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Students in Algebra I classrooms typically learn at different rates and
struggle at different points in the curriculum—a common challenge for math
teachers. Cognitive Tutor Algebra I (CTA1), an educational computer pro-
gram, addresses such student heterogeneity via what they term “mastery
learning,” where students progress from one section of the curriculum to the
next by demonstrating appropriate “mastery” at each stage. However, when
students are unable to master a section’s skills even after trying many prob-
lems, they are automatically promoted to the next section anyway. Does pro-
motion without mastery impair the program’s effectiveness?

At least in certain domains, CTA1 was recently shown to improve stu-
dent learning on average in a randomized effectiveness study. This paper
uses student log data from that study in a continuous principal stratifica-
tion model to estimate the relationship between students’ potential mastery
and the CTA1 treatment effect. In contrast to extant principal stratification
applications, a student’s propensity to master worked sections here is never
directly observed. Consequently we embed an item-response model, which
measures students’ potential mastery, within the larger principal stratification
model. We find that the tutor may, in fact, be more effective for students who
are more frequently promoted (despite unsuccessfully completing sections of
the material). However, since these students are distinctive in their educa-
tional strength (as well as in other respects), it remains unclear whether this
enhanced effectiveness can be directly attributed to aspects of the mastery
learning program.

1. Introduction. Teaching a class full of students who vary widely in ability
is one of the toughest challenges teachers face. Intelligent tutoring systems may
help. These are pieces of software that are designed to act as tutors, teaching ma-
terial to individual students working on computers [Anderson, Boyle and Reiser
(1985)]. Typically, they measure students’ relevant skill sets and present them with
personalized problems or exercises. The students’ performance on these exercises
determines what they work on next, based on updated measurements of their skill
profiles. This process is referred to as “mastery learning”; students learn by mas-
tering skills, and only then moving on to new material [Bloom (1968), Kulik, Kulik
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and Bangert-Drowns (1990)]. The hope is that by personalizing learning, intelli-
gent tutors can help teachers handle academic diversity.

Pane et al. (2014) reported the results of large-scale effectiveness study of the
Cognitive Tutor Algebra I (CTA1), a curriculum whose centerpiece is the Cog-
nitive Tutor software. In the second year of implementation, the study found a
moderate positive effect of CTA1 on high school post-test scores.

While CTA1 is designed around mastery learning, it does not always work that
way in practice [Israni, Sales and Pane (2018)]. For instance, the CTA1 system sets
a maximum number of problems students may work in each section. Occasionally,
some students will be unable to master a set of skills before reaching the maxi-
mum number of problems. In those cases, rather than allow the student’s “wheel-
spinning” [cf. Beck and Gong (2013)] to continue indefinitely, CTA1 “promotes”
them to the next section. Does the CTA1 treatment effect suffer as a result? Do
students who are more frequently promoted tend to experience smaller treatment
effects?

Student mastery is only defined subsequent to treatment assignment—students
in the control condition do not use the software and therefore have no mastery data.
Traditional causal inference models, such as analysis of covariance and subgroup
analysis, can estimate the heterogeneity of treatment effects as a function of pre-
treatment covariates but cannot accommodate variables that may themselves be
a function of the treatment. On the other hand, principal stratification [Frangakis
and Rubin (2002), Page (2012), Feller et al. (2016b), Sales, Wilks and Pane (2016)]
is designed for precisely such a task. A principal stratification analysis could es-
timate the variance of treatment effects as a function of potential mastery: how
often a student would master worked sections, if assigned to treatment. This vari-
able is defined prior to treatment assignment for all students in the study, but only
observed for treatment students.

Implicitly, this assumes that potential mastery is measured without error in the
treatment group, an untenable assumption in our case. There are no error-free mea-
surements of students’ propensity to master sections. Further complicating matters,
both the number of worked sections and which sections students worked varied
widely between students in the treatment group. The typical principal stratifica-
tion approach, assuming intermediate variables measured without error, may yield
misleading or uninterpretable results when applied to mastery learning in CTA1.

This paper addresses the problem using a novel approach, combining princi-
pal stratification modeling with item response theory [IRT; e.g., Embretson and
Reise (2013)] and latent variable analysis. Using an IRT model to measure student
mastery potential as a latent variable brings a number of advantages over more tra-
ditional approaches. In particular, model-based measurement can account for vari-
ation in both the number of sections students work, and which sections students
work, in addition to measurement error and missing data in general. Defining prin-
cipal strata based on latent variables may dramatically broaden the set of questions
principal stratification may answer.
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The structure of the paper is as follows. The following section describes the
CTA1 program, the CTA1 effectiveness trial, and the dataset. Next, Section 3 re-
views and illustrates continuous Bayesian principal stratification. Section 4 intro-
duces an IRT model for mastery and shows that it solves a number of problems
with conventional approaches. Section 5 discusses incorporating a latent variable
into Bayesian principal stratification. Section 6 specifies a model for the CTA1
dataset and discusses its identification; its results are in Section 7 and model checks
are in Section 8. Section 9 concludes with critical discussions of the methodologi-
cal advances and the meaning of the model results for intelligent tutoring systems.

2. Background.

2.1. The cognitive tutor. CTA1 is one of a series of complete mathematics
curricula developed by Carnegie Learning, Inc., which include both textbook ma-
terials and an automated computer-based Cognitive Tutor [Anderson et al. (1995)].
The CTA1 software divides the algebra course into units and sections within units.
These are organized into a standard progression based on mathematics standards;
however, schools have the option to customize these to meet local standards or
other constraints. Many schools in the study exercised this option, meaning that
although the basic set of sections and units is the same across the study, the se-
quence students encounter them is not.

The essential material of each section is represented as a set of fine-grained
knowledge components, or skills, and the software is continually evaluating stu-
dent mastery of these skills through the use of a detailed computational model of
student thinking in algebra. Students solve problems and the model evaluates each
student action—whether it is a correct or incorrect action on a path toward solving
the problem, or a request for the software to provide a hint—and updates its assess-
ment of the mastery of each skill. When students are judged to have mastered each
skill in a section, they are automatically moved to the next section. In an exception
to this general approach, when students work the maximum number of problems
in a section without mastering its skills, they are deemed to be “wheel spinning.”
The software promotes wheel-spinning students to the next section, despite their
nonmastery. The system also enables teachers to override the mastery-based ad-
vancement to move students into a different section.

2.2. The CTA1 effectiveness trial. In 2007, the RAND Corporation received
a grant from the U.S. Department of Education to evaluate the effectiveness of
CTA1, when implemented without any extraordinary support, in a diverse set of
schools. The project conducted two parallel experiments, one in 74 middle schools
and one in 73 high schools, from 52 school districts in seven states. Participat-
ing schools include urban, suburban, and rural public schools, and some Catholic
Diocese parochial schools, in Texas, Connecticut, New Jersey, Alabama, Michi-
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gan, and Louisiana. Each school participated for two years. Schools in each state
participated in both the middle school and high school arms of the study except
Alabama (middle school only). Nearly 18,700 high school students participated in
the study.

The study used a blocked cluster randomized design to assign schools to study
condition. Schools within each state were matched into pairs or triples, and ran-
domized within blocks in the spring prior to their first year of implementation.
Schools randomized to the treatment group implemented the CTA1 curriculum
and those assigned to the control group continued to use their existing algebra I
curriculum. Nearly all sites used materials published by Prentice Hall, Glencoe, or
McDougal Littell. Assignments to treatment or control groups continued for two
academic years in each school.

The study administered an algebra readiness pretest and an algebra proficiency
post-test from the CTB/McGraw–Hill Acuity series. The exams were scored using
a three-parameter IRT model. In the high school study, models estimated 95%
confidence intervals for the treatment effect of −0.10 ± 0.2 standard deviations in
first year and 0.22 ± 0.2 in the second year. In the middle school study, models
estimated treatment effect confidence intervals of −0.03 ± 0.2 the first year and
0.19 ± 0.3 the second year.

2.3. Data for principal stratification. Since our goal was to better understand
the CTA1 treatment effect, we focused our analysis on data from high school stu-
dents in the second year of the CTA1 trial, for whom the treatment effect was most
evident.

We merged data from two sources: covariate, treatment, and outcome data gath-
ered by RAND, and computerized log data gathered by Carnegie Learning. Ta-
ble 1 describes the covariates we used, including missingness information, con-
trol and treatment means, and standardized differences [cf. Kalton (1968)]. We
singly-imputed missing values2 with the Random Forest routine implemented by
the missForest package in R [Stekhoven and Buehlmann (2012), R Core Team
(2016)], which estimated the “out of box” imputation errors also shown in Table 1
as part of the random forest regression.

Over the course of the effectiveness study, Carnegie Learning gathered log data
from student users, including mastery or promotion for each section each student
encountered. Ninety-five control students (3% of the control group) appeared in
the mastery dataset, presumably because they transferred from schools assigned to
the control condition to treatment schools. We assumed that treatment assignment

2We chose single imputation, instead of multiple imputation, for the sake of simplicity. Only pre-
treatment data was used in the imputation process, so each imputed covariate is itself a pre-treatment
covariate, and causal inference conditional on the imputed covariates is valid. That said, statistical
inference regarding the covariates themselves, as in Section 7.1, likely understates uncertainty.
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TABLE 1
Missingness information and balance for the covariates included in this study, from the CTA1

Effectiveness experiment, high school, year two. Imputation error is percent falsely classified for
categorical variables (Race/Ethnicity, Sex, and Special Education) and standardized root mean

squared error for Pretest, which is continuous. Analysis done in R via RItools [Bowers,
Fredrickson and Hansen (2017)]

% Miss. Imp. Err. Levels Ctl. Trt. Std. Diff.

Ethnicity 8% 0.23 White/Asian 47% 52% 0.16
Black/Multi 32% 26% −0.14
Hispanic/Nat.Am. 21% 22% −0.03

Sex 4% 0.35 Female 51% 49% −0.04
Male 49% 51% 0.04

Sp. Ed. 1% 0.11 Typical 87% 86% −0.00
Spec. Ed 8% 8% −0.02
Gifted 5% 6% 0.03

Pretest 18% 0.20 −0.33 −0.36 −0.05

Overall Covariate Balance: p = 0.22

did not impact students’ decisions to transfer schools, and analyzed these students
as control students, excluding their mastery data from the analysis.

Log data were missing for some students, either because the log files were not
retrievable, or because of an imperfect ability to link log data to other student
records. Treatment schools with mastery data missing for 90% or more students
were omitted from the analysis, along with their entire randomization block. Of
the remaining 2390 students, 84% had mastery data; treatment of missing mastery
data for treatment students is discussed below, in Section 5.

Mastery data for sections that were not part of the standard CTA1 Algebra I
curriculum, sections worked by fewer than 100 students, and sections that were
mastered in every case were omitted from the dataset. The structure of the statis-
tical model, described in Section 6, justifies omitting these sections; a sensitivity
check including all Algebra I sections and every school in the dataset yielded sim-
ilar results.

Finally, because students’ characteristics and behavior were of primary interest,
we included only data from worked sections that ended in either mastery or pro-
motion, omitting cases in which the teacher moved the student to a new section
prior to completion.

All told, the main analysis included n = 5308 students, 2390 of whom were
assigned to the CTA1 condition and 2918 of whom were assigned to control. The
students were nested within 116 teachers, in 43 schools across five states. The
analysis includes mastery information from 86,677 worked sections, 82% of which
were mastered.
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3. Principal stratification for the CTA1 experiment. In the CTA1 experi-
ment, let Zi ∈ {0,1} represent student i’s treatment assignment, i = 1, . . . ,N . Let
Yi denote i’s post-test score, so the central aim of the experiment was to esti-
mate the average effect of Z on Y . Following Neyman (1923) and Rubin (1978)
let YT i and YCi denote i’s “potential” post-test scores were Zi = 1 or Zi = 0,
respectively—that is, were i assigned to treatment or control. This notation im-
plicitly assumes the “Stable Unit Treatment Value Assumption,” or SUTVA [Rubin
(1980)]: that there was only one version of the treatment, and (since treatment was
assigned at the school level) that one school’s treatment assignment did not affect
outcomes in other schools. Then the observed test score Yi = ZiYT i + (1−Zi)YCi .
For each subject i let xi denote a vector of pre-treatment covariates.

Let τi = YT i −YCi , i’s treatment effect. Without strong untestable assumptions,
τi is unidentified, since for each i, either YT i or YCi is unobserved. However, aver-
age treatment effects E[τ ] = E[YT ] − E[YC] are identified. Similarly, randomiza-
tion and SUTVA allow analysts to estimate treatment effects conditional on a vari-
able x, say E[τ |x], so long as x was not itself affected by treatment assignment—
for instance, gender or pretest scores.

The same cannot be said for so-called “intermediate variables” that are them-
selves affected by treatment assignment. Take m̄, the proportion of a student’s
worked sections that he or she mastered: m̄i = ∑

s mis/nsec
i , where mis = 1 if stu-

dent i mastered section s and is zero otherwise. nsec
i is the number of sections

student i worked, nsec
i = ∑

s wsi , where wsi is an indicator which equals one if
student i works section s until either mastery or promotion and zero otherwise.
Since the CT software was unavailable for control students, m̄ is only defined for
treatment students. On the other hand, [following Frangakis and Rubin (2002)] let
m̄T i represent the proportion of sections that i would master if assigned to the
treatment condition—a potential value. Unlike m̄, m̄T is defined for all subjects
prior to randomization, but only observed for members of the treatment group. For
a control student i with Zi = 0, m̄T i is a counterfactual, representing what would
have happened had i been assigned to treatment, that is, had Zi = 1, counterfac-
tually. Randomization guarantees that m̄T is balanced—independent of treatment
assignment (conditional on school and randomization block). Students who would
master more sections, if given the opportunity, were no more or less likely to be
assigned to treatment than those who would master fewer.

That being the case we may define a “principal effect” [cf. Frangakis and Rubin
(2002), page 23] as the super-population average treatment effect, conditional on
m̄T :

(3.1) τ(m) ≡ E[YT − YC |m̄T = m].
Since m̄T is a continuous variable, Gilbert and Hudgens (2008) refer to τ(·) as
a “causal effect predictiveness curve” but we will follow Jin and Rubin (2008)
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and refer to τ(·) as a principal effect, as in the more typical case of a categorical
intermediate variable. (Typical principal stratification also requires conditioning
on m̄C—the proportion of sections students would master if assigned to control—
but this quantity is is undefined and irrelevant in our case, and may be dropped
from the analysis.)

Potential mastery m̄T is observed for treated students (for whom m̄T = m̄), but
unobserved for control students. That said, randomization ensures that the distribu-
tion of m̄T conditional on pre-treatment covariates x is the same in both treatment
groups: m̄T |x, Z = 1 =d m̄T |x, Z = 0 [see Feller et al. (2016b), Lemmas 1 and
2]. These facts allow for partial identification of principal effects.

Principal effects may be estimated via randomization inference [Nolen and
Hudgens (2011)] or nonparametrically bounded [Miratrix et al. (2017)]. Most
commonly, they are estimated with a Bayesian model [e.g., Li, Mattei and Mealli
(2015), Mattei, Li and Mealli (2013)]. Jin and Rubin (2008) and Schwartz, Li
and Mealli (2011) give a full treatment of Bayesian principal stratification with
a continuous intermediate variable such as m̄, which we summarize here. Let Z,
YT , YC , and m̄T denote vectors of students’ treatment assignments, potential out-
comes, and potential mastery proportions, and let X denote the covariate matrix
formed by stacking row-vectors xT . Then randomization implies that Z is inde-
pendent of m̄T , YC , and YT , and hence is ignorable. Then, under exchangeability,
for a vector of parameters θ with prior density f (θ), we may write the joint distri-
bution of YC , YT , and m̄T as:

f (YC,YT , m̄T |X)

=
∫ ∏

i

f (YCi, YT i |m̄T i,xi , θ)f (m̄T i |xi , θ)f (θ) dθ .
(3.2)

This formulation allows for posterior inference via Markov Chain Monte Carlo
techniques, such as data augmentation and Gibbs samplers [Gelman et al. (2014)].

The model f (m̄T i |xi , θ) relates m̄T to covariates. Though m̄T i is only ob-
served for treated subjects, randomization ensures that the same model holds for
both treatment groups, and hence is identified. The model f (YCi, YT i |m̄T i,xiθ),
relates potential outcomes to m̄T and covariates. The model for treatment po-
tential outcomes f (YT i |m̄T i,xi , θ), is entirely a function of observed variables,
and is nonparametrically identified. In contrast, the model for control potential
outcomes f (YCi |m̄T i,xi , θ) depends on unobserved m̄T i ; therefore, our analysis
must rely on an assumed model. In practice, we we will assume that the model
for YCi is drawn from the same family as YT i , albeit with different parameters;
see Richardson, Evans and Robins (2011) for an in-depth treatment of analogous
models. Of course, the fit of the YCi model may be compared to observed values
YCi and xi .
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With these models in place, posterior inference for parameters θ proceeds by
separating the two models into treatment and control observations:

f (θ |Y ,Z,X,M)

∝ f (θ)
∏

i:Zi=1

f (YT i, m̄T i |xi , θ)

× ∏
i:Zi=0

∫
f (YCi |xi , θ, m̄T i)f (m̄T i |xi , θ) dm̄T i .

(3.3)

Though m̄ is unobserved for members of the control group, its conditional distri-
bution may be estimated, and the marginal distribution of YC may be recovered via
integration.

Fitting principal stratification models is fraught with challenges; even when
the model is well specified, multimodality and other pathologies of the likelihood
function can bias standard estimation procedures [Griffin, McCaffrey and Morral
(2008), Feller et al. (2016a)]. These results make clear that any model-based prin-
cipal stratification analysis must include rigorous model checking and verification.

Figure 1 displays results from a principal stratification model, with YT and YC

and m̄T modeled as linear in covariates x with normally distributed errors clus-
tered at the teacher and school levels, and with treatment effects linear in m̄T .
Details are available in the Supplementary Material [Sales and Pane (2019)]. The
x-axis of Figure 1 plots m̄T : for treated subjects, colored blue, the observed value,
and for control subjects, colored red, the 1000th MCMC draw. The y-axis plots
the observed post-test score Y . The figure also shows the 1000th MCMC draws of
regression lines from the regressions of YT and YC on m̄T . Though m̄T appears
positively correlated with achievement in both treatment groups, the association is
weaker in the treatment group than in the control group. This implies that students
who would master a greater proportion of worked sections, if assigned to treat-
ment, tend to experience lower treatment effects—CTA1 works best for students
who tend to master fewer of the sections they work. The full posterior distribu-
tions of the regression lines, estimated via 4000 MCMC draws, are quite wide: a
95% credible interval for the difference between the lines’ slopes was [−0.3,0.2]
pooled post-test standard deviations per one interquartile range (IQR) of m̄T .

4. Modeling mastery.

4.1. Problems with m̄. The principal stratification model based on m̄T appears
to be misspecified; Figure 1 shows clear differences between the distribution of m̄T

in the treatment group, observed as m̄, and the distribution of imputed values for
m̄T in the control group. However, we shall see that even a well-specified model
for m̄T would yield misleading results.

Figure 2(a) shows m̄ as a function of nsec, the number of sections each student
worked. As one might expect, there is a strong correspondence: extreme low values
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FIG. 1. A posterior draw from a principal stratification model stratifying on m̄T : observed post-test
scores (in pooled standard deviation units) as a function of m̄T , along with regression lines. m̄T is
observed for treated students group and imputed for control students.

FIG. 2. (a) Observed m̄ as a function of nsec
i . Overplotted points are jittered. (b) The 1000th draw

of ηT i for members of the treatment group as a function nsec. ηT i is estimated from the model
described by (4.1)–(6.3).
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FIG. 3. (a) Observed m̄ for a student versus the average estimated difficulty of the sections he or
she worked. Section difficulty was measured with the Rasch model (4.1)–(6.1). The within-student
averages used estimates from the 1000th posterior draw. (b) The 1000th draw of ηT versus average
section difficulty.

of m̄ correspond almost exclusively to low values of nsec. This mechanism appears
to drive the leftward skew of the m̄ distribution, and complicates any interpretation
of an estimated function τ(m). In particular, it is hard to disentangle the respective
roles m̄ and nsec play in predicting treatment effects.

Students in the study vary not just in how many sections they attempt, but also
in which sections they work. Figure 3(a) plots each treated student’s m̄ as a func-
tion of the average estimated difficulty of the sections he or she worked (difficulty
estimates are taken from the model we describe in the next section). A substantial
amount of between-student variation in average section difficulty is apparent in
Figure 3(a)—the difficulty estimates are fixed effects from a logistic regression,
so near the center of their distribution a unit difference in section difficulty cor-
responds to a difference of roughly 25% in the probability of mastering a section
[Gelman and Hill (2006), page 82]. Unsurprisingly, students who work harder sec-
tions tend to master a smaller proportion; the Spearman correlation between m̄T

and average section difficulty is −0.30. Therefore, m̄ is only partially a measure of
students’ ability to master worked sections—it also measures which sections they
worked.

4.2. IRT mastery models. A better measurement of student mastery must ac-
count for variation in the number of sections students worked, and their average
difficulty. This is closely related to one of the initial motivations for IRT: com-
paring students’ scores across different tests of the same material [van der Linden
and Hambleton (2013)]. In applying IRT terminology to CTA1 mastery data, the
“items” are sections that students work, and “responses” are binary indicators of
mastery. This statistical structure is analogous to educational and psychological
tests, the usual fodder for IRT models. On the other hand, the substantive differ-
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ence between mastery on sections and responses to test questions requires careful
attention.

Under the Rasch model [e.g., Rasch (1960)]—perhaps the simplest common
IRT model—the probability that student i masters worked section s is:

(4.1) Pr(mis = 1|wis = 1) = logit−1(ηT i − δs),

where logit−1(x) = {1 + exp(−x)}−1 is the inverse logit function. The fixed “dif-
ficulty” parameter for section s, δs , in this case reflects the difficulty of achiev-
ing mastery on section s. The latent student “ability” ηT i , modeled as a ran-
dom intercept, represents student i’s propensity to master worked sections, since
Pr(mis |wis;ηT i, δs) increases with increasing ηT i .

Unlike in psychological testing, ηT is not a measure of student ability, knowl-
edge, or achievement—though it may correlate with these. The Cognitive Tutor’s
principal aim is to help students master algebra skills, so ηT i may be thought of
as a measure of whether CTA1 works as intended for student i. That is, mastery
is CTA1’s own criterion of success. By definition, students who learn best from
CTA1 are those who are more likely to master the sections they work.

Model (4.1) encodes a number of substantive assumptions about how and when
sections are mastered. For instance, as suggested by an anonymous reviewer, it
assumes that the probability a student masters a section does not depend on which
other sections the student had previously worked. Fortunately, students mostly
adhered to the standard section order imposed by Carnegie Learning, and al-
most always worked the sections in an order that respected pre-requisite structure
[Israni, Sales and Pane (2018)]. Along similar lines, it also assumes that a stu-
dent’s propensity to master a worked section remains constant over the course of
the study. This assumption would be violated if, for instance, students learned over
time how to better interact with the software, and were thus able to master sections
more reliably. This, in turn, would induce a correlation between ηT i and nsec

i , so
that the amount of student usage, and not just mastery, impacts ηT . Indeed, such a
(rather slight) correlation appears to exist—for instance, in Figure 2(b)—though it
may be due to other factors, such as student ability and motivation. In supplemen-
tal analyses, when both the order in which each student worked sections and nsec

are included in the model, the former appears to play little, if any, role. Finally,
(4.1) assumes that students’ propensity to master sections can be measured in one
dimension—this would be violated if, for instance, some students were more likely
to master sections involving plotting, but less likely to master sections involving
solving equations for unknowns, than their peers. Section 8 examines the plausi-
bility of this assumption.

Modeling section mastery with an IRT model like (4.1) addresses both of m̄T ’s
deficiencies. Figure 2(b) plots nsec against a draw from the posterior distribution
of ηT for treated subjects from the model described below, in Section 6. Unlike
m̄T , the distribution of ηT do not skew left, even for subjects with low nsec. The
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primary reason for this is partial pooling [Gelman and Hill (2006), Rubin (1981),
Efron and Morris (1973)]: each individual’s ηT i is estimated using both i’s data
and data from the rest of the sample. Estimates of ηT i for students who worked
few sections are shrunk toward the overall mean EηT , reducing the incidence of
outliers driven by noisy individual measurements. Further, the posterior variance of
ηT i conditional on mi = {mis}wis=1 depends on the number of problems worked.
Fitting the measurement model (4.1) simultaneously with the rest of the causal
model implicitly accounts for measurement error in ηT [e.g., Carroll et al. (2006),
Chapter 8].

Figure 3(b) plots a posterior draw from each student’s ηT against the average
estimated difficulty of the sections he or she worked. The negative relationship
between difficulty and mastery, apparent in Figure 3(a), is not present. In fact, the
posterior mean Spearman correlation between ηT and average section difficulty is
positive 0.07, probably reflecting the fact that more capable students are both more
likely to master worked sections and more likely to work on hard sections. Unlike
m̄T , variance in ηT does not appear to be driven by average section difficulty, but
instead may reflect an underlying student characteristic.

5. Incorporating IRT into principal stratification. The T subscript on the
student parameter ηT i is not a common feature of IRT notation, but is necessary
due to ηT i’s role in the causal principal stratification model. Fundamentally, it
measures a baseline student characteristic: what would be i’s propensity to master
worked sections were i assigned to treatment. ηT i , like m̄T i , is a covariate, and,
by definition, is independent of randomized treatment assignment. In other words,
students with a greater propensity to master worked sections were no more or less
likely to be randomly assigned to the treatment condition than students with a
lower propensity for section mastery.

The parameter ηT i is well defined, if unobserved, for members of the control
group. Therefore, its distribution, conditional on covariates, may be extrapolated
to the control group, in the same way as m̄T . In an “explanatory” Rasch model [cf.
De Boeck and Wilson (2013)], the student effects ηT i are modeled as a function of
student covariates, so that:

f (mis |wis,xi , θ) = f (mis |wis, ηT i, θ)f (ηT i |xi , θ),

where the density f (mis |wis, ηT i, θ) is as in (4.1), and the density f (ηT i |xi , θ)

plays a similar role to f (m̄T i |xi , θ) in (3.2). Below we model ηT i as linear in
covariates.

Unlike the model based on m̄ (Section 3), the stratifying variable ηT i is
unobserved for both treated and untreated subjects. That said, the data avail-
able to estimate ηT i differ markedly between the two groups. For members of
the treatment group, whose worked sections si = {s1i , . . . , snsec

i ,i} and mastery
mi = {m1i , . . . ,mnsec

i ,i} are observed, along with covariates xi , the distribution
of ηT i is a function of all three (and other parameters θ ): f (ηT i |wi ,mi ,xi , θ) ∝
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f (mi |ηT i,wi , θ)f (ηT i |xi , θ). On the other hand, members of the control group
do not have data for worked sections and mastery, so ηT i is only a function of
covariates and other parameters, f (ηT i |xi , θ). To estimate parameters θ , we have

f
(
θ |Y ,Z,X, {wi ,mi}i:Zi=1

)

∝ f (θ)
∏

i:Zi=1

∫
f (YT i |xi , θ, ηT i)f (mi |wi , ηT i, θ)f (ηT i |xi , θ) dηT i

× ∏
i:Zi=0

∫
f (YCi |xi , θ, ηT i)f (ηT i |xi , θ) dηT i.

(5.1)

To compute the posterior distribution of θ , it is necessary to integrate over possible
values of ηT i for all subjects.

This structure also incorporates treated subjects with missing mastery informa-
tion: their contribution to the likelihood integrates the density f (ηT i |xi , θ) instead
of the density f (ηT i |xi , θ,mi ) as for other members of the treatment group. The
model essentially multiply imputes ηT i for control students and treatment students
with missing mastery data.

6. A latent principal stratification model for the cognitive tutor.

6.1. Specifying the model. We modeled the probability that student i achieved
mastery on worked section s with the Rasch model (4.1). The model for latent
mastery ηT i as a function of covariates xi was a normal regression:

(6.1) ηT i |(xi , θ) ∼ N
(
xiβ

M + εMt
t[i] + εMs

s[i], σM)
,

where βM is a vector of coefficients. Since students were nested within teachers,
who were nested within schools, we included normally-distributed school (εMs)
and teacher (εMt ) random intercepts. The covariates in the model, xi , were detailed
in Table 1; preliminary model checking suggested including a quadratic term for
pretest, which was added as a column of xi . Although the entire principal strati-
fication model is fit simultaneously to both treatment groups, identification of the
parameters in (6.1) comes primarily from subjects in the treatment group for whom
section mastery is observed.

We modeled students’ post-test scores Y as conditionally normal:

Y |(Zi,xi , θ, ηT i)

∼N
(
βY

0b[i] + xT
i βY + aηT i + Ziτ(ηT i) + εY t

t[i] + εYs
s[i], σ Y

Z[i]
)
,

(6.2)

where βY
0b[i] is a fixed effect for i’s randomization block, βY are the covariate co-

efficients, and εY t , and εYs are normally-distributed teacher and school random
intercepts. The residual variance σY varies with treatment assignment Z; this cap-
tures measurement error in Y , treatment effect heterogeneity that is not linearly
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related to ηT , and other between-student variation in Y that is not predicted by the
mean model.

Finally, we modeled treatment effects τ(ηT i) as linear:

(6.3) E[YT − YC |ηT ] = τ(ηT ) = b0 + b1ηT .

While more complex models for τ(ηT i) are theoretically possible [for instance, Jin
and Rubin (2008) uses a quadratic model], the hypotheses that motivated this work
predicted a monotonic τ(ηT i). Additionally, more complex models for τ(ηT i)

tended to perform poorly on the model checks described in Section 8.
Covariates X were standardized prior to fitting. Prior distributions for the block

fixed effects βY
b and covariate coefficients βY and βM were normal with mean zero

and standard deviation 2; priors for treatment effects and the coefficient on ηT were
standard normal. The rest of the parameters received Stan’s default uniform priors.
In all cases, we expected true parameter values to be much smaller in magnitude
than the prior standard deviation.

6.2. Identifying and fitting the model. We fit the model using the Stan soft-
ware [Stan Development Team (2016)] run from R [R Core Team (2016)], simul-
taneously estimating all parts of the model (4.1)–(6.3). We monitored convergence
with traceplots and the Gelman–Rubin statistic [Gelman and Rubin (1992)].

A secondary fitting exercise, based on multiple imputation [e.g., Little and Ru-
bin (2014)], illustrates the factors that drive model identification. First, we ex-
tracted 1000 MCMC posterior draws of ηT i from the fitted model for all of the
subjects in the dataset. For treated subjects, these are similar to the standard “abil-
ity” scores from a Rasch model. The difference is that these ηT i values incorporate
data from covariates xi , via (6.1), and, more circuitously, outcomes Y , since model
(4.1)–(6.1) were fit simultaneously with (6.2). Incorporating Y into the model for
ηT is necessary if the predicted ηT values are to be used as imputations in a model
for Y [e.g., Sterne et al. (2009)]. For subjects without usage data, ηT i are ran-
dom predictions from an explanatory Rasch model. Then, we fit 1000 hierarchical
linear models in R, using the lmer() function from the lme4 package [Bates
et al. (2015)]. In each regression r , we regressed outcomes on covariates X and a
treatment indicator interacted with the r th posterior draw for the vector ηT . The
distribution of estimates of the coefficient on the treatment-ηT interaction term was
nearly identical to the posterior distribution for b1 described in the next section—
especially after scaling by the average variance of the estimated coefficients.

This (perhaps didactic) exercise, we think, clarifies the inner mechanisms of the
full complex Bayesian model. The explanatory Rasch model (4.1)–(6.1) estimates
ηT i for treated subjects and predicts it for control subjects, and the outcome model
(6.2) uses them to estimate varying treatment effects.

7. Results.

7.1. Predicting mastery. Which types of students are more, or less, likely to
master worked sections? Figure 4 displays the estimated relationships between stu-
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FIG. 4. Fitted model (6.1), predicting ηT . (a) plots estimated coefficients on the categorical vari-
ables (race, with reference white/Asian, sex, with reference female, and special education, with refer-
ence typical) with 50% and 95% credible intervals. The coefficients represent differences in standard
deviations of ηT i . (b) plots estimated, or imputed, ηT i against pretest scores, with the posterior mean
quadratic regression line and 100 random posterior draws.

dents’ estimated ηT i , or E[ηT i |xi ,mi , Yi], and (singly-imputed) covariates x. Fig-
ure 4(a) displays the coefficients on five dummy variables—two race categories,
with White/Asian as the reference category, and indicators for male, special edu-
cation, and gifted students. The coefficients are standardized so that the units are
in standard deviations of ηT i . Figure 4(b) gives the relationship between pretest
scores and E[ηT i], by plotting E[ηT i] (standardized similarly) by pretest, along
with the estimated polynomial fit, represented by the posterior mean and 100 ran-
dom draws from the posterior distribution of the regression line.
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Apparently, students with higher pretest scores, white or Asian, male, and gifted
students are more likely to master worked sections. Black or multiracial, Hispanic
or Native American, special education students, and students with low pretest
scores are less likely to master worked sections. On average, these variables, along
with state indicators, explain about 39% of the variance in ηT i .

Since the covariates in the model were singly-imputed using only pre-treatment
variables, these results must be interpreted with caution. An analysis with fully-
observed variables or using multiple imputation [Little and Rubin (2014)] may
have generated different results.

7.2. CTA1 treatment effects. Figure 5 displays the posterior mean and poste-
rior draws for the estimated function τ(ηT ). These results suggest that, in fact, the
treatment effect decreased with increasing ηT . Students who were more likely to
master the sections they worked experienced lower treatment effects. Specifically,
a difference of one IQR in ηT was associated with a reduction of 0.083 in the effect
size with a posterior standard deviation of 0.066. In approximately 89% of of the
MCMC runs, the slope of τ(ηT ) was negative; a central 95% credible interval for
the standardized slope was [−0.212,0.045].

Why might potential mastery be anticorrelated with treatment effects? Figure 6
plots observed outcomes Y as a function of a posterior draw of the vector ηT .
(Fortunately, the misspecification apparent in Figure 1, based on m̄T instead of

FIG. 5. The estimated treatment effect as a function of students’ propensity to master a section,
E[YT − YC |ηT ]. Red lines are draws from the posterior distribution of the treatment effect function,
and the black line is the mean of the posterior.
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FIG. 6. One posterior draw from model (4.1)–(6.3): observed post-test scores Y (pooled standard
deviations) as a function of estimated ηT (in IQR units) in the control and treatment distributions,
with regression lines.

ηT , does not appear here.) There is a positive relationship between ηT and Y in
both treatment groups—students who are more likely to master worked sections
tend to score higher on the post-test. However, the slope between Y and ηT is
slightly lower in the treatment group than in the control group. So as ηT increases,
the distance between YT and YC—the treatment effect—decreases. These results
suggest that CTA1 may be more effective for students who would have scored
lower on the post-test than for students who would have scored higher. This is
unlikely to be the result of ceiling effects, since only one student in the study
correctly answered all post-test items. The regression lines in Figure 6 approach
each other, but do not cross—the model estimates a positive treatment effect for
the entire observed ηT distribution.

It may seem surprising that our estimate for τ(ηT ) would be more precise than
our estimate for τ(m̄T ) (Section 3), since m̄T is partially observed, whereas ηT

is completely unobserved. Comparing posterior standard deviations, the slope es-
timate for τ(ηT ) was roughly twice as precise, after standardizing the units. The
model misspecification evident in Figure 1 may be partly to blame. More impor-
tantly, both m̄T and ηT may be thought of as measuring the same latent student
quality—the propensity to master a worked section. By employing a more so-
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phisticated and accurate measurement approach, a model based on ηT will often
produce more precise estimates.

8. Model checking. We checked the fit of model (4.1)–(6.3) in several dif-
ferent ways, using posterior predictive checks [Rubin (1984), Gelman, Meng and
Stern (1996)], fitting a series of alternative models, and fitting our main model to
fake data, in which the true parameters are known.

This discussion will focus on model checks aimed at two central questions: first,
does ηT indeed measure potential student mastery, and next, can our model suc-
cessfully estimate real treatment effect functions τ(ηT ) without finding patterns
where none exists. A more complete list of model checks and their results is avail-
able in the Supplementary Material [Sales and Pane (2019)].

8.1. Checking measurement validity. Model 4.1 assumes that students’ pro-
pensity to master worked sections is a unidimensional quantity. To test this as-
sumption, we conducted the posterior predictive check described in Levy, Mis-
levy and Sinharay (2009) using Yen’s Q3 discrepancy [Yen (1993)]. The median
posterior predictive p-value [cf. Zhu and Stone (2011)] was 0.51, consistent with
approximate unidimensionality. Additional details and results can be found in the
Supplementary Material [Sales and Pane (2019)].

Another concern is that ηT ’s measurement of mastery is confounded with over-
all student ability. The CTA1 curriculum begins all students at the same place,
regardless of their initial ability. Ideally, strong students quickly master more ba-
sic sections before progressing to material they find more challenging in advanced
sections. On the other hand, weaker students struggle with (and occasionally fail to
master) the first set of sections they encounter. If this is the case, one would expect
stronger students to achieve mastery more often. To allay this concern, we re-fit
the principal stratification model using only data from worked sections in which
the student requested at least one hint. This resulted in nearly identical results as
our main analysis: a difference of one IQR in ηT was associated with a decrease
of 0.081 in the treatment effect, with a standard error of 0.065.

The Supplementary Material [Sales and Pane (2019)] discusses additional mea-
surement validity checks, including posterior predictive plots, and results from
replacing the Rasch model (4.1) with a 2PL or 3PL model. The results were nearly
identical to those from our main model—for instance, using a 3PL measurement
model, we estimated that a difference of one IQR in ηT was associated with a
decrease of 0.088 in the treatment effect size (SE: 0.068).

8.2. Checking estimation of τ(ηT ). We fit the model (4.1)–(6.3) to a series
of placebo datasets. To create a placebo dataset, we dropped control schools, for
which no usage data is available. We simulated a control group by duplicating
outcome and covariate data from the treatment group and relabeling the duplicate
as the control group. The resulting dataset was comprised of a treatment group and
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FIG. 7. Treatment effect estimates when model (4.1)–(6.3) was fit to datasets with simulated treat-
ment effects, as described in Section 8.2. In each figure, the solid black line represents the true
treatment effect, the dotted line is the posterior mean of b1, and the red lines are draws from the pos-
terior distribution. The true and estimated (posterior mean) treatment effect functions are shown at
the top of each panel. Clockwise from the upper left, there is no treatment effect, a random treatment
effect uncorrelated with ηT , a treatment effect linear in ηT , and a treatment effect quadratic in ηT .

a control group, the former with usage data, but with exactly no treatment effect
(since the outcomes in the two groups were identical). We created an additional
three datasets by simulating treatment effect functions τ(ηT ) and adding them
to the outcomes of the “treated” subjects: a randomly varying treatment effect
uncorrelated with ηT , and effects linear and quadratic in ηT . Note that for the
last dataset, in which effects are quadratic in ηT , the linear model for τ(ηT ) was
misspecified. For these models, we estimated ηT by fitting (4.1)–(6.1) to usage
data from the treatment group.

The results of fitting our model to these four datasets—one with no treatment
effect and three with simulated effects—are displayed in Figure 7. In the first three
datasets, for which our treatment effect model was well specified, the model’s es-
timates are in line with the truth. In the final placebo dataset, in which the model
was misspecified, while the linear estimate of τ(ηT ) fails to capture the true pat-
tern, it does lead to the correct conclusion of little or no linear correlation between
treatment effects and ηT .
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9. Discussion.

9.1. The role of mastery in the cognitive tutor. Were mastery learning the only
driver of CTA1 effectiveness, we would expect effectiveness to correlate with
students’ potential section mastery. In fact, the opposite seems to be the case—
average effects appear to decrease with students’ mastery propensity (though they
remain positive throughout).

On the other hand, ηT , the latent parameter measuring mastery propensity, pos-
itively correlates with students’ pre- and post-test scores in both treatment groups.
Students who were more likely to master worked sections were stronger at the be-
ginning of the year and knew more Algebra I at the end of the year. If the CTA1 ef-
fect were larger for lower performing students than for stronger students we would
expect to see a negative correlation between ηT and treatment effects. Similarly,
a wide range of pre-treatment student characteristics, both measured and unmea-
sured, may explain the observed relationship between ηT and treatment effects.

Future work will extend this analysis to the middle school arm of the study.
Middle school algebra students are not only younger than those in our high-school
sample, but are higher achieving as well, on average, adding an interesting dimen-
sion to this analysis. However, Pane et al. (2014) reported an imbalance in pretest
scores of treatment and control middle school students, suggesting that assignment
to the treatment condition may have influenced which students chose to take alge-
bra in middle school instead of waiting until high school. This apparent selection
into the treatment condition would have to be accounted for in a principal strati-
fication model, adding an additional modeling challenge beyond those described
here.

From a practical standpoint, these results are encouraging. Fortunately, there
is no evidence here that students’ occasional failure to master worked sections
seriously impedes CTA1’s effectiveness. In fact, students who are more likely to
wheel-spin may benefit even more from CTA1 than their more successful peers.
Struggling students, who are less likely to achieve mastery, are also most in need
of help. The results here suggest that the Cognitive Tutor is not failing them.

9.2. Latent variables in a potential outcomes framework. In the course of
modeling data from the CTA1 experiment, it became necessary to introduce a la-
tent variable into principal stratification modeling. We are unaware of this being
done previously. Latent variables are necessary here because directly observable
statistics ostensibly measuring student mastery—such as m̄—were woefully inad-
equate. In particular, m̄ does not account for which, or how many, sections students
attempted. On the other hand, IRT provides a wealth of models and a mature sta-
tistical theory for modeling student mastery potential. Operationalizing students’
potential mastery via the Rasch parameter ηT has clear advantages over the simpler
approaches previously available.
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That said, there may be some tension between latent variables and the Rubin
Causal Model, on which principal stratification is based. For instance, Imbens and
Rubin [1997, page 306], wrote:

Inferences across models with different parametric structures can be compared directly
because these inferences are all driven by the posterior predictive distribution of the
same causal estimands defined by the potentially observable outcomes.

One of the central arguments for the Rubin Causal Model is that its target estimand
is defined in a way that is independent of the model used to estimate it. In contrast,
the definition of the parameter ηT is inherently tied to the Rasch model (4.1)–(6.1).

But latent variables are themselves measurements. The only difference between
measurement via latent variables versus via other measurement tools used in prin-
cipal stratification is that the measurement takes place within the principal strat-
ification model. Perhaps the most common outcome in causal education research
is test scores, themselves typically calculated with an IRT model—in other words,
latent variables. The models that give rise to the test scores are fit separately from
the causal model, giving them the appearance of objective measurements. Simi-
larly, an analyst could fit model (4.1)–(6.1) to mastery and covariate data without
reference to outcomes, principal strata, or causal inference at all. Including the
measurement model as a component of the larger causal model is good statistical
practice.

However, especially given the difficulty of fitting even much simpler principal
stratification models, an abundance of caution is in order. Theory and guidance
regarding when latent variable principal stratification models will give accurate
answers would be particularly helpful. The role of covariates in predicting latent
variable values—and hence imputing them for control subjects—is particularly
pressing.

With the foundation set, latent variable principal stratification can open many
doors. For instance, researchers may be able to use cluster analysis techniques to
summarize large numbers of intermediate variables, and then examine treatment
effect heterogeneity between clusters. Factor analysis may play a similar role in
continuous principal stratification. Latent variable principal stratification has the
potential to facilitate more—and more nuanced—scientific discoveries.
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SUPPLEMENTARY MATERIAL

Supplement to “The role of mastery learning in intelligent tutoring
systems: Principal stratification on a latent variable” (DOI: 10.1214/18-

https://doi.org/10.1214/18-AOAS1196SUPP
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AOAS1196SUPP; .pdf). We provide modeling details, Stan code, and an extensive
set of model goodness-of-fit and sensitivity analyses and plots.
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