvalues of

the within cluster coherence matrices C1,1(ω) and C2,2(ω), and let {λ1(ω), . . . ,

λN(ω)} be the normalized eigenvalues of C(ω). We define the cluster coherence
between X1(t) and X2(t) as

CCo(ω) =
(

N∑
j=1

∣∣λ[j ](ω) − λ∗[j ](ω)
∣∣p)(1/p)

(3.2)

where λ[j ](ω) is the j th largest eigenvalue of {λ1(ω), . . . , λN(ω)} and λ∗[j ](ω) is

the j th largest eigenvalue of {λ1
1(ω), . . . , λ1

n1
(ω), λ2

1(ω), . . . , λ2
n2

(ω)}. The eigen-
values are normalized by using the corresponding Lp norm. We define cluster
coherence in terms of the Lp norm, but we consider only the cases where p = 1
or 2.

PROPERTIES OF CCo(ω).

P1. CCo(ω) is bounded. The cluster coherence between X1(t) and X2(t) is
bounded between 0 and 1, that is, 0 ≤ CCo(ω) ≤ 1. This can be deduced from the
definition of cluster coherence between X1(t) and X2(t), where the norm of all of
the eigenvalues is equal to 1 by construction.

P2. If X1(t) and X2(t) are uncorrelated, that is, the coherence value between
any two time series among clusters is zero, then CCo(ω) = 0 for all ω. If X1(t) and
X2(t) are independent at frequency ω, then C1,2(ω) = C2,1(ω) = 0. As a result,
the set of eigenvalues of the whole coherence matrix C(ω) is equal to merging the
eigenvalues of C1,1(ω) and C2,2(ω), λ[j ](ω) = λ∗[j ](ω) for j = 1, . . . ,N . Then,
cluster coherence is equal to zero.

P3. If X1(t) and X2(t) are perfectly correlated, then CCo(ω) = 1 for all ω.
When X1(t) and X2(t) are perfectly correlated, Cj,k(ω) = 1nj×nk

(all-ones matrix
of dimension nj × nk) for all ω and j, k = 1,2. Then, λ[1](ω) = 1 and λ[j ](ω) = 0
for j = 2, . . . ,N and λ∗[1](ω) = λ∗[2](ω) = 1/2 and λ∗[j ](ω) = 0 for j = 3, . . . ,N .

P4. If n1 = n2 = 1 and p = 1, then CCo(ω) = κ1,2(ω) (equation (2.1)). This is
because n1 = n2 = 1 and p = 1, hence {λ[1](ω), λ[2](ω)} = {1+κ1,2(ω)

2 ,
1−κ1,2(ω)

2

}
and {λ∗[1](ω), λ∗[2](ω)} = {1

2 , 1
2}. Finally, by computing (3.2), CCo(ω) = κ1,2(ω).

REMARK 1. Cluster coherence compares the eigenvalues of the coherence
matrix between clusters with the uncorrelated case, that is, when C1,2(ω) =
C2,1(ω) = 0. If the between-cluster coherence is close to 1, then the clusters are
highly dependent in the frequency domain.

REMARK 2. When X1(t) and X2(t) are uncorrelated, the set of eigenvalues
of the whole coherence matrix C(ω) is the combined set of eigenvalues of C1,1(ω)
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and C2,2(ω) for all ω. This fact produces a value of cluster coherence equal to
zero.

REMARK 3. In contrast, if X1(t) and X2(t) are perfectly correlated (P3), we
can characterize them linearly via a latent signal W(t) that is shared by com-
ponents of X1(t) and X2(t) in the frequency domain. This will produce that the
largest eigenvalue of C(ω) is close to 1 and the rest of the eigenvalues are close to
zero. Consequently, cluster coherence will be close to 1.

REMARK 4. Cluster coherence is based on a distance between matrices, which
is defined as a function of eigenvalues. In general, two matrices, A and B, can have
the same set of eigenvalues even though their entries are very different (e.g., when
B is a rotation of A). However, this is not an issue with the problem that is ad-
dressed in this paper. We define CCo between a chosen pair of matrices as follows,
the coherence matrix C(ω) and the uncorrelated-clusters coherence matrix C̃(ω)

which is equal to C1,1(ω) and C2,2(ω) in the block diagonal, and zero in the off
block diagonal. Then, one other possible matrix that could have equal eigenvalues
with C̃(ω) is the one when an orthogonal transformation of the time series within
each cluster is applied. Then, CCo(ω) does not depend on the time series order
within each cluster.

3.2. Illustrative examples: Comparison of the CCo with average coherence and
block coherence. In hierarchical clustering, the most commonly used measure for
cluster similarity is the single linkage that corresponds to average coherence (AC).
AC between X1(t) and X2(t) is defined as mean(C1,2(ω)) in (3.1), where mean(A)

is the average over all elements of the matrix A. Therefore, AC considers only the
pairwise coherence in C1,2(ω), neglecting within coherences C1,1(ω) and C2,2(ω).
An alternative to AC is Block Coherence (BC). BC between X1(t) and X2(t) is
defined as 1 − det(C(ω))/det(C1,1(ω))det(C2,2(ω)) in (3.1). However, BC tends
to overestimate the dependency between clusters (see Illustration 1). In contrast,
CCo measures dependency using the complete information of the coherence matrix
represented by eigenvalues. CCo has shown (under different simulated scenarios)
a better balance between the within-cluster dependency and the between-cluster
dependency, enhancing the clustering performance.

Our first illustrative example is based on a mixture of autoregressive processes
to capture the oscillations in brain signals (Gao et al. (2016)). The goal is to show
that when the within-cluster dependency is high, then average coherence and block
coherence overestimate the dependency among clusters.

ILLUSTRATION 1. Let Z1(t), Z2(t) and Z3(t) be independent AR(2) latent
processes with the unimodal spectral density peaks at 3,5 and 9 Hz, respectively.
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FIG. 1. Estimated spectral densities of: (a) latent AR(2) processes and (b) observed signals. Es-
timated coherence between signals: (c) pairwise coherence and (d) coherence measures between
clusters {X1(t),X2(t)} and {X3(t)}.

Let X(t) = (X1(t),X2(t),X3(t))
T be a three-variate time series generated by a

mixture of these latent processes,

X1(t) = Z1(t) + 0.2Z2(t) + ε1(t),

X2(t) = Z1(t) + 0.6Z2(t) + ε2(t),

X3(t) = 0.3Z1(t) + 0.7Z2(t) + 0.3Z3(t) + ε3(t),

where εi(t) are white noise sequences. We simulate 1000 replicates with 1000
time points and sampling frequency 100 Hz, and compute the cluster coherence
as

∑N
j=1 |λ[j ](ω) − λ∗[j ](ω)| (p = 1). Figure 1(a) shows the estimated spectra of

the latent variables; these latent variables represent activity on the delta, theta and
alpha bands. Figure 1(b) shows the estimated spectral densities for univariate time
series Xj(t). X1(t) and X2(t) have more similar spectral densities, which is a
consequence of being more highly correlated in the low frequencies than X3(t).
Figure 1(c) shows the mean curve over the 1000 replicates of the estimated coher-
ence on frequency bands delta, theta and alpha. We observe that X1(t) and X2(t)

are highly correlated signals in the low frequency band. However, X3(t) is highly
correlated with X2(t) but less correlated with X1(t). In this sense, it is reasonable
to have two clusters, {X1(t),X2(t)} and {X3(t)}. Figure 1(d) shows the mean curve
over the 1000 replicates of the estimated functions of cluster coherence, average
coherence and block coherence, respectively. Consider 0.5 as a threshold to decide
whether or not two clusters should be merged. When using the average coherence
or block coherence, it is very likely that {X1(t),X2(t)} and {X3(t)} will be merged
as one cluster, since these values are larger than 0.5 on delta and theta bands, re-
sulting in a bigger cluster than expected. However, when using cluster coherence,
{X1(t),X2(t)} and {X3(t)} may not be merged, since cluster coherence is lower
than 0.4.

There exist different factors that influence the similarity measures between clus-
ters. It is desirable to select a measure that will be less influenced by these factors.
The next illustrative example explores the effect of noise variability, cluster size
and low dependency between clusters on the CCo and AC.
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ILLUSTRATION 2. Let X(t) = (X1(t),X2(t), . . . ,Xn1(t),Xn1+1(t), . . . ,

Xn1+n2(t))
T be a multivariate time series, where each Xj(t) is an AR(2) process

with a unimodal spectral density peak at 10 Hz and correlated innovations, that is,
X(t) follows a VAR(2) process with correlated innovations. In matrix notation,

X(t) = A1X(t − 1) + A2X(t − 2) + ε(t),

where Am is a diagonal matrix with φm (the autorregresive coefficientes) on the di-
agonal, m = 1,2, and ε(t) = (ε1(t), . . . , εn1+n2(t)) is white noise with covariance
matrix


ε = σ 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ1 . . . ρ1 δ δ . . . δ

ρ1 1 . . . ρ1 δ δ . . . δ
...

. . .
. . .

. . .
. . .

. . .
. . .

...

ρ1 ρ1 . . . 1 δ δ . . . δ

δ δ . . . δ 1 ρ2 . . . ρ2
δ δ . . . δ ρ2 1 . . . ρ2
...

. . .
. . .

. . .
. . .

. . .
. . .

...

δ δ . . . δ ρ2 ρ2 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(3.3)

Then, the multivariate time series X(t) has two independent clusters C1 =
{X1(t), . . . ,Xn1(t)} and C2 = {Xn1+1(t), . . . ,Xn1+n2(t)} when δ = 0 and low de-
pendent clusters when 0 < δ � 1. We simulate 1000 replicates of the multivariate
time series with 1000 time points at sampling frequency 100 Hz. The correlation
coefficients are fixed as ρ1 = 0.5 and ρ2 = 0.7, then any value of |δ| >

√
0.35

guarantees the positive definitness of 
ε . We select the parameter values with dif-
ferent purposes as follows: (1) Noise variability, σ 2 = 1,2,4,8; (2) Cluster size,
n1 = 10,20,50,100 and n2 = 12,24,60,120; (3) Zero/Low dependency between
clusters, δ = 0,0.1,0.2,0.3.

We assume that C1 and C2 are known, and we compute the CCo and AC be-
tween the two clusters. Figure 2 shows the boxplots of the CCo and AC under
the different sets of values for the parameters. Since the within correlation of the
clusters depends on the correlation between the innovations, the coherence shows
low variability across frequencies. Then, the boxplots are computed with all val-
ues across frequencies and replicates. Within each plot, the noise variability, σ 2,
changes from 1 to 8, and the CCo values are on the left side while the AC values
are on the right side. Between plots, we vary per column the zero/low dependency
between clusters, δ, and per row the cluster size, n1 and n2.

When there is no dependence between C1 and C2 (i.e., δ = 0) and for a fixed
value of σ 2, increasing the clusters size does not influence on the distribution of
the CCo and AC values. However, a small change in the dispersion of the CCo and
AC values is observed when σ 2 increases. If the clusters are weakly correlated,
we expect that the similarity measures increase, especially when δ ≥ 0.2. The CCo
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FIG. 2. Boxplots of the Cluster Coherence (CCo) and Average Coherence (AC) with different pa-
rameters value in Illustration 2 for all ω. By column, we vary the correlation δ, and by row, we vary
the cluster size, n1, and n2.

values are higher than the AC when δ ≥ 0.2 and σ 2 = 1,2,4, this suggests a higher
power of CCo to identify dependent clusters. In most of the cases, the cluster
size has a positive impact on the CCo values, and the noise variability affects the
performance when it is large. This experiment was repeated to consider the case
of unbalanced clusters. Overall, CCo measures dependency among clusters better
than AC with moderate unbalanced cluster size (n1 = 50 and n2 = 12).

3.3. Clustering algorithm. The HCC method uses cluster coherence as a
measure of similarity between clusters in each iteration of the clustering algo-
rithm.
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HIERARCHICAL CLUSTER COHERENCE (HCC) ALGORITHM. Let X(t) =
(X1(t)X2(t) · · ·XN(t))T , t = 1, . . . , T be a set of time series and let �12 =
(ω1,ω2) be the frequency band of interest. The procedure starts with clusters
{C1,C2, . . . ,Ck} where the initial value of k = N so that each cluster contains
one signal.

Step 1. Estimate the coherence matrix C(ω) = {κl,m(ω)}l,m=1,...,k for each fre-
quency ω ∈ �12.

Step 2. Compute the initial dissimilarity between clusters at band �12 as

dl,m = d(Cl,Cm) = 1 − 1

ω2 − ω1

∫ ω2

ω1

κl,m(ω)dω.

Step 3. Find the two clusters with the lowest dissimilarity and merge these clus-
ters. Assume WLOG that Ck−1 and Ck are the two most similar clusters, then
the new clusters will be {C1,C2, . . . ,Ck−1 ∪ Ck}.

Step 4. Reduce the number of clusters by one, that is, k = k − 1.
Step 5. Compute the new dissimilarity matrix as dl,m = d(Cl,Cm) = 1− 1

ω2−ω1
×∫ ω2

ω1
CCo(ω)dω.

Step 6. Repeat Steps 3–5 until k = 1.

Note that in Step 5 the new dissimilarity between the updated cluster setting will
correspond to coherence when the clusters have only one member each or cluster
coherence otherwise.

In real applications, we need to choose the number of clusters. We propose to
use the scree plot of the minimum dissimilarity value to decide the number of
clusters. Specifically, we choose the smallest number of clusters k such that the
dissimilarity value will not decrease significantly from k to k + 1. The method of
scree plot is similar to the gap statistics (Tibshirani, Walther and Hastie (2001)),
and was also used by Euán, Ombao and Ortega (2018) to choose the number of
clusters for the HSM clustering method.

3.4. Clustering uncertainty. When applying the HCC method to real data sets,
we shall take into account the two sources of uncertainty: (1) The estimation of
the cluster coherence values and (2) The selection of the number of clusters. To
quantify the clustering uncertainty, Kimes et al. (2017) proposed a Monte Carlo
based approach for hierarchical clustering of multivariate data. With a similar idea,
we propose a bootstrap procedure for the HCC method.

Estimation of the spectra. The HCC method requires estimating the spectral
matrix. A class of estimators for the spectral matrix is the smoothed periodogram
(Brockwell and Davis (2006)), Ŝ(ωj ) = ∑

|k|≤mT
WT (k)I(ωj+k), where Wn is a

kernel function, mT is the smoothing window size and T denotes the time se-
ries length. To ensure the mean square consistency of Ŝ(ωj ), the kernel function
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must satisfy the condition that
∑

|k|≤mT
W 2

T (k) → 0 when T → ∞. Moreover,
to preserve positive-definiteness, it is sufficient for mT to be the same for all
entries of the spectral estimates. Under regularity conditions, the distribution of
Ŝ(ωj ) can be approximated by a Normal distribution (see Brockwell and Davis
(2006), Chapter 11) or a Wishart distribution (see Brillinger (1975), Chapter 7).
The asymptotic covariance of the multivariate distribution depends on Wn, mT

and the true spectral matrix S(ω). In our implementation, we choose the Fejér ker-
nel (see Brockwell and Davis (2006), Chapter 2). In practice, we need to choose
the size of the smoothing window, mT . We apply the generalized cross-validation
(GCV) criteria proposed by Ombao et al. (2001) to select the size of the smoothing
window. The selection of the spectral density estimator can be modified consider-
ing that the quality of the estimator could influence the accuracy of the clustering
results. An alternative nonparametric estimator of the spectral density is the mul-
titaper spectral estimator (Walden (2000)) which also has important optimality
properties. A review of multitaper spectral analysis can be found in Babadi and
Brown (2014).

Then, the auto-spectral estimates are the elements of the diagonal of Ŝ(ωj ) and
the cross-spectral estimates are the elements of the off diagonals of Ŝ(ωj ). Let us
denote by f̂k,l(ωj ), k, l = 1, . . . ,N , the auto-spectral and cross-spectral estimates,
then the estimator for pairwise coherence at frequency ωj is

κ̂k,l(ωj ) = |f̂k,l(ωj )|2
f̂k,k(ωj )f̂l,l(ωj )

.

The estimator of cluster coherence, ˆCCo, is computed based on the eigenvalues
of the estimated coherence matrix Ĉ(ω). To make inference on the observed CCo
values, we propose a bootstrap procedure as follows.

Bootstrapping of CCo. For each omega, let S(ω) be the estimated spectral
matrix for two clusters, C1 and C2,

Ŝ(ω) =
(

Ŝ1,1(ω) Ŝ1,2(ω)

Ŝ2,1(ω) Ŝ2,2(ω)

)
.

Then, if C1 and C2 are uncorrelated at frequency ω, S1,2(ω) = (S2,1(ω))t = 0.
To resample values of ˆCCo(ω) between clusters C1 and C2, we assume indepen-
dence between them at frequency ω. We first simulate a realization of the spectral
matrix SB

j (ω) from either the Normal or Wishart distribution with

SH0(ω) =
(

Ŝ1,1(ω) 0
0 Ŝ2,2(ω)

)
,

by assuming independency at frequency omega, and we compute the value of the
cluster coherence, CCoB

j , for the simulated matrix. We repeat M times to obtain a
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bootstrap sample {CCoB
1 , . . . ,CCoB

M}, and approximate the distribution of cluster
coherence. Then, a bootstrap test can be performed to test if two clusters are in-
dependent at frequency ω. Since the HCC method uses a hierarchical algorithm
to identify potential clusters, the clusters are ordered and nested. Suppose the
number of clusters chosen by the scree plot is k. Denote the set of clusters to
be {C1, . . . ,Ck−1,Ck}, where Ck−1 and Ck are assumed to be the most dependent
clusters. If there is significant evidence against independence among Ck−1 and
Ck , we merge clusters Ck−1 and Ck . Then, the total number of clusters becomes
k − 1 instead of k, and the set of the clusters becomes {C1, . . . ,Ck−2,Ck−1 ∪ Ck}.
In summary, to quantify the significance of the identified clusters with the HCC
method, we take the advantage of the hierarchal structure of the clusters and de-
velop a bootstrap test for independence between the last merged two clusters.

4. Simulation study. In this section we consider different experiments to test
the performance of the HCC method. Experiment 1 evaluates the power of the
bootstrap test proposed in Section 3.4. Experiment 2 compares the HCC method
with other nonparametric clustering methods. Finally, Experiment 3 explores the
performance of the HCC method to cluster multiple correlated time series when
the clusters are not entirely independent and under the presence of possible con-
taminated data.

To improve the comparison of the clustering results, we develop a visualization
tool. This tool contains two plots: a scree plot and a cluster merging plot. In the
scree plot, we consider the dissimilarity value obtained when merging two clusters.
For a fixed number of clusters k, we plot this dissimilarity value; this graph is
located in the displayed upper plot. The clustering merging plot shows the dynamic
of the clustering method; on the x-axis, we shall have the number of clusters and
on the y-axis colors denote time series belonging to the same cluster. From k to
k − 1 clusters, one color should disappear, which means that the time series in that
cluster were merged with another cluster.

4.1. Power of the bootstrap test. Our first experiment is similar to Illustration
2 in Section 3.2.

EXPERIMENT 1. Let X(t) = (X1(t),X2(t), . . . ,Xn1(t),Xn1+1(t), . . . ,

Xn1+n2(t))
T be a multivariate time series that follows the VAR(2) model with

correlated innovations as in Illustration 2. ε(t) = (ε1(t), . . . , εn1+n2(t)) is white
noise with covariance matrix as in (3.3). We fix σ 2 = 1, n1 = 20 and n2 = 24,
and we vary δ from 0 to 0.7. When δ = 0, there are two independent clusters
C1 = {X1(t),X2(t), . . . ,X20(t)} and C2 = {X21(t),X22(t), . . . ,X44(t)}, where
the within cluster dependency depends on ρ1 and ρ2, respectively. When δ in-
creases, the clusters C1 and C1 become more dependent. We consider two cases:
(1) (ρ1, ρ2) = (0.7,0.5) and (2) (ρ1, ρ2) = (0.9,0.7).
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FIG. 3. Power curve of the bootstrap test. The blue dashed curve corresponds the case when using
the Normal approximation and the black curve is for the case of the Wishart approximation of the
estimated spectral matrix.

We simulate 100 replicates of the process X(t). For each replicate, we apply
the HCC method and test the independence between the two estimated clusters
C1 and C2. We set a significance level α = 0.05 and compute the proportion of
rejection of the hypothesis of independence between the two clusters. Figure 3
shows the results for both cases and under different values of δ. In both cases, when
δ increases, the proportion of rejection increases. If δ < .3, there is not enough
evidence to reject the independence hypothesis, suggesting two clusters rather than
only one cluster. In this experiment, the test based on the Normal approximation
shows better power than the test based on the Wishart approximation.

4.2. Comparison study. We compare the HCC method with other time series
clustering methods. The goal is to compare the right classification of the HCC
method with other clustering methods assuming the same number of clusters. We
consider only nonparametric and model free clustering methods. We compare the
HCC method with three hierarchical clustering methods with the single linkage
function (Caiado, Maharaj and D’Urso (2016)): (1) HA—dissimilarity between
time series computed as d(X,Y ) = ∑

h(γX(h) − γY (h))2, where γ (h) denotes the
autocorrelation function, (2) HS—dissimilarity between time series computed as
d(X,Y ) = ∑

ω(fX(ω) − fY (ω))2, where f (ω) denotes the spectral density func-
tion, and (3) HC—dissimilarity measure computed as d(X,Y ) = 1 − κX,Y (ω),
where κ(ω) is the pairwise coherence. We consider also three fuzzy clustering
methods (D’Urso and Maharaj (2009), Maharaj and D’Urso (2011), Lafuente-
Rego, D’Urso and Vilar (2018)): (1) FA—fuzzy k-means between autocorrelation
functions, (2) FS—fuzzy k-means between the spectral densities, and (3) PAMC—
partitioning clustering with distance based on the coherence function. Finally, we
include the HSM clustering method that uses a hierarchical merger clustering
method and computes similarity based on spectral densities. Note that HC uses
average coherence, as introduced in Section 3.2, to measure the similarity between
clusters.
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FIG. 4. Comparative study under Experiment 1 setting. Each boxplot corresponds to the similarity
values for each method with 100 replicates.

We assume that the true clustering setting is known. We evaluate the perfor-
mance of each clustering method by computing the following similarity index. Let
C = {C1, . . . ,Ck} and G = {G1, . . . ,Gk∗} be the set of the k true clusters and a
k∗-cluster solution, respectively. Then, Sim(G,C) = 1

k

∑k
l=1 max1≤m≤k∗ Sim(Gm,

Cl), where Sim(Gm,Cl) = 2|Gm∪Cl ||Gm|+|Cl | . Sim(G,C) = 1 when the clusters setting G

is equal to the true cluster setting C. We also consider the Rand Index (Rand
(1971)) to compare the methods and the results were very similar.

We consider Experiment 1 with n1 = 10 and n2 = 12 and two possible cases
for δ, Case 1: δ = 0 and Case 2: δ = 0.4. For all clustering methods, we con-
sider cluster settings with two or three clusters. We compare the identified clus-
ters with C1 = {X1(t),X2(t), . . . ,X10(t)} and C2 = {X11(t),X12(t), . . . ,X22(t)}.
Case 1 represents two well separated (independent) clusters while Case 2 consid-
ers two clusters with low dependency between them. Figure 4 shows the boxplot
of the similarity values computed with 100 replicates. When the number of clus-
ters agrees with the truth, that is, k∗ = k = 2, the HCC method as well as the HA
and PAMC methods show the best right classification index. When the number of
clusters is overestimated, that is, k∗ = 3 > k, the HCC method shows the highest
similarity to the true clusters. When the clusters are not completely independent,
as expected in practice, the HCC method can recover the right cluster structure.

EXPERIMENT 2. Let Z1(t), Z2(t) and Z3(t) be three independent AR(2) pro-
cesses. Then, X(t) is a 9-multivariate time series generated by X(t) = AZ(t) +
ε(t), where Z(t) = (Z1(t),Z2(t),Z3(t))

T ,

AT =
⎛
⎝1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎞
⎠ ,

and ε(t) is a 9-dimensional white noise with covariance matrix σ 2I. We con-
sider two cases: Case 1: Z1(t), Z2(t) and Z3(t) have the same unimodal spec-
tral density concentrated at 2 Hz and Case 2: Z1(t), Z2(t) have unimodal spectral
density concentrated at 2 Hz and Z3(t) has unimodal spectral density at 4 Hz.
Under this setting, C1 = {X1(t),X2(t),X3(t)}, C2 = {X4(t),X5(t),X6(t)} and
C3 = {X7(t),X8(t),X9(t)} are the three independent clusters. We simulate time
series of length T = 1000 with a sampling frequency of 100 Hz and σ 2 = 50, and
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FIG. 5. Comparative study under Experiment 2 setting. Each boxplot corresponds to the similarity
values for each method with 100 replicates.

apply the different 8 clustering methods with k∗ = 3,4 clusters. We consider 100
replicates and compute the similarity index for each replicate. Figure 5 shows the
boxplot of the similarity values for each method. In each plot, the first two box-
plots (HA and FA) correspond to clustering method based on the ACF, and the next
three boxplots (HSM, HS and FS) show the clustering methods based on the spec-
tra. These five clustering methods do not consider measures of cross dependence
between clusters. In Case 1, the ACF and spectral densities are the same for all time
series. Therefore, the similarity of the identified clusters with {C1,C2,C3} is low.
HCC, HC and PAMC methods show a good classification performance even when
the number of clusters might be overestimated (k∗ = 4). In Case 2, elements in C3
have different features compared to the other two clusters. This helps to improve
the classification performance of the HA, FA, HSM, HS and FS methods.

In summary, when the clusters are completely independent as in Case 1 of Ex-
periment 1 and Experiment 2, and the true number of clusters is known, the HCC
method is as good as other clustering methods based on coherence. However, when
the clusters are not completely independent, or the number of clusters is overes-
timated, the HCC method identifies clusters more accurately than the other meth-
ods. We explore the performance of the HCC method if we have a bigger number
of time series. We present the simulation results in the Supplementary Material
(Euán, Sun and Ombao (2019a)).

4.3. Clustering of spatial correlated time series. The next experiment in-
volves spatially correlated signals to mimic real brain processes. We locate the
time series on a 19-EEG array to visualize the clustering results. The HCC method
does not use the locations of the EEG channels but computes the cluster coherence
to identify the potential clusters.

EXPERIMENT 3. Let Xs(t) be the signal at channel s. Figure 6(a) shows the
spatial location of the channels in a 2D projection. We assume that {Xs(t)} is gen-
erated by a mixture of independent time series Zsi (t), i = 1, . . . ,4, located at C3,
C4, Pz and Fz channels, respectively. To simulate Xs(t): First, we simulate four
independent AR(2). Zs1(t) and Zs2(t) are located at C3 and C4 channels and have
a spectral density with power concentrated at 9 Hz. Zs3(t) and Zs4(t) are located at
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FIG. 6. (a) Location of the EEG channels on the scalp (2D projection). Location of latent signals
are highlighted in red. (b) Integrated coherence on the alpha band (average over the 100 replicates).
(c) Functional boxplot of the scree plot obtained from 100 replicates.

Pz and Fz channels and have a spectral density with power concentrated at 10 Hz.
Then, we compute Xs(t) = ∑4

i=1 a(s, si)Zsi (t), with a(s, si) = exp(−‖s−si‖
κ

),
where κ = 1/3. We consider T = 1000 time points and M = 100 replicates of
this experiment.

We applied the HCC clustering method and the HC (hierarchical clustering with
single linkage) to the simulated EEG signals for the alpha band, 8–12 Hz. Fig-
ure 6(b) shows the integrated coherence on the alpha band, averaged over the 100
replicates. There are two clusters of highly correlated signals and almost indepen-
dent among clusters located on different sides of the brain, the left central with the
left temporal channels, and the right central with the right temporal channels. We
expect that channels located near the same source will be clustered together. We
use the scree plot criteria to decide the number of clusters. There is one curve of
the minimum dissimilarity value per each replicate. To visualize variability across
replicates, Figure 6(c) presents the functional boxplot of the scree plot. This plot
suggests the presence of five or six clusters in most of the replicates.

To compare the clustering results, we fix the number of clusters to six and plot
the affinity matrices. The affinity matrix A is defined as follows, let Am

ij = 1 if

channels i and j are in the same cluster at replicate m, then Aij = ∑M
m=1 Am

ij /M .
Figure 7(a) and (b) show the affinity matrix over 100 replicates for each method.
In general, the clustering results are very consistent. The HC method tends to have
two large clusters and isolate the channels O1, O2 and Cz. In contrast, the HCC
method tends to have six clusters of similar size.

The clustering results between replicates differ little; we consider replicate 85
as a representative example. This replicate corresponds to the median curve in the
functional boxplot (see Figure 6(c)). In this case, the HC method assigns Cz to
one single cluster. In contrast, the HCC method assigns {Cz,Pz,O1,O2} together
in one cluster, which seems more reasonable. Another difference is the assign-
ment of {F4,F8}. The HC method assigns these channels to the same cluster as
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FIG. 7. (a) and (b) Affinity matrices over 100 replicates with six clusters. (c) and (d) Cluster lo-
cations on the scalp by choosing six clusters of replicate 85. Different clusters are represented by
colors.

{C4, T 4,P 4, T 6}, while the HCC assigns them to the same cluster as {Fz,Fp2}.
These two different clustering results are an example of the advantage of the HCC
method, since {F4,F8} are strongly correlated with {C4, T 4} but weakly corre-
lated with {P 4, T 6}. Therefore, the within-clusters dependency obtained by using
the HCC method are higher than those from the HC method.

4.4. Effect of the physiological artifacts in coherence-based clustering. Fi-
nally, we explore the possible effect of physiological artifacts in the HCC and HC
clustering methods. The presence of physiological artifacts on EEG data is very
common. In fact, raw EEG data usually is very noisy, and some preprocessing
of the EEG data is needed. Physiological artifacts on EEG data can be produced
by eye movement, muscular movement, technical problems, etc. (Viqueira, García
Zapirain and Mendez Zorrilla (2013)).

We consider an illustration of this situation with simulation setting similar to
Experiment 3. We keep Zs1(t), Zs2(t) and Zs3(t) at the corresponding channels
C3, C4 and Pz. We add Zs4(t), Zs5(t) located at FP1 and FP2 channels with
spectral density with power concentrated at 5 Hz. The eye blinking artifact shape
was generated as the difference between two gamma functions. We simulate one
EEG signal with 19 channels as in Experiment 3 and then we contaminate chan-

FIG. 8. Contamination of EEG signals by the eye blinking artifact. (a) and (b) EEG signals. (c) Es-
timated spectra of FP1 channel.



1008 C. EUÁN, Y. SUN AND H. OMBAO

FIG. 9. Visualization tool of clustering results on theta band with original EEG signals and con-
taminated signals.

nels FP1, FP2, F7 and F8. Figures 8(a) and (b) show the EEG simulated signals
without and with the contamination, respectively. The eye blinking artifact affects
lower frequencies due to the high amplitude in less than a second, see Figure 8(c).

We applied the HCC and HC clustering methods in the alpha and theta bands.
We observed that there is no significant effect of the eye blinking artifact in the
clustering results on the alpha frequency band. However, the theta band clustering
is different. Figure 9 shows the clustering results with the original (simulated)
signals and the contaminated with eye blinking artifact on the theta band. If we
consider five clusters, for both methods, the eye blinking artifact will separate FP2
and F8 from the rest of the frontal channels. It seems that the presence of the
eye blinking artifact could produce its cluster in low frequencies in this case. A
more exhaustive simulation study needs to be performed to have a more general
conclusion. But, we need to know that artifacts could affect the obtained clusters
when using coherence based clustering methods.

5. Data analysis using the HCC-Vis toolbox. We developed the HCC
method to cluster signals from many channels in a brain network. Then, the identi-
fied clusters represent connected brain regions. We studied an EEG recorded from
a patient of Dr. Malow (neurologist formerly at the University of Michigan) dur-
ing an epileptic seizure. The main interest is to identified connectivity on high
frequency bands. Therefore, we present the results obtained by the HCC method
on the alpha and beta bands. To visualize the clustering results we developed the
HCC-Vis, a Shiny app (RStudio) https://carolinaeuan.shinyapps.io/hcc-vis/.

5.1. Analysis of epileptic EEG seizure. Dataset corresponds to EEG data
recorded from a female patient during spontaneous epileptic seizure. The record-
ing lasted for 500 seconds and was digitized at 100 Hz. The data array has 21

https://carolinaeuan.shinyapps.io/hcc-vis/
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FIG. 10. EEG traces from channels Fp1, located in the frontal region, and T3 and T4 located in
the temporal region (left and right).

channels with 19 bipolar scalp electrodes placed according to the 10–20 system
and two sphenoidal electrodes placed intracranially at the base of the temporal
lobe. Figure 10 shows four of the 21 EEG signals. The seizure onset was recorded
around 340 seconds. The seizure begins in the left temporal region of the brain,
where channel T 3 was located. Therefore, our analyses used T 3 as the main fo-
cal point (main node). We address the following questions: (1) Which channels
are connected to T 3 during different seizure phases, such as before and after the
seizure? (2) Does the connectivity structure between channels differ between the
alpha activity and the beta activity? (3) Does seizure modify brain connectivity?

To answer these questions, we divide the EEG recording into disjointed 10-
second segments, and applied the HCC method to each segment. Additionally,
we show the results from the HC method to compare with the HCC the results,
and from the HSM method in the Supplementary Material (Euán, Sun and Ombao
(2019b)) to complement the interpretation of the HCC results. Here, we show the
results for time segment 5, before seizure (40 to 50 seconds); time segment 35,
early seizure (340 to 350 seconds); and time segment 38, middle seizure (370 to
380 seconds).

Figure 11(a) shows the initial screen of the HCC-Vis. We select the three cluster-
ing methods to be displayed and time 50 seconds (before seizure) that correspond

FIG. 11. HCC-Vis. (a) Initial screen. (b) Visualization Tools for clustering on alpha band.
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TABLE 1
HCC Clusters for alpha and beta bands

Before seizure Early seizure Middle seizure

Alpha {O2}, {F7, F3, T3, SP1}, {C3}, {P4}, {C4}, {P4},
band {P4, C4}, {Pz}, {T6, T4, F8, SP2}, {SP1}, {P3, C3},

{T6, T4, F8, SP2, Fz, {C4, F4}, {T5, T3, F7, {T6, SP2, O2, O1, Pz, F3,
F4, Fp2, Fp1}, SP1, Fz,F3,Fp2, Fp1}, Fz, F4, T3, F7, Cz, T5,

{Pz, C3}, {Cz, P3, T5, O1} {Cz, P3, O2, O1} Fp2, Fp1, T4, F8}
Beta {P4}, {F8, Fp2, T4, SP2}, {C3}, {O2, P4, T5, O1}, {C4, C3}, {F3, Fp1, F7},
band {Cz, P3}, {Pz, Fz}, {F8, Fp2, T4, SP2}, {Cz, P3}, {T3, SP1}, {F4, Fp2, F8}

{F7, Fp1, T3, SP1, T6, O2, {Pz, F3}, {Fz, F4} {T6, O2, Pz, Fz, Cz, T5, O1,
T5, O1}, {C3, F3, C4, F4} {F7, Fp1, T3, SP1}, {T6, C4} P3, P4}, {T4, SP2}

to before seizure scenario. Then, we select the alpha band to execute the clustering
methods. Figure 11(b) shows the visualization tools to decide the number of clus-
ters and to observe the clustering dynamics between different clustering methods.
We repeat this for early seizure (340 to 350 seconds) and middle seizure (370 to
380 seconds) on alpha and beta bands. In general, the clustering results from dif-
ferent methods, scenarios and frequency bands differ in some cases but are similar
in others. The clustering dynamics between the HCC method and the HC method
are different for all of the channels. HSM method identifies fewer clusters which
means that many channels have similar spectral densities, that is, they are spec-
trally synchronized. Our goal is to identify connectivity based on coherence so we
will focus on the HCC clustering results.

The scree plot for each time segment suggests five to seven possible clusters.
We apply the bootstrap test to select the most significant clustering setting in this
range. Take the clustering results before the seizure on the alpha band as an ex-
ample. First, we apply the bootstrap test for H0: 7 clusters vs. HA: 6 clusters. In
this case, the p-value was close to zero which means that we have strong evidence
to merge two out of the seven clusters. Then, we proceed to test H0: 6 clusters
vs. HA: 5 clusters. The observed p-value was almost equal to 1 and we do not
have enough evidence to merge two out of the six clusters. Thus, we accept the
six-cluster setting. Using the same testing procedure, we find strong evidence to
select seven clusters on the alpha band in the early seizure, and five clusters for the
middle seizure. In the beta band, our tests suggest six, eight and six clusters for
the before, early and middle seizure scenarios, respectively. Table 1 lists the cor-
responding clusters. In general, there is no easy way to label or color the changing
clusters clearly, because two clusters from different time segments do not neces-
sarily contain identical members even though the total number of the clusters is
the same. Therefore, to illustrate the time evolving clustering, we have chosen one
cluster that contains T3 to avoid the labeling issue. Now, we show the clustering
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FIG. 12. Connectivity with T 3 based on coherence on the alpha band. In each case, the HCC
results are on the left side and the HC results are on the right side. This analysis was produced using
the HCC-Vis (https://carolinaeuan.shinyapps.io/hcc-vis/ ).

results from T 3 in the following sense. The yellow dot in each figure represents
T 3. If a channel belongs to the same cluster with T 3, it is represented in red;
otherwise, it is in blue.

Figures 12 and 13 show clustering based on coherence of T 3 and other channels,
on alpha and beta bands. Clustering results from the HCC method on the alpha
band are different depending on the scenario. Connectivity before seizure was be-
tween T 3 and F7, F3 and SP1, which is reasonable since they are located closely
on the scalp. After the seizure started, more channels have a higher tendency to
belong to the same cluster at T 3. As a result, the left frontal and temporal regions
become a single highly correlated cluster. In the middle seizure, the connectivity
of T 3 expands to more channels located in the frontal region and temporal region.
If we consider HC, the results in the first scenario are similar to HCC results.

The clustering results for the beta band are more similar between the two meth-
ods, HCC and HC. The results also suggest that there is a strong dependence be-
tween the channel T 3 and SP1 on the beta band. F7 also shows connectivity at this
amplitude. However, this connectivity vanishes after the seizure. The differences
between the clustering results on different frequency bands could be related to the

https://carolinaeuan.shinyapps.io/hcc-vis/
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FIG. 13. Connectivity with T 3 based on coherence in the beta band. In each case, the HCC results
are on the left side and the HC results are on the right side. These results were produced using the
proposed HCC-Vis.

spectral profile in each case, clustering results obtained by using the HSM method
(see Euán, Sun and Ombao (2019b)) confirm that many of the channels show ac-
tivity in same frequencies. In particular, we identify that T 3 is not the only channel
with energy in high frequency bands, alpha and beta. The HSM method and addi-
tional plots to help the interpretation are available on the HCC-Vis (see Euán, Sun
and Ombao (2019b)). To conclude, HCC clusters change between frequency bands
and evolve under different scenarios. These suggest that the brain network changes
between frequency bands and during different stages of the seizure episode. Also,
we identify many channels that showed activity in higher frequency bands as T 3,
but they are not necessarily correlated with T 3.

6. Discussion and conclusions. The main contribution of this paper is the hi-
erarchical coherence clustering (HCC) method which uses the notion of a cluster-
based coherence rather than coherence between a pair of univariate time series.
The simulation studies showed the advantages of the HCC method compared to
commonly used clustering methods. In cases where the clusters are independent,
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the HCC method performs as well as the other clustering methods. In the pres-
ence of noisy signals, for example, in EEG data, the HCC method performs better.
We studied the properties of cluster coherence when the spectral matrix and the
number of clusters are known. We also proposed a bootstrap test for detecting
significantly independent clusters and investigated the power of the test based on
simulations. Under independence or moderate dependence level, the simulation
studies demonstrated that the proposed method has a good power to detect the
significant clusters.

We applied the HCC method to EEG data recorded during an epileptic seizure
on the alpha and beta bands. The clustering results show that many channels were
active during the seizure but not all of them were correlated. Also, by consider-
ing the changes in the connectivity before and after clustering, we found that the
seizure possibly affected the connectivity on the alpha band.

Cluster coherence measures the similarity between clusters by taking into ac-
count both the within-cluster structure and between clusters via the eigenvalues.
One limitation of this method is the computational time required to compute the
eigenvalues when the size of the clusters increases. A truncated version of the
cluster coherence could be used to speed up these computations; in this case, a fast
algorithm could be used to compute only the p first eigenvalues.

SUPPLEMENTARY MATERIAL

Supplement A: Scalability of the HCC Method (DOI: 10.1214/18-
AOAS1225SUPPA; .pdf). We provide additional supporting plots that show the
scalability of the HCC method to a larger number of time series and compare to
HAC method. The results reflects that average coherence could overestimate the
within cluster correlation. In contrast, cluster coherence measures more reasonably
the within-cluster dependency.

Supplement B: HCC-Vis toolbox (DOI: 10.1214/18-AOAS1225SUPPB;
.pdf). We developed the HCC-Vis to visualize the clustering results. This sup-
plementary material shows some additional plots to enhance the potential of the
visualization tools.

REFERENCES

BABADI, B. and BROWN, E. N. (2014). A review of multitaper spectral analysis. IEEE Trans.
Biomed. Eng. 61 1555–1564.

BOWYER, S. M. (2016). Coherence a measure of the brain networks: Past and present. Neuropsy-
chiatric Electrophysiology 2 1.

BRILLINGER, D. R. (1975). Time Series: Data Analysis and Theory. International Series in Decision
Processes. Holt, Rinehart and Winston, New York. MR0443257

BROCKWELL, P. J. and DAVIS, R. A. (2006). Time Series: Theory and Methods. Springer Series in
Statistics. Springer, New York. Reprint of the second (1991) edition. MR2839251

BUZSÁKI, G. and DRAGUHN, A. (2004). Neuronal oscillations in cortical networks. Science 304
1926–1929.

https://doi.org/10.1214/18-AOAS1225SUPPA
https://doi.org/10.1214/18-AOAS1225SUPPB
http://www.ams.org/mathscinet-getitem?mr=0443257
http://www.ams.org/mathscinet-getitem?mr=2839251
https://doi.org/10.1214/18-AOAS1225SUPPA


1014 C. EUÁN, Y. SUN AND H. OMBAO

CAIADO, J., CRATO, N. and PEÑA, D. (2006). A periodogram-based metric for time series classifi-
cation. Comput. Statist. Data Anal. 50 2668–2684. MR2227325

CAIADO, J., MAHARAJ, E. A. and D’URSO, P. (2016). Time-series clustering. In Handbook of
Cluster Analysis. Chapman & Hall/CRC Handb. Mod. Stat. Methods 241–263. CRC Press, Boca
Raton, FL. MR3644715

CRIBBEN, I. and YU, Y. (2017). Estimating whole-brain dynamics by using spectral clustering. J.
R. Stat. Soc. Ser. C. Appl. Stat. 66 607–627. MR3632344

D’URSO, P., DE GIOVANNI, L. and MASSARI, R. (2016). GARCH-based robust clustering of time
series. Fuzzy Sets and Systems 305 1–28. MR3557847

D’URSO, P. and MAHARAJ, E. A. (2009). Autocorrelation-based fuzzy clustering of time series.
Fuzzy Sets and Systems 160 3565–3589. MR2563306

D’URSO, P. and MAHARAJ, E. A. (2012). Wavelets-based clustering of multivariate time series.
Fuzzy Sets and Systems 193 33–61. MR2880740

DECKER, S., FILLMORE, P. T. and COHERENCE, A. R. (2017). The measurement and application
of brain connectivity. NeuroRegulation 4 3–13.

EUÁN, C., OMBAO, H. and ORTEGA, J. (2018). The hierarchical spectral merger algorithm: A new
time series clustering procedure. J. Classification 35 71–99. MR3790113

EUÁN, C., SUN, Y. and OMBAO, H. (2019a). Supplement to “Coherence-based time series
clustering for statistical inference and visualization of brain connectivity.” DOI:10.1214/18-
AOAS1225SUPPA.

EUÁN, C., SUN, Y. and OMBAO, H. (2019b). Supplement to “Coherence-based time series
clustering for statistical inference and visualization of brain connectivity.” DOI:10.1214/18-
AOAS1225SUPPB.

FIECAS, M. and OMBAO, H. (2011). The generalized shrinkage estimator for the analysis of func-
tional connectivity of brain signals. Ann. Appl. Stat. 5 1102–1125. MR2840188

FIECAS, M., OMBAO, H., LINKLETTER, C., THOMPSON, W. and SANES, J. (2010). Functional
connectivity: Shrinkage estimation and randomization test. NeuroImage 49 3901–3915.

GAO, X., SHAHBABA, B., FORTIN, N. and OMBAO, H. (2016). Evolutionary state-space model and
its application to time-frequency analysis of local field potentials. Available at arXiv:1610.07271.

KIMES, P. K., LIU, Y., HAYES, D. N. and MARRON, J. S. (2017). Statistical significance for hier-
archical clustering. Biometrics 73 811–821. MR3713115

LAFUENTE-REGO, B., D’URSO, P. and VILAR, J. A. (2018). Robust fuzzy clustering based on
quantile autocovariances. Statist. Papers 1–56.

MAHARAJ, E. A. and D’URSO, P. (2010). A coherence-based approach for the pattern recognition
of time series. Phys. A 389 3516–3537. MR2659314

MAHARAJ, E. A. and D’URSO, P. (2011). Fuzzy clustering of time series in the frequency domain.
Inform. Sci. 181 1187–1211.

MAHARAJ, E. A., D’URSO, P. and GALAGEDERA, D. U. A. (2010). Wavelet-based fuzzy cluster-
ing of time series. J. Classification 27 231–275. MR2726320

NEDUNGADI, A. G., DING, M. and RANGARAJAN, G. (2011). Block coherence: A method for
measuring the interdependence between two blocks of neurobiological time series. Biol. Cyber-
net. 104 197–207. MR2795598

OMBAO, H. and VAN BELLEGEM, S. (2008). Evolutionary coherence of nonstationary signals. IEEE
Trans. Signal Process. 56 2259–2266. MR2516630

OMBAO, H. C., RAZ, J. A., STRAWDERMAN, R. L. and VON SACHS, R. (2001). A simple gener-
alised crossvalidation method of span selection for periodogram smoothing. Biometrika 88 1186–
1192. MR1872229

PAWITAN, Y. (1996). Automatic estimation of the cross-spectrum of a bivariate time series.
Biometrika 83 419–432. MR1439793

RAND, W. M. (1971). Objective criteria for the evaluation of clustering methods. J. Amer. Statist.
Assoc. 66 846–850.

http://www.ams.org/mathscinet-getitem?mr=2227325
http://www.ams.org/mathscinet-getitem?mr=3644715
http://www.ams.org/mathscinet-getitem?mr=3632344
http://www.ams.org/mathscinet-getitem?mr=3557847
http://www.ams.org/mathscinet-getitem?mr=2563306
http://www.ams.org/mathscinet-getitem?mr=2880740
http://www.ams.org/mathscinet-getitem?mr=3790113
https://doi.org/10.1214/18-AOAS1225SUPPA
https://doi.org/10.1214/18-AOAS1225SUPPB
http://www.ams.org/mathscinet-getitem?mr=2840188
http://arxiv.org/abs/arXiv:1610.07271
http://www.ams.org/mathscinet-getitem?mr=3713115
http://www.ams.org/mathscinet-getitem?mr=2659314
http://www.ams.org/mathscinet-getitem?mr=2726320
http://www.ams.org/mathscinet-getitem?mr=2795598
http://www.ams.org/mathscinet-getitem?mr=2516630
http://www.ams.org/mathscinet-getitem?mr=1872229
http://www.ams.org/mathscinet-getitem?mr=1439793
https://doi.org/10.1214/18-AOAS1225SUPPA
https://doi.org/10.1214/18-AOAS1225SUPPB


COHERENCE-BASED TIME SERIES CLUSTERING 1015

ROSEN, O. and STOFFER, D. S. (2007). Automatic estimation of multivariate spectra via smoothing
splines. Biometrika 94 335–345. MR2331489

SHUMWAY, R. H. and STOFFER, D. S. (2011). Time Series Analysis and Its Applications. With R
Examples, 3rd ed. Springer Texts in Statistics. Springer, New York. MR2721825

TAKAHASHI, D. Y., BACCALÁ, L. A. and SAMESHIMA, K. (2014). Canonical information flow
decomposition among neural structure subsets. Frontiers in Neuroinformatics 8 49.

TIBSHIRANI, R., WALTHER, G. and HASTIE, T. (2001). Estimating the number of clusters in a data
set via the gap statistic. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 411–423. MR1841503

VIQUEIRA, M., GARCÍA ZAPIRAIN, B. and MENDEZ ZORRILLA, A. (2013). Ocular movement
and cardiac rhythm control using eeg techniques. In Medical Imaging in Clinical Practice
(O. F. Erondu, ed.), Chapter 6. InTech, Rijeka.

WALDEN, A. T. (2000). A unified view of multitaper multivariate spectral estimation. Biometrika
87 767–788. MR1813974

CEMSE DIVISION

KING ABDULLAH UNIVERSITY OF SCIENCE

AND TECHNOLOGY (KAUST)
THUWAL 23955
SAUDI ARABIA

E-MAIL: carolina.euancampos@kaust.edu.sa

http://www.ams.org/mathscinet-getitem?mr=2331489
http://www.ams.org/mathscinet-getitem?mr=2721825
http://www.ams.org/mathscinet-getitem?mr=1841503
http://www.ams.org/mathscinet-getitem?mr=1813974
mailto:carolina.euancampos@kaust.edu.sa

	Introduction
	Spectral analysis for multivariate time series
	Hierarchical cluster coherence method
	Cluster coherence
	Illustrative examples: Comparison of the CCo with average coherence and block coherence
	Clustering algorithm
	Clustering uncertainty
	Estimation of the spectra
	Bootstrapping of CCo


	Simulation study
	Power of the bootstrap test
	Comparison study
	Clustering of spatial correlated time series
	Effect of the physiological artifacts in coherence-based clustering

	Data analysis using the HCC-Vis toolbox
	Analysis of epileptic EEG seizure

	Discussion and conclusions
	Supplementary Material
	References
	Author's Addresses

