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The conventional model for assessing insensitivity to hidden bias in
paired observational studies constructs a worst-case distribution for treatment
assignments subject to bounds on the maximal bias to which any given pair is
subjected. In studies where rare cases of extreme hidden bias are suspected,
the maximal bias may be substantially larger than the typical bias across pairs,
such that a correctly specified bound on the maximal bias would yield an
unduly pessimistic perception of the study’s robustness to hidden bias. We
present an extended sensitivity analysis which allows researchers to simul-
taneously bound the maximal and typical bias perturbing the pairs under in-
vestigation while maintaining the desired Type I error rate. We motivate and
illustrate our method with two sibling studies on the impact of schooling on
earnings, one containing information of cognitive ability of siblings and the
other not. Cognitive ability, clearly influential of both earnings and degree of
schooling, is likely similar between members of most sibling pairs yet could,
conceivably, vary drastically for some siblings. The method is straightforward
to implement, simply requiring the solution to a quadratic program. R code is
provided in the Supplementary Material.

1. Introduction.

1.1. A motivating example: Returns to schooling. Is educational attainment
a determining factor for success in the labor market? Initial interest among
economists in addressing this question is attributed to the observation in the late
1950s that increases in education levels could account for much of the productiv-
ity growth in post-war US (Becker (2009), Griliches (1970), Card (1999)). With
strong evidence of a positive association between education and earnings in a va-
riety of political and geographic environments but little to no experimental data,
a recurring theme in the subsequent pursuit of a causal relationship between ed-
ucation and income is that of the presence of “ability bias” (Card (1999)). After
controlling for family background, or considering within-family estimates of the
causal effect using sibling or twin studies, can latent differences in ability influ-
ence both differences in schooling choice and earnings? A notable twin study by
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Ashenfelter and Rouse (1998), which we re-examine in this paper, argued cogently,
albeit with limited statistical evidence, that identical twins can be regarded as truly
identical in all dimensions relevant to schooling choices and future income, includ-
ing latent ability. In a survey of contemporary economic investigations of returns
to education, Card (1999), page 1852, addresses this hypothesis:

Despite this evidence, and the strong intuitive appeal of the “equal abilities” assumption
for identical twins, however, I suspect that observers with a strong a priori belief in the
importance of ability bias will remain unconvinced.

Perhaps latent ability is truly identical for many twin pairs but markedly dif-
ferent in a few pairs; what would happen then? That exogeneity is not testable
leaves even the most compelling observational evidence susceptible to the war-
ranted, though often nonspecific, criticism, “what if bias remains?” Should the
totality of evidence assume the absence of hidden bias, the critic need merely sug-
gest the existence of bias to cast doubt upon the posited causal mechanism. It is
thus incumbent upon researchers not only to anticipate such criticism, but also to
arm themselves with a suitable rejoinder. Rather than arguing for or against the
presence of ability bias or any other unobserved confounding factor, in this paper
we assess the sensitivity of causal conclusions to departures from truly randomized
assignment while allowing for patterns of ability bias that may be highly hetero-
geneous across sibling pairs.

1.2. Assessing returns to schooling with sibling comparison designs. Sibling
comparison studies are a special case of stratified designs where natural blocks are
formed by family membership. These studies automatically control for genetic,
socioeconomic, cultural, and child-rearing characteristics to the extent that they
are shared between siblings; however, instability of familial characteristics over
time for sibling pairs of different ages and nonshared genetic makeup are among
threats to this premise (Donovan and Susser (2011)). Due to their natural and au-
tomatic control of stable familial factors, both observed and unobserved, sibling
comparison designs have long been a popular tool for studying causal effects in
both epidemiological and economic settings; see Griliches (1979) and Donovan
and Susser (2011) for surveys of past and current sibling comparison studies in
economics and epidemiology, respectively.

Sibling comparison designs have been particularly fruitful in the study of re-
turns to schooling, where genetic and family background are deemed essential to
both schooling choices and future income; see for example Hauser et al. (1999),
Stanek et al. (2011), and Ashenfelter and Rouse (1998). Hauser et al. (1999) study
sibling pairs from the Wisconsin Longitudinal Study (WLS), a random sample
(n = 10,317) of men and women born between 1938 and 1940 who graduated
from Wisconsin high schools in 1957. The size of the sample was set to be ap-
proximately a third of all Wisconsin high school graduates in 1957. Random sib-
lings of those in the study (n = 7928), born between 1930 and 1948, were also
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FIG. 1. Boxplots of differences in IQ scores between same-sex siblings where one attended college
and the other did not. (top panel): Male same-sex sibling pairs (n = 128). (bottom panel): Female
same-sex sibling pairs (n = 43).

selected and interviewed. The WLS contains a rich set of baseline covariates and
endpoints, including physical, cognitive, social, and occupational outcomes col-
lected over nearly 60 years following graduation. Uniquely, the WLS dataset con-
tains intelligence quotient (IQ) scores recorded while a given individual was in
high school—a covariate rarely measured in longitudinal cohort studies.

In other sibling studies of the returns to schooling, such as that of Ashenfelter
and Rouse (1998), baseline intelligence measures such as IQ are not available,
making it plausible that the siblings being compared differ in cognitive ability in
unobserved ways. Furthermore, the IQ data from the WLS study suggests that,
when considering same-sex sibling pairs where one sibling attended college and
the other did not (n = 171), intellectual ability is not balanced sufficiently by
shared genetics alone. The boxplots of differences in IQ between the college-
attending siblings and their counterparts in Figure 1 exhibit a prominent shift in
the IQ distribution between the two groups for both male and female same-sex
sibling pairs. The mean (sd) is 107.1 (14.7) in the college-attending group and
97.4 (14.4) in the high school-only group for male same-sex sibling pairs. In fe-
male same-sex sibling pairs, these values are 108.1 (14.0) and 101.4 (14.2) for the
college-attending and high school-only attending groups respectively. Details on
the construction of the 171 same-sex sibling pairs can be found in Section B of the
Supplementary Material (Fogarty and Hasegawa (2019)). An important inclusion
criterion was that both siblings were employed when income data was collected.

1.3. Potential for rare but extreme unmeasured biases. Despite their analytical
strengths and convenient, automatic stratification, sibling comparison designs for
estimating causal effects are subject to biases arising from differences in subject-
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level confounders. For example, latent ability, as measured by IQ, may differ sub-
stantially within twin pairs in Ashenfelter and Rouse’s twin study. This concern
is magnified in sibling studies where discordant within-pair treatment assignment
may actually exacerbate differences in covariates that are related to both the inter-
vention and outcome of interest (Frisell (2012)). When pairs do not arise naturally,
as in paired sibling studies, matching algorithms designed to minimize disparities
in observed covariates may be used to construct pairs of “comparable” subjects;
see, for example, Hansen and Klopfer (2006) and Stuart (2010) for discussion on
various approaches to matching. Matched pairs constructed in this fashion may be
comparable along observed covariates, but they are still vulnerable to unmeasured
bias arising from differences in covariates not available to the matching algorithm.

While agnostic covariate adjustment within sibling sets as suggested in Rosen-
baum (2002a) can help mitigate the impact of discrepancies in observed individual-
specific covariates, bias arising from differences in unobserved confounders may
remain and imperil the conclusions of the study. An additional inferential step
known as a sensitivity analysis assesses the robustness of the conclusions of a study
to these unmeasured biases. Sensitivity analysis was first introduced by Cornfield
et al. (1959) and refined to accommodate continuous outcomes in Rosenbaum
(1987). The resulting sensitivity analysis for paired studies considers the worst-
case bias to which any pair may be subject and asks whether the study conclusions
might change if we assumed that all pairs were exposed to the maximal bias in a
manner adverse to the desired inference. We refer to this as the conventional sensi-
tivity analysis. See Cornfield et al. (1959), Marcus (1997), Imbens (2003), Yu and
Gastwirth (2005), Wang and Krieger (2006), Egleston, Scharfstein and MacKenzie
(2009), Hosman, Hansen and Holland (2010), Zubizarreta, Cerdá and Rosenbaum
(2013), Liu et al. (2013), and VanderWeele and Ding (2017) for additional per-
spectives on and worked examples of sensitivity analysis.

In many paired studies, sibling or otherwise, hidden biases may strongly in-
fluence the results observed for some pairs and more modestly affect others. If
the impact of unmeasured confounding were truly heterogeneous in this manner,
the conventional sensitivity analysis would be conspicuously conservative. Con-
sider, for example, discrepancies in IQ scores within sibling pairs measured in
the WLS where one sibling attended college for at least two years and the other
received at most a high school diploma. While existing longitudinal cohort stud-
ies rarely contain measures of intelligence (Herd, Carr and Roan (2014)), exist-
ing evidence suggests that discrepancies in IQ between sibling pairs are strongly
predictive of both differences in educational attainment and differences in future
income (Stanek et al. (2011)). In the WLS data, the between-sibling disparity in IQ
scores is quite variable across sibling pairs where one sibling attended college and
the other did not. The histogram of these college-minus-high school differences is
shown in the left panel of Figure 2 for male sibling pairs and the right panel for
female sibling pairs. Most IQ differences are modest, but a few sibling pairs have
large imbalances (e.g., >40).
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FIG. 2. (left panel): Histogram of between-sibling IQ disparities of same-sex male sibling pairs in
the WLS study where one sibling attended college and the other did not (n = 128). (right panel):
Histogram of between-sibling IQ disparities of same-sex female sibling pairs in the WLS study where
one sibling attended college and the other did not (n = 43). (bottom panel): Table of the estimated
increase in pairwise bias due to IQ disparities between siblings measured as an odds ratio.

In a sibling study on the returns of schooling where IQ was not recorded, such
as Ashenfelter and Rouse’s twin study, the maximal bias to which any pair is sub-
ject could be materially larger than the typical bias for any sibling pair. Evidence
of this pattern’s plausibility can be seen in the bottom table of Figure 2. The table
shows the distribution of the estimated increase in pairwise bias due to IQ dispari-
ties between siblings measured as an odds ratio. The numerator of the odds ratio is
the predicted maximum odds that the sibling who reported higher income attended
college given the reported disparities in IQ while the denominator corresponds to
the maximum odds had both siblings had the same IQ. (The method for estimat-
ing these odds ratios is described in Sections C–D of the Supplementary Material
(Fogarty and Hasegawa (2019))). While the odds ratio in most pairs is close to 1,
there are a handful of pairs with odds ratios near 2 and two rare cases of odds ratios
greater than 6. As far as the “typical” or “expected” pairwise bias is as interpretable
a quantity as the worst-case pairwise bias, an extended sensitivity analysis of both
maximal and expected bias may alleviate concerns that the conventional approach
is overly pessimistic while providing a more flexible handling of unobserved bias.

1.4. Accommodating varying degrees of unmeasured confounding. We present
an extended sensitivity analysis bounding both the maximal and expected bias for
paired studies. The concept of expected bias is made precise in Section 3.1. The
theoretical foundations and implementation of the extended sensitivity analysis
are developed in Sections 2–4, while supporting Type I error control and power
simulations are presented in Section 5. The procedure involves two interpretable
parameters, � and �̄ ≤ �, bounding the maximal and expected bias, respectively.



772 C. B. FOGARTY AND R. B. HASEGAWA

At one extreme, setting �̄ = � recovers the conventional sensitivity analysis for
paired studies proposed in Rosenbaum (1987), Section 2. At the other, setting
� = ∞ for a fixed value of �̄ allows one to bound the average bias while leaving
the maximal bias in any given pair unbounded, subsuming the extension presented
in Rosenbaum (1987), Section 4, where the investigator specifies a fraction β of
the pairs that satisfy a constraint on the maximal bias and allows the remaining
pairs to be exposed to potentially unbounded bias.

The procedure builds in two important ways on recent work by Hasegawa and
Small (2017) that established an exact sensitivity analysis for the sample average
bias for paired studies with binary outcomes. First, our procedure accommodates
continuous outcomes while providing an asymptotically valid testing procedure
for sharp null hypotheses for a large class of test statistics. While generalizing to
continuous outcomes corrupts properties unique to McNemar’s test statistic uti-
lized in Hasegawa and Small (2017), these difficulties are overcome through a
new formulation of the optimization problem necessitated by the sensitivity anal-
ysis as a quadratic program. Second, our procedure allows the researcher to bound
the expected bias at the level of a superpopulation, rather than the average of the
bias at the level of the observed study population, if a superpopulation model
is deemed appropriate. This facilitates consonance between superpopulation and
finite-sample modes of inference to which the researcher is automatically entitled
when only bounding the maximal bias. Actualizing this harmony requires the com-
bination of concentration inequalities with the technique presented in Berger and
Boos (1994) for yielding valid p-values by maximizing over a confidence set for
nuisance parameters.

To demonstrate the practical consequences of our procedure we return in Sec-
tion 6 to the motivating example of returns to schooling. Using the availability of
IQ measures in the WLS sibling data, we follow Hsu and Small (2013) to estimate
the maximal and expected bias under the assumption that inherent cognitive ability
is the overwhelming unobserved confounding factor in sibling studies of returns to
schooling when IQ measures are not available. We compare standard and extended
sensitivity analyses calibrated to these estimates of the sensitivity parameters for
Ashenfelter and Rouse’s twin study where IQ was not observed.

2. Sensitivity analysis for paired studies.

2.1. An idealized construction of a paired observational study. There are I

pairs of individuals. In the ith matched pair one individual receives the treatment,
Zij = 1, and the other receives the control, Zij ′ = 0, such that Zi1 + Zi2 = 1 for
each i. In practice, the I pairs come into being by minimizing a metric reflective
of the within-pair discrepancies between the observed covariates xij for the treated
and control individuals in a candidate pairing, such that xi1 ≈ xi2 in the resulting
pairs. As an idealization of this practice, we follow Rosenbaum (1987) and imagine
a generative model where the pairs are constructed, for i = 1, . . . , I , by initially
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drawing, without replacement from an infinite population of treated individuals
(that is, conditional upon Z = 1), an individual who has an observed covariate
Xi = xi . For each i, we then sample a control individual from the population of
controls with the same value for the observed covariate, that is, given Z = 0, X =
xi . Finally, randomly assign indices (i,1) and (i,2) to the two individuals in pair
i, and let Xi be a random variable denoting the shared value Xi1 = Xi2. Despite
having a shared value Xi , it may be the case that Ui1 �= Ui2 in any pair i for
some unobserved covariate U . In Section 3.3, we describe the extent to which
the following methodology applies to finite-sample inference in the absence of a
superpopulation.

Under the stable unit-treatment value assumption (Basu (1980)), individual
j in matched set i has a potential outcome under treatment, RT ij , and under
control, RCij which does not depend on the treatment received by other indi-
viduals in the population. The fundamental problem of causal inference is that
vector (RT ij ,RCij ) is not jointly observable. Instead, we observe the response
Rij = RT ijZij + RCij (1 − Zij ), and the observed treated-minus-control paired
differences Yi = (Zi1 − Zi2)(Ri1 − Ri2). Lowercase letters denote realizations of
random variables. Let FI = {(xij , uij , rT ij , rCij ),1 ≤ i ≤ I, j = 1,2} be the val-
ues of the potential outcomes, measured covariates, and unmeasured covariates for
the 2I individuals in the observational study at hand. At times it will be conve-
nient to use boldface for vector-valued constants and random variables after the
assignment of indices. For example, Z represents a vector of length 2I with ele-
ments Z = (Z11,Z12, . . . ,ZI2), while Ri is a vector of length two with elements
Ri = (Ri1,Ri2).

2.2. Randomization inference under strong ignorability. The expectation of
each paired difference Yi in the infinite population model of the preceding sec-
tion is E(Yi | Xij = x) = E(RT ij | Zij = 1,Xij = x) −E(RCij | Zij = 0,Xij = x)

which need not equal τ(x) := E(RT ij − RCij | Xij = x) without further assump-
tions on the relationship between the potential outcomes, the observed covariates,
and the treatment indicators. A sufficient condition for equality of these expecta-
tions, strong ignorability, entails that for any point x,

(RT ,RC) ⊥⊥ Z | X, 0 < P(Z = 1 | X = x) < 1.(1)

Strong ignorability facilitates far more than equality between E(Yi | Xij = x)

and τ(x); indeed, it entitles the researcher to use randomization tests akin to those
justified in randomized experiments. We consider general hypotheses of the form

H0 : FT (RT ij ) = FC(RCij ) ∀i, j

for pre-specified functions FT (·) and FC(·). While this form accommodates flex-
ible models for treatment effects, perhaps the most classical specification is the
additive treatment effect model where the treatment effect is constant at τ for all
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individuals. Under this model RT ij = RCij + τ , which can be expressed by set-
ting FT (RT ij ) = RT ij − τ and FC(RCij ) = RCij . From our data alone we observe
Fij = FT (RT ij )Zij + FC(RCij )(1 − Zij ); let F = [F11, . . . ,FI2]. Under H0, the
vectors FC = [FC(RC11), . . . ,FC(RCI2)] and FT = [FT (RT 11), . . . ,FT (RT I2)]
are known to be equal, and hence are entirely specified by the vector of observed
responses R.

Let t (Z,F) be an arbitrary test statistic that is a function of the treatment indi-
cators Zij and the observed values Fij , and let �I = {z : zi1 + zi2 = 1,1 ≤ i ≤ I }
be the set of 2I possible assignments of individuals to treatment and control in
a paired design. Further let fC be the realized value of the random variable FC .
When H0 holds, fC is fully observed. Under the idealized model in Section 2.1
and under (1), Theorem 1 of Rosenbaum (1984) demonstrates that under the null
hypothesis H0,

P
{
t (Z,F) ≥ a | FI ,H0

} = 1

2I

∑
z∈�I

χ
{
t (z, fC) ≥ a

}
,(2)

where χ{A} is an indicator that the event A occurred. Importantly, under H0, the
randomization distribution (2) is free of unknown parameters through conditioning
on FI , and hence can be used directly to facilitate inference on H0.

2.3. Sensitivity analysis bounding the supremum. In paired randomized exper-
iments, the physical act of randomization breaks the association between potential
outcomes and the intervention and thus justifies both the assumption of strong ig-
norability and randomization inference through the conditional distribution in (2).
Paired observational studies aim to mimic an idealized randomized experiment by
creating pairs where individuals are similar on the basis of their observed covari-
ates, X, which would similarly facilitate randomization inference through (2) if
strong ignorability held. In observational studies, strong ignorability, and in turn
belief in (2), turns a statement of fact into a leap of faith due to the potential
presence of unobserved factor U . That treatment assignment is rarely known to
be strongly ignorable given observed covariates X alone necessitates a sensitvity
analysis which assesses the robustness of a study’s conclusions to factors not in-
cluded in X. A sensitivity analysis operates under the premise that strong ignora-
bility would have been satisfied if an additional pretreatment covariate U had been
used in constructing the pairs, that is if for any x and u

(RT ,RC) ⊥⊥ Z | (X,U), 0 < P(Z = 1 | X = x,U = u) < 1.(3)

A simple model parameterizing the impact of hidden bias presented in
Rosenbaum (1987), Section 2, relates U to the assignment mechanism through
a parameter � = exp(γ ) ≥ 1, which constrains the degree to which U can affect
the odds of receiving the intervention through a logit model,

logit
(
P(Z = 1 | X = x,U = u)

) = κ(x) + γ u, 0 ≤ u ≤ 1.(4)
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The bounds on u in (4) may be viewed as a restriction on the scale of the un-
observed covariate that is required for the numerical value of γ to have meaning
Rosenbaum (2002b), Chapter 4. Letting πi = P(Zi1 = 1 | FI ), (3) and (4) then
imply πi = expit(γ (ui1 − ui2)) and 1 − πi = expit(γ (ui2 − ui1)). As a result,
the model requires that the bound π∗

i = max{πi,1 − πi} = expit(γ |ui1 − ui2|) ≤
�/(1 + �) holds uniformly for all i, but imposes no additional constraints on π ,
and imposes no constraint on the relationship between the unobserved covariate
and the potential outcomes. Theorem 1 of Rosenbaum (1987) illustrates that (3),
(4), and the generative model described in Section 2.1 imply that under a sharp
null H0, the distribution t (Z,F) given FI takes on the modified form

P
{
t (Z,F) ≥ a | FI ,H0

} = ∑
z∈�I

[
χ

{
t (z, fC) ≥ a

}

×
I∏

i=1

expit
(
γ (ui1 − ui2)

)zi1 expit
(
γ (ui2 − ui1)

)zi2

]
.

(5)

At � = 1 ⇔ γ = 0, (5) recovers (2), hence representing strong ignorability on the
basis of X alone. For � > 1, (5) depends on the unknown values of u. A sensitivity
analysis proceeds by, for a given value of �, finding bounds on (5) by optimizing
over the nuisance parameters u ∈ [0,1]2I (or equivalently, optimizing over πi sub-
ject to π∗

i ≤ �/(1 + �)).
We consider test statistics of the form t (Z,F) = ZT q for some function

q = q(F), commonly referred to as sum statistics. Examples of sum statistics
in paired observational studies include Wilcoxon’s signed rank test and McNe-
mar’s test among many others; see Rosenbaum (2002b), Chapter 2, for more on
sum statistics. For example, were we to test the null that the treatment effect
was constant at zero for all individuals (commonly referred to as Fisher’s sharp
null hypothesis), then a choice of qij = (Rij − Rij ′)/I = (rCij − rCij ′)/I would
amount to a choice of the average of the treated-minus-control paired differences
in outcomes as the test statistic. In paired studies, arguments parallel to those in
Rosenbaum (2002b), Chapter 4, yield that a tight lower bound on (5) is found
by setting ui1 − ui2 = − sign(qi1 − qi2) for each pair i, where sign(a) is the
sign of the scalar a. Similarly, a tight upper bound on (5) is found by setting
ui1 − ui2 = sign(qi1 − qi2) for each i. As a further illustration, if one uses the dif-
ference in means as the test statistic, the lower (upper) bound is attained through
a perfect negative (positive) correlation between the differences in unmeasured
covariates and the signs of the treated-minus-control paired differences.

3. An extended sensitivity analysis.

3.1. Average-case unmeasured confounding in paired studies. In Sections
1.1–1.2, it was argued that large discrepancies in IQ within pairs of siblings, while
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likely uncommon, would have a large impact on both likelihood of attaining more
than a high school degree and on an individual’s expected earnings. Were this the
only unmeasured confounder, we would then expect most of the values for π∗,
the maximal probabilities of assignment to treatment within a pair, to not deviate
substantially from 0.5, while a few pairs would likely have values for π∗

i substan-
tially larger than 0.5. The conventional model for a sensitivity analysis presented
in Section 2.3 bounds π∗

i by �/(1 + �) for all pairs. Despite typical discrepancies
in IQ likely being small, the smallest value of � for which (4) and (5) hold would
be large due to the small number of extremely biased pairs. When utilized in its
original form, the sensitivity analysis in Section 2.3 may then paint an overly pes-
simistic picture of the robustness of the study’s findings to unmeasured confound-
ing under this belief, as it cannot account for the “typical” level of unmeasured
confounding being different from the worst-case level.

We consider an extension of the conventional sensitivity analysis summarized
in Section 2.3 involving two sensitivity parameters, � and �̄. The first, �, plays
a role identical to that of � in the conventional sensitivity analysis by bounding
the supremum of the biased assignment probabilities within a pair. Explicitly, we
bound the probabilities of receiving the intervention through a logit form,

logit
(
P(Z = 1 | X,U)

) = κ(X) + γU, 0 ≤ U ≤ 1.(6)

That 0 ≤ U ≤ 1 trivially implies that for any pair i

1/2 ≤ expit
(
γ |Ui1 − Ui2|) ≤ �

1 + �
.(7)

Under (3) and the setup of Section 2.1, (6) yields that 
∗
i = max{
i,1 − 
i} =

expit(γ |Ui1 − Ui2|) ≤ �/(1 + �), where 
i = P(Zi1 = 1 | Xi,Ui ,RT i,RCi) =
P(Zi1 = 1 | Xi,Ui). We capitalize Uij and 
∗

i to emphasize that they themselves
are random variables with respect to the superpopulation model in Section 2, which
would become deterministic by conditioning in FI .

The second sensitivity parameter, �̄, serves to bound the expectation of the bi-
ased probabilities. We define μπ∗ = E[
∗

i ] = E[expit(γ |Ui1 − Ui2|)], and impose
that for some value �̄ such that 1 ≤ �̄ ≤ �,

1/2 ≤ μπ∗ ≤ �̄

1 + �̄
.(8)

Again, this expectation is taken over repeated samples in the idealized setting in
Section 2.1, within which the fixed but unknown values π∗

i in our observational
study can be modeled as i.i.d. realizations of the random variables 
∗

i . As with
the conventional sensitivity analysis, our model makes no assumption about the
relationship between the unobserved covariates and the potential outcomes.

Like the conventional sensitivity analysis, our extended procedure solves an op-
timization problem over a set of nuisance parameters π that satisfy the typical and
maximal bias bounds specified in (7) and (8). Although the population-level bound
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∗
i ≤ �/(1 + �) implies the corresponding sample level bound π∗

i ≤ �/(1 + �),
the same cannot be said about the corresponding bound on μ∗

π . If μ∗
π ≤ �̄/(1+ �̄),

a sample realization π̄∗ arbitrarily close to �/(1+�) is still possible, however un-
likely. To address this, we translate the bound on μ∗

π to a stochastic bound on 
̄∗.
In order to construct this stochastic bound, we consider properties of the random

variable 
∗
i across draws from the idealized setting in Section 2.1. From (7) and

(8), we have that for all i 
∗
i is bounded above by �/(1 + �), bounded below by

1/2, and has expectation μπ∗ which is itself bounded above by �̄/(1 + �̄). The
Bhatia–Davis inequality (Bhatia and Davis (2000)) provides the variance upper
bound

var
(

∗

i

) ≤ (
�/(1 + �) − μπ∗

)
(μπ∗ − 1/2) = ν2(�,μπ∗).

As the 
∗
i can further be modeled as i.i.d. random variables under the setting being

considered, defining 
̄∗ = I−1 ∑I
i=1 
∗

i , it follows that

E
[

̄∗] = μπ∗,var

(

̄∗) ≤ ν2(�,μπ∗)/I.

If var(
∗
i ) > 0 the central limit theorem applies to 
̄∗, indicating that for any

0 < β ≤ 0.5

lim
I→∞P

(

̄∗ ∈ Cβ(�,μπ∗)

) ≥ 1 − β,(9)

where, because 
̄∗ ≥ 1/2 by definition of 
∗
i

Cβ(�,μπ∗) = [
1/2,μπ∗ + I−1/2�−1(1 − β)ν(�,μπ∗)

]
,(10)

and �−1(p) is the p-quantile of the standard normal distribution. Further, (9) is
trivially true if var(
∗

i ) = 0, as the upper bound of Cβ(�,μπ∗) is no smaller than
μπ∗ when β ≤ 0.5. That is, knowledge of μπ∗ alone enables the construction of
asymptotically valid uncertainty sets for 
̄∗.

3.2. Sensitivity analysis bounding the supremum and expectation. Conditional
upon FI , attention returns to the unmeasured confounders for the individuals in
our study population, u, and the corresponding assignment probabilities π . For
any value of u and value for �, we have that

P
{
t (Z,F) ≥ a | FI ,H0

} = ∑
z∈�I

χ
{
t (z, fC) ≥ a

} I∏
i=1

π
zi1
i (1 − πi)

zi2,(11)

where πi = expit(γ (ui1 − ui2)). As the shared notation seeks to emphasize, (11)
is precisely the null distribution utilized in (5). Here as well as in (5), the unmea-
sured confounders u, and hence the conditional assignment probabilities π , are
unknown constants, hindering the desired inference through their presence as nui-
sance parameters. The approach taken in Section 2.3 was to maximize or minimize
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(11) over u ∈ [0,1]2I for a given value �, or equivalently over π∗
i ≤ �/(1 + �).

In what follows, we replace this optimization with one over a subset informed by
both � and �̄ while providing an asymptotically valid level-α test.

Suppose without loss of generality that we are considering a one-sided, greater
than alternative. Let Pβ(�,μπ∗) = {π : π̄∗ ∈ Cβ(�,μπ∗),π∗

i ≤ �/(1+�),1 ≤ i ≤
I }, and consider the following optimization problem:

maximize
π ,μπ∗ p(π,μπ∗) = ∑

z∈�I

χ
{
t (z, fC) ≥ t (Z,F)

} I∏
i=1

π
zi1
i (1 − πi)

zi2

subject to π ∈ Pβ(�,μπ∗)

μπ∗ ≤ �̄/(1 + �̄).

(12)

Let Uβ(�, �̄) be the set of feasible solutions to (12). Let π sup,β and μsup,β be
the arg max of (12), such that p(π sup,β,μsup,β) is the tail probability at the so-
lution to (12). If �̄ < �, let pβ = p(π sup,β,μsup,β) + β; otherwise, let pβ =
p(π sup,β,μsup,β).

PROPOSITION 1. Suppose we sample I pairs from an infinite population
through the procedure in Section 2, that treatment assignment is strongly ignor-
able given (X,U), and that (7) and (8) hold at � and �̄ ≤ � respectively. Then, if
H0 is true, for 0 < β ≤ 0.5,

lim
I→∞P(pβ ≤ α | H0) ≤ α.

That is, pβ is an asymptotically valid p-value for an extended sensitivity analysis
testing H0 with parameters (�, �̄).

PROOF. We first prove the result for �̄ < �. The proof is similar to that of
Lemma 1 in Berger and Boos (1994), differing primarily in that the nuisance pa-
rameters given FI , π , are themselves realizations of random variables in the setting
of Section 2.1. Suppose the null hypothesis is true, and let μ0 be the true value for
μπ∗ . Further, for any set FI let π0 be the true value of π , and let p(π0,μ0) be the
value of (11) evaluated at π0 and μ0:

P(pβ ≤ α) = E
[
P

(
pβ ≤ α, π̄∗

0 ∈ Cβ(�,μ0) | FI

)]
+E

[
P

(
pβ ≤ α, π̄∗

0 /∈ Cβ(�,μ0) | FI

)]
≤ E

[
P

(
p(π0,μ0) + β ≤ α | FI

)] +E
[
P

(
π̄∗

0 /∈ Cβ(�,μ0) | FI

)]
= E

[
P

(
p(π0,μ0) ≤ α − β | FI

)] + P
(

̄∗ /∈ Cβ(�,μ0)

)
.

The second line follows from p(π0,μ0) ≤ supπ∈Pβ(�,μ0)
p(π ,μ0) ≤ pβ − β if

π̄∗
0 ∈ Cβ(�,μ0). By validity of (11) at π0 given FI , the first term in the third line is
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less than or equal to α −β , while (9) illustrates that limI→∞P(
̄∗ /∈ Cβ(�,μ0)) ≤
β for 0 < β ≤ 0.5, proving the result for �̄ < �.

If �̄ = �, a solution π ∈ U(�,�) is πi = �/(1 + �) if (qi1 > qi2) and πi =
1/(1 + �) otherwise, which recovers the sensitivity analysis of Section 2.3. Call
this solution π� . By arguments in Rosenbaum (2002b), Chapter 4, this solution
yields a tight upper bound for the probability in (11) under the constraint that
π∗

i ≤ �/(1 +�). Hence, p(π sup,β,μsup,β) = p(π�,�/(1 +�)) for any β . At �̄ =
�, we simply employ the conventional sensitivity analysis which produces valid
p-values without an additive increase by β . �

Prior to conducting an extended sensitivity analysis, the practitioner needs to
choose a value for β . A compromise must be made, as β acts as a lower bound
on the p-value reported by the extended sensitivity analysis but larger values of
β correspond to tighter constraints on π̄∗. Accordingly, we recommend that β be
chosen to be smaller than the precision with which p-values are typically reported,
but not by much. This recommendation is similar to the guidance given in Berger
and Boos (1994).

pβ yields an asymptotically valid p-value for an extended sensitivity analy-
sis with parameters (�, �̄) because the uncertainty set Cβ(�,μπ∗) defined in (10)
utilizes the central limit theorem. As our random variables 
∗

i are bounded, we
are entitled to certain distribution-free uncertainty sets based on concentration in-
equalities which have the desired coverage for all sample sizes I ; see Section A of
the Supplementary Material (Fogarty and Hasegawa (2019)) for two approaches
using Hoeffding’s inequality and Bennett’s inequality. These sets, used in place
of Cβ(�,μπ∗) when constructing Pβ(�,μπ∗), would provide valid p-values for
the extended sensitivity analysis through the solution of (12) for all values of I .
Unfortunately, exact computation of pβ through (12) is itself generally intractable,
with the additional constraints imposed on the value of π̄ destroying the properties
of the optimization problem solved by the conventional sensitivity analysis which
facilitate an exact solution. In Section 4, we provide an implementation of our sen-
sitivity analysis valid in large samples by approximating (11) with an appropriate
normal distribution, justified under mild conditions. As we employ a normal ap-
proximation through our implementation, already implying a large-sample regime,
we proceed illustrating the method using the asymptotically valid uncertainty set
Cβ(�,μπ∗).

3.3. On extended sensitivity analyses for observed study populations. Under
the superpopulation model described in Section 2.1, 
∗

i is itself a random variable
with expectation E[
̄∗]. In randomized experiments and observational studies, the
assumption that the individuals in the study arose as a sample from some larger
target population is often specious. Such an assumption is not required for inferen-
tial statements, as the act of random assignment to intervention itself can form the
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basis for probabilistic statements and hypothesis tests, endowing randomized ex-
periments with what Fisher referred to as a “reasoned basis for inference” (Fisher
(1935)). Rosenbaum (1999) further argues that the most compelling observational
studies are not those which are representative of a larger population, but rather
those arrived upon through an active choice of the conditions of observation, seek-
ing the “rare circumstances in which tangible evidence may be obtained to dis-
tinguish treatment effects from the most plausible biases” (Rosenbaum (1999),
page 259).

As (5) indicates through conditioning on the study population, FI , the classi-
cal sensitivity analysis in Section 2.3 yields a null distribution for finite-sample
inference whose nuisance parameters are the unknown assignment probabilities π
for the individuals in the study at hand. The parameter �, which originally served
to bound the supremum of the random variables 
∗

i , also bounds the supremum
of the observed values π∗

i . This yields harmony between inference conducted for
the finite study population and inference assuming an infinite population into exis-
tence when interest is in the hypothesis H0. Inference given FI is valid on its own,
but if a superpopulation model is deemed appropriate, inference given FI yields
valid unconditional inference within that framework.

The motivation for formulating the extended sensitivity analysis with explicit
reference to a superpopulation is that while bounds on the supremum of a random
variable bound the random variable’s realizations, bounds on the expectation of a
random variable do not afford bounds in the sample average. The idealized model
is used to formulate probabilistic bounds for the sample average 
̄∗, which then
entitle us to a further bound on the average of the realized vector π∗. Proposition 1
indicates that the price to be paid for implementing this bound is the addition of
an extra β term to the p-value, necessitated by the view of π∗ as a realization of
a random variable. Should a superpopulation model be deemed unreasonable, our
model could instead be interpreted as placing a bound on the sample average of
the parameters π∗, π̄∗, in the particular observational study being analyzed. This
interpretation eliminates the need for both the uncertainty set Cβ(�,μπ∗) and the
increase in the p-value by β , and an option to consider study population inference
is available within our R function. In our particular case study we proceed using
superpopulation bounds, as in calibrating the sensitivity parameters in one obser-
vational study by means of another one must assume comparability of biases in the
two studies.

3.4. A special case: Binary outcomes. Although exact computation of pβ is
generally intractable, in one special but common setting it is not. When the out-
comes being studied are binary and t (Z,F) is chosen to be McNemar’s test statis-
tic, computing pβ exactly under Fisher’s sharp null H0 : RT ij = RCij becomes a
straightforward exercise. Recall that McNemar’s test statistic counts the number
of pairs where the subject under treatment has a positive outcome and the control
subject does not; that is, t (Z,F) = ∑I

i=1(Zi1 − Zi2)(RCi1 − RCi2)/2 + 1/2 when
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Fisher’s sharp null is true. Since pairs that are not discordant in treatment and out-
come do not contribute to McNemar’s statistic it is natural to distinguish pairs that
are discordant in outcome and those that are not. Let the first Id pairs be the discor-
dant pairs and the last Ic be the concordant pairs so that I = Id + Ic. Furthermore,
let the first unit of each discordant pair be the unit with positive outcome, that is
Ri1 = 1 for i = 1, . . . , Id .

For the special case of McNemar’s test, let μm be the value of μπ∗ ≤ �̄/(1+ �̄)

that maximizes the upper bound of Cβ(�,μπ∗) and let π̄m be the maximized upper
bound. Define π̄c = 1/2,

π̄d = min
{
(I π̄m − Icπ̄c)/Id,�/(1 + �)

}
,

and πm = ([π̄d · 1d, π̄c · 1c]), where 1k is a vector of Ik ones. (πm,μm) is then
a feasible solution to (12) that is designed to put as much bias on the discor-
dant pairs as is allowed by the constraints of the optimization problem. Further-
more, since the concordant pairs do not contribute to the test statistic we have
that p(πm,μm) = P(B(Id, π̄d) ≥ t (Z,F)), where B(Id, π̄d) is a Binomial random
variable with success probability π̄d and Id trials. Now, let pβ = p(πm,μm) + β

when �̄ < � and let pβ = p(π�,�/(1 + �)) otherwise. In the following proposi-
tion we show that, in this special setting, an exact solution to (12) simply requires
computing this Binomial tail probability.

PROPOSITION 2. Consider a test of H0 : RT ij = RCij with binary outcomes,
and let t (Z,F) be McNemar’s test statistic. Further, let Cβ(�,μπ∗) be an exact,
distribution-free 1 − β uncertainty set. Then under the same conditions as Propo-
sition 1,

P(pβ ≤ α | H0) ≤ α

for any I if t (Z,F) ≥ Idπ̄d . In other words, for any value of I , computing a valid
p-value for an extended sensitivity analysis testing H0 with parameters (�, �̄)

reduces to computing the Binomial tail probability P(B(Id, π̄d) ≥ t (Z,F)).

PROOF. When �̄ = �, the proof follows immediately from the proof of this
case in Proposition 1. Hence, we restrict our attention to the case when �̄ < �. As
noted in Section 3.2, if we replace Cβ(�,μπ∗) with a distribution-free uncertainty
set the optimal solution to (12) yields a valid p-value for an extended sensitivity
analysis for all values of I . All that remains to be shown is that (πm,μm) is the
argmax of (12).

Without loss of generality, suppose once again that the first subject of each
discordant pair is the unit with a positive outcome, Ri1 = 1 for all i = 1, . . . , Id .
Let (π ′,μ′) be a feasible solution of (12) and define π̄ ′

d and π̄ ′
c to be the sample

average of the maximal assignment probabilities for the discordant and concordant
pairs, respectively. ([π̄ ′

d · 1d, π̄ ′
c · 1c],μ′) is clearly also a feasible solution. Then,
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Theorem 1 in Hasegawa and Small (2017) implies that p([π̄ ′
d · 1d, π̄ ′

c · 1c],μ′) ≥
p(π ′,μ′) when t (Z,F) ≥ Id · π̄ ′

d . Hence, we need only consider feasible solutions
of the form ([π̄ ′

d · 1d, π̄ ′
c · 1c],μ′). An elementary fact about Binomial random

variables is that B(Id,p1) stochastically dominates B(Id,p2) when p1 ≥ p2. By
construction, (πm,μm) yields a feasible solution such that π̄d ≥ π̄ ′

d for all feasible
solutions of the form ([π̄ ′

d · 1d, π̄ ′
c · 1c],μ′). Consequently, p(πm,μm) ≥ p([π̄ ′

d ·
1d, π̄ ′

c · 1c],μ′) ≥ p(π ′,μ′) for all feasible solutions (π ′,μ′) which proves the
result for �̄ < �. �

For McNemar’s test, the extended sensitivity analysis exhibits an interesting be-
havior when π̄d = �/(1+�): the procedure returns a p-value equal to the p-value
returned by the conventional sensitivity analysis at � plus the extra β term. We
still pay the cost of specifying a bound on E[
∗

i ] but do not receive the benefit
of a tighter constraint on the realization of π∗ for discordant pairs. What, exactly,
explains this phenomenon? A plausible scenario that may give rise to this behavior
is when Ic � Id , that is, there are many concordant pairs in the sample of I pairs.
In throwing out concordant pairs when using McNemar’s statistic, the uncertainty
set for 
̄∗, the average of 
∗

i over all pairs, tells us relatively little about the real-
ized average π̄∗

d over discordant pairs, reflecting the cost of bounding the marginal
expectation E[
∗

i ] instead of the conditional expectation E[
∗
i | RT i,RCi].

Although this behavior indicates that the extended sensitivity analysis is, in
some sense, suboptimal compared to the conventional sensitivity analysis when
Ic � Id , the practical implications are mostly negligible as β is chosen to be
smaller than the precision with which p-values are generally reported. Further-
more, given a choice of � and conditional on (Id, Ic), we can a priori determine
the value of �̄ above which the conventional analysis is superior to the extended
analysis. Because (Id, Ic) are known conditional on FI , we are not at risk of using
the data twice—once to choose the best test and once to perform that test. Conse-
quently, the resulting sensitivity analyses will still have the appropriate level.

4. Implementation through quadratic programming. The test statistics de-
scribed in Section 2.3 can be represented as the sum of I independent random
variables, ZT q = ∑I

i=1 Ti , where Ti = (qi1 + qi2)/2 + (Zi1 − Zi2)(qi1 − qi2)/2.
This suggests that, under mild regularity conditions, a central limit theorem would
be applicable to the distribution of ZT q for any value of π in (11) for almost ev-
ery sample path FI . One sufficient condition proposed in the special central limit
theorem of Hájek, Šidák and Sen ((1999), Section 6.1.2), is that, almost surely,∑I

i=1(qi1 − qi2)
2

max
1≤i≤I

(qi1 − qi2)2 → ∞,

which requires that no one term (qi1 − qi2)
2 dominates the sum as the number

of pairs increases. (An aside: the central limit theorem in Hájek, Šidák and Sen



EXTENDED SENSITIVITY ANALYSIS FOR HETEROGENEOUS BIAS 783

((1999), Section 6.1.2), as originally stated applies to sums of the form
∑I

i=1 aiXi

where Xi are i.i.d. random variables; however, the proof can readily be extended
to settings where Iσ 2 ≤ ∑I

i=1 var(Xi) ≤ Icσ 2 for c > 1 while dropping the re-
quirement of identical distribution, which encompasses the setting of our extended
sensitivity analysis). Under a normal approximation, the problem of finding the
worst-case p-value is equivalent to finding the worst-case deviate.

Recall that a sensitivity analysis is typically conducted only if the null hypoth-
esis is rejected under the assumption of no unmeasured confounding (� = �̄ = 1),
and then proceeds by iteratively increasing the sensitivity parameters until the test
fails to reject. Having proceeded to sensitivity analysis only after rejecting the null
under no unmeasured confounding, even with one-sided alternatives we can safely
consider rejection or failure to reject for sequentially larger values of � and �̄

based on the minimal squared deviate, an objective function which is preferred for
computational reasons alluded to below. Recalling that under (11) we condition on
FI and hence treat the vector q as fixed, minimizing the squared deviate can be
expressed as an optimization problem over the unknown probabilities π as

min
π∈Uβ(�,�̄)

(t −Eπ [ZT q | FI ])2

varπ (ZT q | FI )
,(13)

where t is the observed value of the statistic t (Z,F), and the expectation and vari-
ance are for the test statistic t (Z,F) under the randomization distribution (11) for
a given vector π . Under a normal approximation for t (Z,F), the squared deviate
follows a χ2

1 distribution. By the argument of the previous section, we then reject
the null at level α if (13) is greater than or equal to G−1(1 − 2(α − β)) for one-
sided alternatives or G−1(1 − (α − β)) for two-sided alternatives, where G−1(p)

is the p quantile of a χ2
1 distribution.

The expectation and variance of the contribution of Ti can be expressed as a
function of the unknown vector π as

Eπ [Ti | FI ] = qT
i π i ,(14)

varπ (Ti | FI ) = πi(1 − πi)(qi1 − qi2)
2

(15)
= (

q2
i

)T
π i − (

qT
i π i

)2
,

where π i and qi are vectors of length two with elements π i = (πi1, πi2) and qi =
(qi1, qi2), respectively. Suppose without loss of generality that we are considering
a one-sided, greater than alternative and that we rejected the null at (�, �̄) = (1,1),
which implies that t ≥ (2I )−1 ∑I

i=1
∑2

j=1 qij (i.e., that the observed value of t

exceeded its null expectation). Sort each vector qi in descending order such that
qi1 ≥ qi2. Then, varπ (Ti | FI ) = varπ∗(Ti | FI ) from (15), while from (14) Eπ [Ti |
FI ] ≤ Eπ∗[Ti | FI ] = qT

i π∗
i and (qi1 +qi2)/2 ≤ Eπ∗[Ti | FI ]. Hence, any feasible

solution π ′ to (13) has an objective value that is no smaller than that of (π∗)′, as
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the variance will be the same while, recalling the iterative nature of a sensitivity
analysis, the distance (t −E(π∗)′ [ZT q′ | FI ])2 will be smaller than (t −Eπ ′ [ZT q′ |
FI ])2. Maintaining this ordering of the vectors qi , we can express our optimization
problem as a function of the maximal probabilities π∗

i .
For any candidate π∗, we reject under a normal approximation with a one-sided,

greater than alternative at level α −β if the corresponding squared deviate exceeds
its critical value, G−1(1 − 2(α − β)) that is, if ζ(π∗, α − β) = (t − Eπ∗[ZT q |
FI ])2 −G−1(1−2(α−β))varπ∗(ZT q | FI ) ≥ 0. We write ζ(π∗, α−β) explicitly
as a function of π∗ as

ζ
(
π∗, α − β

) = (
t − qT π∗)2 − G−1(

1 − 2(α − β)
) I∑

i=1

((
q2

i

)T
π∗

i − (
qT

i π∗
i

)2)
.

If we find that ζ(π∗, α − β) ≥ 0 for all feasible π∗ ∈ Uβ(�, �̄), we can reject the
null while asymptotically controlling the size of the extended sensitivity analysis
with parameters (�, �̄) at α. The function ζ(π∗, α − β) is convex and quadratic
in π∗. Meanwhile, we explicitly write the constraints determining membership in
Uβ(�, �̄) as

1/2 ≤ π∗
i ≤ �/(1 + �), 1 ≤ i ≤ I,(16)

I−1
I∑

i=1

π∗
i ≤ μπ∗ + I−1/2�−1(1 − β)

× {(
�/(1 + �) − μπ∗

)
(μπ∗ − 1/2)

}1/2
,

(17)

μπ∗ ≤ �̄/(1 + �̄).(18)

For a fixed value of μπ∗ ≤ �̄/(1 + �̄) the constraints are linear in the unknown
maximal probabilites π∗

i . Hence, for fixed μπ∗ , the problem minπ∗ ζ(π∗, α − β)

subject to (16) and (17) can be written as a quadratic program. With a one-sided
alternative, an asymptotically level-α extended sensitivity analysis with parameters
(�̄,�) simply requires checking whether the solution to that quadratic program is
greater than or equal to zero, rejecting the null if so and failing to reject otherwise.
For a two-sided alternative, simply replace ζ(π∗, α − β) with ζ(π∗, (α − β)/2)

to control the level of the procedure at α. See Rosenbaum (1992) and Fogarty and
Small (2016) for similar formulations of sensitivity analyses as convex programs.

A minor complication is that for small values of I or for small values for β , the
right-hand side of (17) need not be monotone increasing in μπ∗ if 2�̄/(1 + �̄) ≥
�/(1 + �) + 1/2, as decreasing μπ∗ may lead to an increase in the component
dependent on the variance bound which exceeds the corresponding decrease in the
additive term μπ∗ . To remedy this, one can simply find the value for μπ∗ over the
range [(�/(1 + �) + 1/2)/2, �̄/(1 + �̄)] which maximizes the right-hand side of
(17) through a bisection algorithm, and then proceed with the quadratic program
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using this single value. If 2�̄/(1 + �̄) < �/(1 + �) + 1/2, the right-hand side of
(17) is, subject to (18), maximized at μπ∗ = �̄/(1 + �̄), so one can proceed by
replacing μπ∗ with �̄/(1 + �̄) and solving the required quadratic program. Im-
portantly, the method only requires solving a single quadratic program. Quadratic
programs can be solved by many free and commercially available solvers; in the
Supplementary Material (Fogarty and Hasegawa (2019)), we provide code imple-
menting our method using the R package for the solver Gurobi, which is free for
academic use. We also provide options to replace the constraint (17), justified by
the central limit theorem, with bounds described in Section A of the Supplemen-
tary Material, which are valid for any I through distribution-free concentration
inequalities.

5. Simulations.

5.1. Type I error control. In the following simulations, we demonstrate that
the extended sensitivity analysis introduced in Section 3 has the correct level.
We consider two important cases: (1) when no unmeasured bias is present and
(2) when the there is unmeasured bias but the sensitivity analysis is conducted at
the true values of � and �̄. In both settings we test Fisher’s sharp null that τ = 0
using the difference in means test with desired Type I error control at α = 0.05.
We set β = α/10 = 0.005 for conducting the extended sensitivity analysis. The
following treatment model, outcome model, and simulation settings were used to
conduct the Type I error control simulations:

1. Treatment model: 
∗
i = 1/2 with probability p = 2(� − �̄)/{(� − 1)(�̄ + 1)}

and 
∗
i = �/(1 + �) with probability 1 − p.

2. Outcome model:

– unbiased: Yi = τ · (Zi1 − Zi2) + εi where εi
i.i.d.∼ N (0,1),

– biased: Yi = τ · (Zi1 − Zi2) + {2 · χ(πi > 1 − πi) − 1} · |εi | where εi
i.i.d.∼

N (0,1).

3. Sensitivity parameters:

– � ∈ {1,1.1,1.25,1.5,2},
– �̄ ∈ {1,1.05,1.1,1.15,1.2,1.25,1.3,1.35,1.4,1.45,1.5,1.6,1.7,1.8,1.9,

2.0},
– �̄ ≤ �.

4. Study and simulation size: I = 100 pairs, Nsim = 5000 simulations.

In the biased setting, the unit with higher potential outcome under control has
higher probability of receiving treatment. When � = �̄ = 1 we use the convention
that p = 0/0 = 0. The value of p = P(
∗

i = 1/2) was chosen so that the popula-
tion treatment model satisfies E[
̄∗] = �̄/(1 + �̄). The results of the simulation
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TABLE 1
Rejection probability of the true null hypothesis, H0 : τ = 0, under the biased setting with target

Type I error control at α = 0.05. The Monte Carlo standard error of these probability estimates is
bounded above by

√
0.05 × 0.95/5000 ≈ 0.003 if the true Type I error rate is 0.05

�

�̄ 1 1.1 1.25 1.5 2

1 0.047 0.047 0.045 0.046 0.044
1.05 0.022 0.011 0.007 0.005
1.1 0.032 0.010 0.004 0.003
1.15 0.012 0.002 0.002
1.2 0.017 0.004 0.001
1.25 0.025 0.004 0.001
1.3 0.006 0.000
1.35 0.009 0.001
1.4 0.011 0.001
1.45 0.014 0.001
1.5 0.025 0.001
1.6 0.003
1.7 0.004
1.8 0.006
1.9 0.011
2 0.021

study for the biased and unbiased settings are shown in Table 1 and the table in
Section E.1 of the Supplementary Material (Fogarty and Hasegawa (2019)), re-
spectively. The extended sensitivity procedure correctly controls the Type I error
rate for all pairs of sensitivity parameters (�, �̄) tested. The first row of each table,
where �̄ = 1, corresponds to tests under the absence of unmeasured confound-
ing. The pairs where � = �̄ correspond to the conventional worst-case sensitivity
analysis. Under the unbiased treatment model, the extended sensitivity analysis
is typically more conservative as we increase � or �̄. In the biased setting, we
observe the same pattern as we vary �, but as �̄ approaches �, the level of the
extended sensitivity analysis does not decrease monotonically. In fact, at a certain
value of �̄, the extended sensitivity analysis becomes less conservative as we ap-
proach �. In short, the solution π sup,β to the optimization problem in (12) tends to
more closely approximate the true allocation π0 when �̄ is close to either 1 or � in
the biased setting. When �̄ is close to 1, the feasible set of π ’s is closely bounded
around π0 ≈ 1 · 1/2. When �̄ is close to � the true allocation is π0 ≈ π� and
the extended sensitivity analysis behaves like the conventional sensitivity analy-
sis, where π sup,β = π� yields a tight upper bound on the probability in (11). In
between these edge cases, when the feasible set of π is relatively large and the
trade-off between maximizing expectation and variance is more nuanced, (12) may
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produce solutions π sup,β that yield appreciably more conservative inference than
if had we known the true π0.

5.2. The power of an extended sensitivity analysis. The power of a sensitivity
analysis quantifies the ability of an observational study design to distinguish treat-
ment effects from unmeasured bias. Formally, it reports for a given study design
the probability of rejecting a false null hypothesis for a chosen level α and sen-
sitivity parameter � under “favorable” conditions, defined in Rosenbaum (2010),
Chapter 14, as the presence of a treatment effect that causes meaningful effects
and absence of unmeasured biases. The investigator cannot determine from ob-
servable data alone whether or not such favorable conditions hold. An attractive
study design would be highly insensitive to unmeasured confounding if she was
lucky enough to find herself in this favorable setting. The power of an extended
sensitivity analysis extends this formalism to the triplet (α,�, �̄). Power simula-
tions for α = 0.05 and several pairs of (�, �̄) are reported in Table 2 and the table
in Section E.2 in the Supplementary Material (Fogarty and Hasegawa (2019)) for
τ = 0.5 and τ = 0.25, respectively. Other than the presence of a “meaningful”
treatment effect τ , the simulation settings are identical to the unbiased setting in
Section 5.1.

TABLE 2
Rejection probability of the false null hypothesis, H0 : τ = 0, under the unbiased setting with true
alternative hypothesis H1 : τ = 0.5. The Monte Carlo standard error of these probability estimates

is bounded above by
√

0.5 × 0.5/5000 ≈ 0.007

�

�̄ 1 1.1 1.25 1.5 2

1 0.998 0.999 0.998 0.999 0.999
1.05 0.994 0.990 0.984 0.978
1.1 0.996 0.984 0.965 0.941
1.15 0.977 0.947 0.896
1.2 0.978 0.928 0.833
1.25 0.979 0.907 0.759
1.3 0.890 0.719
1.35 0.884 0.664
1.4 0.879 0.626
1.45 0.874 0.578
1.5 0.882 0.541
1.6 0.505
1.7 0.478
1.8 0.463
1.9 0.472
2 0.486
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Unsurprisingly, the power of the extended sensitivity analysis decreases as �̄ ap-
proaches �. If the investigator has reason to believe that unmeasured confounding
is heterogeneous and that extreme pairwise unmeasured confounding is possible
but relatively rare, the conventional sensitivity analysis is likely unduly conserva-
tive. Further, the extended sensitivity analysis allows the investigator to compare
the power of competing study designs under different assumptions about the max-
imal and expected degree of unmeasured confounding.

6. Extended sensitivity analysis for returns to schooling.

6.1. A model for returns to schooling. How does going to college affect job
earnings? The question and the implications of the many putative answers are
important to education policy experts and parents alike. It has been empirically
demonstrated that log earnings are nearly a linear function of schooling (see, for
instance, Card and Krueger (1992)). In the idealized paired observational setting
introduced in Sections 2.1–2.2 where the treatment condition is attending college
for at least two years and the control condition is receiving at most a high school
diploma, a hypothesized treatment effect τ ×100 would describe the percentage in-
crease in earnings associated with attending at least two years of college, the min-
imum number of years to receive an associates degree. Formally, we consider the
multiplicative treatment effect hypothesis Hτ : RT ij = τRCij where (RT ij ,RCij )

are potential earnings after attending college or not. Choosing t (Z,F) = ZT q to
be the adjusted difference-in-means test comparing log earnings, qij would take
the form qij = (logRT ij − logRCij ′) − log(τ ) and qij ′ = −qij under Hτ .

Let X = [Xf ,Xs] where Xf and Xs are familial and subject level covariates.
In an idealized sibling comparison design, the strong ignorability condition in (1)
would hold with respect to Xf ; that is, if for all xf ,

(19) (RT ,RC) ⊥⊥ Z | Xf , 0 < P(Z = 1 | Xf = xf ) < 1.

If Xs does not affect treatment assignment but does predict potential outcomes,
this sibling version of strong ignorability will still hold. For example, in the sibling
pairs from the WLS data that we consider in the following section, the age at
which income is measured (AGE) is different between siblings. If Xs = AGE, then
it is conceivable that Xs does not affect whether a sibling went to college or not.
This would not be the case for people who went to college later in life or whose
family characteristics may have changed over time, in which case AGE would be
a proxy for those changes. Regardless, model-agnostic adjustment for Xs and Xf

can improve the power of the resulting sensitivity analysis (Rosenbaum (2002a)).
For example, we can use simple linear regression to adjust for X by replacing
q with (I − HXs )q where HXs is the orthogonal projection onto Xs without an
intercept.
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6.2. Ashenfelter: Conventional versus extended sensitivity analysis. To illus-
trate the differences between the conventional and extended sensitivity analyses,
we return to the twin study of Ashenfelter and Rouse (1998) (AR). AR collected
survey data on 680 monozygotic twins (340 pairs) attending the Twinsburg Twins
Festival in Twinsburg, Ohio during the summers of 1991, 1992, and 1993. We con-
sider the 40 pairs of twins where one twin attend at least two years of college and
the other had no more than a high school education, and where both twins were
employed at the time of data collection. Assuming no unmeasured confounding,
testing Fisher’s sharp null H0 yields a p-value of ≈ 0.0001. We obtain a 95% con-
fidence interval for log(τ ) of [0.16,0.43] by inverting Hτ for τ ∈ R+ at α = 0.05
with a two-sided alternative. Exponentiating the endpoints, attending at least two
years of college versus receiving at most a high school diploma increased wages
by between 17% and 53% with 95% confidence.

Being a retrospective study neither baseline IQ nor any other intelligence scores
were collected, and a critical reader may point to the possible presence of ability
bias as a basis to call the conclusions of the study into question. Conducting a
sensitivity analysis produces a quantitative rejoinder to this type of criticism in the
form of a sensitivity value �∗ for the conventional analysis and a sensitivity curve
(�∗, �̄∗) for the extended analysis. The sensitivity value is the largest bound on the
maximal bias such that the qualitative conclusions of the study do not change (i.e.,
such that we reject H0). The sensitivity curve is the two-dimensional analog of the
sensitivity value and can be seen as the threshold between the gray region (reject
H0) and the white region (retain H0) in Figure 3. At the limits of the sensitivity
curve, we recover two separate single-parameter sensitivity analyses. The sensitiv-
ity value returned by the conventional analysis corresponds to the point where the
sensitivity curve intersects the y = x line (�∗ ≈ 2.36). The limit of the sensitivity
curve as � → ∞ is the sensitivity value of a single-parameter sensitivity analysis
that bounds the typical bias (�̄ ≈ 1.22).

6.3. Ability bias: Cross-study sensitivity analysis calibration. Without con-
text, the sensitivity curve and values from the Ashenfelter analysis may be difficult
to interpret. In response to the critic of the “equal abilities” hypothesis for twins,
we would ideally like to report whether or not the Ashenfelter study is sensitive
to plausible patterns of ability bias. One strategy for addressing this is to estimate
the bias due to ability from a calibration study that has a comparable design and
information on baseline ability such as IQ. We can then calibrate the sensitivity
analysis to these estimates of � and �̄. To implement this cross-study calibration,
we modify the procedure established in Hsu and Small (2013) to calibrate sen-
sitivity parameters to observed covariates. In brief, one fits ostensible treatment
and outcome models—for instance, via linear and logistic regression—and uses
the resulting model fits to estimate π∗, �̄, and �. The details of this step can be
found in Section C of the Supplementary Material (Fogarty and Hasegawa (2019)).
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FIG. 3. Extended sensitivity curve from the AR study calibrated to the estimates of ability bias from
the WLS study (cross). The gray region indicates the sensitivty parameter pairs (�, �̄) for which H0
can still be rejected. The point where the sensitivity curve intersects the y = x line corresponds to
the sensitivity value returned by conventional sensitivity analysis (�∗ ≈ 2.36). The limit of the curve
as � → ∞ corresponds to the sensitivity value returned by the single-parameter sensitivity analysis
that bounds the typical bias (�̄∗ ≈ 1.22).

Calibrating the sensitivity analysis to estimates of ability bias provides the context
relevant to the critic’s concerns.

To assess the robustness of the AR study to ability bias, we use the sibling data
from the WLS study introduced in Section 1.2 to design a calibration study. We
constructed a set of 171 same-sex, full-sibling pairs that received discordant treat-
ment. We let Zij = 0 if sibling j in pair i received 12 or fewer years of education
and Zij = 1 if he or she received 14 or more years of education (at least two years
of college). Log income for the previous year was collected for WLS participants
and their siblings in 1975 and 1977, respectively. To more closely approximate
the superpopulation from which the AR twins came, we only consider siblings
where both had nonzero income at the time of collection (i.e., were employed).
As outlined in the previous section, we let Xs = AGE and use regression to adjust
q for the age at which income was collected. This calibration analysis is stylized
to some extent to avoid obscuring the primary contribution of our method. Many
other subject-level covariates are available for adjustment via regression. A de-
tailed analysis including treatment modification with respect to gender and more
thorough covariate adjustment would not preclude the use nor usefulness of our
method.
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FIG. 4. Histogram of π∗ estimated for 171 same-sex, full-sibling pairs from the WLS study.

Using the 171 WLS sibling pairs, we estimate that � ≈ 9.3 and �̄ ≈ 1.1, sum-
marizing the information we have about maximal and typical biases due to IQ
disparities. Heterogeneneity of ability bias can explain the considerable difference
between these two measures of confounding. The histogram of the estimated π∗
in Figure 4 indicates that most sibling pairs have modest differences in intelli-
gence in high school but in a few rare cases the disparity in sibling IQ exposes
pairs to high levels of bias. Calibrating the conventional sensitivity analysis of
AR to the WLS study would suggest that our conclusions are likely not robust to
plausible patterns of ability bias since �∗ < 9.3. However, calibration of the ex-
tended sensitivity analysis suggests otherwise. In Figure 3, the WLS IQ calibration
point (9.3,1.1) is indicated by the blue cross and falls below the sensitivity curve.
The single-parameter sensitivity analysis that bounds the typical bias agrees with
the extended analysis that the conclusions are robust to plausible patterns of abil-
ity bias (�̄∗ ≥ 1.1). Incorporating information about the heterogeneity of ability
bias by bounding both the maximal and typical biases promotes a less pessimistic
assessment of an observational study’s robustness to unmeasured confounding.
When information on the heterogeneity of potential confounders is available, as
in the above cross-study calibration analysis, the extended sensitivity analysis pro-
vides a richer picture of the study’s robustness to hidden bias.

6.4. Sensitivity intervals: Interval estimates with hidden bias. For a fixed
bound on the worst-case bias, incorporating heterogeneous bias through the ex-
tended sensitivity can also produce narrower sensitivity intervals than those at-
tained through the conventional analysis. Representing a natural extension of
confidence intervals to inference in the presence of unmeasured confounding, a
100(1 − α)% sensitivity interval is constructed by inverting a level-α extended
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sensitivity analysis with a two-sided alternative at a given pair of values (�, �̄). Ex-
plicitly, let pβ(�, �̄, τ ) be the two-sided p-value bound returned by the extended
sensitivity analysis in (12) for particular values of � and �̄. Then, a 100(1 − α)%
sensitivity interval can be written as I({τ : pβ(�, �̄, τ ) ≤ α}), where I(A) is the
smallest interval containing the set A. At � = �̄ = 1, the sensitivity interval is sim-
ply the corresponding confidence interval found by inverting Hτ using the random-
ization p-value given in (2) as would be justified in a paired experiment. Setting
� = �̄ > 1 returns sensitivity intervals produced through the conventional sensi-
tivity analysis, while setting � > �̄ > 1 employs the extended sensitivity analysis
in constructing the sensitivity intervals.

Table 3 illustrates the potential for reduced interval lengths through accommo-
dating heterogeneity in unmeasured confounding. It reports 95% sensitivity in-
tervals for log(τ ) in the AR study with three pairs of values for � and �̄. The
first, denoted by Irand, is the 95% sensitivity interval assuming no unmeasured
confounding previously reported in Section 6.2. The second, Isup, is the 95% sen-
sitivity interval derived by setting � = �̄ = 9.3, the calibrated value of the maxi-
mal bias parameter from the WLS study. This is precisely the sensitivity interval
that the conventional sensitivity analysis bounding only the worst-case confound-
ing would return. The final interval, Iext, is the 95% sensitivity interval setting
� = 9.3, �̄ = 1.1 in accord with the calibrated values of the maximal and typical
bias from the WLS study. We see that Iext is more than 80% shorter than Isup.
Further, both Irand and Iext exclude zero while Isup does not. The positive finding
in the unconfounded setting can be explained away by bias calibrated to the WLS
study using the conventional sensitivity model, but not when using the extended
sensitivity model. Once again, we see that when it is plausible that the typical

TABLE 3
95% sensitivity intervals for log(τ ) in the AR study constructed by

inverting Hτ for different values of � and �̄. Irand is the 95%
confidence interval for log(τ ) in the unconfounded setting,

� = �̄ = 1. Isup and Iext are 95% sensitivity intervals derived from
the conventional sensitivity analysis and the extended sensitivity

analysis respectively. These intervals are formed using the sensitivity
parameters calibrated from the WLS data, (�, �̄) = (9.3,1.1). The

percentage reduction in interval length from accommodating
heterogeneous unmeasured confounding, 100 × (1 − |Iext|/|Isup|),

is reported in the last row

Interval type 95% sensitivity interval

Irand [0.16,0.43]
Isup [−0.88,1.63]
Iext [0.06,0.53]
100 × (1 − |Iext|/|Isup|) 81%
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bias to which pairs are subject is materially smaller than the worst-case bias, the
conventional analysis may be overly pessimistic about how informative the data is.

7. Concluding remarks. While convenient for ease of calculation, the low-
dimensional sensitivity analysis bounding the supremum may fail to address spe-
cific concerns with unmeasured confounding in certain contexts. Rosenbaum and
Silber (2009) present an amplification of the conventional sensitivity analysis,
where the one-dimensional analysis based on � is mapped to a curve of two-
dimensional analyses which simultaneously bound the extent to which differences
in unobserved covariates can influence the odds of being treated and the odds of
having a higher potential outcome under control by the pair (�,�). This amplifi-
ciation provides an aid to interpretation, allowing the researcher to posit bounds on
the extent to which unmeasured confounding can affect treatment decisions and the
outcome variable. Rather than amplifying the conventional sensitivity analysis, the
extended sensitivity analysis provides the researcher a way to further control the
distribution of the unmeasured confounders beyond bounding the supremum. In
fact, amplification and extension can be viewed as complementary tools available
to the researcher. It is straightforward to employ both: the conventional supremum
bound � that appears in the extended sensitivity analysis may be amplified yield-
ing yet an even richer analysis, with �̄ bounding the typical probability that the
treated individual in a pair has the larger (smaller) potential outcome under control
for greater-than (less-than) alternatives.

Framing sensitivity analysis in terms of the typical bias is not a new idea, but has
been largely unaddressed in the literature; the idea of expected bias appears briefly
in Wang and Krieger (2006) in the context of population-level inference for binary
outcomes but is not the focus of the paper. In a particular sense, Cornfield et al.
(1959) anticipated the duality of both amplified and extended sensitivity analyses
in their seminal work on sensitivity analysis. In their smoking and lung cancer
example, the authors considered a hypothetical hormone X which increases the
probability of developing lung cancer among those exposed from r2 to r1 and due
to a positive correlation between exposure to X and smoking, appears in a higher
proportion among smokers than nonsmokers (i.e., p1 > p2). At once, Cornfield
et al. (1959) captures the spirit of an amplified analysis in specifying how X is
related to both treatment assignment and outcome and that of an extended analysis
by imagining that hormone X is not completely absent among nonsmokers and
completely present among smokers, leading to exposure to bias that is heteroge-
neous across subjects within both groups.

The concept of heterogeneous unmeasured confounding appeared naturally, if
not intentionally, in Cornfield’s original example. The extended sensitivity analy-
sis introduced in this paper brings this idea into a modern light and provides the
researcher with a way to conduct a sensitivity analysis while bounding both max-
imal and typical biases in matched pair studies. Using two sibling studies on the
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returns of schooling to income, we demonstrated that a sensitivity analysis bound-
ing the maximal and typical bias is both natural and less susceptible to an overly
pessimistic view of the study’s robustness to hidden bias. When a researcher be-
lieves that most, if not all, pairs are exposed to the worst-case bias, our procedure
can recover the conventional analysis by setting �̄ = �. If however, the researcher
is worried that some, though few, pairs may be exposed to arbitrarily large biases
all is not lost; by letting � tend to ∞ the extended sensitivity analysis recovers a
single-parameter sensitivity analysis that bounds the typical bias.

SUPPLEMENTARY MATERIAL

Supplement A to “Extended sensitivity analysis for heterogeneous unmea-
sured confounding with an application to sibling studies of returns to edu-
cation” (DOI: 10.1214/18-AOAS1215SUPPA; .pdf). We include in the supple-
mentary material appendices illustrating the construction of valid finite-sample
uncertainty sets and describing the calibration of the sensitivity parameters.

Supplement B to “Extended sensitivity analysis for heterogeneous unmea-
sured confounding with an application to sibling studies of returns to edu-
cation” (DOI: 10.1214/18-AOAS1215SUPPB; .zip). We include in the supple-
mentary material R code that contains the function that implements the extended
sensitivity procedure and scripts that produce the analysis in the figures.
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