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Determination of functions for poorly characterized genes is crucial for
understanding biological processes and studying human diseases. Function-
ally associated genes are often gained and lost together through evolution.
Therefore identifying co-evolution of genes can predict functional gene-gene
associations. We describe here the full statistical model and computational
strategies underlying the original algorithm CLustering by Inferred Models of
Evolution (CLIME 1.0) recently reported by us (Cell 158 (2014) 213–225).
CLIME 1.0 employs a mixture of tree-structured hidden Markov models for
gene evolution process, and a Bayesian model-based clustering algorithm to
detect gene modules with shared evolutionary histories (termed evolutionary
conserved modules, or ECMs). A Dirichlet process prior was adopted for es-
timating the number of gene clusters and a Gibbs sampler was developed for
posterior sampling. We further developed an extended version, CLIME 1.1,
to incorporate the uncertainty on the evolutionary tree structure. By simula-
tion studies and benchmarks on real data sets, we show that CLIME 1.0 and
CLIME 1.1 outperform traditional methods that use simple metrics (e.g., the
Hamming distance or Pearson correlation) to measure co-evolution between
pairs of genes.

1. Introduction. The human genome encodes more than 20,000 protein-
coding genes, of which a large fraction do not have annotated function to date
(Galperin and Koonin (2010)). Predicting unknown member genes to biological
pathways/complexes and the determination of function for poorly characterized
genes are crucial for understanding biological processes and human diseases. It
has been observed that functionally associated genes tend to be gained and lost
together during evolution (Kensche et al. (2008), Pellegrini et al. (1999)). Iden-
tifying shared evolutionary history (aka, co-evolution) of genes can help predict
functions for unstudied genes, reveal alternative functions for genes considered to
be well characterized, propose new members of biological pathways, and provide
new insights into human diseases.
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FIG. 1. A toy example of phylogenetic profile matrix for N = 6 genes (G1, . . . , G6) and S = 8
species (S1, . . . , S8). Blue and white squares respectively denote presence or absence of genes in
corresponding genomes. G1 and G2 have Hamming distance 1, while G4 and G6 have Hamming
distance 0.

The concept of “phylogenetic profiling” was first introduced by Pellegrini et al.
(1999) to characterize phylogenetic distributions of genes. One can predict a gene’s
function based on its phylogenetic similarity to those with known functions. Let the
binary phylogenetic profile matrix XN×S denote the presence/absence of N genes
across S species. Pellegrini et al. (1999) proposed to measure the “degree” of co-
evolution of a pair or genes i and j as the Hamming distance (Hamming (1950))
between the ith and j th rows of X. A toy example is shown in Figure 1. Various
methods have since been developed (see, Kensche et al. (2008), for a review) and
applied with success in predicting components for prokaryotic protein complexes
(Pellegrini et al. (1999)); phenotypic traits such as pili, thermophily, and respira-
tory tract tropism (Jim et al. (2004)); cilia (Li et al. (2004)); mitochondrial complex
I (Ogilvie, Kennaway and Shoubridge (2005), Pagliarini et al. (2008)); and small
RNA pathways (Tabach et al. (2013)).

Currently there are more than 200 eukaryotic species with their genomes com-
pletely sequenced and about 2000 species with full genomes being sequenced (JGI
GOLD3). The growing availability of genome sequences from diverse species pro-
vides us unprecedented opportunities to chart the evolutionary history of human
genes. However, existing phylogenetic profiling methods still suffer from some
limitations (Kensche et al. (2008)). First, most available methods perform only
pairwise comparison between an input query gene and a candidate, and are thus
unable to discover subtle patterns that show up only after aligning multiple in-
put query genes. Such methods also cannot handle cases where members in the
query gene set exhibit different phylogenetic profiles. Second, most methods ig-
nore errors in phylogenetic profiles, which are often caused by inaccuracies in
genome assembly, gene annotation, and detection of distant homologs (Trachana
et al. (2011)). Third, most methods (with exceptions of Barker and Pagel (2005),

3JGI Genome Online Database: https://gold.jgi.doe.gov/.
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Vert (2002), Von Mering et al. (2003), Zhou et al. (2006)) assume independence
across input species, ignoring their phylogenetic relationships, for example, the
tree structure of their evolutionary history. These methods are rather sensitive to
the organisms’ selection in the analysis. Currently available tree-based methods,
however, are computationally cumbersome and hardly scalable for analyzing large
input sets, let alone entire genomes (Barker, Meade and Pagel (2007), Barker and
Pagel (2005)).

To cope with the aforementioned limitations, Li et al. (2014) introduced the two-
step procedure CLustering by Inferred Models of Evolution (denoted by CLIME
1.0). In its Partition step, CLIME 1.0 clusters the input gene set G into disjoint
evolutionarily conserved modules (ECMs), simultaneously inferring the number
of ECMs and each gene’s ECM membership. In the Expansion step, CLIME 1.0
scores and ranks other genes not in G according to a log-likelihood-ratio (LLR)
statistic for their likelihood of being new members of an inferred ECM. Li et al.
(2014) systematically applied CLIME 1.0 to over 1000 human canonical com-
plexes and pathways, resulting in a discovery of unanticipated co-evolving com-
ponents and new members of important gene sets.

We here provide a full statistical account of CLIME 1.0 and its computational
strategies, evaluate CLIME 1.0’s performances with extensive simulations, ex-
tend it to incorporate uncertainties in the phylogenetic tree structure, and compare
CLIME 1.0 with existing methods such as BayesTraits. Finally we apply CLIME
1.0 to gene sets in OMIM (Online Mendelian Inheritance in Man) to reveal new
insights on human genetic disorders. Compared with existing methods, by incor-
porating a coherent statistical model, CLIME 1.0 (1) takes proper account of the
dependency between species; (2) automatically learns the number of distinct evo-
lutionary modules in the input gene set G; (3) leverages information from the entire
input gene set to more reliably predict new genes that have arisen with a shared
pattern of evolutionary gains and losses; (4) uses the LLR statistic as a princi-
pled measure of co-evolution compared to naive metrics (e.g., Hamming distance,
Pearson correlation).

Complementary to the original CLIME 1.0, we further provide an extended ver-
sion, named CLIME 1.1, which inherits the Bayesian hidden Markov tree model
from CLIME 1.0, but further accounts for the uncertainty of the input phyloge-
netic tree structure by incorporating a prior on the evolutionary tree. Instead of a
single, fixed tree as by CLIME 1.0, CLIME 1.1 takes an empirical distribution of
tree structures, in addition to the phylogenetic profiles of a given gene set, as input;
infers the posterior of the hidden evolutionary histories, hidden cluster (ECM) la-
bels and parameters, as well as the posterior of evolutionary tree structure through
Gibbs sampling; eventually outputs the ECMs of input gene set in the Partition
step, and then classify novel genes into inferred ECMs in the Expansion step.

Rather than using only a point tree estimate, CLIME 1.1 adds to the original
CLIME 1.0 by allowing the estimation error in the tree-building process as well
as the variability of phylogenetic trees among genes, and thus alleviating the risk
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of misspecification in the tree structure. In practice, popular tree-building methods
and softwares such as PhyML (Guindon et al. (2010)) and MrBayes (Ronquist and
Huelsenbeck (2003)) characterize the uncertainty in the estimation with bootstrap
or posterior tree samples. CLIME 1.1 can readily utilize such output samples as
empirical approximation for tree prior distribution. We also compare CLIME 1.1
with CLIME 1.0 and other benchmark methods in extensive simulations and real
data to showcase its features and strengths. We find that CLIME 1.1 is more ro-
bust and accurate when there is high uncertainty in tree estimation or gene-wise
variability in the evolutionary tree structures.

The rest of this article is organized as follows. In Section 2, we introduce
the tree-structured hidden Markov model (HMM) for genes’ stochastic gain/loss
events on a given phylogenetic tree, and the Dirichlet process mixture (DPM)
model for clustering genes into modules with shared history. The Partition step
of CLIME 1.0, which implements the Gibbs sampler to sample from the poste-
rior distribution of the DPM model, is described in Section 3. The Expansion step
is introduced in Section 4. In Section 5, we briefly introduce the pre-processing
of CLIME 1.0. The extended model and inference procedure of CLIME 1.1 are
described in Section 6. Simulation studies that compare CLIME 1.0 and CLIME
1.1 with hierarchical clustering are presented in Section 7. In Section 8, we apply
CLIME 1.0 and 1.1 on real data, and use leave-one-out cross-validation to com-
pare the performance of CLIME 1.0 with hierarchical clustering on gene sets from
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes)
databases. We conclude this paper with a discussion in Section 9.

2. Bayesian mixture of HMM on a phylogenetic tree.

2.1. Notation. Let G denote the input gene set with n genes, and N be the
total number of genes in the reference genome. Let Xi be the phylogenetic profile
of gene i, i = 1, . . . ,N , and specifically, let X denote the phylogenetic profile of
the input gene set. For example, G can be the set of 44 subunit genes of human
mitochondrial complex I, and X is their phylogenetic profile matrix; for reference
genome, we have N = 20,834 human genes with their phylogenetic profile matrix
denoted by X1:N . For notational simplicity, we let 1, . . . , n index the n genes in G
and let n + 1, . . . ,N index the rest in the genome. The input phylogenetic tree has
S living species indexed by 1, . . . , S, and S − 1 ancestral extinct species indexed
by S + 1, . . . ,2S − 1. The 2S − 1 living and extinct species are connected by the
2S − 2 branches on the tree. For simplicity, we assume that the phylogenetic tree
is binary, while the model and algorithm can be easily modified for non-binary
input trees. For each gene i = 1, . . . ,N , its phylogenetic profile is defined as the
observed vector Xi = (Xi,1, . . . ,Xi,S) with Xi,j = 1 or 0 denoting the presence or
absence of gene i across the S extant species. Let H i = (Hi,1, . . . ,Hi,2S−1) denote
gene ith ancestral (unobserved) and extant presence/absence states in the 2S − 1
species.
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We call a cluster of genes with shared evolutionary history an evolutionarily
conserved module (ECM). Let I = (I1, . . . , In) denote the ECM assignment indi-
cators of genes, where Ii = k indicates that gene i is assigned to ECM k. We as-
sume that each gene can only be “gained” once throughout the entire evolutionary
history, which happens at branch λi , i = 1, . . . ,N . Let λ = (λ1, . . . , λN) denote
the gain nodes of the N genes, where λi = s indicates that gene i was gained at
tree node s. With the available data, we can estimate λ in the preprocessing stage
as described in Section 5 with very small estimation error. We thus assume that λ
is a known parameter throughout the main algorithm.

2.2. Tree-structured HMM for phylogenetic profiles. We introduce here a tree-
structured HMM to model the presence/absence history and phylogenetic profile of
genes. For each gene i, its complete evolutionary history H i = (Hi,1, . . . ,Hi,2S−1)

is only partially observed at the bottom level, that is, the phylogenetic profile vec-
tor Xi = (Xi,1, . . . ,Xi,S) is the observation of presence/absence states for only
the living species, Hi,1, . . . ,Hi,S . Due to sequencing and genome annotation er-
rors, there are also observation errors on the presence/absence of genes. In other
words, Xi,1, . . . ,Xi,S are noisy observations on Hi,1, . . . ,Hi,S . We assume that
genes in ECM k share the same set of branch-specific probabilities of gene loss
for the 2S − 2 branches, denoted by θk = (θk,1, . . . , θk,2S−2). For genes in ECM
k, the transition of absence/presence states from its direct ancestor to species s is
specified by transition matrix Qk,s ,

Qk,s =
0 1

0
1

[
1 0

θk,s 1 − θk,s

]
.

Thus, for every evolutionary branch (after the gain branches λ), there is a Q matrix.
We assume that once a gene got lost, it cannot be re-gained, which is realistic
for eukaryotic species. Therefore the first row of Qk,s indicates that the transition
probability from absence to presence (re-gain) is 0. The second row shows our
parameterization that the transition probability from presence to absence (gene
loss) is θk,s , and presence to presence is 1 − θk,s .

Let σ(s) denote the direct ancestor species of s, and let set T (s) include all of
the offspring species in the sub-tree rooted at node s. Obviously Hi,s = 0 if species
s is not in T (λi). The likelihood function of evolutionary history H i conditional
on gene i in ECM k is

Pr(H i | θk, Ii = k)

=
⎧⎪⎨
⎪⎩

∏
s∈T (λi)\λi

Qk,s(Hi,σ (s),Hi,s) if Hi,s = 0 ∀s /∈ T (λi),

0 otherwise.

To account for errors in determining the presence/absence of a gene, we allow
each component of the observed phylogenetic profile, Xi,s , to have an independent
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probability q to be erroneous (i.e., different from the true state Hi,s ). The error
probability q is low and assumed to be known. By default, we set q = 0.01 based
on our communication with biologists with expertise in genome sequencing and
annotation. We note that estimating it in the MCMC procedure is straightforward,
but a strong prior on q is needed for its proper convergence and identifiability. For
each gene i, the likelihood function of Xi given H i is

(1) Pr(Xi | H i ) =
S∏

s=1

Pr(Xi,s | Hi,s) =
S∏

s=1

(1 − q)I{Xi,s=Hi,s}(q)I{Xi,s �=Hi,s},

where I{·} is the indicator function that is equal to 1 if the statement is true, and 0
otherwise. The complete likelihood for gene i is

Pr(Xi ,H i | θ, Ii)

=
[ ∏
s∈T (λi)\λi

QIi ,s(Hi,σ (s),Hi,s)

][
S∏

s=1

(1 − q)I{Xi,s=Hi,s}(q)I{Xi,s �=Hi,s}
]

(2)

and the complete likelihood for all the genes is

(3) Pr(X,H | θ , I ) =
n∏

i=1

Pr(Xi ,H i | θ, Ii).

2.3. Dirichlet process mixture of tree hidden Markov models. The number of
ECMs K may be specified by users reflecting their prior knowledge on the data
set. When the prior information about the data set is not available, we can estimate
K from data by MCMC sampling with a Dirichlet process prior on θ (Ferguson
(1973), Neal (2000)). For each gene i ∈ {1, . . . , n}, we let the prior distribution
of θ i follow Dirichlet process with concentration parameter α and base distribu-
tion F0, denoted by DP(F0, α). This gives us the following Bayesian hierarchical
model. For each gene i = 1, . . . , n,

(4)

Xi | H i ∼ P(Xi | H i ),

H i | θ i ∼ P(H i | θ i ),

θ i | F ∼ F,

F ∼ DP(F0, α),

F0 =
2S−2∏
s=1

Beta(a, b).

The base distribution F0 is set as the product of a set of Beta distributions for
branch-specific gene loss probabilities.

We use the Chinese restaurant process representation (Aldous (1985), Pitman
(1996)) of the Dirichlet process and implement a Gibbs sampler (Gelfand and
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Smith (1990), Liu (2008)) to draw from the posterior distribution of ECM as-
signments I = (I1, . . . , In). The Chinese restaurant process prior for cluster as-
signments is exchangeable (Aldous (1985)), therefore the prior distribution for I
is invariant to the order of n genes. More precisely, the mixture model in equation
(4) can be formulated as follows:

(5)

Xi | H i ∼ P(Xi | H i ), i = 1,2, . . . , n,

H i | θ Ii
∼ P(H i | θ Ii

), i = 1,2, . . . , n,

θk ∼
2S−2∏
s=1

Beta(a, b), k = 1,2, . . . ,

Pr(Ii = Ij , j < i | I1, . . . , Ii−1) = ni,j /(i − 1 + α), i = 1,2, . . . , n,

Pr(Ii �= Ij ,∀j < i | I1, . . . , Ii−1) = α/(i − 1 + α), i = 1,2, . . . , n,

where ni,j = ∑i−1
l=1 I{Il = Ij }.

2.4. Dynamic programming for integrating out H . In Section 3.3, we will
introduce the Gibbs sampler to sample from the posterior distribution of I . In the
Gibbs sampler, we need to calculate the marginal probability of Xi given the HMM
parameter θ , with gene i’s evolutionary history H i integrated out. Suppose gene i

is in ECM k, then

Pr(Xi | θk) = ∑
H i

Pr(Xi ,H i | θk).

We use the following tree-version of the backward procedure to calculate this
marginal probability. For gene i, define Xs

i as its phylogenetic profile in the sub-
tree rooted at species s (obviously X2S−1

i = Xi). We calculate the marginal prob-
ability by recursively computing factors βi,s(h), defined as

βi,s(h) ≡ Pr
(
Xs

i | θk,Hi,s = h
)
.

For a living species s, which is a leaf of the tree,

βi,s(h) = Pr
(
Xs

i | θk,Hi,s = h
) = (1 − q)I{Xs

i =h}(q)I{Xs
i �=h}.

Let δ1(s) and δ2(s) denote those two children species of s. For a inner tree
species s, we can factorize βi,s(t) as

βi,s(h) = ∑
h1,h2∈{0,1}

Pr
(
Xs

i ,Hi,δ1(s) = h1,Hi,δ2(s) = h2 | θk,Hi,s = h
)

= ∑
h1,h2∈{0,1}

Pr
(
Xs

i | θk,Hi,δ1(s) = h1
) · Pr(Hi,δ1(s) = h1 | θk,Hi,s = h)

· Pr
(
Xs

i | θk,Hi,δ2(s) = h2
) · Pr(Hi,δ1(s) = h2 | θk,Hi,s = h)

=
[ ∑
h1∈{0,1}

βi,δ1(s)(h1)Qk,δ1(s)(h,h1)

][ ∑
h2∈{0,1}

βi,δ2(s)(h2)Qk,δ2(s)(h,h2)

]
.
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For each gene i, we calculate the β’s recursively bottom-up along the tree, until
the gain branch λi , resulting in the marginal probability:

Pr(Xi | θk) = ∑
h∈{0,1}

Pr
(
X

λi

i | θk,Hi,λi
= h

)
Pr(Hi,λi

= h | θk)

(6)
= 0 + Pr

(
X

λi

i | θk,Hi,λi
= 1

) def= βi,λi
(1).

2.5. Dynamic programming for integrating out θ . In each step of the Gibbs
sampler, we pull out each gene from its current ECM and either re-assign it to
an existing ECM or create a new singleton ECM for it according to the calcu-
lated conditional probability Pr(Ii | Xi ,H i , θ). For each ECM k, its parameter
θk = {θk,s}2S−2

s=1 is a vector containing 2S − 2 loss probabilities. Our real data has
S = 139, which makes each θk a 276-dimensional vector. The high dimensionality
of θ1, . . . , θK adds heavy computational burden and dramatically slows down the
convergence rate of the Gibbs sampler. To overcome this difficulty, we develop
a collapsed Gibbs sampler (Liu (1994)) by applying the predictive updating tech-
nique (Chen and Liu (1996)) to improve the MCMC sampling efficiency. In partic-
ular, we integrate θk out from the conditional probability Pr(Ii = k | Xi ,H i , θk),
so that

Pr(Ii = k | Xi ,H , I−i ) =
∫

Pr(Ii = k | Xi ,H , θk)Pr(θk | Xi ,H , I−i ) dθk

∝ Pr
(
Xi | H k−i , Ii = k

)
Pr(Ii = k | I−i ),

where H k = {H j : Ij = k, j = 1, . . . , n} denotes the evolutionary histories for
genes in ECM k, and H k−i = H k\{H i} · Pr(Ii = k | I−i ) = ∑

j �=i I{Ij = k}/(n −
1+α) is the Chinese restaurant prior on I , and Pr(Xi | H k−i , Ii = k) is the marginal
likelihood of Xi conditional on gene i is in ECM k with θk integrated out. We
calculate Pr(Xi | H k−i , Ii = k) as follows.

Conditional on H k−i , the distribution of θk,s , s = 1, . . . ,2S − 2, is simply a
conjugate Beta posterior distribution,

θk,s | H k−i ∼ Beta
(
a + ∑

j �=i,Ij=k

I{Hj,σ(s) = 1,Hj,s = 0},

b + ∑
j �=i,Ij=k

I{Hj,σ(s) = 1,Hj,s = 1}
)
.

Integrating out θk with respect to this distribution, we obtain the likelihood of Xi

conditional on H k−i :

Pr
(
Xi | H k−i , Ii = k

) =
∫

Pr(Xi | θk, Ii = k)Pr
(
θk | H k−i

)
dθk

(7)
=

∫
βi,λi

(1)Pr
(
θk | H k−i

)
dθk = β̄i,λi

(1),
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where β̄ is defined as

β̄i,s(h) ≡ E
[
βi,s(h) | H k−i

] = E
[
Pr

(
Xs

i | θk,Hi,s = h
) | H k−i

]
.

For a leaf species s, β̄i,s(h) = βi,s(h). For an inner tree species s, β̄i,s(h) can be
calculated recursively from bottom of the tree to the top as

β̄i,s(h) = E
[
βi,s(h) | H k−i

]
=

[ ∑
h1=0,1

β̄i,δ1(s)(h1)Q̄k,δ1(s)(h,h1)

][ ∑
h2=0,1

β̄i,δ2(s)(h2)Q̄k,δ2(s)(h,h2)

]
,

where Q̄k,s is the expectation of transition probability matrix Qk,s conditional on
H k−i ,

Q̄k,s = E
[
Qk,s | H k−i

] =
[

1 0
E

[
θk,s | H k−i

]
1 −E

[
θk,s | H k−i

]
]

,(8)

and E[θk,s | H k−i] is simply the expectation of a Beta conjugate posterior distribu-
tion.

E
[
θk,s | H k−i

] = a + ∑
j :Ij=k,j �=i I{Hj,δ(s) = 1,Hj,s = 0}

a + b + ∑
j :Ij=k,j �=i I{Hj,δ(s) = 1} .

In the Gibbs sampler, we also need to compute the marginal probability that
gene i is in its own singleton group, that is, Pr(Xi | Ii �= Ij ,∀j �= i). By integrating
out H i and θ i , we have

Pr(Xi | Ii �= Ij ,∀j �= i) =
∫ ∑

H i

Pr(Xi , θ i ,H i | Ii �= Ij ,∀j �= i) dθ i

=
∫

Pr(Xi | θ i , Ii �= Ij ,∀j �= i) dF0(θ i )(9)

=
∫

βi,λi
(1)Pr(θ i ) dθ i .

Note that (9) is a special case of (7) with H k−i = ∅, thus it can be calculated in the
same recursive way with

Q̄k,s = E
[
Qk,s | H k−i = ∅

] =
[

1 0
a/(a + b) b/(a + b)

]
.

2.6. ECM strength measurement. After partitioning the input gene set G into
ECMs, it is of great interest to determine which of the ECMs share more infor-
mative and coherent evolutionary histories than others, since the ranking of ECMs
leads to different priorities for further low-throughput experimental investigations.
In our Bayesian model-based framework, the strength of ECM k, denoted by φk ,
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is defined as the logarithm of the Bayes Factor between two models normalized
by the number of genes in that ECM. The first model is under the assumption that
these genes have co-evolved in the same ECM and share the same θ parameter,
and the second model is under the assumption that each gene has evolved indepen-
dently in its own singleton ECM with different θs. Specifically, with a partitioning
configuration I , the strength for ECM k is defined as

(10) φk =
{

log
[∫ [∏i:Ii=k Pr(Xi | θ)]Pr(θ) dθ∏

i:Ii=k

∫
Pr(Xi | θ)Pr(θ) dθ

]} / n∑
i=1

I{Ii = k}.

This strength measurement reflects the level of homogeneity among the evolution-
ary histories of genes in this ECM. A larger φk indicates that genes in ECM k share
more similar and informative evolutionary history with more branches having high
loss probabilities.

3. Partition step: MCMC sampling and point estimators.

3.1. Choice of hyper-parameters. Several hyper-parameters need to be spec-
ified, including the concentration parameter α in the Dirichlet process prior and
hyper-parameters a, b for the Beta prior of θs. Concentration parameter α con-
trols the prior belief for the number of components in the mixture model, as larger
α makes it easier to create a new ECM in each step of the Gibbs sampling. We
set Dirichlet process concentration parameter as widely used α = 1. To test the
method’s robustness on α, we applied the algorithm to simulated and real data
with α = 1, α = log(n), and α = √

n respectively, and observed no significant
changes on the posterior distribution of K . The reason is that histories of ECMs
are often so different from each other that the likelihood function dominates the
prior on determining K .

We set hyper-parameters α = 0.03, β = 0.97 to make the prior have mean 0.03,
which reflects our belief that overall 3% of times a gene gets lost when evolving
from one species to another on a branch of the tree. The 3% average loss proba-
bility was determined based on the genome-wide average loss rate observed in our
data.

3.2. Forwad-backward sampling for H . In the Gibbs sampler, we apply a
tree-version of forward-summation-backward-sampling method (Liu (2008), Sec-
tion 2.4) to sample/impute the hidden evolutionary history states in H . Condi-
tional on gene i is in ECM k, we want to sample H i from the conditional dis-
tribution Pr(H i | Xi , θk). Note that, by the Markovian structure of tree HMM,
Pr(H i | Xi , θk) can be written as

Pr(H i | Xi , θk)

=
⎧⎪⎨
⎪⎩

∏
s∈T (λi)\λi

Pr(Hi,s | Hi,σ(s),Xi , θk) if Hi,s = 0 ∀s /∈ T (λi),

0 otherwise,
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which suggests a sequential sampling procedure: draw Hi,s for each species s ∈
T (λi)\λi top-down along the tree from Pr(Hi,s | Hi,σ(s),Xi , θk) conditional on
the previously drawn state Hi,σ(s) of its ancestral species σ(s).

We first use the backward procedure described in Section (2.4) to calculate the
βi,s for all species s ∈ T (λi)\λi bottom-up along the tree, then we have

Pr(Hi,s | Hi,σ(s),Xi , θk) ∝ Pr
(
Hi,s,X

s
i | Hi,σ(s), θk

)
= Pr

(
Xs

i | Hi,s, θk

) · Pr(Hi,s | Hi,σ(s), θk)

= βi,s(Hi,s) · Qk,s(Hi,σ (s),Hi,s).

Similar to Section 2.5, we integrate out θk to derive that

Pr(Xi ,H i | H−i , Ii = k)

=
∫

Pr(Xi ,H i | θk)Pr(θk | H−i , Ii = k) dθk(11)

=
[ ∏
s∈T (λi)\λi

Q̄k,s(Hi,σ (s),Hi,s)

][
S∏

s=1

(1 − q)I{Xi,s=Hi,s}qI{Xi,s �=Hi,s}
]
,

where Q̄k,s was defined in equation (8). Obviously, equation (11) is in the same
form as the complete likelihood in equation (2) with transition probabilities ma-
trix Qk,s replaced by Q̄k,s . The sequential sampling strategy for H i from condi-
tional distribution Pr(H i | Xi ,H−i , Ii = k) is to start with Hi,λi

= 1 and draw
Hi,s for each species s ∈ T (λi)\λi top-down along the tree from distribution
Pr(Hi,s | Hi,σ(s),Xi ,H−i , Ii = k) conditional on the sampled state Hi,σ(s) of its
ancestral species σ(s), with matrices Qk,s replaced by Q̄k,s .

3.3. Gibbs sampling implementation. In each step of Gibbs sampling, we pull
out each gene from its current ECM and assign it to an existing ECM or create
a new singleton ECM for it with respect to the calculated conditional distribution
Pr(Ii | Xi ,H , I−i ), which is calculated as

Pr(Ii = k | Xi ,H , I−i )

(12)

∝

⎧⎪⎪⎨
⎪⎪⎩

∑
j :j �=i I{Ij = k}
n − 1 + α

· Pr(Xi | H−i , Ii = k) ∃j �= i, s.t. Ij = k,

α

n − 1 + α
· Pr(Xi | Ii �= Ij ,∀j �= i) otherwise,

where Pr(Xi | H−i , Ii = k) and Pr(Xi | Ii �= Ij ,∀j �= i) are respectively calcu-
lated in equations (7) and (9).

We implement the collapsed Gibbs sampler to calculate the posterior distribu-
tion of I and H . In each Gibbs sampler iteration, we conduct the following two
steps:
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1. Draw H i ∼ Pr(H i | Xi ,H−i , I ), i = 1, . . . , n by the procedure in Sec-
tion 3.2.

2. Draw Ii ∼ Pr(Ii | Xi ,H , I−i ), i = 1, . . . , n as calculated in equation (12).

By using this Gibbs sampling scheme, genes with similar evolutionary history will
be clustered to the same ECM, and genes without any close neighbor will stay in
their own singleton ECMs. This automatically estimates the number of ECMs K .

We implemented this Gibbs sampler in C++, and tested its computational effi-
ciency. On a typical input gene set with ∼100 genes across 139 species, the Gibbs
sampler takes about 30 minutes to finish 1000 iterations on a standard Linux server
using a single CPU. For input gene sets of size 5000, the Gibbs sampler takes less
than 24 hours to finish 1000 iterations.

3.4. Point estimator for ECM assignments I . While the posterior distribution
of I is calculated by the Gibbs sampler, users may prefer a single optimal solu-
tion for I as it is easier to interpret and proceed to further experimental investi-
gations. To obtain a point estimator of I , we calculate the posterior probability
Pr(I | X) at the end of each Gibbs sampling iteration. The maximum a posteriori
(MAP) assignment, arg maxI Pr(I | X), will be reported as the final MAP estima-
tion. Suppose we have M MCMC samples, denoted by I (1), . . . , I (M), then the
MAP assignment can be approximated by

Î = arg max
I (m):m=1,...,M

Pr
(
I (m) | X)

.

We know that

Pr(I | X) ∝ Pr(X | I )Pr(I ),

where Pr(I ) is the Chinese restaurant process prior,

Pr(I ) =
∏K

k=1(nk − 1)!
n! , where nk =

n∑
i=1

I{Ii = k},

and Pr(X | I ) = ∏K
k=1 Pr(Xk | I ), where Xk = {Xi : Ii = k, i = 1, . . . , n} and

Pr(Xk | I ) is the marginal probability for phylogenetic profiles of genes in ECM k,
that is,

Pr(Xk | I ) =
∫ [ ∏

i:Ii=k

Pr(Xi | θk)

]
Pr(θk) dθk.

This integral has no closed-form solution, but we can approximate this marginal
likelihood by the method in Chib (1995) using samples obtained by the Gibbs
sampler. In particular, we have the following equation holds for any θ∗

k =
(θ∗

k,1, . . . , θ
∗
k,2S−1):

(13) log Pr(Xk | I )= ∑
i:Ii=k

log Pr
(
Xi | θ∗

k

) + log Pr
(
θ∗

k

) − log Pr
(
θ∗

k | Xk, I
)
.
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In the equation above, prior probability Pr(θ∗
k) can be calculated directly and the

likelihood Pr(Xi | θ∗
k) can be calculated by dynamic programming with compu-

tational complexity O(S). We approximate Pr(θ∗
k | Xk, I ) by running additional

Gibbs sampling. Let H k = {H i : Ii = k, i = 1, . . . , n}. We fix ECM assignments
at I and re-run Gibbs sampler for T iterations to draw samples {H (1)

k , . . . ,H
(M)
k }

from Pr(H k | Xk, I ), and then Pr(θ∗
k | Xk, I ) can be approximated as

(14) Pr
(
θ∗

k |Xk, I
) = ∑

H k

Pr
(
θ∗

k |H k

)
Pr(H k|Xk, I ) ≈ 1

M

M∑
m=1

Pr
(
θ∗

k |H (m)
k

)
,

where

Pr
(
θ∗

k | H (m)
k

) =
2S−2∏
s=1

Be
(
θ∗
k,s |a + ∑

i:Ii=k

I
{
H

(m)
i,δ(s) = 1,H

(m)
i,s = 0

}
,

b + ∑
i:Ii=k

I
{
H

(m)
i,δ(s) = 1,H

(m)
i,s = 1

})
.

Be(θ |α,β) is the Beta density function. Plug equation (14) in equation (13), we
get the approximation for marginal likelihood Pr(Xk | I ).

Though the approximation is consistent for any θ∗
k , as pointed out by Chib

(1995), the choice of θ∗
k determines the efficiency of approximation. The approxi-

mation is likely to be more precise with a θ∗
k that is close to the true θk . A natural

choice for θ∗
k is the posterior mean estimator of θk as calculated in equation (15).

3.5. Point estimator for loss probabilities θ . In the implementation of the
Gibbs sampler, we integrate out the θ ’s from the model and run the collapsed
Gibbs sampler, which improves the MCMC sampling efficiency. After obtaining
the final partitioning Î , we want to calculate the point estimators for the θ ’s for the
K ECMs defined in Î , denoted by {θ̂1, . . . , θ̂K}. For each ECM k, those branches
with estimated high loss probabilities θ̂k,s are evolutionary signature of ECM k

and distinguish it from other ECMs. In Section 4, we plug the estimated param-
eters {θ̂1, . . . , θ̂K} into the likelihood ratio statistics to identify novel genes that
are not in G but share close history with any of the K ECMs. The point esti-
mator of θk,s is defined as the posterior mean of θk,s conditional on X and Î ,
that is, θ̂k,s = E[θk,s | X, Î ]. To compute θ̂k,s , we re-run the Gibbs sampler con-
ditional on Î to draw M = 1000 samples H

(1)
k , . . . ,H

(M)
k from Pr(H k | X, Î ),

where H k = {H i : Ii = k, i = 1, . . . , n}. θ̂k,s is approximated by the following
Rao–Blackwellized estimator (Liu, Wong and Kong (1994)):

(15) θ̂k,s ≈ 1

M

M∑
m=1

E
[
θk,s | H (m)

k , Î
]
,
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where

(16) E
[
θk,s | H (m)

k , Î
] = a + ∑

i:Îi=k
I{H(m)

i,δ(s) = 1,H
(m)
i,s = 0}

a + b + ∑
i:Îi=k

I{H(m)
i,δ(s) = 1} .

4. Expansion step: Identifying novel genes co-evolved with each ECM. In
the Partition step, CLIME 1.0 clusters the input set G into disjoint evolutionarily
conserved modules (ECMs), simultaneously inferring the number of ECMs and
each gene’s ECM membership. The second step of CLIME 1.0, the Expansion step,
identifies novel genes that are not in the input gene set G but share evolutionary
history with any ECM k identified in the Partition step. The Expansion step is
essential to CLIME 1.0 as the main goal of it is to identify novel genes that are
co-evolved with a subset of G. The underlying logic is that if a ECM k consists of
a large number of genes of G, then the other genes not in G but share history with
ECM k are likely functionally associated with G.

For each candidate gene g and ECM k, g = 1, . . . ,N and k = 1, . . . ,K , we
calculate the log-likelihood ratio (LLR),

LLRg,k = log Pr(Xg | θ̂k) − log Pr(Xg | θ̂0),

where the background null model θ̂0 is defined as the estimated genome-wide
average loss probabilities over all N = 20,834 human genes. The estimation of θ̂0
is straightforward and described in Section 5. In the LLR, the first term log Pr(Xg |
θ̂k) quantifies the likelihood that Xg was generated from the HMM of ECM k, and
the second term log Pr(Xg | θ̂0) quantifies the likelihood that Xg was generated
from the background null HMM. High value of LLRg,k indicates that the HMM of
ECM k explains the phylogenetic profile Xg much better than the background null
model, which suggests that gene g is more probable to share the same evolutionary
history with the genes in ECM k, than a randomly selected gene in human genome.

For each ECM, CLIME 1.0 scores all N − n human genes, ranks them by LLR
scores, and reports the list of genes with LLR > 0 (denoted by ECM+). Com-
pared to naïve metrics (e.g., Hamming distance, Pearson correlation between phy-
logenetic profiles), this LLR statistic measures co-evolution more appropriately
and achieves substantially higher prediction sensitivity and specificity (see Sec-
tion 8.2).

5. Preprocessing: Estimation of gain branches λ and background null
model θ0. In the preprocessing stage, CLIME 1.0 infers the gain branch λi for
each gene i and estimates the background null model parameter θ̂0 for gene loss
events from phylogenetic profiles of all human genes in the input matrix. The null
model is an ECM-independent HMM whose branch-specific loss probabilities are
averaged over all genes in the human genome.

We estimate θ0 under the model that all N = 20,834 human genes share the
same loss probability vector θ0, that is, θ1 = θ2 = · · · = θN = θ0, and implement
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a Gibbs sampler to sample from the posterior distribution of Pr(θ0,λ | X1:N). We
start the Gibbs sampler from the initial state with θ0 = (0.03, . . . ,0.03) and λ =
(2S − 1, . . . ,2S − 1). In each step of the Gibbs sampler, we conduct the following
steps:

1. Draw λi ∼ Pr(λi | Xi , θ0), i = 1, . . . ,N .
2. Draw H i ∼ Pr(H i | Xi ,λ, θ0), i = 1, . . . ,N by the forward-backward pro-

cedure.
3. Draw θ0 ∼ Pr(θ0 | H1:N,λ), i = 1, . . . ,N .

Both conditional distributions Pr(λi | Xi , θ0) and Pr(θ0 | H1:N,λ) are straight-
forward to sample from. Pr(λi | Xi , θ0) is a discrete distribution and for s =
1, . . . ,2S − 1,

Pr(λi = s | Xi , θ0) ∝ Pr(Xi | λi = s, θ0)Pr(λi = s).

We adopt a uniform prior on Pr(λi = s) = 1/(2S − 1) and calculate likelihood
function Pr(Xi | λi = s, θ0) with dynamic programming outlined in equation
(6). Pr(θ0 | H1:N,λ) is simply a product of Beta distributions, and each θ0,s ,
s = 1, . . . ,2S −2, can be drawn independently. Similar to equation (15), we define
the point estimator of θ0 as θ̂0 = E[θ0 | X1:N ] and approximate it with MCMC
samples. Suppose we have M MCMC samples on λ, denoted by λ(1), . . . ,λ(M).
For each gene i = 1, . . . ,N , we define λ̂i as the maximum a posteriori (MAP)
estimator approximated by MCMC samples,

λ̂i = arg max
s

M∑
m=1

I
{
λ

(m)
i = s

}
.

In both the Partition and the Expansion steps of CLIME 1.0, gain branches λ =
(λ1, . . . , λN) are considered as known and fixed. An alternative way for estimating
the gain branch for each gene i in G is to update λi in the Gibbs sampler of the
Partitioning step and calculate their posterior distributions. There are two reasons
why we chose to estimate the gain branch for each gene in the Preprocessing step
and kept it fixed in the later two steps. First, the gain branches can usually be
reliably estimated with little uncertainty. For example, if a gene i was truly gained
at node s, then most likely we will observe its presences only in Xs

i , which informs
us that the gain event happened at node s. Second, by estimating the gain branches
at the Preprocessing step, we reduce the computation complexity compared to a
full model that updates λ at each MCMC iteration of the Partition step.

6. The extended model with uncertainty of phylogenetic tree.

6.1. The extended model of CLIME 1.1. Here we introduce the model of
CLIME 1.1, which extends CLIME 1.0 by incorporating the uncertainty in phylo-
genetic trees. We keep the same notation as in the original CLIME 1.0. Condition-
ing on the tree structure T , we follow the same specification as in equation (5).
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Additionally, we assume that the tree structure follows a prior T ∼ FT , so that
jointly we have:

Xi |H T
i , T ∼ P

(
X|H T

i

)
, i = 1,2, . . . , n,

H T
i |θT

k , Ii = k,T ∼ P
(
H T

i |θT
Ii

)
, i = 1,2, . . . , n,

θT
k ∼

2S−2∏
s=1

Beta(a, b), k = 1,2, . . . ,

Ii ∼ CRP(α), i = 1,2, . . . , n,

T ∼ FT .

Here, the superscript T indicates dependency on the tree structure, which will
be suppressed in the following derivations for simplicity. In practice, we utilize the
bootstrap samples or posterior draws of trees from the output of tree-constructing
softwares to approximate the prior distribution FT . That is, suppose we have NT

sampled tree structures {T1, . . . , TNT
}, we assume that FT = 1

NT
δTi

(T ), where δ is
the Dirac point mass. This distribution is derived based on a probabilistic model
of evolution and can well characterize the variability in the estimation of the evo-
lutionary tree.

6.2. Posterior inference of CLIME 1.1 with Gibbs sampler. We implement
a collapsed Gibbs sampler (Liu (1994)) to draw from the posterior distribution,
which cycles through the samplings of the hidden evolutionary history H , the tree
structure T , and the ECM label I . The high-dimensional parameter vector θ is
integrated out throughout the process similarly as what we did for CLIME 1.0 to
improve the sampling efficiency.

1. Sampling [H | X, I , T ]: For each gene i, we sample its evolutionary his-
tory H i from Pr(H i |X,H−i , T , I ), which can be achieved by the same procedure
described in Section 3.2 to sample H i , conditioning on tree structure T .

2. Sampling [I | X,H , T ]: For each gene i, we sample its cluster label Ii from
Pr(Ii |I−i ,X,H−i , T ), which, conditioning on tree structure T , can be similarly
calculated as in equation (12).

3. Sampling [T | X, I ]: We sample T based on posterior

Pr(T |X, I ) ∝ FT (T )Pr(X|T , I ).

Since the prior FT is taken as the empirical distribution 1
NT

δTi
(T ), we sample

T = Ti with probability proportional to Pr(X|Ti, I ), where Pr(X|Ti, I ) can be
approximated by the method of Chib (1995) as in equation (13). Note that the
conditional distribution Pr(X|Ti, I ) will be used again in the Partition step for
calculating arg maxI Pr(I |X), and the Expansion step for calculating the LLR of
novel genes.
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6.3. Partition step of CLIME 1.1. We are mainly interested in estimating the
ECM clustering labels of all input genes. Similar to CLIME 1.0, we adopt the MAP
estimator Î = arg maxI Pr(I |X), approximated by searching through all MCMC
samples of I , that is,

Î = arg max
I (m):m=1,...,M

Pr
(
I (m) | X)

.

Specifically,

Pr(I |X) ∝
∫

Pr(X, I |T )FT (T ) dT = Pr(I )
∑
Ti

1

NT

Pr(X|I , Ti),

where the conditional distribution Pr(X|I , Ti) has been calculated in Step 3 of the
Gibbs sampler in Section 6.2, and the prior Pr(I ) is assumed to be the Chinese
restaurant process.

6.4. Expansion step of CLIME 1.1. Suppose a gene g’s phylogenetic profile
being Xg (g = 1, . . . ,N ). We calculate its LLR for all ECMs, k = 1, . . . ,K , simi-
larly as for CLIME 1.0, that is,

LLRg,k = log Pr(Xg|Ig = k,X, Î ) − log Pr(Xg|Ig = 0,X, Î ),

where Ig = 0 indicates the background null model.
We calculate the predictive likelihood by integrating out θk and T :

Pr(Xg|Ig = k,X, Î )

=
∫

Pr(Xg|Ig = k, θk, T )Pr(θk, T |X, Î ) dT dθk

=
∫

Pr(Xg|Ig = k, θk, T )Pr(θk|T , Î ,X)Pr(T |X, Î ) dT dθk

∝
∫

Pr(Xg|Ig = k, θk, T )Pr(θk|T , Î ,X)Pr(X|T , Î )FT (T ) dT dθk.

Note that FT = 1
NT

δTi
(T ), and

Pr(θk|T , Î ,X) =
∫

Pr(θk|T , Î ,H )Pr(H |X, T , Î ) dH ,

which can be approximated using the Gibbs sampling draws as

Pr(θk|T , Î ,X) ≈ 1

M

M∑
i=1

Pr
(
θk|T , Î ,H (m)).

Plugging in the foregoing integral, we have the following approximation

Pr(Xg|Ig = k,X, Î ) ≈ 1

NT

NT∑
i=1

[
1

M

M∑
m=1

Pr
(
Xg|Ig = k, θ̄

(i,m)

k , Ti,
)
Pr(X|Ti, Î )

]
,
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where θ̄
(i,m)

k = E(θk|Ti, Î ,H (m)) can be calculated by conjugate Beta distribution

as in equation (16); the predictive likelihood Pr(Xg|Ig = k, θ̄
(i,m)

k , Ti) can then be
calculated by dynamic programming introduced in Section 2.4; and the likelihood
of input gene set Pr(X|Ti, Î ) has been previously calculated in the step 3 of Gibbs
sampler in Section 6.2.

7. Simulation studies. We simulated the phylogenetic profile data from two
models: a tree-based hidden Markov model and a tree-independent model where
CLIME 1.0 and CLIME 1.1’s model is mis-specified. The simulated input gene
sets contain 50 genes, comprising a mixture of 5 ECMs, each with 10 genes, whose
phylogenetic profiles were generated using the tree-based and tree-independent
models. We analyzed the data with four methods: (1) CLIME 1.0; (2) CLIME 1.1;
(3) hierarchical clustering based on Hamming distance (Pellegrini et al. (1999));
(4) hierarchical clustering based on squared anti-correlation distance (Glazko and
Mushegian (2004)), where the distance between gene i and j is defined as di,j =
1 − [corr(Xi ,Xj )]2.

For the tree-based hidden Markov model, we first used MrBayes (Ronquist and
Huelsenbeck (2003)) to obtain 100 phylogenetic trees generated from the posterior
distribution of the tree structure model based on 16 highly reserved proteins of 138
eukaryotic species (Bick, Calvo and Mootha (2012)) and an additional prokaryote
outgroup (139 species in total). For each simulation, we randomly picked one of
the 100 tree structures, and generated the phylogenetic profiles and ECM assign-
ments based on the tree-based HMM and this picked tree structure. Note that here
we simulated uncertainties in the tree structure. Thus, the original CLIME 1.0 with
a single phylogenetic tree (the consensus) input runs the risk of tree misspecifica-
tion for these simulated data. For each ECM, we first randomly selected one branch
in the evolution tree to be the gain branch, and then, along its sub-tree, selected NL

branches to be the potential gene loss branches and assign PL to be their gene loss
probability to generate the phylogenetic profile of each gene. A higher PL leads to
a more similar evolutionary history among the simulated genes in the same ECM,
and a lower PL makes the underlying histories of genes less similar and adds more
difficulty to the algorithms. We simulated observation error with rate q = 0.02,
which is different from q = 0.01 as pre-specified in CLIME 1.0 and CLIME 1.1’s
model. In addition, we simulated NS ∈ {0,10,20,50} singleton ECMs with one
gene in each ECM as the background noise. Eventually, each input dataset con-
tains a (50 + Ns) × 139 binary matrix indicating the presence or absence of each
gene in each species.

For the tree-independent generating model in comparison, NL potential gene
losses were randomly selected from 139 species without any reference to their
evolutionary relations. Note that such a tree-independent model is equivalent to
a tree-based model when all the losses are constrained to happen exclusively on
leaf branches. We range PL ∈ {0.6,0.7,0.8,0.9} and NL ∈ {4,6,8,10} for both
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the tree-based model and the tree-independent model. Higher NS gives more noise
and higher PL and NL indicate more independent loss events across various ECMs
thus stronger signal.

For each set of parameters, we simulated phylogenetic profile matrices for 20
times, applied all four methods, and adopted the average adjusted Rand index
(ARI) (Hubert and Arabie (1985)) between the estimated and true partitioning for
these 20 simulated datasets to evaluate clustering accuracy. For CLIME 1.0, to be
consistent with the online software, we used the consensus phylogenetic tree built
from 16 highly reserved proteins of 138 species (Bick, Calvo and Mootha (2012))
with one outgroup prokaryote species as the single input tree structure, shown in
Figure 4. For CLIME 1.1, we included the 100 MrBayes samples described above
as the input for empirical prior of the tree structure to account for estimation un-
certainty. For hierarchical clustering, we used 10% singleton genes as cutoff for
clustering as adopted in (Glazko and Mushegian (2004)). The complete simulation
results for tree-based model and tree-independent model are reported in Figures 2
and 3, respectively.

As shown in Figure 2, when phylogenetic profiles were generated from a tree-
based model of evolution with the risk of tree misspecification, CLIME 1.1 dom-
inates all other clustering methods in terms of accuracy with the tree-uncertainty
taken into account. CLIME 1.0, in general, also holds the lead over hierarchi-
cal clustering methods. The advantages of our tree-based Markov model are even
more significant in scenarios where more loss events are present along the evolu-
tionary history, that is, more loss branches (NL ≥ 6) with higher (PL ≥ 0.7), to
provide stronger signals for our tree-based model. Another feature of our meth-
ods is the robustness against the varying number of singleton ECMs, or the noise
in clustering. As the noise level (NS ) increases, both CLIME 1.0 and CLIME 1.1
demonstrate consistent clustering accuracy, while hierarchical clustering methods
show severe decay in performance. Notably, by incorporating the uncertainty of
tree structure and weighting the clustering on the more probable tree structures,
CLIME 1.1 further boosts the clustering accuracy of CLIME 1.0, where the latter
draws inference based solely on a single possibly incorrect tree input.

Simulations under the tree-independent model give all four methods a more
even ground. Yet still, both CLIME 1.0 and CLIME 1.1 outperformed other bench-
mark methods in most of the simulation settings. Specifically, CLIME 1.1 main-
tained its domination over all other methods, sustaining the benefit of incorporat-
ing of tree structure viability. With a distribution of possible evolutionary trees to
integrate, CLIME 1.1 takes advantage of the effect of model averaging through
posterior updates of tree structure, and adapts more successfully to the change
of the generative model. Both CLIME 1.0 and CLIME 1.1 maintained consis-
tency in performance across varying simulation setting, while hierarchical meth-
ods, especially the one with Hamming distance, is very sensitive to the noise level
(NS > 0).
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FIG. 2. Simulation study results under tree-based model. Comparison of clustering accuracy (ARI)
between CLIME 1.0 (black solid line), CLIME 1.1 (red dash), hierarchical clustering by Hamming
distance (green dot), and hierarchical clustering by anti-correlation (blue dot-dash). NL: number
of tree branches for each ECM to have nonzero loss probability. PL: loss probability for the NL

branches. NS : number of singleton ECMs for each dataset.

8. Application to real data. We next apply both CLIME 1.0 and CLIME 1.1
to several real datasets, including two selected gene sets (mitochondrial complex
I and proteinaceous extracellular matrix), as well as 409 manually curated gene
sets from OMIM (Online Mendelian Inheritance in Man) (Hamosh et al. (2005)),
where each gene set consists of genes known to be associated to a specific genetic
disease. We show that CLIME 1.0 and CLIME 1.1 enjoy advantages in clustering
accuracy over existing methods. Furthermore, the results of clustering and expan-
sion analysis by CLIME 1.0 and CLIME 1.1 on these gene sets agree with estab-
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FIG. 3. Simulation study results under tree-independent model. Comparison of clustering accu-
racy (ARI) between CLIME 1.0 (black solid line), CLIME 1.1 (red dash), hierarchical clustering by
Hamming distance (green dot), and hierarchical clustering by anti-correlation (blue dot-dash). NL:
number of tree branches for each ECM to have nonzero loss probability. PL: loss probability for the
NL branches. NS : number of singleton ECMs for each dataset.

lished biological findings and also shed lights on potential biological discovery on
gene functions and pathway compositions.

8.1. Phylogenetic tree and matrix. To facilitate the following analyses by
CLIME 1.0, we used a single, consensus species tree that was published in Bick,
Calvo and Mootha (2012) consisting of 138 diverse, sequenced eukaryotes with
an additional prokaryote outgroup. For the analyses by CLIME 1.1, we used
100 posterior samples obtained by MrBayes (Ronquist and Huelsenbeck (2003))
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FIG. 4. Phylogenetic tree in use with 138 eukaryotic species (Bick, Calvo and Mootha (2012)). The
tree consists of species in four different eukaryotic kingdoms (Protists, Plants, Fungi and Animals),
labeled in four different colors. Human is the rightmost species on the tree.

based on the 16 highly reserved proteins of 138 species used by Bick, Calvo and
Mootha (2012). We used the phylogenetic profile matrix in Li et al. (2014) for all
N = 20,834 human genes across the 139 species. A greater diversity of the organ-
isms in the input tree often leads to a greater power for CLIME 1.0 and CLIME
1.1, through the increased opportunity for independent loss events.

8.2. Leave-one-out cross validation. We compared CLIME 1.0 with Ham-
ming distance and BayesTraits (BT) (Barker and Pagel (2005), Pagel and Meade
(2007)), another phylogenetic-tree-based method for gene co-evolution analy-
sis. We conducted leave-one-out cross-validation analysis on two selected path-
way/gene sets (mitochondrial complex I and proteinaceous extracellular matrix)
to evaluate the clustering accuracy of the three methods. Note that we here fo-
cus on the performance of CLIME 1.0, considering the computational demands of
CLIME 1.1. In Section 8.3 and 8.4, we show that CLIME 1.0 and CLIME 1.1 give
relatively consistent results in real pathway-based data analysis.

For each gene set, we applied CLIME 1.0 to all but one gene within a spe-
cific pathway as test set for ECM identification and then expand the identified
ECMs with the remaining human genes (∼20,000 candidate genes). We varied the
LLR threshold in the expansion step of CLIME 1.0 and repeated this leave-one-
out procedure for all genes in the gene set to calculate the average sensitivity and
specificity of the algorithm. Note that the true positive calls (sensitivity) are made
when the left-out gene is included in the expansion list and false positive calls are
made when genes outside the pathway are included in the expansion list of any
established ECM. For comparison, we also conducted the same experiment with
the Hamming distance method (Pellegrini et al. (1999)) and BayesTraits.
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FIG. 5. Real data leave-one-out cross-validation on gene set: mitochondrial respiratory chain com-
plex I. Comparison of ROC curves between CLIME 1.0, BayesTrait, and Hamming distance.

BayesTraits is computationally intensive as it evaluates genetic profiles in a pair-
wise manner (estimated ∼ 244-hour CPU time for 44 × 20,000 pairwise calcula-
tion, one leave-one-out experiment for a 44-gene pathway test set; versus CLIME
1.0’s ∼ 2-hour CPU time). For efficiency in computation, we only subsampled
500 genes from remaining (∼20,000) human genes as the candidate set for gene
set expansion. We calculated the pairwise co-evolution p-values by BayesTraits
between all genes in the leave-one-out test set and the candidate set, and made a
positive call if the minimal p-value between the candidate gene and each gene in
the test set is below certain threshold. Similarly, we varied the threshold to obtain
the sensitivity and specificity of the algorithm.

We applied all these methods to two gene sets, mitochondrial respiratory chain
complex I (44 genes), and proteinaceous extracellular matrix (194 genes) and re-
port the receiver operating characteristic curves (ROC, true positive rate (TPR)
versus false positive rate (FPR)) of all methods in Figure 5 and 6 respectively.

FIG. 6. Real data leave-one-out cross-validation on gene set: proteinaceous extracellular matrix.
Comparison of ROC curves between CLIME 1.0, BayesTrait, and Hamming distance.
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FIG. 7. Partition of 44 human Complex I genes by CLIME 1.0 and CLIME 1.1. Genes with same
colored blocks are included in the same nonsingleton ECMs. Grey color indicates singleton genes.

Both CLIME 1.0 and BayesTraits dominated the Hamming-distance-based
method, showing the strong advantage of incorporating the information from phy-
logenetic trees for functional pathway analysis based on genetic profiles. Com-
pared with BayesTraits, CLIME 1.0 performed slightly better than BayesTraits in
majority of the evaluation range of the ROC curve. Particularly, CLIME 1.0 dom-
inated BayesTraits in both experiments when false positive rates are under 0.2%,
indicating CLIME 1.0’s strength in providing accurate gene clustering with con-
trolled mis-classification errors.

8.3. Human complex I. We compared CLIME 1.0 and CLIME 1.1 on a set
of 44 human genes encoding complex I, the largest enzyme complex of the mi-
tochondrial respiratory chain essential for the production of ATP (Balsa et al.
(2012)). CLIME 1.0 partitioned the 44 genes into five nonsingleton ECMs, and
CLIME 1.1 gave nearly identical clustering (ARI: 0.962), as shown in Figure 7,
except that CLIME 1.1 combines the two ECMs by CLIME 1.0 that are related
to nuclear DNA encoded subunits of the alpha subcomplex (with prefix NDUF)
(Mimaki et al. (2012)). Both CLIME 1.0 and CLIME 1.1 identified an ECM con-
taining only the subunits encoded by mitochondrial DNA (ECM1: ND1, ND4,
and ND5, ECM strength by CLIME 1.0: φ = 30.1, CLIME 1.1: φ = 30.1), and
an ECM comprising solely the core components of the N module in complex I
(ECM2: NDUFV1 and NDUFV2, ECM strength by CLIME 1.0: φ = 6.2, CLIME
1.1: φ = 6.7) (Mimaki et al. (2012)). A detailed report on the largest ECM (in-
dexed ECM3, ECM strength by CLIME 1.0: φ = 5.0, CLIME 1.1: φ = 5.8) by
both methods and their respective top extended gene sets (ECM3+) is shown in
Table 1. ECM3 mainly contains the nuclear-DNA-encoded subunits of complex I,
including all four core subunits in the module Q of complex I (marked by asterisk).
Among the top extended genes in ECM3+, multiple complex I assembly factors
and core subunits are identified (marked by boldface).

8.4. Gene sets related to human genetic diseases. We performed the analysis
by CLIME 1.0 on 409 manually curated gene sets from OMIM (Online Mendelian
Inheritance in Man) (Hamosh et al. (2005)), where each gene set consists of
genes known to be associated with a specific genetic disease. CLIME 1.0 iden-
tified non-singleton ECMs in 52 of these 409 gene sets (check http://www.people.
fas.harvard.edu/~junliu/CLIME/ for complete results). Figure 8 shows the top 20

http://www.people.fas.harvard.edu/~junliu/CLIME/
http://www.people.fas.harvard.edu/~junliu/CLIME/
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TABLE 1
ECM3 and its extension ECM3+ derived from the set of 44 human Complex I genes by CLIME 1.0 and CLIME 1.1. Asterisk indicates core subunits of

complex I; boldface indicates predictions with recent experimental supports for functional association with the input set

CLIME 1.0 CLIME 1.1

ECM3 NDUFS7* NDUFA9 NDUFS3* NDUFS4 NDUFS7* NDUFA9 NDUFS3* NDUFS4
NDUFS6 NDUFS2* NDUFS1 NDUFA6 NDUFS6 NDUFS2* NDUFS1 NDUFA6
NDUFA12 NDUFS8* NDUFA13 NDUFB9 NDUFA12 NDUFS8* NDUFA13 NDUFB9

NDUFA5 NDUFA8 NDUFA2

ECM3+ NDUFAF5 GAD1 GADL1 NDUFAF7 GAD1 NDUFAF7 GADL1 NDUFAF5
DDC HDC IVD NDUFAF6 DDC HDC HSDL2 CSAD
NDUFV1 ACADL NDUFV2 CSAD NDUFAF1 CPSF6 IVD GAD2
NDUFAF1 CPSF6 GAD2 HSDL2 ACADL NDUFAF6 HPDL HPD
RHBDL1 MCCC2 HPDL ACADVL NDUFV1 NDUFV2 RHBDL1 MCCC2
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FIG. 8. (A) Top 20 OMIM gene sets with highly informative ECMs by CLIME 1.0, ranked by
strength of the top ECM. All nonsingleton ECMs are shown as separate dots. Three gene sets related
to human ciliary dysfunction are highlighted in red. (B) ECM 1 for ciliary dyskinesia gene set. The
inferred gain/loss events are indicated by blue and red tree branches. Blue/white and green/white
matrices show phylogenetic profiles of ECM and expanded genes, respectively. Green arrows indicate
predicted new genes that are supported by Ciliome database.

disease-associated gene sets with the highest strength ECMs. For gene sets re-
lated to diseases such as Leigh syndrome, mitochondrial complex I deficiency, and
congenital disorder of glycosylation, multiple high-strength ECMs were identified
by CLIME 1.0, which suggests that functionally distinct sub-groups may exist in
these gene sets. We note that among the top five gene sets, three are related to
the human ciliary disease (highlighted in red). Specifically, the only nonsingleton
ECM (φ = 13.2) for ciliary dyskineasia, defined by having more than 15 inde-
pendent loss events, is fully displayed in Figure 8(B). The expansion list contains
100 novel genes with LLR > 0. As illustrated by the heat map in Figure 8(B), all
genes in the ciliary dyskineasia ECM and its expansion list share a remarkable con-
sensus in their phylogentic profiles. Furthermore, about 50 of the 100 expansion
genes belong to the Ciliome database (Inglis, Boroevich and Leroux (2006)), an
aggregation of data from seven large-scale experimental and computational stud-
ies, showing strong functional relevance of CLIME 1.0’s expansion prediction.

We next compared CLIME 1.1 with CLIME 1.0 on this ciliary dyskinesia
gene set. The ECM partition by CLIME 1.1 is identical to CLIME 1.0, provid-
ing a strong support of such a subgroup structure among the ciliary-dyskinesia-
related genes. We further compared the extended gene sets (ECM+) obtained by
CLIME 1.0 and CLIME 1.1. Among the top 100 predicted genes, 89 are shared
by CLIME 1.0 and CLIME 1.1, with the top 20 reported in Table 2. The major-
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TABLE 2
The nonsingleton ECM and its extension ECM+ of the ciliary dyskinesia gene set by CLIME 1.0 and CLIME 1.1. For ECM+, boldface indicates

predictions for functional association with the input set; asterisk indicates direct association with ciliary dyskinesia disease by recent experimental or
human genetic support

CLIME 1.0 CLIME 1.1

ECM RSPH4A HEATR2 RSPH9 CCDC39 RSPH4A HEATR2 RSPH9 CCDC39
CCDC40 DNAAF2 CCDC40 DNAAF2

ECM+ RSPH6A* CCDC65* RSPH3* C6orf165* RSPH6A* CCDC65* C6orf165* RSPH3*
DRC1* SPEF1 PIBF1 SPATA4 CCDC113 DRC1* SPEF1 PIH1D3*
MAATS1 CCDC113 CCDC147 ODF3 SPATA4 MAATS1 CCDC147 PIBF1
C21orf59* SPAG16 IQUB RIBC2 ODF3 IQUB CCDC135 CCDC146
CCDC146 CCDC135 CCDC63 PIH1D3* TTC26 SPAG16 CEP164 CCDC13
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ity of the new members predicted by CLIME 1.0 and CLIME 1.1 can be vali-
dated as having functional association with cilia (cross-referenced by GeneCards:
https://www.genenames.org/). In addition, the top four predicted genes have been
found related to the primary ciliary dyskinesia (Horani et al. (2016)), further
demonstrating the promising power of CLIME 1.0 and CLIME 1.1 in the pre-
diction of functional relevance.

9. Discussion. Instead of integrating the pairwise co-evolution information
of the genes in the input gene set in an ad hoc way, CLIME 1.0 explicitly mod-
els multiple genes in a functional gene set as a set of disjoint gene modules, each
with its own evolutionary history. Leveraging information from multiple genes and
modeling profile errors are critical because phylogenetic profiles are often noisy
due to incomplete assemblies/annotations and errors in detecting distant homologs.
Furthermore, CLIME 1.0 automatically infers the number of modules and gene as-
signments to each module. As an extension, CLIME 1.1 inherits these strengths of
CLIME 1.0 and enhances its robustness and accuracy by incorporating uncertainty
of evolutionary trees. CLIME 1.1, thereby, takes into account the estimation error
in the tree estimation process, as well as the variability of phylogenetic relation-
ships among genes. Simulation studies and leave-one-out cross-validations on real
data showed that CLIME 1.0 achieved a significantly improved accuracy in detect-
ing shared evolution compared with benchmark methods we tested. CLIME 1.1
further adds to CLIME 1.0 with improved robustness and precision.

Applications of CLIME 1.0 and CLIME 1.1 to real data testified the algorithms’
excellent power in predicting functional association between genes and in provid-
ing guidance for further biological studies (see Li et al. (2014) for more details).
Based on our exemplary pathway/gene set data, CLIME 1.0 and 1.1 showed a great
consistency in identifying evolutionarily conserved subsets of genes, and demon-
strated high accuracy in recovering and predicting functionally connected gene
groups. CLIME 1.1 further added in with discoveries of improved robustness and
relevance.

Specifically, in our investigations of the 44 complex-I-encoding genes, both
CLIME 1.0 and 1.1 were able to identify subgroups of genes encoding different
functional modules of complex I, and connect assembly factors associated with
each module. CLIME 1.1 added to CLIME 1.0 by combining the two subgroups
with nuclear DNA encoded subunits, further improving the biological interpreta-
tion of the clusters. This helps provide insights on the complete picture of com-
plex I’s catalyzing process and mechanism. We also applied our methods to more
than 400 gene sets related to human genetic diseases, where CLIME 1.0 and 1.1
showed great potentials in predicting genes’ functional associations with human
genetic diseases. Focusing on the ciliary dyskineasia, both CLIME methods es-
tablished novel connections between classic disease-driven genes and other cilia-
related genes from the human genome. CLIME 1.1 furthered prediction relevance
with 5% more cilia-related genes among the top predictions. Most notably, the

https://www.genenames.org/
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top four predicted genes by both CLIME methods have been validated by recent
studies on primary ciliary dyskineasia. This prompts biologists with a great confi-
dence in using CLIME as a powerful tool and in following up CLIME’s findings
for further experimental validations and studies on such human genetic diseases.

To trade for a gain in predication accuracy, CLIME 1.0 demands a com-
paratively high computational capacity. The computational complexity is about
O(Sn2) per MCMC iteration in the Partition step. For CLIME 1.1, with in-
corporation of tree uncertainty, the step-wise computational complexity is about
O(NT Sn2). In practice, to ensure computational efficiency, we recommend im-
plementing CLIME 1.0 firstly for a general, large-scale exploration and CLIME
1.1 for more focused, follow-up analyses and validations, as demonstrated in the
Sections 8.3 and 8.4.

As shown in simulation studies, CLIME 1.0 and CLIME 1.1 gain most of its
prediction power from the abundance of independent gene loss events through the
evolutionary process. In fact, independent gene losses create variability of phylo-
genetic profiles between distinctive gene clusters, thus providing a strong signal
for CLIME 1.0 and 1.1 to make inference on. Similarly, in real data we observe
that CLIME 1.0 and 1.1’s power is derived from the diversity of species genomes,
as it provides us opportunity to observe more shared loss events. In recent years,
the availability of completely sequenced eukaryotic genomes is dramatically in-
creasing. With growing abundance and quality of eukaryotic genome sequences,
the power of CLIME 1.0 and 1.1 will increase as evolutionarily distant species
are more likely to possess abundant gene loss events, and thus stronger signals for
CLIME 1.0 and 1.1 to extract.

Further improvements of the model are possible. Currently, we do not estimate
q but set it as 0.01 based on our prior knowledge on the observation error rate.
Though we observe that the model is robust to q , it is more statistically rigorous
to estimate q from data. Furthermore, as there is variation between the quality of
sequenced genomes, we can further assume that different species have different
mis-observation rates with independent priors, which can be estimated through
posterior updating. Admittedly, point estimates for cluster labels by MAP provide
an interpretable representation of the posterior results, especially convenient for
scientists to conduct follow-up analysis or experiment. We may also consider al-
ternative representation of the posterior on the cluster assignment, for example, the
co-assignment probability for genes.

The results, a C++ software implementing the proposed method, and an online
analysis portal are freely available at http://www.gene-clime.org. The website was
previously introduced in Li et al. (2014).
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