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AN ALGORITHM FOR REMOVING SENSITIVE INFORMATION:
APPLICATION TO RACE-INDEPENDENT

RECIDIVISM PREDICTION1

BY JAMES E. JOHNDROW AND KRISTIAN LUM

Stanford University and Human Rights Data Analysis Group

Predictive modeling is increasingly being employed to assist human
decision-makers. One purported advantage of replacing or augmenting hu-
man judgment with computer models in high stakes settings—such as sen-
tencing, hiring, policing, college admissions, and parole decisions—is the
perceived “neutrality” of computers. It is argued that because computer mod-
els do not hold personal prejudice, the predictions they produce will be
equally free from prejudice. There is growing recognition that employing al-
gorithms does not remove the potential for bias, and can even amplify it if the
training data were generated by a process that is itself biased. In this paper,
we provide a probabilistic notion of algorithmic bias. We propose a method
to eliminate bias from predictive models by removing all information regard-
ing protected variables from the data to which the models will ultimately
be trained. Unlike previous work in this area, our procedure accommodates
data on any measurement scale. Motivated by models currently in use in the
criminal justice system that inform decisions on pre-trial release and parole,
we apply our proposed method to a dataset on the criminal histories of in-
dividuals at the time of sentencing to produce “race-neutral” predictions of
re-arrest. In the process, we demonstrate that a common approach to creating
“race-neutral” models—omitting race as a covariate—still results in racially
disparate predictions. We then demonstrate that the application of our pro-
posed method to these data removes racial disparities from predictions with
minimal impact on predictive accuracy.

1. Introduction. Statistical and machine learning models are increasingly
used to inform high-stakes decisions, including hiring [Hoffman, Kahn and Li
(2015)], credit scoring [Khandani, Kim and Lo (2010)], and throughout all stages
of the criminal justice system. In the criminal justice context, predictive models
of individuals’ future behavior are used to inform judges regarding pre-trial re-
lease and bail setting, sentencing, and parole [Brennan, Dieterich and Ehret (2009),
Phillips, Ferri and Caligiure (2016), Dieterich, Mendoza and Brennan (2016),
Cunningham and Sorensen (2006), Dvoskin and Heilbrun (2001), Quinsey et al.
(2006), Berk et al. (2009)]. For example, there is an increasing reliance on predic-
tive models to inform judges about the likelihood that a defendant will re-offend
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if released. In this case, data about individual defendants is used to train a model
with the objective of predicting future re-offense. The model’s prediction for a
given defendant is then shown to the judge or parole board presiding over that per-
son’s case for use in informing pre-trial release, parole, or sentencing decisions.
Given the importance of decisions regarding an individual’s personal liberty, it is
imperative that any input to the decision-making process—be it a model’s predic-
tion or otherwise—be “fair” with respect to legally or socially protected classes
such as race, gender, or sexual orientation.

In this paper, we focus on recidivism prediction. The objective is to make predic-
tions regarding an individual’s future likelihood of re-offense that are “fair” with
respect to that individual’s race.2 Typically, post-release re-offense is measured by
re-arrest, and there are many reasons to believe that re-arrest may be a biased mea-
sure of re-offense with respect to race. For example, studies suggest that after con-
trolling for criminal behavior, African Americans are more likely than Caucasians
to become incarcerated [Bridges and Crutchfield (1988)], and whether walking or
driving, African Americans are disproportionately stopped and searched by police
[Simoiu, Corbett-Davies and Goel (2016), Rudovsky (2001)]. For drug crimes,
African American drug users are arrested at a rate that is several times that of
Caucasian drug users despite the fact that African American and Caucasian popu-
lations are estimated by public health researchers to use drugs at roughly the same
rate [Langan (1995), Mitchell and Caudy (2015)]. Thus, fitting models to data for
which certain groups are observed committing crime at a disproportionate rate un-
fairly biases the model’s predictions against those groups. In this setting, a model
may very successfully predict that an individual is likely to be re-arrested, but the
model has no way of disentangling a higher risk of re-arrest due to elevated latent
criminality from higher risk due to increased police attention.

If information were available at the local level on the true rate of committing
crime by race or other protected characteristic, one could introduce corrections
(e.g., sampling weights or protected characteristic-specific latent thresholds) into
the prediction model to correct for the relative over-sampling of protected demo-
graphic groups. However, for a variety of reasons, information on true baseline
rates of crime against which to “benchmark” the police data is notoriously difficult
to obtain, and different methods for estimating the base rate of committing crime
often come to opposite conclusions [Glaser (2014), Alpert, Smith and Dunham
(2004)].

As there is a noted dearth of information with which to correct systematic mea-
surement error in arrest data, we adopt a standard of fairness which requires that
predictions be independent of protected characteristics. This is sometimes referred
to as demographic parity or statistical parity [Dwork et al. (2012)]. Our view is

2We use the terminology for racial categorization that is used in the dataset that is the focus of
our application. The categories in this dataset are defined as African American, Caucasian, Hispanic,
Asian, Native American, and Other.
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that absent reliable unbiased samples or benchmarks to correct for sampling bias
in arrest data, the most reasonable approach is to assume that the average level
of criminality is independent of race. In doing so, we note both the unique cir-
cumstances of systematically biased sampling in this setting as well as the fact
that independence or demographic parity is one of the set of standard notions of
fairness considered in the machine learning literature.

It is worth noting that some authors have—quite reasonably—argued for the
insufficiency of demographic parity as a notion of fairness. Most notably, Dwork
et al. (2012) outlines how demographic parity fails as a reasonable definition of
fairness through three example scenarios outside of the context of criminal risk
assessment. Under the first example, Dwork et al. (2012) demonstrate that demo-
graphic parity can be achieved even in settings where the relationship between
a permitted covariate and the outcome of interest is quite different (or reversed)
among protected groups. This example is envisioned in the setting where the mod-
eler does not include or does not have access to information about the protected
variable. For example, if full-time employment is positively correlated with re-
arrest for white individuals but negatively correlated with re-arrest for black indi-
viduals, a model that includes employment status (but not race) may still achieve
demographic parity without fully accounting for the group-wise heterogeneous ef-
fect. In extreme cases, this can lead to a model that results in predictions that are
negatively correlated with the outcome for some groups. In less extreme cases, this
can lead to predictions that are much more accurate for one group than the other
to the point of rendering the prediction model useless for some groups. In recidi-
vism prediction, while there likely are interactions between the protected variable
and the permitted variables, because the permitted covariates are often selected
to be well established, theoretically motivated risk factors, we find this scenario
unlikely. Furthermore, standard validation techniques to assess the quality of the
model would reveal if this were the case, so long as the high-level evaluators had
access to the protected variables. For example, assessing accuracy by race—which
we do as part of our evaluation—would flag this as a problem. Both other exam-
ples that point out the insufficiency of demographic parity in Dwork et al. (2012)
center around the risk that bad faith modelers intentionally create predictive mod-
els that disadvantage a protected group by explicitly incorporating information
about the protected variable into the model building process. Under our proposed
framework, all model builders, including those acting in bad faith, would be pro-
vided a dataset that is independent of race on which to train their model. Under
this strategy, such an individual would not know or be able to infer the protected
status of each individual. Our proposed framework would, therefore, preclude the
intentional sabotage of individuals based on protected status by design.

Even in the context of risk assessment, some authors who work in this area have
argued for the impropriety of demographic parity. For example, in a paper eluci-
dating the relationship between several notions of fairness, Chouldechova (2017)
rejects demographic parity for consideration in building recidivism models while
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suggesting its utility for other topic areas, such as employment or educational ad-
missions settings. However, in the conclusion the author notes that “Throughout
this paper we have implicitly operated under the assumption that the observed re-
cidivism outcome Y is a suitable outcome measure for the purpose of assessing
the fairness properties of an RPI (recidivism prediction instrument).” The author
then cautions that many reported crimes are never “cleared” (i.e., never result in an
arrest) and if there is bias in the re-arrest of individuals who re-offend, the evalua-
tion of demographic parity and other fairness notions carried out in the paper may
be misleading. This scenario in which there is significant racial bias in re-arrest
is specifically that which we seek to address in this paper, and thus the objections
of Chouldechova (2017) to demographic parity are not directly relevant to our ap-
plication. Ultimately, there is significant disagreement among researchers about
which notions of fairness are appropriate for which settings. Even if one does not
agree with demographic parity for our application, our work can be viewed as fur-
thering an existing area of methodological research and a case study of the effects
of applying this standard of fairness in the recidivism risk assessment context.

There has been substantial work to date to create statistical or machine learning
models that produce predictions that achieve demographic parity [Kamiran and
Calders (2009), Calders and Verwer (2010), Feldman et al. (2015), Adler et al.
(2016), Romei and Ruggieri (2014)]. Much of the previous work has primarily
focused on settings where the outcome or protected variable is binary. Existing
methods, such as propensity score weighting, though not explicitly designed for
this task may also prove to be powerful tools to achieve demographic parity, par-
ticularly in settings where the protected variable is categorical. The approach we
suggest primarily builds on the work of Feldman et al. (2015). These authors pro-
pose a procedure to transform a set of covariates X = (X1, . . . ,Xp) to a new set
of covariates W such that each variable Wj in W is independent of a categorical
protected variable Z. In the special case where p = 1, this is sufficient to guaran-
tee that any algorithm trained on W will produce predictions that are independent
of Z. The authors give empirical justification for the algorithm when p > 1. In
addition to not guaranteeing demographic parity when p > 1, the algorithm has
several limitations. First, it works only for categorical Z, and reasonable perfor-
mance requires a large number of observations taking each possible level of Z.
Although Adler et al. (2016) makes some improvements to the handling of cat-
egorical variables, the procedure is not appropriate for continuous Z or Z with
many distinct values. Finally, the procedure requires that all of the covariates Xj

be continuous variables, further limiting its scope.
To address the described limitations, we approach the problem from a likeli-

hood-based perspective. In this framework, transforming noncontinuous variables
as well as transforming variables for which there is little data corresponding to one
or more levels of Z are natural. This framework also allows us to make transformed
data W that are mutually independent of Z, rather than only pairwise independent,
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thereby guaranteeing that the predictions of any algorithm trained on the trans-
formed data will be independent of Z. To do so, we define the problem in terms
of a chain of conditional models, as is commonly used in multiple imputation [see
White, Royston and Wood (2011) for an overview]. Each variable is adjusted by
matching its estimated quantile (conditional on the protected variable and all other
previously adjusted variables) to the marginal quantiles for that variable. Our ap-
proach allows for any number of mixed-scale variables to be adjusted and naturally
accommodates one or more protected variables that may be categorical or contin-
uous. This greatly expands the range of datasets that can be transformed and thus
expands the universe of problems to which the procedure may be applied.

We apply our method to a dataset pertaining to the criminal justice system in
Broward County, Florida. This dataset contains several covariates describing an in-
dividual’s demographic characteristics and criminal history. The outcome variable
of interest is re-arrest within two years of release, a likely biased measure of relapse
into criminal behavior. We apply our procedure to render the permitted covariates
independent of race, and use both logistic regression and random forest to predict
re-arrest. We find that while models fit to the unadjusted data omitting race pro-
duce drastically different predictive distributions of the probability of re-offense
by race—thus empirically demonstrating the insufficiency of omitting race from
the analysis when the goal is statistical parity—equivalent models fit to the data
transformed using our procedure produce nearly identical predictive distributions
by race. Further, the predictive accuracy of our method decreases only slightly due
to the adjustment, a phenomenon we explore in depth. We also find that random
forest or logistic regression fit to only seven transformed variables—mostly per-
taining to an individual’s criminal history—has substantively equivalent predictive
power to proprietary models used for recidivism prediction that use a battery of
psychological questionnaires and evaluations in addition to information about the
individual’s criminal past.

2. Setup. We begin by specifying notational conventions that will be used
throughout. In general, random variables are denoted by capital letters and realiza-
tions of random variables by lower case. For example, B = f (A) defines a random
variable B that is defined as a function of another random variable A, whereas
b = f (a) refers to the function f applied to a data point a, giving the value b.
When defining functions, we will use lower case letters to specify arguments. For
example, FX|Z : Rp × R

q → [0,1] defined by FX|Z(x, z) = P[X ≤ x | Z = z]
specifies a conditional distribution function, while FX|Z(X,Z) is a random vari-
able taking values in [0,1] defined by applying the transformation FX|Z to (X,Z).

Now, suppose we have a response Y and predictors (Z,X), where Z represent
protected characteristics. We take X,Z to be p and q dimensional random vectors
with arbitrary measurement scale. Consider a generic prediction rule or model for
Y given by

(2.1) δ : X → Ŷ .
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Our goal is not to use any information about Z in predicting Y ; that is, we want a
fair prediction rule.3

DEFINITION 2.1 (Fair prediction rule). A prediction of the form (2.1) is fair
with respect to the protected characteristics Z if and only if

(2.2) Ŷ ⊥⊥ Z.

In other words, we seek to achieve demographic parity with respect to the pro-
tected variables Z. Although f is not a function of Z in (2.1), this is insufficient
to guarantee Ŷ ⊥⊥ Z unless X ⊥⊥ Z. In the overwhelming majority of applications,
X and Z are dependent, and thus we must take additional measures to ensure Ŷ is
fair.

There is a simple condition that does guarantee fairness. Since Ŷ is not a func-
tion of Z, we already have Ŷ ⊥⊥ Z | X. Since functions of independent random
variables are independent, X ⊥⊥ Z implies Ŷ ⊥⊥ Z. Thus, we seek to define a new
random variable W that is independent of Z, while still preserving as much “in-
formation” in X as possible. W will then be used in lieu of X to build a model,
δ : W → Ŷ , that is guaranteed to be independent of Z.

3. Transformations to independence. Consider random variables (X,Z)

with joint distribution F(x, z), and let X be the collection of all random variables
of dimension p. Define W ⊆ X to be the set of all random variables of dimension
p that are independent of Z and have distribution G(x). For a fixed distance metric
ρ : X × X →R

+ between probability distributions, the goal of our procedure is to
find W ∈ W that satisfies

(3.1) ρ(X,W) = inf
W ′∈W

ρ
(
X,W ′).

This may or may not be unique, but all such random variables are, informally, as
close as possible to X while also being independent of Z. Throughout, we will
take ρ to be the Wasserstein-α distance for α ≥ 1.

The procedure we propose is guaranteed to achieve (3.1) when X is univariate.
When X is multivariate, we chain optimal univariate transformation to create a
procedure that achieves mutual independence of W from Z. Though the multivari-
ate procedure does not have the optimality guarantee of the univariate procedure,
empirically we find it is very successful at achieving independence with minimal
distortion of the distribution of X. In the following motivating sections, we assume

3We emphasize that the term “fair” is used here in a mathematical context as a shorthand for the in-
dependence condition in (2.2). Ultimately, it is up to policymakers and ethicists to determine whether
this condition is appropriate in any particular context. However, we argue it is the most appropriate
of the existing notions of algorithmic fairness to our motivating application for the reasons outlined
in the Introduction.
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the joint and conditional distributions of (X,Z) are known, and the desired target
distribution, G, is fixed and user-specified. We defer discussion of how to handle
unknown F and how to choose G to the end of this section, as the following results
hold for any F and G. A more rigorous presentation of the problem and discus-
sion of the theoretical underpinnings of this transformation, including results on
the optimality of our proposed procedure, are given in Appendix B.

3.1. Univariate transformations. Let p = 1 and FX|Z(x, z) be the conditional
cumulative distribution function of X given Z. If X is continuous, then the trans-
formation W = ζ(X,Z) = G←(FX|Z(X,Z)) defines the optimal transformation
of X to W such that W is independent of Z, W ∼ G, and, informally, W is as
similar as possible to X given the independence and distributional constraints, and
G←(u) = inf{x ∈ R : u ≤ G(x)} denotes the left-continuous inverse CDF of the
target distribution.

For atomic X, the transformation is slightly more complicated. Let ẋ =
{ẋ1, ẋ2, . . .} be the support points of FX|Z ordered such that ẋj < ẋj+1, with as-
sociated probabilities πj = P[X = ẋj ], and define νj = ∑

j ′≤j πj with ν0 = 0.
Then, by corollary B.1 the stochastic map W = ζ ∗(X,Z) for ζ ∗(X,Z) | X = ẋj ∼
Uniform(νj−1, νj ), achieves (3.1). This immediately gives an algorithm for trans-
forming realizations of a univariate X to realizations of W such that W ⊥⊥ Z with
minimal information loss, given in Algorithm 1.

3.1.1. Continuous example. Consider the joint model defined by the condi-
tional distributions

Z ∼ Bern(0.5),

X1 | Z ∼ N(Z + 4,1).

The goal is to apply the transformation we have defined above to create a new vari-
able, W1 ∼ G1 that is independent of Z and retains as much dependence with the
original variable, X1, as possible. In this example, FX1|Z(X1,Z) = �(X1 −4−Z)

where �(·) is the standard normal distribution function. Therefore, we define
the transformed variable as W1 = G←

1 (�(X1 − 4 − Z)). Under this transforma-
tion, W1 | Z ∼ G1 and, because the distribution is the same for every value of
Z, W1 ⊥⊥ Z, so W1 ∼ G marginally. However, for G1 any normal distribution,
cor(W1,X1) = 2/

√
5 ≈ 0.89, demonstrating the high level of remaining depen-

dence between X1 and W1, as desired.
This transformation is depicted in the left panel of Figure 1 for G1(w) =

�(w−4.5). Suppose we observe x1 = 6 and z = 1. To compute the inner function,
we first calculate the conditional quantile, FX1|Z(x1, z) = 0.84, which is indicated
by the height of the dashed curve at x1 = 6. To complete the transformation, we
evaluate the inverse distribution function for the target distribution at the previ-
ously calculated conditional quantile. That is, we take G←

1 (0.84) = 5.5. So, in do-
ing this transformation, we map the original random variable to the value such that
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Algorithm 1: Univariate transformations of variables
Data: {xi} and {zij } for i = 1, . . . , n and j = 1, . . . , q , where

X | Z ∼ FX|Z(x, z), target distribution G

Result: {wi} for i = 1, . . . , n, where wi are realization of W ∼ G with
W ⊥⊥ Z.

1 for i = 1,. . . , n do
2 if X is atomic then
3 set x−

i = max{ẋk : ẋk < xi, k = 1,2, . . .}
4 if x−

i = ∅ then
5 set x−

i = −∞
6 end
7 set 	(xi) = FX|Z(x−

i , zi); r(xi) = FX,Z(xi, zi) where
8 sample ui = Uniform(	(xi), r(xi))

9 set wi = G←(ui)

10 end
11 if X is continuous then
12 set wi = G←(FX|Z(xi, zi))

13 end
14 end

the quantile of the original variable conditional on the protected variable matches
the quantile of the transformed variable marginally. The transformed variable can
be viewed as a re-scaled measure of how large the original measurement is, after
accounting for the value of z.

3.1.2. Atomic example. Consider the joint model defined by the alternative set
of conditional distributions:

Z ∼ Bernoulli(1/2),

X2 | Z ∼ Bernoulli(p) where p = 1

3
+ 1

3
Z.

Under our proposed stochastic transformation, we define U ∼ Uniform(a, b)

where a = FX2|Z(X2 − 1,Z) and b = FX2|Z(X2,Z). More specifically, if X2 = 1,
we set a = (2 − Z)/3 and b = 1. If X2 = 0, we set a = 0 and b = (2 − Z)/3.
The transformation is completed by setting W2 = G←

2 (U). Despite achieving
W2 ⊥⊥ Z, dependence between W2 and X2 is retained. For example, if we select
G2 = Bernoulli(1/2), then cor(W2,X2) = 2/3.

This transformation is depicted in the right panel of Figure 1. In this example,
we observe x2 = 1, so we sample u ∼ Uniform(1/3,1). Assume we draw u = 0.4.
This is then transformed to the 0.4 quantile of G2, which in this case is zero. If
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FIG. 1. (left) An example transformation of x1 = 6 to w1 = 5.5 when z = 1. (right) An example
transformation of x2 = 1 to w2 = 0 when z = 1.

the uniform random draw had been, for example, 0.6, w2 = G←(0.6) would have
been one.

3.2. Multivariate adjustments via chaining. In the previous section, we
demonstrated how to transform a univariate X → W to obtain independence
with Z. This procedure could be applied independently to each covariate Xj to
achieve pairwise independence with Z, though it is not guaranteed that the result-
ing set of independently transformed covariates will achieve mutual independence
with Z. Regardless, pairwise adjustments may be desirable to retain interpretabil-
ity of the covariates. Under a pairwise adjustment, each covariate could be inter-
preted as a simple Z-adjusted version of itself. For example, if Xj is the number
of prior arrests and Z is race, a pairwise adjustment would result in a race-adjusted
measure of the number of prior arrests. This section is concerned with extending
the above results to achieve mutual independence with Z.

Now, let X be a random vector. We propose to construct an analogous multi-
variate transformation function ζ(·) as

(3.2)
W = ζ(X,Z) = (

ζ1
(
X1,V

(1)), ζ2
(
X2,V

(2)), . . . , ζp

(
Xp,V (p)))

= (W1,W2, . . . ,Wp),

where V (j) := (Z,W1:(j−1)) for j > 1, V (1) := Z, and each ζj (Xj ,V
(j)) is de-

fined as in Section 3.1 such that

ζj

(
Xj,V

(j)) ⊥⊥ (Z,W1:(j−1)).

The ordering X1, . . . ,Xp of the X variables is arbitrary, though some orderings
may be practically convenient for a given application.
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Using basic rules of conditional probability, p(W | Z) can be decomposed as

p(W | Z) = ∏
j

p(Wj | Z,W1:(j−1)) = ∏
j

p
(
ζj

(
Xj,V

(j)) | Z,W1:(j−1)

)
.

Because ζj (Xj ,V
(j)) ⊥⊥ Z,W1:(j−1), each element of the product on the right-

hand side of the equation can be replaced by p(ζj (Xj ,V
(j)) | Z,W1:(j−1)) =

p(ζj (Xj ,V
(j))) = p(Wj), and the joint distribution reduces to

p(W | Z) = ∏
j

p(Wj ),

and W is mutually independent of Z. Consequently, we refer to (3.2) as a trans-
formation to mutual independence.

3.2.1. Multivariate chaining toy example. Now, consider the joint distribution
defined by the following conditional specification:

(3.3)

Z ∼ Bern(0.5),

X1 | Z ∼ N(Z + 4,1),

X2 | X1,Z ∼ Bern(p),

p =I←(
�(X1 − Z − 4),1 + Z,2 − Z

)
,

where I←(x, a, b) is the inverse cumulative distribution function of a beta distri-
bution with parameters a and b. Under this specification, the marginal distributions
of (X1,Z) and (X2,Z) are the same as those defined in examples in Sections 3.1.1
and 3.1.2, respectively.

To perform the chained multivariate adjustment to create (W1,W2) that are
mutually independent of Z, we define the following set of transformations. Put
W1 = ζ1(X1,Z) = G←

1 (FX1|Z(X1,Z))—the same as in Section 3.1.1. In the ex-
ample in Section 3.1.2, we defined W2 = G←

2 (FX2|Z(X2,Z)) to create an adjusted
variable independent only of Z. Instead, to create a W2 such that (W1,W2) are mu-
tually independent of Z, we now define W2 = G←

2 (FX2|V (2) (X2,V
(2))). FX2|V (2)

is the conditional distribution function of X2 given W1 and Z and, in this case, is
not available in closed form.

3.3. Defining G. In practice, how one chooses or estimates G is less critical
than using the conditional CDF to transform X. It is typical in applied statistics
and regression modeling to transform predictors prior to model fitting for com-
putational reasons or to obtain better predictive accuracy, which would neutralize
any choice we make for G. On balance, we suggest taking G to be the marginal
distribution FX . This ensures that researchers using the transformed data still have
access to the original marginal distribution of the data, which may be of significant
value in its own right.
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3.4. Unknown conditional distributions. In the above, we have assumed that
FX|Z and G are known. In practice, the conditional distributions, e.g. FX|Z , are
typically unknown and must be estimated from the data. In the example we present
below, we have found traditional, parametric regression models to be successful at
estimating FX|Z if the analyst employs appropriate model selection and fit diag-
nostic techniques. A more automated approach would likely require more exotic
nonparametric models to effectively model the conditional distributions without
human input. The key to this approach is reliably estimating the ζj , which in
turn requires good choices of Ĝ← and good estimators of F̂Xj |V (j) . Estimation
of FXj |V (j) is an exercise in regression modeling. When Z is low dimensional, it
may be appropriate to obtain the conditional through a nonparametric estimate of
the joint distribution of Z and Xj . For the particular case of the recidivism data,
likelihood-based parametric regression models were more successful. Ultimately,
the better the estimator of the conditional distribution F̂Xj |V (j) , the closer to fair
any prediction rule ŷ estimated on w, so it is critical to construct these estimators
with care.

3.5. Practical implementation. In practice, we envision the following work-
flow. A training data set is pre-processed using the procedure we have so far de-
scribed. A set of adjusted data sets are released to model developers, who have
no access to individual-level information about the protected variable(s). Once a
suitable predictive model is selected by the model developers, the parameters of
the model would be transmitted to the group administering the risk assessment
so that predictions could be made about new people as they are arrested. The set
of transformation functions developed in the first stage of the process must also
be available to the administrators of the risk assessment tool (but not the model
developers), as the covariates for new arrestees would have to undergo the same
transformation before being used in the predictive model.

4. Simulation example. In order to illustrate our proposed method, we sim-
ulate from the joint model defined in Section 3.2.1, and define the dependent vari-
able as Y ∼ N(X1 −X2 +X1Z +X1X2 +X1X2Z,1). We simulate one realization
from this model with sample size n = 10,000. Realizations from this model are de-
noted by lowercase variables, z, y, x1, and x2.

A density plot of y given z is shown in Figure 2. The goal of our procedure is
to produce w1 and w2 that are independent of z. Independence manifests as for
any prediction rule ŷ = δ(w1,w2), the distribution of ŷ for z = 0 is equal to the
distribution of ŷ when z = 1.

We compare predictions of y given w by comparing three methods for produc-
ing w: (1) do no adjustment of x (so w = x); (2) perform pairwise transformations
to independence to produce w; and (3) perform transformations to mutual inde-
pendence to produce w. In all cases, we omit z from the set of covariates used to
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FIG. 2. A comparison of the distributions of y for each value of z in the simulated data example.

fit y. In all cases, unlike in the illustrative toy examples, we assume all relevant
distributions are unknown and must be estimated from the data, mimicking a real
analysis in which the joint distribution of the data is not known.

For procedure (2) in which we perform two independent univariate adjustments,
we must estimate the functions FX1|Z and FX2|Z . To estimate FX1|Z , we fit a linear
regression with Gaussian errors of x1 on z, so that F̂X1|Z = �((x1 − x̂1)/σ̂

2),
where σ̂ 2 is the estimated sample variance of x1 | z and x̂1 is the fitted value of
x1 | z under our estimated model. We set Ĝ←

1 to be the empirical quantile function
of x1. Then, for each observation i = 1, . . . , n, wi1 = Ĝ←

1 (�(xi1 − x̂i1)/σ̂
2)).

To estimate FX2|Z , we first fit a logistic regression of x2 on z, resulting in fitted
values x̂2. Under this fitted model, F̂X2|Z is the CDF of a Bernoulli distribution
with parameter x̂2. We then sample ui ∼ Uniform(	i, ri) for 	i = F̂X2|Z(xi2 −
1, x̂i2) and ri = F̂X2|Z(xi2, x̂i2). We again set Ĝ←

2 to be the empirical quantile
function of x2, and wi2 = Ĝ←

2 (ui). This procedure for producing w1 and w2 is
referred to as “adjusted-pairwise”.

For procedure 3, we jointly adjust x1, x2 → w1,w2. To do this, we make two
transformations, the first by transforming X1 to be independent of Z, exactly
as detailed above in procedure (2). To complete the second transformation, we
estimate the conditional distribution of X2 given W1 and Z by fitting a logis-
tic regression of x2 on z and w1, yielding fitted values x̂2. Then F̂X2|W1,Z is
given by the CDF of a Bernoulli distribution with parameter x̂2. Similar to the
above, we make a stochastic transformation by sampling ui ∼ Uniform(	i, ri) with
	i = F̂X2|Z,W1(xi2 − 1 | x̂i2) and ri = F̂X2|Z,W1(xi2 | x̂i2). We again use the empir-
ical quantile function of X2 as Ĝ←

2 to obtain w2i = Ĝ←
2 (ui). We refer to this

procedure as “adjusted”.
Figure 3 shows the empirical distribution of the fitted ŷ under each of the three

adjustment procedures. Fitted values are calculated as ŷ = wβ̂ where β̂ is the least
squares estimate from regression of y on w. From this it is clear from the unad-
justed model that omitting z does little to equalize the distributions of ŷ conditional
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FIG. 3. The distributions of ŷ | z under each of the adjustment procedures.

on z. The pairwise adjustment does reduce some of the discrepancy in the predic-
tive distributions of ŷ | z, but the distribution of ŷ | z = 1 has a much larger right
mode than the distribution of ŷ | z = 0. In contrast, the joint adjustment results in
nearly indistinguishable predictive distributions, achieving the goal of the proce-
dure.

5. Application: Removing racial dependence in recidivism risk assessment.
In 2016, ProPublica released a news article on the use of predictive analytics in
recidivism risk assessment [Angwin et al. (2016)]. The focus of the the investiga-
tion was on whether risk assessment tools were disproportionately recommending
nonrelease for African American defendants. The reporters compiled an exten-
sive dataset from the criminal justice system in Broward County, Florida, com-
bining detailed individual-level criminal histories with predictions from a popular
risk assessment tool, COMPAS. COMPAS (an acronym for Correctional Offender
Management Profiling for Alternative Sanctions) is a proprietary software tool de-
veloped by Northpointe, Inc. that predicts a defendant’s likelihood of failing to
appear in court, re-offending, and violently re-offending. In order to produce the
predictions, a proprietary algorithm is fit to several covariates, including a battery
of psychological questions administered at the time of arrest. For each type of pre-
diction, COMPAS produces a decile score (a score between one and ten, in which
larger numbers indicate a higher predicted probability of future offense) and a cat-
egorical score consisting of three categories—“low”, “medium”, and “high” risk.
In order to assess the accuracy of the recidivism predictions, the ProPublica re-
searchers compared each person’s COMPAS prediction to an indicator of whether
they had been re-arrested within two years of release.
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ProPublica’s over-arching conclusion was that the COMPAS tool was “racially
biased” based on the observation that of those who were not re-arrested 45% of
African Americans were mis-classified by the model as future recidivists, where
as only 24% of Caucasian defendants were similarly misclassified [Angwin et al.
(2016)]. In a rebuttal, Northpointe asserted that the disparities in the proportion of
false positives was entirely due to differing baseline rates of recidivism between
African American and Caucasian defendants. They argued that bias should be as-
sessed not in terms of the false positive rate, but rather, in terms of the group-wise
positive predictive value or overall predictive accuracy. Using the same data used
in ProPublica’s analysis, Northpointe and others showed that the predictive accu-
racy of their model was equivalent for African American and Caucasian defen-
dants [Dieterich, Mendoza and Brennan (2016), Flores, Bechtel and Lowenkamp
(2016)]. The disagreement about the interpretation of the predictions of the tool
comes down to the fact that the two sides were using different definitions of fair-
ness, both of which cannot simultaneously be achieved when the marginal rate of
re-offense differs between groups [Chouldechova (2017), Kleinberg, Mullainathan
and Raghavan (2017)].

Ultimately, both definitions assume that re-offense is fairly measured by re-
arrest. As we argued in the Introduction, because African Americans are more
likely to be re-arrested for re-offending, neither definition seems particularly ap-
propriate for this setting. We note that our understanding of the bias in re-arrest as
a measure of re-offense does not come from the observation that the marginal rates
of re-arrest differ by group in this dataset, but rather from information outside of
this particular dataset—studies of racial disparities in arrests, as discussed in the
Introduction. Indeed, differences in the marginal rate of arrest could manifest via
processes that are entirely unbiased—most obviously, genuine differences in rates
of re-offense, though others are possible. Because re-offense is not observed di-
rectly, it is very difficult to know the extent to which the observation of re-offense
is biased. Thus, as we argue above, a reasonable way to proceed is to assume that
the distribution of risk is independent of race. To this end, we implement the pro-
cedure described above to remove all information about race from the covariates
we will use for prediction, thus guaranteeing similar distributions of estimated risk
by race.

5.1. Data. For each defendent in the time period, ProPublica collected sev-
eral measures of criminal history: the number of misdemeanor, felony, and
other charges accrued as a juvenile (denoted respectively by juv_misd_count,
juv_fel_count, juv_other_count); the number of adult prior offenses (prior_count);
the defendant’s sex (sex); and age at the time of the crime (age). These are the co-
variates that make up x. The dataset also includes the race of the defendant (race),
which is our protected variable, z. The response, y, is an indicator of whether the
defendant was re-arrested within two years of release. Using this data, the objec-
tive is to construct a new dataset w that contains no information about z so that
any prediction rule of the form (2.1) applied to the data set will satisfy (2.2).
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5.2. Dependence between race and other covariates in recidivism data. We
begin by assessing dependence between z and x in the data to determine whether
transformations to independence are likely to have a meaningful effect. We test for
pairwise dependence by discretizing continuous or count variables and summariz-
ing data on pairs of variables in a two-way contingency table. We then compute the
G statistic, M(x1, x2) = 2n

∑d1
c1=1

∑d2
c2=1 π̂c1c2 log[π̂c1c2/(π̂c1·π̂·c2)], where d1 and

d2 are the number of unique values of variables x1, x2, and π̂c1c2 = n−1 ∑
i 1{xi1 =

c1, xi2 = c2}, π̂c1· = ∑d2
c2=1 π̂c1c2 , and π̂·c2 = ∑d1

c1=1 π̂c1c2 are the empirical cell
probabilities of the contingency table. M is a scaled sample estimate of the mutual
information between the joint distribution of the discretized variables and the prod-
uct of their marginal distributions. The G test is in fact a likelihood ratio test of the
null hypothesis H0 : x1 ⊥⊥ x2 under the multinomial likelihood, and the test statis-
tic has asymptotically a χ2 distribution with (d1 − 1)(d2 − 1) degrees of freedom
under the null hypothesis of independence.

We compute the G statistic for all pairs of variables (z, xj ) consisting of z and
one component of x. The p-values of the tests—computed using the asymptotic
distribution of the test statistic—are shown in Table 1. There is strong evidence
to reject the null hypothesis of independence for all of the pairs, even when ad-
justing for multiplicity using the method of Benjamini and Hochberg (1995). This
indicates that a prediction rule δ : x → ŷ is unlikely to be fair for race, and that to
guarantee a fair prediction rule we need to estimate and apply a transformation to
independence. Put another way, a model which simply excludes race is unlikely to
result in fair predictions, as the effect of race will be encapsulated in the estimated
effects of each of the variables included in the model.

5.3. Transformations to independence. We now estimate maps of the form
(3.2) for each xj in the recidivism data. We first develop conditional density es-
timates F̂Xj |V (j) for each xj . Of the six xj , one (sex) is binary, one [log(age)—
henceforth simply “age”] is continuous, and the other four, which relate to prior

TABLE 1
p values for G tests of the null hypothesis of pairwise independence

between race and the indicated variable, either unadjusted for multiplicity,
or adjusted using the method of Benjamini and Hochberg (BH)

Unadjusted BH

sex 8.84E−08 1.06E−07
juv_fel_count 8.00E−21 1.20E−20
juv_misd_count 1.91E−21 3.82E−21
juv_other_count 2.72E−07 2.72E−07
priors_count 6.73E−58 4.04E−57
log(age) 7.22E−49 2.17E−48
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FIG. 4. Visualizations of marginal and pairwise conditional distributions of covariates. Row and
column labels indicate which variables are compared. The diagonal shows marginal distributions;
upper and lower triangles of the plot matrix show visualizations of the conditional distribution of
row variables given column variables.

criminal record, are counts. A pair plot, showing visualizations of the pairwise
joint distributions of each of the covariates and race, is shown in Figure 4. The
criminal record variables—juv_misd_count, juv_fel_count, juv_other_count, and
priors_count—are highly dispersed counts, and there is evidence of substantial de-
pendence between most pairs of variables.

In constructing the sequence of conditional models, it makes sense to estimate
F̂X|V (j) for the covariates with more complicated marginal distributions first, which
facilitates estimation of richer models. Based on Figure 4, we order the variables
as: X1 = age, X2 = prior_count, X3 = juv_other_count, X4 = juv_fel_count,
X5 = juv_misd_count, and X6 = sex. The protected variable is Z = race. We ap-
ply the procedure described in Section 3.2 to estimate a transformation of the form
(3.2). In every case, we estimate the marginal distribution of xj , F̂xj

, using the
empirical CDF.

In constructing the chain of conditional models, we always include dis-
cretized versions w∗

1 and w∗
2 of w1 or w2, respectively, whenever the w1

or w2 are included in the model. This captures nonlinearity in the condi-
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tional mean of the other variables. The cutpoints used for discretization are:
{18,19,20, ν(0.1,w1), ν(0.2,w1), . . . , ν(1,w1)} for w∗

1 and {ν(0.1,w2), ν(0.2,

w2), . . . , ν(1,w2)} for w∗
2 , where ν(θ, x) is the θ -empirical quantile of x. In every

case, we estimate Ĝ←
j using the empirical quantile function of xj , and we use our

estimated F̂Xj |V (j) and Ĝ←
j to obtain wj using Algorithm 1.

The transformation is performed as follows.

1. Estimate F̂X1|Z using the empirical CDF of x1 separately for each value of z.
Set w1 = Ĝ←

1 (F̂X1|Z(x1 | z).
2. Set v(2) = (z,w1,w

∗
1) and estimate F̂x2|v(2) by zero-inflated negative bino-

mial regression of x2 on v(2). Set w2 = Ĝ←
2 (F̂X2|V (2) (x2 | v(2))).

3. Set v(3) = (z,w1,w
∗
1,w2,w

∗
2) and estimate F̂X3|V (3) using a zero-inflated

negative binomial regression of x3 on v(3). Set w3 = Ĝ←
3 (F̂X3|V (3) (x3 | v(3))).

4. Set v(4) = (z,w1,w
∗
1,w2,w

∗
2,w3). Estimate F̂X4|V (4) using a zero-inflated

Poisson regression of v(4) on w4. Set w4 = Ĝ←
4 (F̂X4|V (4) (x4 | v(4))).

5. Set v(5) = (z,w1,w
∗
1,w2,w

∗
2,w3,w4). Estimate F̂x5|v(4) using zero-inflated

Poisson regression of v(5) on x5. Set w5 = Ĝ←
5 (F̂X5|V (5) (x5 | v(5))).

6. Set v(6) = (z,w1,w
∗
1,w2,w

∗
2,w3,w4,w5). Estimate F̂x6|v(6) using logistic

regression of v(6) on x6. Set w6 = Ĝ←
6 (F̂X6|V (6) (x6 | v(6))).

We repeat the above K times and save each of the transformed datasets,
w(k) = {w1,w2, . . . ,w6} for k = 1, . . . ,K . Each resulting w(k) is stochastic be-
cause all of the F̂Xj |V (j) are discrete. While any w generated in this way is
fair with respect to race, individual predictions depend on the sampled values
u(x) ∼ Uniform(a(x), b(x)) for all of the discrete variables, and interval estimates
of parameters will understate uncertainty resulting from the stochastic nature of
the maps ζj . Consequently, in generating predictive values for individual subjects
or estimating uncertainty in model parameters, we use an average over all K fair
datasets. This approach of creating multiple datasets is also used in the privacy
settings [Reiter (2005)] and multiple imputation [Rubin (2004), Reiter and Raghu-
nathan (2007)], where a common default value is K = 10 [Buuren and Groothuis-
Oudshoorn (2011)]. In the fairness setting, we have the additional goal of limiting
the effect of stochastic synthetic data w on individual predictions, so we use a
larger default value of K = 50.

If F̂Xj |V (j) were the exact conditional distribution FXj |V (j) , then W would sat-

isfy W ⊥⊥ Z. Of course, F̂Xj |V (j) is an estimate, and thus it will differ from F̂Xj |V (j)

in finite samples, and even asymptotically when F̂Xj |V (j) is misspecified. There-
fore, we evaluate model fit for each conditional model separately, and recommend
against applying a “black box” or automated approach to constructing the condi-
tionals. We expect that in most applications, the dimension of X will be relatively
small, as is the case in our recidivism application, making it practicable to con-
struct each conditional density estimate carefully.
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FIG. 5. Plot of FXj |V (j) by race for each xj across 200 adjusted datasets.

Because it is important that the entire conditional distribution is estimated well
as opposed to just the conditional expectation, we assess model fit by plotting the
fitted conditional CDFs F̂Xj |V (j)(xj , v

(j)) by race. If the fit is good, this should
be close to the uniform distribution on the unit interval. Figure 5 gives results for
the estimated conditional CDFs by race, all of which are approximately uniform.
This is sufficient to guarantee that we have successfully managed to sample wj as
a sample from the marginal distribution of xj for each race category. However, it
is insufficient to guarantee that all information about race has been removed from
the transformed dataset, as the model may be badly misspecified, e.g., not enough
interaction variables were included in the model. We further analyze the success
of the procedure’s ability to achieve independence from the protected variable by
computing Cramer’s V statistics for every pair of variables in the adjusted data,
discretized to have 10 unique values (or fewer, if the original variable is discrete
with < 10 unique values). Results are shown in Figure 6. Values in the original data
are shown for comparison. In most cases, Cramer’s V is reduced to near zero in
the adjusted data, indicating that we have successfully removed information about
race from the adjusted data, at least up to two-way interactions.

5.4. Predicting recidivism using transformed data. Using each of the K trans-
formed datasets, we predict re-arrest within two years using random forest (RF).
We compare our results to the “unadjusted” model in which all covariates but race
are used to explain y. We repeat this analysis using logistic regression in place of
RF. The results of the logistic regression analysis are qualitatively very similar to
those of RF and are deferred to the Appendix.
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FIG. 6. Distribution of pairwise Cramer’s V for every covariate pair across M transformed datasets
for adjusted (white violin plot) and unadjusted datasets (dots).

Because each variable that we transform is discrete, we also apply Corol-
lary B.1 to create stochastic realizations and similarly produce K pairwise-
adjusted datasets. Figure 7 shows the empirical density and CDF of the re-arrest
probability for RF trained on data adjusted using our procedure (“adjusted”) and
trained using the “unadjusted” data. It is clear from the left panels of Figure 7

FIG. 7. Density and CDF of predictions made using random forest by race using adjusted and
unadjusted data.
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that when trained on unadjusted data, large differences by race exist in the predic-
tive distribution, with the distribution for African Americans having substantially
more mass at probabilities of re-arrest greater than about 0.5. In other words, when
trained on unadjusted data omitting race, the model predicts that a larger fraction of
the African-American population is at high risk of recidivating than other groups.
Predictions made by training RF on data adjusted using our procedure eliminate
almost all racial disparities, as evidenced by the nearly identical distributions by
race in the two panels on the right.

Having established that predictions made using the transformed data are fair
under the definition we propose for this context, we now turn to fit assessment.
In this case, assessment of how well our model predicts Y using any notion of
model performance is not especially well motivated, as Y is a biased measure of
the phenomenon it is meant to measure. Nonetheless, we compare how well the
predictions from RF fit to the unadjusted, pairwise adjusted, and adjusted datasets
perform. In applying our proposed procedure and the pairwise adjustment, some
relevant information is lost. Thus, it is expected that the predictive accuracy of a
model fit to the adjusted data will be lower than the model trained on unadjusted
data. Figure 8 shows the ROC curves for both the predictions from the adjusted,
the pairwise adjusted, and unadjusted data. We find that these are not substan-
tially different. For the unadjusted data, the area under the curve (AUC) was 0.72,
and for the adjusted data it was 0.71. We note that this AUC is on par with the
AUC associated with Northpointe’s predictions for this dataset (0.70) as reported
in Dieterich, Mendoza and Brennan (2016).

Finally, we compare the various notions of out-of-sample predictive perfor-
mance across races under the adjusted and unadjusted models using p̂i = 0.5 as
a threshold for classification. This is shown in Table 2, which reports accuracy
(acc), positive predictive value (ppv), negative predictive value (npv), and false
positive rate (fpr) for African Americans, Caucasians, and Hispanics. The posi-
tive and negative predictive values exhibit disparities across race using both the

FIG. 8. ROC for predictions made with random forest using adjusted and unadjusted data.
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TABLE 2
Measures of predictive accuracy for random forest estimated on adjusted and unadjusted datasets

Procedure Metric African-American Caucasian Hispanic mad

Adjusted ppv 0.73 0.54 0.58 0.06
Unadjusted ppv 0.71 0.64 0.65 0.02
Adjusted npv 0.62 0.72 0.79 0.06
Unadjusted npv 0.64 0.7 0.74 0.03
Adjusted acc 0.66 0.65 0.7 0.02
Unadjusted acc 0.67 0.69 0.72 0.02
Adjusted fpr 0.23 0.28 0.28 0.02
Unadjusted fpr 0.28 0.14 0.15 0.05

adjusted and unadjusted data, but they are somewhat larger in the adjusted data.
To make comparison easy, we show the mean absolute deviation (mad) using the
median as the centroid for each metric, that is, mad = 1

3
∑3

i=1 |xi − x̃|, where x̃

is the median value. This is a measure of how much each performance metric dif-
fers across racial group. So, for example, the mad for the first row of Table 2 is
1
3(|0.73 − 0.58| + |0.54 − 0.58| + |0.58 − 0.58|) = 0.06. The mad increases af-
ter adjustment for both ppv and npv. In particular, the positive predictive value
is reduced by adjustment for Caucasian and Hispanic people and increased for
African-Americans. Conversely, the negative predictive value is reduced by ad-
justment for African-Americans and increased by adjustment for Caucasians and
Hispanics.

On the other hand, adjustment appears to decrease variation by race in false pos-
itive rates and only slightly increase variation in accuracy. The mad is unchanged
for accuracy, and decreases from 0.05 to 0.02 for fpr. The fpr is decreased for
African-Americans and increased for Hispanics and Caucasians. Although com-
patibility (or lack thereof) between different notions of fairness has not been a
focus of this paper, it is interesting that at least in this particular example, miti-
gating disparate impact actually led to an improvement in the overall similarity of
accuracy and false positive rates by race, since variation in false positive rates fell
considerably more than variation in accuracy increased after adjustment. There-
fore, our procedure need not lead to a deterioration in fairness by all other metrics.
This also suggests that optimizing a loss function that incorporates both similarity
in false positive rates/accuracy and dependence of the predictive distribution on
race may be sensible if deemed socially desirable by policymakers.

5.5. Implications for risk assessment. In risk assessment, the predicted proba-
bility of recidivism from the fitted model is typically thresholded to produce“high”
and “low” risk categories (or potentially more than two risk categories). To illus-
trate the effect of transformations to independence, we label individuals high risk
if their predicted probability of recidivism is greater than 0.5, and otherwise label
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TABLE 3
Test set confusion matrices by race with predictions made using random forest on adjusted and

unadjusted data

Unadjusted Adjusted

Race Rearrest Low High Low High

African-American no 0.34 0.14 0.37 0.11
African-American yes 0.20 0.33 0.23 0.29

Caucasian no 0.53 0.09 0.44 0.18
Caucasian yes 0.22 0.16 0.17 0.21

Hispanic no 0.54 0.09 0.46 0.18
Hispanic yes 0.19 0.18 0.12 0.24

them low risk. We compute confusion matrices containing the empirical probabil-
ity that individuals re-offend given that they were classified as low or high risk.
In addition to giving a sense of the practical impact of the adjustment procedure,
this also helps clarify how the overall accuracy can be essentially unchanged by
adjustment despite strong dependence between the outcome and race.

For ease of comparison across race, we give proportions rather than raw counts
in the confusion matrices, which are shown in Table 3. The accuracy of the predic-
tions are defined as

accuracy = tpp + tnp,

where tpp is defined as true positives divided by total number of observations
and tnp is defined as true negatives divided by total number of observations. For
African-Americans, the change in tpp of 0.29 − 0.33 = −0.04 is largely offset by
the change in tnp of 0.38 − 0.35 = 0.03, for a net change of only −0.01 in total
accuracy. Opposite trade-offs are observed in the other race categories, with in-
creases in tpp being offset by decreases in tnp for Caucasians and Hispanics. Thus,
similar accuracy is achieved by offsetting improvements and degradation of the
two metrics, and the direction of the shift differs for African-Americans compared
to all others. This is the basic intuition for how roughly equal accuracy is achieved
after adjustment.

The confusion matrices also reveal the proportion of individuals that move
across the 0.5 threshold by race: the proportion of African-American considered
high risk decreases by 0.07, from 0.47 to 0.40; the proportion of Caucasians con-
sidered high risk increases by 0.14, from 0.25 to 0.39, and the proportion of His-
panics considered high risk increases by 0.15, from 0.27 to 0.42. It is worth noting
that the Hispanic group is by far the smallest of the three, so while this group
experiences the largest percent increase in high risk classification, the number of
individuals whose status changes as a result of adjustment is relatively small. In
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any case, the strong dependence of the predicted outcome on race can be viewed
as resulting from these differences in rates of re-arrest between the individuals
whose status changes after adjustment; these numbers could of course differ at
other thresholds. If we accept that African-Americans are more likely to be re-
arrested conditional on committing crime, then it seems reasonable to accept this
modest degradation in accuracy to obtain race-independent predictions. Of course,
one could obtain intermediate outcomes by attenuating rather than fully removing
dependence between W and Z. One strategy for achieving attenuated dependence,
which may be attractive to practitioners, is to adjust only those variables which are
recorded via a subjective determination or a potentially biased process (e.g., num-
ber of previous arrests) and leave more objectively derived variables (e.g., age)
about which one is sure a “fair” measurement has been made intact.

6. Discussion. We have presented a statistical framework for adjusting a
dataset such that models trained to the data will be mutually independent of pro-
tected variables. The framework we suggest has extended the existing literature
by allowing an arbitrary number of variables of arbitrary type to be both pro-
tected and adjusted so long as a suitable conditional model can be found to ad-
equately describe the full conditional distribution of the permitted variables given
the protected variables. The extension to allow for the adjustment of discrete vari-
ables is itself an advancement, as previous proposals for adjusting of the train-
ing covariates were only designed for adjusting continuous variables. Our second
main contribution is that our method allows the user to make adjustments such
that the output dataset is mutually independent of the protected variables, as op-
posed to pairwise independent. We have tested this procedure on a dataset used
for recidivism prediction and demonstrated that, by using a series of chained rel-
atively standard regression models, we are able to produce an adjusted dataset in
which all pairs of variables in the dataset are approximately independent. Further,
when fitting both random forest and logistic regression models to the data, we have
achieved predictive distributions of recidivism that are approximately independent
of race—the ultimate goal of the procedure. Even after the adjustment, we observe
that the quality of the predictions in terms of overall accuracy like the AUC are
on par with methods that are currently in use but do not attempt to adjust for fair
predictions. We expect our procedure would also be of value in data privacy and
anonymization.

It is often suggested that an equivalent way to accomplish the goal of remov-
ing disparate impact would be to simply take the top p% from each class and
designate them as the most risky. However, adjusting the training data has other
benefits. By doing the adjustment, a dataset could be released to multiple orga-
nizations to build prediction models, and regardless of the details of their model,
we would be guaranteed that the predictions would be fair under the definition
we support in this case. Model developers could also apply new machine learn-
ing or statistical models for which modifications, such as weights, are difficult or
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computationally costly to introduce without worry that the models they develop
would result in race-dependent predictions. Furthermore, this approach limits the
risk of malicious actors intentionally biasing the model against protected groups,
as model builders would not be able to infer protected characteristics. In addition,
if a protected variable is continuous (e.g., protecting parental income in a tool
meant to predict success in college for college admissions), simply taking the top
p% within each class is infeasible, as classes would have to be made by discretiz-
ing, and people who happened to fall on the lower or upper end of each bin would
be unfairly disadvantaged. Lastly, if multiple variables are to be protected, even if
each variable has sufficient data in each class, the combination of classes across
all variables may not, necessitating an approach like that proposed here.

If deployed in the real world, the approach we have proposed does not obviate
the need for good practices with respect to validation and evaluation. We anticipate
that this would include checking whether the transformation was successful in re-
moving dependence by performing nonparametric tests for independence or com-
puting summary statistics quantifying dependence on the transformed variables.
Here, we have used the G test and Cramér’s V for these purposes, but numerous
other statistics are available. The nature of dependence among variables is likely
to change over time (perhaps, even as a result of the application of such a risk as-
sessment model), so it would be important that these tests are routinely applied to
ensure that dependence were adequately removed on an ongoing basis. If it were
found that the previous algorithm no longer resulted in permissible covariates that
were adequately independent of race, the algorithm would need to be retrained and
modified to allow for time dynamics in the conditional distribution of covariates
given protected variables. Evaluation should also include comparison of the pre-
dictive performance of algorithms trained on the untransformed and transformed
covariates.

There are several avenues for future work in this area. First, judges are typically
the ultimate consumers of predictive risk assessment in criminal justice. Substan-
tial research is necessary to better understand how the presentation format of risk
scores affects decision-making by judges. For example, decisions might differ if
judges were shown the predicted probability rather than a coarsened measure such
as “high risk” versus “low risk”. Moreover, if a coarsened risk score is presented,
it is likely that the number of categories and the language used to describe each
category would affect decisionmaking. In some cases, the highest risk group is
in fact more likely than not to remain on good behavior post-release. It is unclear
whether judges interpret “high risk” in those cases accurately, or implicitly assume
that they are in fact more likely than not to re-offend.

Finally, it is imperative that we engage experts in other fields, as well as the com-
munities most likely to be affected by the model’s predictions, to develop mathe-
matical characterizations of fairness that aptly reflect the social or legal meaning
of the term. This needs to be done separately for every instantiation of a risk as-
sessment model, as the best mathematical characterization of fairness will likely
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vary with prediction type and local community understanding of fairness and the
goals of implementing the model. While it is important that statisticians and oth-
ers with related expertise take part in helping those outside our field understand
proposed mathematical definition of fairness—for example, independence versus
false positive rate versus positive predictive value—ultimately this area of research
should be, and is increasingly, undertaken in conjunction with ethicists and policy
experts. Until recently, much of the technical conversations around these issues
seems to be isolated mainly in computer science, machine learning, and statistics,
which certainly cannot result in an optimal outcome, since the issue of “what is
fairness?” from a legal or ethical perspective clearly lies outside our area of ex-
pertise. It is imperative that those doing the technical design sufficiently take cues
from scholars who have been studying these issues—particularly in the context of
technology—for a long time.

APPENDIX A: OVERVIEW OF NOTIONS OF FAIRNESS

In the academic literature, there are several competing notions of algorithmic or
model fairness, an overview of which can be found in Berk (2016). In general, we
have found that notions of fairness can be divided into three camps. One school
of thought does not focus on a particular metric of fairness, but rather assumes
a model will be fair if the protected variable(s) are omitted from the analysis.
This is often called “fairness through unawareness” [Kusner et al. (2017)]. In fact,
some proprietary software packages used in predictive policing models tout the
fairness of their models on the basis of omission of a race variable [Taylor (2015)].
Using this procedure, if the permitted variables are correlated with the protected
variables, even if the protected variables are omitted, their effects will remain in the
estimated model via their correlation with the permitted variables. The correlated
variable may serve as partial proxies for the protected variables.

The other two schools of thought acknowledge that algorithmic fairness is a
nontrivial problem, but propose different remedies because they define fairness
differently. One area of research defines fairness in terms of equivalence of some
measure of predictive accuracy among all classes in a protected variable. For ex-
ample, Dieterich, Mendoza and Brennan (2016) argue that fairness is defined by
similar accuracy and positive predictive value by class. Zafar et al. (2017) defines
fairness in terms of equality of misclassification rates across class. A similar notion
of fairness was proposed by Hardt et al. (2016), which argues that equivalence of
false positive and false negative rates more accurately embodies everyday under-
standing of what it means to be fair. These two notions of fairness are indeed dis-
tinct. For example, Chouldechova (2017) shows the same positive predictive value
by protected class and equal false negative and false positive rates cannot both
be achieved when the outcome prevalence depends on protected characteristics.
Kleinberg, Mullainathan and Raghavan (2017) shows theoretically that these no-
tions of fairness are usually incompatible. A related literature focuses on methods
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and algorithms for achieving these notions of fairness by optimizing some utility
or loss function subject to constraints that express the fairness criterion mathemat-
ically [e.g., Dwork et al. (2012), which also applies to achieving the alternative
notion of fairness we adopt here].

A third approach that has gained traction primarily in the computer science and
machine learning literature defines fairness in terms of disparate impact on a pro-
tected class [see Feldman et al. (2015), Barocas and Selbst (2016)]. Under this
definition, a model is typically considered fair if differences in the distribution of
the model’s predictions conditional on the protected variable do not exceed some
pre-determined threshold, as measured by some appropriate notion of distance be-
tween probability distributions. In most cases, the allowable difference is zero,
which is equivalent to the requirement that the predictive distribution is indepen-
dent of the protected variable. This notion is sometimes called “statistical parity”
or “demographic parity.” Our paper operates within this definition of fairness and
builds upon the extant methodology for mitigating disparate impact.

Methodology for achieving statistical parity has centered on removing infor-
mation about the protected variables from the training data by transforming the
training data. Kamiran and Calders (2009) use a näive Bayes classifier to rank
each observation in the training data by its probability of belonging to the “desir-
able” category.4 Based on these rankings, the outcome variable in the training data
is adjusted until there is no remaining association between the protected variable
and the intended outcome variable. This procedure is limited to binary outcome
data and the adjusted data is not re-usable in the sense that one could not then
use the covariates to estimate relationships with other outcome variables and still
be ensured of nondiscriminatory outcomes. Calders and Verwer (2010) presents
three algorithms for preventing a model from producing differential predictions
by protected class by transforming the training data in accordance to an objective
function that is minimized when the predictions from a model fit to the transformed
data are independent of the protected variable. In this case also, the methods are
restricted to binary protected classes and binary outcome variables. Feldman et al.
(2015) propose a method for adjusting or “repairing” the training data such that the
user can tune the amount of permissible bias in models fit to the repaired training
data. The authors suggest either removing information about the protected vari-
able entirely or adjusting the training data such that the differences in conditional
predictive distributions cannot exceed the legal definition of disparate impact. One
limitation of this approach noted by the authors is that only continuous-type co-
variates can be repaired. Further, it is not clear how this procedure could be used to
protect a continuous variable without discretizing it, an approach that was taken in

4The authors actually optimize for a different notion of fairness that is nonetheless closely related
to statistical parity.
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Adler et al. (2016). A review and comparison of several more algorithms operat-
ing on binary protected and outcome variables can be found in Romei and Ruggieri
(2014).

Given that the outcome variable is observed with bias with respect to the pro-
tected variable, we believe that the second set of approaches designed with the
objective of achieving equivalent predictive accuracy by race are inappropriate for
this particular application, as they ultimately rely upon comparing the model’s pre-
dictions of re-offense to a fundamentally flawed and biased measure of re-offense:
re-arrest. The first class of approaches—simply omitting race from the set of co-
variates used to fit the model—is equally inadequate in this setting, as the covari-
ates that are permitted to be used in the analysis are highly correlated with race.

APPENDIX B: OPTIMAL COUPLING AND TRANSPORT MAPS

Let (X , d) be a Polish space and c : X ×X →R be a Borel “cost” function. Let
μ, μ̃ be probability measures induced by random variables X,W . The transporta-
tion distance with respect to c is defined as

ρc(μ, μ̃) ≡ inf
γ∈�(μ,μ̃)

∫
c(x,w)dγ (x,w),

where γ is a coupling of μ, μ̃—a joint distribution on X × X with marginals
μ, μ̃—and �(μ, μ̃) is the space of all couplings of μ, μ̃. The transportation dis-
tance is the minimal total cost with respect to c of transporting mass from μ to
μ̃, and the coupling γ ∗ achieving the minimal cost is the optimal coupling, the
solution to the Kantorivich transportation problem. In our context, γ ∗ tells us how
to find W so as to minimize information lost, where information is quantified by c.

A natural choice in our setting is to set c = dq(x,w), with d the Euclidean
norm. If one later uses any method or algorithm based on linear functions of the
covariates—such as a generalized linear model—making the Euclidean distance
between the original and transformed covariates small will make the loss of pre-
dictive accuracy small. This logic can be extended to a broader class of methods,
such as kernel methods, by applying our proposed procedure to nonlinear transfor-
mations of x.

When c(x,w) = dq(x,w) for q ≥ 1, the transportation distance is related to the
Wasserstein-q distance by Wq

q (μ, μ̃) = ρc(μ, μ̃), so the optimal coupling—when
it exists—is also the coupling achieving the Wq distance.

B.1. Univariate transformations. When X = R and d is the Euclidean
norm, so that μ, μ̃ are associated with distributon functions F,G : R→ [0,1],

(B.1) Wq
q (F,G) =

∫ 1

0

∣∣F←(p) − G←(p)
∣∣q dp,

where F←(p) ≡ sup{x ∈ R : F(x) ≤ p} is the left-continuous inverse of F

[Dall’Aglio (1956), Mallows (1972), Salvemini (1943), see also Ekisheva and
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Houdré (2006)]. (B.1) does not require that F is continuous. This result allows
us to define the optimal coupling explicitly in the case where F,G are absolutely
continuous with respect to Lebesgue measure.

REMARK B.1 (Optimal coupling on R). When X = R with d the Euclidean
norm and F,G have densities, the optimal coupling with respect to c = dq(x,w)

for q ≥ 1 is associated with the map ζ(x) = G−1(ζ ∗(x)) for ζ ∗(x) = F(x).

PROOF.

EF

[
c
(
x, ζ(x)

)] =
∫
R

{
x − G−1(

F(x)
)}q

f (x) dx

=
∫
R

{
F−1(

F(x)
) − G−1(

F(x)
)}q

f (x) dx

=
∫
[0,1]

{
F−1(p) − G−1(p)

}q
dp.

So ζ(x) achieves the transportation distance, and is therefore associated with the
optimal coupling. �

The proof of remark B.1 only required that ζ ∗(X) have a uniform distribution
on the unit interval and F←(ζ ∗(X)) = X F -almost surely. This suggests how to
achieve the Wasserstein distance using random maps when F is atomic.

COROLLARY B.1 (Optimal coupling for atomic F using stochastic maps).
Suppose X = R with d the Euclidean norm and F is atomic. Let ẋ = {ẋ1, ẋ2, . . .}
be the support points of F ordered such that ẋj < ẋj+1, with associated prob-
abilities πj = P[X = ẋj ], and put νj = ∑

j ′≤j πj . Define a random map ζ ∗(X)

by ζ ∗(X) | X = ẋj ∼ Uniform(νj−1, νj ), with ν0 = 0. Then the random map
ζ(X) = G←(ζ ∗(X)) achieves the optimal coupling.

PROOF. ζ ∗(X) ∼ Uniform(0,1) marginally and F←(ζ ∗(X)) = X a.s. �

In order to achieve ζ(X) ⊥ Z within the class of optimal transport maps above,
we must have

(B.2) ζ(X,Z) = G←(
ζ ∗
X|Z(X,Z)

)
,

where ζ ∗
X|Z is either the conditional distribution FX|Z(X,Z) when F is continuous,

or is a random variable constructed as in Corollary B.1 with πj = P[X = xj | Z]
when F is atomic.
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FIG. 9. The cumulative distribution (top) and the density (bottom) of the predictions by race.

APPENDIX C: RECIDIVISM PREDICTION USING
LOGISTIC REGRESSION

This section presents the results of applying logistic regression to predict Y . In
an analysis that mirrors that presented in Section 5.4, we compare a logistic re-
gression model applied to unadjusted data to one applied to data that has been ad-
justed under the procedure we propose. Figure 9 shows the cumulative distribution
and density of the predictions by race. Like we found when using RF, omitting the
race variable does little to reduce discrepencies in the distribution of predictions by
race. However, a logistic regression model applied to the adjusted datasets result in
very similar distributions of fitted values by race. Figure 10 shows the ROC curves
for each of the adjustment procedures. In this case also, there is little substantive
difference between the methods in terms of this measure of predictive accuracy
using this metric.

FIG. 10. ROC curve showing predictive performance of each of the adjustment procedures.
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