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We present TreeClone, a latent feature allocation model to reconstruct
tumor subclones subject to phylogenetic evolution that mimics tumor evolu-
tion. Similar to most current methods, we consider data from next-generation
sequencing of tumor DNA. Unlike most methods that use information in
short reads mapped to single nucleotide variants (SNVs), we consider sub-
clone phylogeny reconstruction using pairs of two proximal SNVs that can
be mapped by the same short reads. As part of the Bayesian inference
model, we construct a phylogenetic tree prior. The use of the tree struc-
ture in the prior greatly strengthens inference. Only subclones that can be
explained by a phylogenetic tree are assigned non-negligible probabilities.
The proposed Bayesian framework implies posterior distributions on the
number of subclones, their genotypes, cellular proportions and the phylo-
genetic tree spanned by the inferred subclones. The proposed method is val-
idated against different sets of simulated and real-world data using single
and multiple tumor samples. An open source software package is available at
http://www.compgenome.org/treeclone.

1. Introduction. Initiated by somatic mutations in a single cell, cancer arises
through Darwinian-like natural selection. The accumulation of subsequent genetic
aberrations and the effects of selection over time result in the sequential clonal
expansions of cells, finally leading to the development of a genetically aberrant
tumor [Nowell (1976)]. This process, known as tumorigenesis, leads to genetically
divergent subpopulations of tumor cells, also known as subclones [Bonavia et al.
(2011), Marusyk, Almendro and Polyak (2012)].

Based on the set of somatic mutations they have accumulated [Nik-Zainal et
al. (2012)], deep next generation sequencing (NGS) of bulk tumor DNA samples
makes it possible to examine the evolutionary history of individual tumors, This
is implemented by deconvoluting observed genomic data from a tumor into con-
stituent signals corresponding to various subclones and by then reconstructing the
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relationship of these subclones in a phylogeny [Deshwar et al. (2015), Marass et
al. (2016)]. Apart from phylogenetic relationship, tumor purity, subclones’ geno-
types and cellular proportions are also coupled quantities to infer. Uncovering sub-
clonal heterogeneity and their relationship is clinically important for better prog-
nosis [Aparicio and Caldas (2013), Schwarz et al. (2015)]. Therefore, there is a
pressing need to develop robust methods for a reliable interpretation.

Numerous methods have been proposed for the subclonal reconstruction prob-
lem, including SciClone [Miller et al. (2014)], CloneHD [Fischer et al. (2014)],
PyClone [Roth et al. (2014)], PyloWGS [Deshwar et al. (2015), Jiao et al. (2014)],
Clomial [Zare et al. (2014)], BayClone [Sengupta et al. (2015)], Cloe [Marass
et al. (2016)] and PairClone [Zhou et al. (2019)]. The reconstruction is typically
based on short reads that are mapped to single nucleotide variants (SNVs) (few
methods, e.g., CloneHD, also consider somatic copy number aberrations, SCNA).
Many methods based on SNV data utilize variant allele fractions (VAFs), that is,
the fractions of alleles (or short reads) at each locus that carry mutations. Since
humans are diploid, the expected VAFs of short reads for a homogeneous cell
population should be 0, 0.5 or 1.0 for any locus in copy number neutral (copy
number = 2) regions and after adjusting for tumor purity. Observing VAFs very
different from 0, 0.5 or 1.0 is therefore evidence for heterogeneity. Most methods
use only marginal SNVs. Recently, Zhou et al. (2019) have proposed to use pairs
of proximal SNVs mapped by the same short reads which carry more informa-
tion than marginal SNVs for more accurate subclone reconstruction. In terms of
methodology, existing subclone reconstruction methods can be mainly divided into
two categories, clustering-based and feature-allocation-based. The two categories
are also referred to as indirect and direct reconstructions in Marass et al. (2016),
depending on whether the subclonal genotypes are indirectly or directly inferred.
Clustering-based methods, including SciClone, PyClone and PhyloWGS, first in-
fer SNV clusters based on observed VAFs and then reconstruct subclonal geno-
types based on the clusters. The phylogenetic relationship among the subclones
can be inferred by imposing hierarchy among the SNV clusters. On the other hand
feature-allocation-based methods (e.g., Clomial, BayClone, Cloe or PairClone)
treat subclones as latent features and directly infer subclonal genotypes. Most of
the feature-allocation-based methods assume that the features (subclones) are con-
ditionally independent and thus are not able to infer the phylogenetic relationship
among the subclones. Recently, Marass et al. (2016) have developed a model al-
lowing for dependency among the features to infer the tumor phylogenetic tree.

In the upcoming discussion we assume that the available data are from T

(T ≥ 1) samples from a single patient and the main inference goal is intratumor
heterogeneity. We present a novel approach to reconstruct tumor subclones and
their corresponding phylogenetic tree based on mutation pairs. Here, a mutation
pair refers to a pair of proximal SNVs on the genomes that can be simultaneously
mapped by the same paired-end short reads with one SNV on each end. In other
words mutation pairs can be phased by short reads. See Figure 1 for an illustration.
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FIG. 1. Short reads data from mutation pairs using NGS. Here, stki denotes the ith read for the kth
mutation pair in sample t . Each stki is a two-dimensional vector which corresponds to the two proxi-
mal SNVs in the mutation pair, and each component of the vector takes values 0, 1 or –, representing
wild type, variant or missing genotype respectively.

Short reads mapped to only one of the SNV loci are treated as partially missing
paired-end reads and are not excluded from our approach. This idea of working
with phased mutation pairs was introduced in Zhou et al. (2019). We build on this
work and develop a novel and entirely different inference approach by explicitly
modeling the underlying phylogenetic relationship. That is, we model tumor het-
erogeneity based on a representation of a phylogenetic tree of tumor cell subpopu-
lations. A prior probability model on such phylogenetic trees induces a dependent
prior on the mutation profiles of latent tumor cell subpopulations. Part of this con-
struction is that the phylogenetic tree of tumor cell subpopulations is included as
a random quantity in the Bayesian model. Like most existing methods, we only
consider mutation pairs in copy number neutral region, that is, copy number two.
The proposed inference aims to reconstruct: (i) subclones defined by the haplo-
types across all the mutation pairs, (ii) cellular proportion of each subclone and
(iii) a phylogenetic tree spanned by the subclones.

Next, we introduce some notation to formally represent the described data and
model structure. Consider an NGS data set with K mutation pairs shared across all
T (T ≥ 1) samples. We assume that the samples are composed of C homogeneous
subclones. The number of subclones C is unknown and becomes one of the model
parameters. We use a K × C matrix Z to represent the subclones in which each
column of Z represents a subclone and each row represents a mutation pair. That is,
the (kc) element zkc of the matrix corresponds to subclone c and mutation pair k.
Each zkc is itself again a matrix. It is a 2×2 matrix that represents the genotypes of
the two alleles of the mutation pair. See Figure 2(b). An important step in the model
construction is that the columns (subclones) of Z form a phylogenetic tree T .
The tree encodes the parent-child relationship across the subclones. A detailed
construction of the tree and a prior probability model of T and Z are introduced
later. Lastly, we denote with wt = (wt1, . . . ,wtC) the cellular proportions of the
subclones in sample t , where 0 < wtc < 1 for all c and

∑C
c=0 wtc = 1. Using NGS

data, we infer T , C, Z and w based on a simple idea that variant reads can only
arise from subclones with variant alleles consistent with an underlying phylogeny.
We develop a tree-based latent feature allocation model (LFAM) to implement this
reconstruction. Mutation pairs are the objects of the LFAM, and subclones are the
latent features chosen by the mutation pairs.
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FIG. 2. Schematic of subclonal evolution and subclone structure. Panel (a) shows the evolution
of subclones over time. Panel (b) shows the subclonal structure at T4 with genotypes Z, cellular
proportions w and parent vector T . For each mutation pair k and subclone c, the entry zkc of Z is
a 2 × 2 matrix corresponding to the arrangement in the figure in panel (a), that is, with alleles in the
two columns and SNVs in the rows.

The previous brief outline of data and model structure already highlights two
key features of the proposed approach: the use of phylogenetic tree structure and
data on mutation pairs. The latter has important advantages. Mutation pairs con-
tain phasing information that improves the accuracy of subclone reconstruction.
If two nucleotides reside on the same short read, we know that they must appear
in the same DNA strand in a subclone. For example, consider a scenario with
one mutation pair and two subclones. Suppose the reference genome allele is (A,
G) for that mutation pair, with the notion that A and G are phased by the same
DNA strand. Suppose the two subclones have diploid genomes at the two loci and
the genotypes for both DNA strands are ((C, G), (A, T)) for subclone c = 1, and
((C, T), (A, G)) for c = 2. Since in NGS short reads are generated from a single
DNA strand, short reads could be any of the four haplotypes (C, G), (A, T), (C, T)
or (A, G) for this mutation pair. If indeed relative large counts of short reads with
each haplotype are observed, one can reliably infer that there are heterogeneous
cell subpopulations in the tumor sample and the mutation pairs are subclonal. In
contrast if we ignore the phasing information and only consider the (marginal)
VAFs for each SNV, then the observed VAFs for both SNVs are 0.5, which could
be explained by heterogeneous clonal mutations, that is, the SNVs are present in
all tumor cells. In this paper we leverage the power of using mutation pairs over
single SNVs to incorporate partial phasing information in our model. We assume
that mutation pairs and their mapped short reads counts have been obtained using
a bioinformatics pipeline such as LocHap [Sengupta et al. (2016)]. Our aim is to
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use short reads mapping data on mutation pairs to reconstruct tumor subclones and
their phylogeny.

Besides the use of mutation pairs, the other key feature of the proposed ap-
proach is that the model is built around phylogenetic tree structure. Imposing the
phylogenetic tree structure in the prior of Z greatly strengthens inference. First,
the tree structure improves biological interpretability of the inferred subclones as
the evolutionary relationship among the subclones is explicitly modeled. Second,
the tree structure improves the identifiability of the problem. In a subclone recon-
struction problem, the input signals (observed VAFs) are usually relatively weak,
especially when only T = 1 sample is available. Different subclone architectures
can yield very similar observed data. By explicitly modeling the tree we can put
higher prior probability on a subclone structure that follows a more likely phyloge-
netic tree. Third, the tree structure improves the mixing performance of the Markov
chain Monte Carlo (MCMC) simulation used to infer the unknown quantities. As
noted in Marass et al. (2016), the likelihood surface of the genotype matrix Z is
highly multimodal with sharp peaks. Imposing the tree structure, in the MCMC
simulation we only need to search from the space of Z, where the tree structure
is satisfied which greatly reduces the dimension of the parameter space of Z thus
improves mixing of the Markov chain.

Finally, for clarification we briefly comment on the proposed model structure
versus a traditional use of phylogenetic trees. Phylogenetic trees are usually used
to approximate perfect phylogeny for a fixed number of haplotypes [Bafna et al.
(2003)]. Most methods lack assessment of tree uncertainties and report a single
tree estimate. Also, methods based on SNVs put the observed mutation profile of
SNV at the leaf nodes. This is natural if the splits in the tree create subpopulations
that acquire or do not acquire a new mutation (or set of mutations). In contrast we
define a tree with all descendant nodes differing from the parent node by some
mutations. That is, all nodes, including interior nodes, correspond to tumor cell
subpopulations. Finally, we note that the prior structure in our model is different
from the phylogenetic Indian Buffet Process (pIBP) [Miller, Griffiths and Jordan
(2008)] which models phylogeny of the objects rather than the features.

The rest of the paper is organized as follows: Section 2 and Section 3 describe
the latent feature allocation model and posterior inference respectively. Section 4
presents three simulation studies. Section 5 reports analysis results for an actual
experiment. We conclude with a discussion in Section 6.

2. Statistical model.

2.1. Representation of subclones. Figure 2 presents a stylized example of tem-
poral evolution of a tumor, starting from time T0 and evolving until time T4 with
the normal clone (subclone c = 1) and three tumor subclones (c = 2,3,4). Each
tumor subclone is marked by two mutation pairs with distinct somatic mutation
profiles. In Figure 2 the true phylogenetic tree is plotted connecting the stylized
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subclones. The true population frequencies of the subclones are marked in paren-
theses. In panel (b) subclone genomes, their population frequencies and the phy-
logenetic relationship, are represented by Z, w and T . Next, we explain in detail
the definition of these parameters.

The entries of T report for each subclone the index of the parent subclone (with
T1 = 0 for the root clone c = 1). Suppose K mutation pairs with C subclones are
present. The subclone phylogeny can be visualized with a rooted tree with C nodes.
We use a C-dimensional parent vector T to encode the parent-child relationship
of a tree, where Tc = T [c] = j means that subclone j is the parent of subclone c.
The parent vector uniquely defines the topology of a rooted tree. We assume that
the tumor evolutionary process always starts from the normal clone, indexed by
c = 1. The normal clone does not have a parent, and we denote it by T1 = 0. For
example, the parent vector representation of the subclone phylogeny in Figure 2 is
T = (0,1,1,2).

We use the K×C matrix Z to represent the subclone genotypes. Each column of
Z defines a subclone, and each row of Z corresponds to a mutation pair. The entry
zkc records the genotypes for mutation pair k in subclone c. Since each subclone
has two alleles j = 1,2, and each mutation pair has two loci r = 1,2, the entry zkc

is itself a 2 × 2 matrix,

zkc = (zkc1,zkc2) =
[(

zkc11
zkc12

)(
zkc21
zkc22

)]
,

where
( zkc11
zkc12

)
and

( zkc21
zkc22

)
represent mutation pairs of allele 1 and allele 2 respec-

tively. That is, in zkcjr , j and r index the two alleles and the two loci respec-
tively. Theoretically, each zkcjr can be any one of the four nucleotide sequences,
A, C, G, T. However, at a single locus the probability of having more than two
sequences is negligible since it would require the same locus to be mutated twice
throughout the life span of the tumor which is extremely unlikely. Therefore, we
assume zkcjr can only take two possible values with zkcjr = 1 (or 0) indicating
that the corresponding locus has a mutation (or does not have a mutation) com-
pared to the reference genome respectively. For example, in Figure 2 we have
K = 2 mutation pairs and C = 4 subclones. For mutation pair k = 2 in subclone
c = 4, the allele j = 1 harbors no mutation, while the allele j = 2 has a mu-
tation at the first locus r = 1 which translates to z24 = (00,10) (writing 00 as
a shorthand for (0,0)T , etc.). Altogether, zkc can take 24 = 16 possible values
zkc ∈ {(00,00), (00,01), . . . , (11,11)}. Since we do not have phasing informa-
tion across mutation pairs, the zkc values having mirrored columns lead to ex-
actly the same data likelihood and thus are indistinguishable. This reduces the list
of possible values of zkc to the Q = 10 values, z(1) = (00,00), z(2) = (00,01),
z(3) = (00,10), z(4) = (00,11), z(5) = (01,01), z(6) = (01,10), z(7) = (10,10),
z(8) = (01,11), z(9) = (10,11) and z(10) = (11,11).

We assume that the normal subclone has no mutation zk1 = z(1) for all k, indi-
cating all mutations are somatic.
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Finally, we introduce notation for mixing proportions w. Suppose T tissue sam-
ples are dissected from the same patient. We assume that the samples are admix-
tures of C subclones, each sample with a different set of mixing proportions (popu-
lation frequencies). We use a T ×C matrix w to record the proportions, where wtc

represents the population frequencies of subclone c in sample t , 0 < wtc < 1 and∑C
c=1 wtc = 1. The proportions wt1 denotes the proportion of normal cells con-

tamination in sample t (and later we will still add a weight wt0 for a background
clone c = 0).

2.2. Sampling model. Let N be a T × K matrix with Ntk representing read
depth for mutation pair k in sample t . It records the number of times any locus
of the mutation pair is covered by sequencing reads (see Figure 1). Let stki =
(stkir , r = 1,2) be a specific short read, where r = 1,2 index the two loci in a
mutation pair, i = 1,2, . . . ,Ntk . Compared to the reference genome, we use stkir =
1 (or 0) to denote a variant (reference) sequence at the read. An important feature of
the data is that read i may overlap in only one locus. We use stkir = − to represent
the missing other sequence on the read. Reads that do not overlap with either of the
two loci are not included in the model as they do not contribute any information
about the mutation pair. In summary stki can take G = 8 possible values,

stki ∈ {
s(1), . . . , s(8)} = {00,01,10,11,−0,−1,0−,1−}.

Among all Ntk reads let ntkg = ∑
i I (stki = s(g)) be the number of short reads

having genotype s(g). For example, in Figure 1 out of a total of Nt1 = 4 reads, we
have nt12 = 1, nt13 = 1, nt16 = 1 and nt18 = 1.

We assume a multinomial sampling model for the observed read counts

(ntk1, . . . , ntk8) | Ntk ∼ Mn(Ntk;ptk1, . . . , ptk8),(2.1)

where ptkg is the probability of observing a short read stki with genotype s(g).
Next, we link ptkg with the underlying subclone structures.

For a short read stki , depending on whether it covers both loci or only one
locus, we consider three cases: (i) a read covers both loci, taking values stki ∈
{s(1), . . . , s(4)} (complete read); (ii) a read covers the second locus, taking val-
ues stki ∈ {s(5), s(6)} (left missing read); and (iii) a read covers the first locus,
taking values stki ∈ {s(7), s(8)} (right missing read). Let vtk1, vtk2, vtk3 denote the
probabilities of observing a short read of type (i), (ii) and (iii) respectively. Con-
ditional on cases (i), (ii) or (iii), let p̃tkg be the conditional probability of observ-
ing stki = s(g). We have ptkg = vtk1p̃tkg, g = 1, . . . ,4, ptkg = vtk2p̃tkg, g = 5,6
and ptkg = vtk3p̃tkg, g = 7,8. We assume noninformative missingness and do not
make inference on v’s; so they remain constants in the likelihood.

We express p̃tkg in terms of Z and w based on the following generative model
in three steps. Consider a sample t . To generate a short read, we first select a
subclone c with probability wtc (step 1). Next, we select with probability 0.5 one
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of the two alleles j = 1,2 (step 2). Finally, we record the read s(g), g = 1,2,3 or 4,
corresponding to the chosen allele zkcj = (zkcj1, zkcj2) (step 3). In the case of left
(or right) missing locus, we observe s(g), g = 5 or 6 (or g = 7 or 8), corresponding
to the observed locus of the chosen allele. Reflecting steps 2 and 3, we denote the
probability of observing a short read s(g) from subclone characterized by zkc by

(2.2) A
(
s(g),zkc

) =
2∑

j=1

0.5 × I
(
s
(g)
1 = zkcj1

)
I
(
s
(g)
2 = zkcj2

)
,

with the understanding that I (− = zkcjr ) ≡ 1 for missing reads. Depending on
the arguments, implicit in (2.2) is the restriction A(s(g),zkc) ∈ {0,0.5,1}. Finally,
proceeding as in step 1 we use the conditional probabilities A(·) to obtain the
marginal probability of observing a short read s(g) from the tumor sample t with
C subclones with cellular proportions {wtc} as

(2.3) p̃tkg =
C∑

c=1

wtcA
(
s(g),zkc

) + wt0ρg.

The first term in equation 2.3 states that the probability of observing a short read
with genotype s(g) is a weighted sum of the A’s across all the subclones. The
last term introduces the notion of a background subclone, indexed as c = 0 and
without biological meaning, to account for noise and artifacts in the NGS data
(sequencing errors, mapping errors, etc.) and also for tiny subclones that are not
detectable given the sequencing depth. In (2.3) wt0ρg stands for the probability of
observing s(g) due to this random noise. We assume the random noise does not
differ across different mutation pairs, thus ρg does not have an index k. Note that
ρ1 + · · · + ρ4 = ρ5 + ρ6 = ρ7 + ρ8 = 1.

Finally, we note that, if desired, it is straightforward to incorporate data for
marginal SNV reads in the sampling model by treating such reads as, for exam-
ple, right missing reads, that is, stki2 = −. In this case ntk1 = · · · = ntk6 = 0 and
the multinomial sampling model reduces to a binomial model. The addition of
marginal SNV counts does not typically improve inference. See more details in
Zhou et al. (2019).

2.3. Prior model. We construct a hierarchical prior model, starting with p(C),
then a prior on the tree for a given number of nodes, p(T | C) and finally a prior
on the subclonal genotypes given the phylogenetic tree T . We assume a geomet-
ric prior for the number of subclones, p(C) = (1 − α)C−1α, C ∈ {1,2,3, . . .}.
Conditional on C, the prior on the tree, p(T | C) is as in Chipman, George and
McCulloch (1998). For a tree with C nodes, we let

p(T | C) ∝
C∏

c=1

(1 + ηc)
−β,
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where ηc is the depth of node c or the number of generations between node c and
the normal subclone 1. The prior penalizes deeper trees and thus favors parsimo-
nious representation of subclonal structure.

Conditional on T we define a prior for Z. The subclone genotype matrix Z can
be thought of as a feature allocation for categorical matrices. The mutation pairs
are the objects, and the subclones are the latent features chosen by the objects.
Each feature has 10 categories corresponding to the Q = 10 different genotypes.
Given T the construction of the subclone genotype matrix needs to introduce de-
pendence across features to respect the assumed phylogeny. We construct a prior
for Z based on the following generative model. We start from a normal subclone
denoted by z·1 = 0. Now, consider a subclone c > 1 and defined by z·c. The sub-
clone preserves all mutations from its parent z·Tc but also gains a Poisson number
of new mutations. We assume the new mutations happen randomly at the unmu-
tated loci of the parent subclone. A formal description of prior of Z follows.

For a subclone c let �kc = ∑
j,r zkcjr denote the number of mutations in mu-

tation pair k, and let Lc = {k : �kc < 4} denote the mutation pairs in subclone c

that have less than four mutations. Let mkc = �kc − �kTc denote the number of new
mutations that mutation pair k gains compared to its parent, and let m·c = ∑

k mkc.
We assume: (i) The child subclone should acquire at least one additional mutation
compared with its parent (otherwise subclone c would be identical to its parent
Tc). (ii) If the parent has already acquired all four mutations for a given k, then
the child can not gain any more new mutation. That is, if �kTc = 4, then mkc = 0.
(iii) Each mutation pair can gain at most one additional mutation in each genera-
tion, mkc ∈ {0,1}. Based on these assumptions, given a parent subclone z·Tc , we
construct a child subclone z·c as follows. Let Mc = {k : mkc = 1} be the set of
mutation pairs in subclone c where new mutations are gained. Let Choose(L,m)

denote a uniformly chosen subset of L of size m, and let X ∼ Trunc-Pois(λ; [a, b])
represent a Poisson distribution with mean λ, truncated to a ≤ X ≤ b. We assume

m·c | z.Tc ,T ,C ∼ Trunc-Pois
(
λ; [

1, |LTc |
])

,

Mc | m.c,z.Tc ,T ,C ∼ Choose(LTc ,m·c).(2.4)

The lower bound and upper bound of the truncated Poisson reflect assumptions (i)
and (ii) respectively. Also, equation 2.4 implicitly captures assumption (iii).

Next, for a mutation pair that gains one new mutation, we assume the new mu-
tation randomly arises in any of the unmutated loci in the parent subclone. Let
Zkc = {(j, r) : zkcjr = 0}, and let Unif(A) denote a uniform distribution over the
set A. We first choose (

j∗, r∗) | z.Tc ,T ,C ∼ Unif(ZkTc ),

and then set zkcj∗r∗ = 1. So we have

p(Z | T ,C) ∝
C∏

c=2

Trunc-Pois
(
m·c; [

1, |LTc |
])

.
1( |LTc |

m·c
) . ∏

k∈Mc

1

|ZkTc |
.
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The prior construction is completed with a prior for w and ρ. We design the
prior p(w) of w in such a manner that we could put an informative prior for wt1, if
a reliable estimate for tumor purity is available based on some prior bioinformatics
pipeline (e.g., Carter et al. (2012), Van Loo et al. (2010)). Recall that c = 1 is the
normal subclone, that is, wt1 is the normal subclone proportion (or 1 minus tumor
purity) and that

∑C
c=0,c 	=1 wtc + wt1 = 1. We assume a Beta-Dirichlet prior on w

such that

wt1 ∼ Be(ap, bp) and
wtc

(1 − wt1)
∼ Dir(d0, d, . . . , d),

where c = 0,2,3, . . . ,C. We set d0 
 d as wt0 is only a correction term to account
for background noise and model mis-specification term.

Finally, to specify a prior for ρ = {ρg}, we consider complete reads, left
missing reads and right missing reads separately and assume (ρ1, . . . , ρ4) ∼
Dir(d1, . . . , d1), (ρ5, ρ6) ∼ Dir(2d1,2d1) and (ρ7, ρ8) ∼ Dir(2d1,2d1).

3. Posterior inference. Let x = (Z,w,ρ) denote the unknown parameters
except for the number of subclones C and the tree T . MCMC simulation from the
posterior p(x | n,T ,C) is used to implement posterior inference. Gibbs sampling
transition probabilities are used to update Z, and Metropolis–Hastings transition
probabilities are used to update w and ρ. For example, we update Z by row with

p(zk· | z−k·, . . .) ∝
T∏

t=1

G∏
g=1

[
C∑

c=1

wtcA(hg,zkc) + wt0ρg

]ntkg

· p(zk· | z−k·,T ,C),

where zk· is a row of Z satisfying the phylogeny T .
Since the posterior distribution p(x | n,T ,C) is expected to be highly multi-

modal, we utilize parallel tempering [Geyer (1991)] to improve the mixing of the
chain. Specifically, we use OpenMP parallel computing API [Dagum and Menon
(1998)] in C++ to implement a scalable parallel tempering algorithm.

Updating C and T is more difficult. In general posterior MCMC on tree struc-
tures can be very challenging to implement [Chipman, George and McCulloch
(1998), Denison, Mallick and Smith (1998)]. However, the problem here is man-
ageable since plausible numbers for C constrain T to moderately small trees. We
assume that the number of nodes is a priori restricted to Cmin ≤ C ≤ Cmax. Con-
ditional on the number of subclones C, the number of possible tree topologies is
finite. Let T denote the (discrete) sample space of (T ,C). Updating the values
of (T ,C) involves transdimensional MCMC. At each iteration we propose new
values for (T ,C) from a uniform proposal, q(T̃ , C̃ | T ,C) ∼ Unif(T ).

In order to search the space T for the number of subclones and trees that best
explain the observed data, we follow a similar approach as in Lee et al. (2015),
Zhou et al. (2019) (motivated by fractional Bayes’ factor in O’Hagan (1995)) that
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splits the data into a training set and a test set. Recall that n represents the read
counts data. We split n into a training set n′ with n′

tkg = bntkg and a test set n′′
with n′′

tkg = (1 − b)ntkg . Let pb(x | T ,C) = p(x | n′,T ,C) be the posterior eval-
uated on the training set only. We use pb in two instances. First, pb is used as an
informative prior instead of the original prior p(x | T ,C), and second, pb is used
as a proposal distribution for x̃, q(x̃ | T̃ , C̃) = pb(x̃ | T̃ , C̃). Finally, the accep-
tance probability of proposal (T̃ , C̃, x̃) is evaluated on the test set. Importantly, in
the acceptance probability the (intractable) normalization constant of pb cancels
out and makes this approach computationally feasible:

pacc(T ,C,x, T̃ , C̃, x̃) = 1 ∧ p(n′′ | x̃, T̃ , C̃)

p(n′′ | x,T ,C)
· p(T̃ , C̃)������

pb(x̃ | T̃ , C̃)

p(T ,C)������
pb(x | T ,C)

· q(T ,C | T̃ , C̃)������q(x | T ,C)

q(T̃ , C̃ | T ,C)������
q(x̃ | T̃ , C̃)

.

Here we use pb as an informative proposal distribution for x̃ to achieve a better
mixing MCMC simulation with reasonable acceptance probabilities. Without the
use of an informative proposal, the proposed new tree is almost always rejected be-
cause the multinomial likelihood with the large sample size is very peaked. Under
the modified prior pb(·), the resulting conditional posterior on x remains entirely
unchanged, pb(x | T ,C,n) = p(x | T ,C,n) [Zhou et al. (2019)].

The described uniform tree proposal is in contrast to usual search algorithms
for trees that generate proposals from neighboring trees. Such algorithms have
the important drawback that they quickly gravitate toward a local mode and then
get stuck. A possible approach to addressing this problem is to repeatedly restart
the algorithm from different starting trees; see Chipman, George and McCulloch
(1998) for more details. Our uniform tree proposal combined with the data splitting
scheme is another way to mitigate this challenge, efficiently searching the tree
space while keeping a reasonable acceptance probability.

All posterior inference is contained in the posterior distribution for x,C and T .
For example, the marginal posterior distribution of C and T gives updates poste-
rior probabilities for all possible values of C and T but it is still useful to report
point estimates. We use the posterior modes (Ĉ, T̂ ) as point estimates for (C,T ),
and, conditional on Ĉ and T̂ , we use the maximum a posteriori (MAP) estima-
tor as an estimation for the other parameters. The MAP is approximated as the
MCMC sample with highest posterior probability. Let {x(l), l = 1, . . . ,L} be a set
of MCMC samples of x, and

l̂ = arg max
l∈{1,...,L}

p
(
n | x(l), T̂ , Ĉ

)
p

(
x(l) | T̂ , Ĉ

)
.

We report point estimates as Ẑ = Z(l̂), ŵ = w(l̂) and ρ̂ = ρ(l̂).
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4. Simulation studies. We carry out three simulation studies to assess the
performance of TreeClone. We simulate multiple datasets with different number
of subclones (C), number of samples (T ), average read depths (N̄tk) and left and
right missing rates (vtk2, vtk3) to test the performance of the proposed model in
different scenarios. In all simulation studies we generate hypothetical read count
data for dozens of mutation pairs (K = 100 for simulations 1 and 2, and K = 69 for
simulation 3) which is a typical number of mutation pairs in a real tumor sample.

4.1. Simulation 1, convergence diagnostic and sensitivity analysis.

Simulation 1(a). We first validate TreeClone on nine simulated datasets, one
for each combination of C ∈ {3,4,5} and average read depth N̄tk ∈ {50,200,1000}.
For all nine datasets we consider T = 5 samples and K = 100 mutation pairs.
We randomly generate the phylogenetic tree T and the genotype matrix Z
from the prior model. The subclone proportions are simulated from wt ∼
Dir(0.01, σ (15,10,5)), Dir(0.01, σ (15,10,8,5)) and Dir(0.01, σ (15,10,8,5,3))

for C = 3, 4 and 5 respectively. Here σ(x1, . . . , xn) stands for a random permuta-
tion of x1, . . . , xn. The noise fractions ρ are generated from the prior with d1 = 1.
We mimic a typical rate of left (or right) missing reads by setting vtk2 = vtk3 = 0.3
for all t and k. The read depth Ntk is generated from a negative-binomial distribu-
tion, Ntk ∼ NB(rN ,pN), to reflect the over dispersion of read depth in sequencing
data. We fix rN and pN such that E(Ntk) = N̄tk and sd(Ntk) = N̄tk/5 for N̄tk = 50,
200 and 1000. Finally, the read counts {ntkg} are simulated from the multinomial
sampling model (2.1).

We fit the model with the following hyperparameters: α = 0.5, β = 0.5, d = 0.5,
d0 = 0.03 and d1 = 1, where the values of α and β imply mild penalty for deep
and bushy trees [Chipman, George and McCulloch (1998)]. We set ap = d, bp =
d0 + (C − 1)d for a given C and set λ = 2K/C to express our prior belief that
about half of the mutations occur uniformly at each generation. We use Cmin = 2
and Cmax = 5 as the range of C for computational efficiency. In principle Cmax can
be any finite number. However, the size of the tree space grows exponentially with
Cmax, so that the time needed for achieving a good mixing Markov chain grows
exponentially. We set the training set fraction (in the transdimensional MCMC
implementation) to b = 0.95, which we found to perform well in all simulation
studies; see Supplementary Section 2 for a discussion [Zhou et al. (2019)]. We run
a total of 8000 MCMC iterations. Discarding the first 3000 draws as initial burn-in,
we have a Monte Carlo sample with 5000 posterior draws.

We evaluate the performance of TreeClone in estimating the number of sub-
clones C, phylogeny T , genotype Z and subcone proportions w. To this end, we
define the reconstruction error rates Cerr = I (Ĉ 	= C), Terr = I (T̂ 	= T ),

Zerr = 1

K(C − 1)
min

σ

(∑
k,c

I (ẑkσ(c) 	= zkc)

)
,
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TABLE 1
Simulation 1(a). Summary of simulation results for nine combinations of C and N̄tk . Each cell of
the table reports (Cerr,Terr,Zerr,werr) as an average over three runs of TreeClone with different

random number seeds

C

N̄tk 3 4 5

50 0, 0, 0.00, 0.09 0, 0, 0.03, 0.07 0, 0, 0.07, 0.06

200 0, 0, 0.00, 0.15 0, 0, 0.00, 0.09 0, 0, 0.00, 0.05

1000 0, 0, 0.00, 0.14 0, 0, 0.00, 0.10 0, 0, 0.00, 0.08

and werr = ∑
t,c |ŵtσ (c) − wtc|/(T C), similar to Marass et al. (2016). Here, σ is

a permutation of columns of Z to account for label switching of subclones, and
the same permutation is imposed on columns of w. The simulation results are
summarized in Table 1. For all nine simulated datasets TreeClone nicely recovers
the truth and attains reasonably low reconstruction errors.

To assess the convergence of the MCMC algorithm, for each simulated dataset
we run the algorithm three times with different random seeds. We use the log-
posterior values to calculate a potential scale reduction factor (PSRF) [Gelman
and Rubin (1992)] for the three Markov chains. A PSRF close to 1 indicates con-
vergence of the Markov chain to the target distribution. The results are reported
in Table 2. Next, to assess the identifiability of the parameters in the TreeClone
model, we calculate frequentist coverage probabilities of 95% posterior credible
intervals for ptkg . The results are shown as the second entry in each cell of Ta-
ble 2.

Simulation 1(b). Next, we vary average read depth N̄tk and T . Again, we sim-
ulate nine datasets, one for each combination of T and N̄tk with T ∈ {1,3,5} and

TABLE 2
Simulation 1(a). Convergence diagnostic and frequentist coverage probabilities for nine simulated

datasets. For each simulated dataset we run TreeClone three times with different random seeds.
Each cell of the table reports the PSRF (for log-posterior values) and average coverage rate (of

95% credible intervals for ptkg ), averaged over the three chains

C

N̄tk 3 4 5

50 1.06, 100% 1.08, 85% 1.33, 96%

200 1.13, 92% 1.04, 86% 1.38, 88%

1000 1.05, 100% 1.11, 83% 3.72, 94%
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TABLE 3
Simulation 1(b). Summary of posterior inference for nine combinations of T and N̄tk . Each cell of

the table reports (Cerr,Terr,Zerr,werr)

T

N̄tk 1 3 5

50 0, 0, 0.29, 0.05 0, 0, 0.11, 0.09 0, 0, 0.03, 0.08

200 0, 0, 0.16, 0.04 0, 0, 0.01, 0.07 0, 0, 0.00, 0.08

1000 0, 0, 0.13, 0.02 0, 0, 0.00, 0.12 0, 0, 0.00, 0.10

N̄tk ∈ {50,200,1000}. We assume the same genotype matrix Z for all the nine
datasets with C = 4 subclones and K = 100 mutation pairs. The parameters are
generated from the prior model, and Ntk is generated from NB(rN,pN) as in sim-
ulation 1(a).

The simulation results are summarized in Table 3. Even with only one sample
and low read depth, TreeClone can reliably estimate C and T (although it does not
perfectly recover Z due to the limited amount of data).

Simulation 1(c). Finally, we assess sensitivity with respect to the rates of left
and right missing mutation pairs vtk2 and vtk3. Missingness is simply due to the
length of a short read is not long enough to cover both loci in a mutation pair. Thus,
missingness is noninformative, and we assume vtk2 = vtk3 in the simulation for
simplicity. We simulate five datasets with missing rates vtk2 = vtk3 = 0, 0.1, 0.25,
0.4 and 0.5. The extreme case vtk2 = vtk3 = 0.5 implies that no complete mutation
pair reads are recorded. For all of the five datasets, we consider T = 5 samples and
average read depth N̄tk = 200, and we assume the same genotype Z with C = 4
subclones and K = 100 mutation pairs. The parameters are generated from the
prior model as in simulation 1(a) and (b). The simulation results are summarized
in Table 4. TreeClone maintains high reconstruction accuracy across all scenarios.

Using only marginal SNVs. We consider another simulation assuming that
we observe only marginal SNVs that are not phased. We treat the marginal

TABLE 4
Simulation 1(c). Summary of posterior inference in simulated datasets under a range of values for

vtk2 = vtk3. Each entry reports (Cerr,Terr,Zerr,werr)

vtk2 = vtk3

0 0.1 0.25 0.4 0.5

0, 0, 0.00, 0.08 0, 0, 0.00, 0.09 0, 0, 0.00, 0.08 0, 0, 0.00, 0.07 0, 0, 0.12, 0.07
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SNVs as right missing reads, that is, vtk2 = 0 and vtk3 = 1. We simulate one
dataset under this scenario. The reconstruction errors are (Cerr,Terr,Zerr,werr) =
(0,0,0.46,0.1). The number of subclones and phylogenetic tree are correctly
identified. The genotype reconstruction error Zerr is high because the data do
not provide any information for inferring the unobserved locus zkcj2 for all k,
c and j . For a fair comparison we redefine ZSNV

err = minσ (
∑

k,c I (ẑkσ (c)j1 	=
zkcj1for j = 1 or 2))/(K(C − 1)). The redefined reconstruction error is ZSNV

err =
0.00.

4.2. Simulation 2 and comparison with alternatives. In the second simulation
study we compare the performance of TreeClone with existing methods. We con-
sider T = 1 sample which is the case for most real-world tumor cases (due to the
challenge in obtaining multiple samples from a patient). In practice we notice that
methods using only marginal SNV data find it hard to identify branching in a phy-
logenetic tree. We use this simulation to illustrate the information gain by using
mutation pairs data.

We consider K = 100 mutation pairs and assume a simulation truth with C = 4
latent subclones with a true phylogenetic tree as

Figure 3(a) shows the true underlying subclonal genotypes. We use a heatmap
to show the subclone matrix Z, where colors from light gray to black are used
to represent genotypes z(1) to z(10). The subclone weights are simulated from
Dir(0.01, σ(15, 10, 8, 5)). For the single sample in this simulation, we get
w = (0.000, 0.135, 0.169, 0.470, 0.226). We generate ρ from the prior model
with d1 = 1, and we set vtk2 = vtk3 = 0.3 for all t and k. We generate the read
depth Ntk ∼ NB(rN,pN) with E(Ntk) = 500 and sd(Ntk) = 100.

The hyperparameters are set as in simulation 1. To explore a larger tree space,
we set Cmax = 6, run a total of 13,000 MCMC iterations and discard the first 3000
draws as initial burn-in.

Posterior inference is summarized in Figure 3(b), (c). Figure 3(c) shows the top
three tree topologies and corresponding posterior probabilities. The posterior mode
recovers the true phylogeny. Figure 3(b) shows the estimated genotypes condi-
tional on the posterior modes (Ĉ, T̂ ). Some mismatches are due to the single sam-
ple and limited read depth. The estimated subclone proportions are ŵ = (0.000,
0.103, 0.162, 0.498, 0.237).

Comparison with alternatives. There is no other subclone calling method
based on paired-end read data that also infers phylogeny. We therefore compare
with other similar model-based approaches. In particular, we use Cloe [Marass et
al. (2016)], PhyloWGS [Deshwar et al. (2015), Jiao et al. (2014)] and PairClone
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FIG. 3. Simulation 2. True genotype matrix Z in the form of a heatmap (a), estimated genotype
matrix Ẑ under TreeClone (b), and three tree topologies with the highest posterior probabilities
estimated by TreeClone (c). In panels (a), (b) colors from light gray to black represent genotypes z(1)

to z(10).

[Zhou et al. (2019)] for inference with the same simulated data. Cloe and Phy-
loWGS infer phylogeny but take marginal SNV data as input. For these methods
we therefore discard the phasing information in mutation pairs and only record
marginal mutation counts for SNVs. The simulation truth for Cloe and PhyloWGS
is shown in Figure 4(a). The color means a heterozygous mutation at the corre-
sponding SNV locus. PairClone takes the same mutant read counts and read depths
for mutation pairs as input but uses a different probability model that does not al-
low to infer the phylogenetic tree.

Cloe infers clonal genotypes and phylogeny based on a similar feature alloca-
tion model. We run Cloe with the default hyperparameters for the same number of
13,000 iterations with the first 3000 draws as initial burn-in. Based on the MAP
estimate (over 2 ≤ C ≤ 6), Cloe reports C = 3 subclones with phylogeny 1 →

FIG. 4. Simulation 2. True genotype matrix ZCloe in the form of a heatmap (a), estimated genotype

matrices Ẑ
Cloe

under Cloe (b) and Ẑ
PWGS

under PhyloWGS (c) and estimated genotype matrix

Ẑ
PairClone

under PairClone (d). In panels (a), (b), (c) the colors represent a heterozygous mutation
at the corresponding SNV locus. In panel (d) the colors represent genotypes z(1) to z(10) for the
mutation pairs.
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2 → 3, and the subclone genotypes are shown in Figure 4(b) with subclone pro-
portions ŵCloe = (0.555,0.223,0.222).

PhyloWGS, on the other hand, infers clusters of mutations and phylogeny. One
can then make phylogenetic analysis to conjecture subclones and genotypes. Let
φ̃i denote the fraction of cells with a variant allele at locus i. The φ̃i’s are latent
quantities related to the observed VAF for each SNV. PhyloWGS infers the phy-
logeny by clustering SNVs with matching φ̃i ’s under a tree-structured prior for the
unique values φj . In particular they use the tree-structured stick breaking process
(TSSB) [Adams, Ghahramani and Jordan (2010)]. The TSSB implicitly defines a
prior on the formation of subclones, including a prior on C and the number of
novel loci that arise in each subclone (in contrast, TreeClone explicitly defines
these model features, allowing easier prior control on C and Mc). We run Phy-
loWGS with the default hyperparameters and 2500 iterations with a burn-in of
1000 samples. We only consider loci with VAF > 0; as for PhyloWGS the other
loci do not provide information on clustering. We then report cluster sizes and
phylogeny based on MAP estimate. PhyloWGS reports three subclones with phy-
logeny 0 → 1(79,0.438) → 2(53,0.220), where 0 refers to the normal subclone,
and the numbers in the brackets refer to the cluster sizes and cellular prevalences.
The conjectured subclone genotypes are shown in Figure 4(c) with subclone pro-
portions ŵPWGS = (0.562, 0.218, 0.220).

Inferences under Cloe and PhyloWGS do not entirely recover the truth. Let
Mc denote the new mutations that are gained by subclone c. The reason for the
failure to recover the simulation truth is probably that the common mutations of
subclones 2 and 4 (M2 with a cellular prevalence of 0.169 + 0.226) have a similar
cellular prevalence as the mutations of subclone 3 (M3 with a cellular prevalence
of 0.470). Therefore, Cloe infers that M2 and M3 belong to the same subclone
(MCloe

2 ≈ M2 ∪ M3 and MCloe
3 ≈ M4). Similarly, PhyloWGS clusters M2 and

M3 together. Using more informative mutation pairs data, TreeClone can infer
that M2 and M3 belong to different subclones. The inclusion of phasing infor-
mation from the paired-end read data increases statistical power in recovering the
underlying structure.

PairClone uses the same mutation pairs data and same sampling model to in-
fer clonal genotypes. However, PairClone uses a finite categorical Indian buffet
process prior for Z which assumes independence among the subclones and does
not infer phylogeny. PairClone infers three subclones with genotypes shown in
Figure 4(d). The estimated subclone proportions are ŵPairClone = (0.594, 0.229,
0.177), similar to Cloe and PhyloWGS’s results. PairClone does not entirely re-
cover the truth, probably because not imposing the tree structure reduces the iden-
tifiability of the problem.

Comparison using additional marginal SNVs. An NGS dataset contains many
more marginal SNVs than phased mutation pairs. These additional marginal SNVs
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can be utilized by methods such as Cloe and PhyloWGS. For an illustration of the
information gain by using more SNVs, we run Cloe and PhyloWGS with a larger
set of SNVs that contains 400 SNVs in addition to the 200 SNVs that are part of
the 100 mutation pairs, that is, a total of 600 SNVs. We assume a genotype matrix
Z+ = (Z,Z,Z)′, that is, repeating the rows of Z three times and keep the other
parameters unchanged from before.

Using 600 SNVs, Cloe infers two subclones with phylogeny 1 → 2 and pro-
portions ŵCloe

+ = (0.641, 0.359). PhyloWGS infers three (conjectured) subclones

with phylogeny 1 → 2 → 3 and proportions ŵPWGS
+ = (0.562, 0.212, 0.226). The

results suggest that the additional 400 SNVs do not contribute much information
about the branching in the phylogenetic tree.

4.3. Simulation 3. In the third simulation, we evaluate the performance of the
proposed approach on multiple samples. We generate the simulated data by mim-
icking a real-world lung cancer data (see Section 5). Following that dataset, we
consider T = 4 tissue samples and K = 69 mutation pairs. The simulation truth Z
and w are generated by fitting TreeClone on the lung cancer dataset. We estimate
C = 6 subclones with phylogeny

Figure 5(a), (b) shows the simulation truth Z and w in the form of heatmaps
respectively. For w a darker color indicates higher abundance of a subclone in a
sample (the proportions wt0 of the background subclone are tiny and not shown).
Read depths {Ntk} and left and right missing rates {vtk2, vtk3} are taken to be ex-
actly the same as in the real data. The average read depth is N̄tk = 156.

The hyperparameters are set as in Simulation 1. To explore a larger tree space,
we set Cmax = 7, run a total of 30,000 MCMC iterations and discard the first 3000
draws as initial burn-in.

Posterior inference is summarized in Figure 5(c), (d), (e). Figure 5(c) shows the
top three tree topologies and corresponding posterior probabilities. The posterior
mode recovers the true phylogeny. Figure 5(d), (e) shows the estimated genotypes
Ẑ and subclone proportions ŵ conditional on (Ĉ, T̂ ). There are some mismatches
for subclones 2, 4 and 5, as they only take small proportions in all the samples
(wt2,wt5 < 0.02 and wt4 < 0.11 for all t). The reconstruction errors are Zerr =
0.21 and werr = 0.01 (considering only subclones 1, 3 and 6 the reconstruction
error becomes Z

(1,3,6)
err = 0.04).

For comparison we again run Cloe, PhyloWGS and PairClone on the same data.
Cloe infers three subclones with phylogeny 1 → 2 → 3, where Cloe’s subclones
1, 2 and 3 roughly correspond to the true subclones 1, 6 and 3 respectively. Cloe’s
result is reasonable since subclones 2, 4 and 5 have small proportions, and there is
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FIG. 5. Simulation 3. Simulation truth Z and w in the form of heatmaps (a), (b), three tree topolo-
gies with the highest posterior probabilities estimated by TreeClone (c), estimates Ẑ and ŵ under

TreeClone (d), (e) and estimate Ẑ
PairClone

under PairClone (f). In panels (a), (d), (f) colors from light
gray to black represent genotypes z(1) to z(10). In panels (b), (e) the colors indicate the abundance
of a subclone in a sample.

not much statistical power to estimate them. Similar to the definition of Zerr, we

define Zerr, Cloe for SNVs. Comparing Ẑ
Cloe

with subclones 1, 6 and 3, we cal-
culate the reconstruction error Z

(1,3,6)
err,Cloe = 0.04, indicating good model fit of Cloe.

By allowing mutation loss Cloe infers a linear phylogenetic tree which is still rea-

sonable. On the other hand PhyloWGS infers the phylogeny as 0 → 1 → 2
→ 3
→ 4

(details not shown) which approximates but misses some detail in the simulation
truth. Finally, PairClone infers three subclones corresponding to the true subclones
1, 3 and 6, shown in Figure 5(f). PairClone also reasonably recovers the truth but

does not infer phylogeny. Comparing Ẑ
PairClone

with subclones 1, 3 and 6 we cal-
culate the reconstruction error Z

(1,3,6)
err, PairClone = 0.14 which is higher than Z

(1,3,6)
err .

5. Lung cancer data. We use whole-exome sequencing (WES) data gener-
ated from four (T = 4) surgically dissected tumor samples taken from a single
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patient diagnosed with lung adenocarcinoma. DNA is extracted from all four sam-
ples, and the exome library is sequenced on an Illumina HiSeq 2000 platform in
paired-end fashion. Each read is 100 base pairs long. We use BWA [Li and Durbin
(2009)] and GATK’s UniformGenotyper [McKenna et al. (2010)] for mapping and
variant calling respectively. In order to find mutation pair locations along with their
genotypes and the number of reads supporting them, we use a bioinformatics tool
called LocHap [Sengupta et al. (2016)]. LocHap searches for two or three SNVs
that are scaffolded by the same reads. When the scaffolded SNVs, known as lo-
cal haplotypes, exhibit more than two haplotypes, it is known as local haplotype
variant (LHV). Using the individual BAM and VCF files, LocHap finds a few
hundreds LHVs on average in a WES sample. We select LHVs with two SNVs
as we are interested in mutation pairs only. On those LHVs we run the bioinfor-
matics filters suggested by LocHap to keep the mutation pairs with high calling
quality. We focus our analysis in copy number neutral regions. In the end we get
69 mutation pairs for the sample and record the read count data from the output
of LocHap. Figure 6 shows the histograms of read depths, left missing rates and
right missing rates. The average read depth, left missing rate and right missing rate
are 156, 0.21 and 0.23 respectively. Simulation 1 showed that with T = 4 samples
TreeClone should provide useful inference with this combination of moderate read
depth and left/right missing rates.

We use the same hyperparameters as in Simulation 1. We first fit the dataset
with Cmax = 5 and found that the posterior distribution of C is concentrated at
the value 5. This suggests that setting Cmax = 5 is too low; see more details in
Supplementary Section 3 (Zhou et al. (2019)). To explore a larger tree space, we
fit the dataset again with Cmax = 7. We run a total of 30,000 MCMC iterations and
discard the first 3000 draws as initial burn-in. Figure 7(c) shows the top three tree

FIG. 6. Some summary plots of the lung cancer dataset. Histograms of read depths (a), left missing
rates (b) and right missing rates (c). The dashed line in (a) is a negative binomial density, showing
that it is not unreasonable to assume the read depths follow a negative binomial distribution.
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FIG. 7. Posterior inference with TreeClone for the lung cancer dataset. Estimated genotype matrix
Ẑ (a), cellular proportions ŵ (b) and three tree topologies with the highest posterior probabilities (c).
Panel (d) shows a histogram of residuals which are the differences between the estimated and em-
pirical values of ptkg . Panel (e) is a quantile-quantile (Q-Q) plot of posterior samples of the test

statistic RB against expected order statistics from a χ2
7 distribution for the Bayesian χ2 test.

topologies and corresponding posterior probabilities. The posterior mode is

with Ĉ = 6 subclones. Based on our experiences, we recommend to increase Cmax
if the posterior distribution is peaked at the current Cmax value to avoid unnec-
essary truncation. Figure 7(a), (b) show the estimated subclone genotypes Ẑ and
cellular proportions ŵ respectively (ŵt0 < 3 × 10−3 are not shown). The rows for
Ẑ are reordered for better display. The cellular proportions of the subclones show
strong similarity across the four samples, indicating homogeneity of the samples.
This is plausible as the samples are dissected from proximal sites. Subclone 1,
which is the normal subclone, takes a small proportion in all four samples, indi-
cating high purity of the tumor samples. Subclones 2 and 5 are also included in
only small proportions. They have almost vanished in the samples. However, as



RECONSTRUCTION OF TUMOR SUBCLONE PHYLOGENY 895

parents of subclones 3, 4 and 6 respectively, they are important for the reconstruc-
tion of the subclone phylogeny. Subclones 3, 4 and 6 are the three main subclones.
They share a large proportion of common mutations, but each one has some private
mutations, consistent with the estimated tree.

Test of fit. Finally, Figure 7(d) shows a histogram of residuals, where we cal-
culate empirical values p̄tkg = ntkg/Ntk and plot the difference (p̂tkg − p̄tkg). The
residuals are centered at zero with little variation, indicating a good model fit. For
a more formal goodness-of-fit test, we carry out the Bayesian χ2 test proposed in
Johnson (2004). Recall that the observations in our case are short reads stki taking
G = 8 discrete values {00,01,10,11,−0,−1,0−,1−}. We count the number of
short reads that fall into each of these categories. Let Mg denote these counts, and
let x(l) be a posterior sample of x = (Z,w,ρ). The statistic RB is defined as

RB(
x(l)) =

G∑
g=1

[
Mg − Nqg(x

(l))√
Nqg(x(l))

]2
,

where N = ∑
t,k Ntk , and qg(x

(l)) = ∑
t,k Ntkptkg(x

(l))/N is the expected pro-
portion of short reads in category g calculated by x(l). Under the null hypothesis
of a good model fit, the statistic should follow a χ2-distribution with G − 1 = 7
degrees of freedom. Figure 7(e) shows a quantile-quantile plot of posterior sam-
ples of RB against expected order statistics from a χ2

7 distribution. In addition we
find the proportion of posterior samples of RB exceeding the 95% quantile of a χ2

7
distribution to be 0.054. There is no evidence of a lack of fit.

Cloe and PhyloWGS. For comparison we run Cloe and PhyloWGS on the
same dataset with default hyperparameters. Cloe infers four subclones with phy-

logeny 1 → 2 → 3 → 4. Figure 8(a), (b) show the estimated genotypes Ẑ
Cloe

and
cellular proportions ŵCloe respectively. The estimated subclones 2, 3 and 4 under
Cloe match with subclones 6, 4 and 3 respectively, under TreeClone. Cloe infers
a linear phylogenetic tree since it allows mutation loss. PhyloWGS estimates six
clusters (and a cluster 0 for normal subclone) of the SNVs with phylogeny:

Figure 8(c) summarizes the cluster sizes and cellular prevalences. In light of the
earlier simulation studies, we believe that the inference on T under TreeClone is
more reliable. However, results from Cloe and PhyloWGS confirm that the four
samples have similar proportions of all the subclones, indicating little intersample
heterogeneity. Also, Cloe and PhyloWGS infer very small normal cell proportion,
confirming the high tumor purity found by TreeClone. Finally, the same lung can-
cer dataset was analyzed under PairClone in Zhou et al. (2019). PairClone infers
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FIG. 8. Posterior inference with Cloe and PhyloWGS for the lung cancer dataset. Panels (a), (b)

show the estimated genotype matrix Ẑ
Cloe

and cellular proportions ŵCloe under Cloe. Panel (c)
reports the SNV clusters, cluster sizes and cellular prevalences inferred by PhyloWGS.

three subclones corresponding to TreeClone’s subclones 1, 3 and 6 and also con-
firms the four tissue samples are highly homogenuous. PairClone gives reasonable
result but can not infer phylogeny.

6. Discussion. In this work, using a tree-based LFAM, we infer subclonal
genotypes structure for mutation pairs, their cellular proportions and the phyloge-
netic relationship among subclones. This is the first attempt to generate a subclonal
phylogenetic structure using mutation pair data. We show that more accurate infer-
ence can be obtained using mutation pairs data compared to using only marginal
counts for single SNVs. The model can be easily extended to incorporate more
than two SNVs. Another way of extending the model is to encode mutation times
inside the length of the edges of phylogenetic tree.

Currently, the heterogeneity is measured mostly with SNV and CNA data. How-
ever, structural variants (SVs) like deletion, duplication, inversion, translocation
and other large genome rearrangement arguably provide more accurate data for
VAF estimation [Fan et al. (2014)] which is the key input for characterizing tumor
heterogeneity. Therefore, incorporation of SVs into the current model could sig-
nificantly improve the outcome of tumor heterogeneity analysis. Recently, Brocks
et al. (2014) attempted to explain intratumor heterogeneity in DNA methylation
and copy-number pattern by a unified evolutionary process. The current genome
centric definition of tumor heterogeneity could be extended by incorporation of
methylation, DNA mutation and RNA expression data in an integromics model.

Finally, in the era of big data it is important to factor computation into the re-
search effort and build efficient computational models that could handle millions of
SNVs. Linear response variational Bayes [Giordano, Broderick and Jordan (2015)]
or MAD-Bayes [Broderick, Kulis and Jordan (2013), Xu et al. (2015)] methods
could be considered as alternative computational strategies to tackle the problem.
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SUPPLEMENTARY MATERIAL

Supplement to “TreeClone: Reconstruction of Tumor Subclone Phylogeny
Based on Mutation Pairs using Next Generation Sequencing Data” (DOI:
10.1214/18-AOAS1224SUPP; .zip). We provide the R package TreeClone,
a glossary of biological terms and the supplementary details referenced in the main
text.
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