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MODEL TRANSFER ACROSS ADDITIVE MANUFACTURING
PROCESSES VIA MEAN EFFECT EQUIVALENCE

OF LURKING VARIABLES
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Purdue University and University of Southern California

Shape deviation models constitute an important component in quality
control for additive manufacturing (AM) systems. However, specified mod-
els have a limited scope of application across the vast spectrum of processes
in a system that are characterized by different settings of process variables,
including lurking variables. We develop a new effect equivalence framework
and Bayesian method that enables deviation model transfer across processes
in an AM system with limited experimental runs. Model transfer is performed
via inference on the equivalent effects of lurking variables in terms of an ob-
served factor whose effect has been modeled under a previously learned pro-
cess. Studies on stereolithography illustrate the ability of our framework to
broaden both the scope of deviation models and the comprehensive under-
standing of AM systems.

1. Introduction.

1.1. The challenge of model transfer across different processes in an additive
manufacturing system. Recent advances in the industrial Internet of Things and
Cyber-Physical Systems have resulted in greater connections and accessibility of
distinct manufacturing processes. A particularly exciting consequence is the de-
velopment of a new paradigm of additive manufacturing (AM) systems that seam-
lessly integrate computing, manufacturing, and services [Buckholtz, Ragai and
Wang (2015), Germany Trade & Invest (2014), Wu et al. (2015)]. Each individual
AM, or three-dimensional (3D) printing, process in such a system enables direct
manufacturing of complex shapes from computer-aided design (CAD) models with
reduced labor and costs compared to traditional manufacturing methods [Campbell
et al. (2011), Gibson, Rosen and Stucker (2009)]. The impacts of such systems are
not yet fully realized in practice because their constituent processes typically yield
shapes whose dimensions are discrepant with those specified in the CAD models.
These discrepancies, referred to as geometric shape deviations, occur due to the
rapid phase changes inherent in an AM process. A fundamental issue that remains
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to be addressed is comprehensive and efficient deviation control across processes
in an AM system.

Several quality control methods have been developed to address the deviation
issue for AM and are concisely described in Huang et al. [(2014), pages 061008–
061009]. One particularly effective method is to specify a statistical model for a
shape’s deviations and devise changes to the CAD model, referred to as a com-
pensation plan, that are predicted to reduce deviations in new printings of the
shape. Tong, Lehtihet and Joshi (2003) and Tong, Joshi and Lehtihet (2008) ap-
plied this method using separate polynomial regression deviation models for each
direction of a shape. In contrast, Huang et al. (2015) conceived of a distinct func-
tional modeling framework that effectively accounts for the correlation in deviation
between different directions and decouples geometric shape complexity from de-
viation modeling and compensation. Further advances and experiments under their
framework include in-plane deviation modeling for polygons and free-form shapes
[Huang et al. (2014), Luan and Huang (2017), Sabbaghi, Huang and Dasgupta
(2018)], interference modeling for discretized compensation plans [Sabbaghi et al.
(2014)] and out-of-plane deviation modeling for 3D shapes [Jin, Qin and Huang
(2016)].

The common limitation of these existing methods is that their learned devia-
tion models are limited in their scope of application to the particular processes
for which they were specified, in the sense that they typically fail to describe, and
hence control, deviations generated under other processes. Comprehensive control
of an AM system based on these methods is then impractical due to the high op-
erating costs incurred by collecting a large amount of data and constructing new
models for distinct processes in the system. In addition, the number of test cases
that could possibly be manufactured for a particular process is typically in the
single digits because of its nature and capability of one-of-a-kind manufacturing
[Sabbaghi, Huang and Dasgupta (2018)]. More importantly, modeling deviations
separately for every process fails to yield deeper insights on the entire AM sys-
tem. Therefore, a significant challenge for comprehensive shape deviation control
in an AM system is whether the deviation model for one process can be transferred
to model deviations under a different process based on a small number of exper-
imental runs. The more general category of engineering problems is transferring
a quality model established for a process A to another process B , where B has
substantially fewer trials to avoid wasteful and repetitive model building (i.e., the
product design set DB for B is a small subset of the corresponding product design
set DA for A, with a potentially smaller dimension as well).

This challenge is illustrated by consideration of in-plane deviation profiles un-
der two distinct stereolithography processes A and B in the AM system of Fig-
ure 1. Let X denote the set of compensation plans and DA and DB the respective
design sets for the two processes. The component of a statistical deviation model
that is important for deviation control, and hence constitutes our primary focus, is
its expectation. We denote the expected deviation models for these processes by



MODEL TRANSFER VIA MEAN EFFECT EQUIVALENCE 2411

FIG. 1. Model transfer across processes in an AM system characterized by different settings of
lurking variables.

fA : X ×DA → P and fB : X ×DB → P , where P is the set of in-plane deviation
profiles [Huang et al. (2015), page 432]. We consider engineering processes to be
distinct if their designs, parameters, or any other factors are different. Needless to
say, processes involving completely different AM machines are distinct. Even if
the observed factors’ settings for A and B are identical, these processes and their
respective expected deviation models can be distinguished by a wide spectrum of
unobserved factors related to their product designs, materials, parameters and con-
ditions. Such lurking variables, whose settings are completely unobserved due to
infeasibility of measurement or insufficient knowledge [Box (1966)], are ubiqui-
tous in AM systems and complicate the task of model transfer. Figure 2(a) displays
the in-plane deviation profiles for four cylinders of nominal radii 0.5′′,1′′,2′′, and
3′′ manufactured under process A. Each point on a cylinder is identified by its
angle under the polar coordinate system [Huang et al. (2015), page 432]. This par-

FIG. 2. (a) Deviation profiles of four cylinders of nominal radii 0.5′′, 1′′, 2′′, and 3′′ manufac-
tured under process A. (b) Deviation profiles of three cylinders of nominal radii 0.5′′, 1.5′′, and 3′′
manufactured under process B which has a new calibration setting.
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ticular process was studied by Huang et al. (2015), and a simple specification of
fA was formulated to enable the construction of compensation plans that reduce
in-plane deviation by one order of magnitude. Figure 2(b) displays the different
deviation profiles for three cylinders of nominal radii 0.5′′, 1.5′′, and 3′′ manufac-
tured under a new process B that operates with an unknown and distinct calibration
setting. The lurking calibration factor clearly impacts deviation in a complicated
manner, and fA fails to directly capture the deviation profiles under B . Resource
constraints may prevent the specification of an appropriate model fB based only on
the data from B . It thus becomes of interest to extend the previously learned model
fA to B . In this way we can leverage all of the data and knowledge across the AM
system to acquire a better understanding of the change in the lurking calibration
factor for process B .

As described in the literature review in Section 1.2, current statistical and ma-
chine learning methodologies cannot resolve the challenge of deviation model
transfer across processes in an AM system in the presence of lurking variables. We
address this challenge by incorporating effect equivalence for a lurking variable
in terms of an observed factor into the model specified under a previous process.
Effect equivalence refers to the common engineering phenomenon in which two
factors can generate the same outcomes. Wang, Huang and Katz (2005) conceived
of its first quantitative formulation in their study of a machining process. However,
they did not consider its application for model transfer across different processes
operating with distinct lurking variables settings in a system. We develop a new
statistical framework and Bayesian method for such model transfer based on ef-
fect equivalence.

Under our approach, model transfer proceeds by learning a function that bench-
marks a lurking variable’s effect on the process mean in terms of a previously stud-
ied process and an observed factor’s effect on the mean under that process. For the
previous AM system, this function is denoted by T : X × DB → X , and is speci-
fied so that fB(xB, dB) = fA(T (xB, dB), dB) for all (xB, dB) ∈ X ×DB . We refer
to T as the total equivalent amount of the lurking calibration in terms of compen-
sation and interpret it as returning a compensation plan T (xB, dB) ∈ X for input
(xB, dB) ∈ X × DB such that the expected deviation profile of the product with
input (xB, dB) manufactured under process B is equivalent to the expected devia-
tion profile of the product with shape design dB and compensation plan T (xB, dB)

manufactured under process A. In this manner T directly broadens the scope of the
previously specified model fA to the expectation of process B and facilitates one’s
understanding of B’s changed lurking variable setting. Indeed, our analysis on the
total equivalent amount of calibration in terms of compensation [summarized in
Figure 3(a) and described in more depth in Section 4] helps us to understand that
the calibration change is essentially an attempted reproduction of the optimum
compensation plan of Huang et al. (2015) with discrepancies for the 1.5′′ and 3′′
cylinders that explain their complicated deviations. Also, a shape manufactured
under process B can now be thought of as having been equivalently manufactured
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FIG. 3. (a) The inferred total equivalent amounts of calibration in terms of compensation (solid
lines) for cylinders under process B , compared to the corresponding optimum compensation plans
(dotted lines) from Huang et al. (2015). (b) Posterior predictive means (solid lines) of shape devia-
tions under process B obtained from the transferred deviation model.

under A with a compensation plan defined by the inferred total equivalent amount.
This enables us to transfer the model fA for the mean of A to B [Figure 3(b)].

1.2. Previous considerations of model transfer and lurking variables. Vari-
ous statistical methods exist to identify and account for lurking variables in sim-
ple models. A prime example for industrial processes is statistical process control
[Shewhart (1931)]. For agricultural settings Yates and Cochran (1938) discussed
how the ANOVA for a group of agronomic experiments should be conducted to
account for lurking variables such as soil differences and climate. Joiner (1981)
presented several instances of lurking variables and methods to detect their exis-
tence in linear models. Cook and Critchley (2000) described graphical methods
for linear models that can illuminate phenomena resulting from lurking variables.
However, such methods are ineffective for the nonlinear and complex deviations
in AM. Furthermore, the standard practice of conducting follow-up experiments
to learn about lurking variables necessarily proceeds on a case-by-case basis, and
hence will be expensive, as illustrated by the cryogenic flow meters example in
page 232 of Joiner (1981).

A broad class of model transfer methods belongs to inductive transfer learning
[Pan and Yang (2010), page 1348]. One such method is TrAdaBoost [Dai et al.
(2007)], which predicts the outcomes in a new setting by modifying the relative
weights of instances across settings at each step of a boosting algorithm, so as
to identify and utilize data from settings most similar to the new setting [Pardoe
and Stone (2010)]. These methods enjoy desirable predictive and computational
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performance and are simple to implement. However, they require prohibitively
large samples for AM. In contrast, our framework enables model transfer with
limited samples.

A topic related to model transfer is transportability, or the extrapolation of ex-
perimental findings across domains that differ both in their distributions and in
their inherent causal characteristics [Bareinboim and Pearl (2016), page 7350].
Pearl and Bareinboim (2014) and Bareinboim and Pearl (2016) formalized trans-
portability using causal diagrams and the do-calculus of Pearl (1995). A contribu-
tion of their work is the explication of conditions and transport formulae for causal
inference from heterogeneous data. However, they focus on nonparametric infer-
ence and effectively assume that the relationships between factors and outcomes
are sufficiently well understood from a large amount of data such that estimation
error in probability distributions are not of concern. In contrast, for AM processes
we must address the distinct task of transportability of parametric models across
factor settings, and our formulation can handle the case of limited data. In addi-
tion, their work may be limited to linear structural equation models in practice,
whereas our framework accommodates nonlinear models of interest in AM. Fi-
nally, we consider equivalence relations, not probabilistic dependencies, between
observed and unobserved factors, so as to transfer models in a functional manner.

Effect equivalence was inspired by the study of a machining process in which
observed and unobserved factors could yield identical outcomes. Wang, Huang
and Katz (2005) considered the effects of fixture, machine tool and datum errors
on quality, where the latter two are lurking variables. They described the existence
of effect equivalence and specified the total equivalent amounts of the lurking vari-
ables in terms of fixture error. This approach enabled successful quality control
[Wang and Huang (2006, 2007)]. However, they did not consider model trans-
fer across different processes, characterized by distinct settings of lurking vari-
ables.

Following this introduction and literature review, we proceed to describe in Sec-
tion 2 our statistical effect equivalence framework. Section 2.1 reviews the repre-
sentation and measurement of deviations for AM processes, and Section 2.2 con-
tains the notations and assumptions for our framework. Effect equivalence with
respect to the mean is formally defined in Section 2.3. Our Bayesian approach
to perform model transfer via the equivalent effects of lurking variables with re-
spect to the mean is developed in Section 2.4. We then perform model transfer for
two AM processes with distinct settings of lurking overexposure and calibration
factors in Sections 3 and 4 respectively. The data collected on these processes are
described in Sections 3.1 and 4.1. Inferences and interpretations on the total equiv-
alent amounts of the lurking variables in terms of compensation with respect to the
mean are in Sections 3.2 and 4.2 respectively. Model transfer for these processes
are performed in Sections 3.3 and 4.3. These studies demonstrate how the synergy
between statistics and engineering in our framework facilitates deviation modeling
across processes in an AM system more generally. We conclude in Section 5 by
describing the broader impacts of our general framework.
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2. Statistical effect equivalence framework.

2.1. Functional in-plane deviation representation. Throughout this article we
consider in-plane deviations for 3D printed shapes with negligible heights and
adopt the functional in-plane deviation representation defined by Huang et al.
(2015), page 432. Our focus on in-plane deviations is due to two facts. First, in real
applications a thin product or section of a product is approximated as a 2D shape
with identical top and bottom surface deviations. Second, Jin, Qin and Huang
(2016) demonstrated that fully 3D shapes introduce challenging complications,
such as interlayer bonding effects, that detract from our fundamental question of
interest for AM systems.

We measure the top boundaries of shapes manufactured by our AM processes
using a single Micro-Vu Vertex system. The measurement coordinate system is
aligned with the design coordinate system based on markers printed on the shapes
to ensure consistency and reduce possible measurement errors or misalignment
issues. The points i = 1, . . . ,N on the manufactured shapes are then identified by
their angles θi and observed radii robs(θi) under the polar coordinate system.

A CAD model is encoded as a nominal radius function rnom : [0,2π ] → R.
Deviation Yi for point i on a product with CAD model rnom is defined as

Yi = robs(θi) − rnom(θi).

Figures 2(a) and 2(b) illustrate this functional deviation representation for several
thousands of points on each of the seven cylinders.

Studies are conducted to model deviation as a function of the continuous treat-
ment factor compensation. This factor is formally defined for each point i as the
addition or subtraction of material in the CAD model at that point. The previous
notation in the case of compensation becomes

Yi(x1) = robs(θi, x1) − rnom(θi),

where robs(θi, x1) denotes the observed radius for point i under compensation x1,
and Yi(x1) is point i’s deviation.

2.2. Notation and assumptions. We denote the K factors for an AM process
by Fk and their corresponding set of possible levels by Xk , for k = 1, . . . ,K . We
consider processes whose factors possess the following two properties. First is that
each is either fully observed or unobserved. Second is that the level for any factor
is not an outcome of another factor. The first property ensures that each factor
is well defined as either an observed factor or lurking variable, and the second
eliminates factor linkages [Box (1966), pages 625–626]. Factor F1 will be reserved
for compensation with X1 =R.

The covariate vector for point i is denoted by zi . An example of a covariate
vector is zi = (θi, r

nom(θi))
T. As shall be seen in our studies, such covariates serve

a useful role for deviation model transfer.
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We assume the Stable Unit-Treatment Value Assumption [Imbens and Rubin
(2015), page 10] is satisfied. Under this assumption each point i has a well-defined
deviation Yi(x1, . . . , xK) for (x1, . . . , xK) ∈ ∏K

k=1 Xk and interference does not
exist.

To simplify the notations for our definition of effect equivalence, we consider
K = 2 in this section. We let p(y | zi, x1, x2,ψ), p1(y | zi, x1,ψ1) and p2(y |
zi, x2,ψ2) denote the probability density functions for Yi(x1, x2), Yi(x1, c2) and
Yi(c1, x2) respectively. The domains of p, p1 and p2 are R, and ψ , ψ1 and ψ2
are parameter vectors with respective parameter spaces �,�1 and �2 (examples
of which are in Section 3.1). Here, c1 ∈ X1 and c2 ∈ X2 represent fixed settings of
F1 and F2 respectively. These density functions define statistical deviation models
for different settings of F1 and F2 and will be used to specify likelihood functions
for the parameters and total equivalent amounts in our Bayesian method. In terms
of the notations in Section 1.1, fA can be thought of as the expected deviation
profile model derived from one of the statistical deviation models p1, and fB as
the expected deviation profile model derived from the other statistical model p2.

2.3. Effect equivalence with respect to the mean. Definition 2.1 formalizes
effect equivalence with respect to the mean of a deviation model.

DEFINITION 2.1. Factors F1 and F2 are equivalent with respect to the mean
if, for any point i and c1 ∈ X1, c2 ∈ X2, functions Ti,1→2 : X1 × X2 → X2 and
Ti,2→1 : X1 ×X2 → X1 exist such that for all (x1, x2) ∈ X1 ×X2∫ ∞

−∞
yp(y | zi, x1, x2,ψ)dy =

∫ ∞
−∞

yp2
(
y | zi, Ti,1→2(x1, x2),ψ2

)
dy,

∫ ∞
−∞

yp(y | zi, x1, x2,ψ)dy =
∫ ∞
−∞

yp1
(
y | zi, Ti,2→1(x1, x2),ψ1

)
dy.

Function Ti,k→k′ is the total equivalent amount of Fk in terms of Fk′ with respect
to the mean for point i. It maps each level combination of Fk and Fk′ to a level
of Fk′ that generates the equivalent expected outcome under a fixed setting ck

of Fk . Our consideration of fixed settings corresponds to AM systems, in which
deviations for a process are generated under fixed levels of the lurking variables.
Equivalence of Fk and Fk′ is denoted by Fk

e∼ Fk′ .
The total equivalent amount in Definition 2.1 enables the transfer of the expec-

tation specified under one process to new processes. For example, if F1
e∼ F2 with

respect to the mean, where F1 is observed and F2 is lurking, then the mean spec-
ification under the process in which F2 is set at c2 can be transferred to a process
with a different setting of F2 by incorporating Ti,2→1 into p1. In practice, model
transfer is facilitated by means of the equivalence of a lurking variable with an
observed factor that permits convenient control. Such a factor is referred to as the
base factor F1, and any Ti,k→1 is shortened to Ti,k . Compensation is a standard
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base factor for AM processes. As illustrated in our studies, domain knowledge of
AM processes can yield equivalencies between their factors and compensation.

2.4. Bayesian inference and modeling for the total equivalent amount with re-
spect to the mean. We now address learning of the total equivalent amount of
a lurking variable F2 in terms of compensation F1 with respect to the mean,
which we also refer to as mean effect equivalence. As before, we simplify the
exposition by considering two processes characterized by distinct levels c2 and
x2 of F2 respectively. We assume that a statistical deviation model, with corre-
sponding probability density function p1(y | zi, x1,ψ1), is specified for the first,
and that data is collected on the second with its model yet to be specified. Let
ψ1 = (μ1, σ1)

T, where μ1 consists of all parameters in the mean under p1 and
σ1 consists of the remaining parameters in ψ1. A model for the second process is
then p1(y | zi, Ti,2(x1, x2),μ1, σ2). The Ti,2 remain to be inferred and modeled to
complete the model transfer.

Let xobs
1 = (x1,1, . . . , xN,1)

T be the compensations for N points under the sec-
ond process, and T2(xobs

1 ) = (T1,2(x1,1, x2), . . . , TN,2(xN,1, x2))
T the correspond-

ing vector of their realized total equivalent amounts of the lurking variable in terms
of compensation. We infer T2(xobs

1 ) using the Bayesian calculation of its posterior
distribution. The likelihood function for μ1, σ2 and T2(xobs

1 ) follows from p1 and
is denoted by L(μ1, σ2,T2(xobs

1 ) | z,yobs), where yobs is the vector of outcomes
and z is the matrix of covariates for all the points. For a prior p(μ1, σ2,T2(xobs

1 )),
the joint posterior is

p
(
μ1, σ2,T2

(
xobs

1
) | z,yobs) ∝ L

(
μ1, σ2,T2

(
xobs

1
) | z,yobs)

× p
(
μ1, σ2,T2

(
xobs

1
))

.

The marginal posterior of T2(xobs
1 ) then follows by integration. It is important to

incorporate data from the first process to improve the precision of our inferences.
Letting D denote the deviations, covariates and compensations for the first process,
the posterior p(T2(xobs

1 ) | z,yobs,D) is similarly calculated as above. Our Bayesian
approach thus enables us to leverage all of the data collected across distinct settings
of a lurking variable in a straightforward manner to learn about its total equivalent
amounts.

In practice, prior information on μ1 can be elicited independently of that on σ2
and T2(xobs

1 ), because they correspond to distinct processes. Our effect equivalence
framework facilitates the elicitation of appropriate priors on T2(xobs

1 ) that incor-
porate domain knowledge of AM processes with controlled subjectivity to enable
reasonable inferences. Specifically, as compensation is readily interpretable, and
experience can be acquired to understand its effect on deviation, an informative
prior for T2(xobs

1 ) can be specified and justified in a straightforward manner. This
is demonstrated in Section 3.2.
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The posterior of T2(xobs
1 ) can be computed by the blocked Gibbs sampler

that draws from the conditional posteriors p(T2(xobs
1 ) | z,yobs,μ1, σ2), p(μ1 |

z,yobs, σ2,T2(xobs
1 )) and p(σ2 | z,yobs,T2(xobs

1 ),μ1). If the deviations are con-
ditionally independent given the covariates, total equivalent amounts and param-
eters, and if the total equivalent amounts are independent a priori, then drawing
from p(T2(xobs

1 ) | z,yobs,μ1, σ2) in the Gibbs sampler reduces to independently
drawing each entry in T2(xobs

1 ) from their respective conditional posteriors. Poten-
tial computational complexities are thus reduced under this approach, with sam-
pling of the vector of total equivalent amounts simplified into parallel sampling of
one-dimensional distributions for the individual entries. This reduction will hold
more generally for moderately large N and low-dimensional model parameter vec-
tors. For very large N or high-dimensional parameter vectors associated with more
complex processes and products [e.g., the 52-dimensional parameter vector for
the hierarchical nonlinear regression model of an irregular polygon in Sabbaghi,
Huang and Dasgupta (2018)], this approach may not be computationally efficient
or feasible.

Such a high-dimensional inferential task can be handled in practice via the
construction of a discrepancy measure [Rubin (1984), Meng (1994)] that uses
Bayesian inferences on the parameters from the first process to approximate the
full inference for the total equivalent amounts of the second. To illustrate, let
p(μ1 | D) denote the posterior for μ1 based only on data D from the first pro-
cess. Sampling from this distribution is less computationally complex compared
to sampling from the full posterior of μ1 because the former does not involve the
unknown realized total equivalent amounts. Define e : X1 → X1 as

e(x1 | z,μ1) =
∫ ∞
−∞

yp1(y | z, x1,μ1) dy.

For each point i in the second process, we construct the discrepancy measure

(2.1) Ti = argmin
t∈X1

{
yobs
i − e(t | zi, μ̃1)

}2

to infer their realized total equivalent amounts, where μ̃1 ∼ p(μ1 | D). To under-
stand this, note that the calculation of p(T2(xobs

1 ) | z,yobs,D) by
∫

p
(
T2

(
xobs

1
) | z,yobs,D,μ1

)
p

(
μ1 | z,yobs,D

)
dμ1

can be interpreted via sampling, with a posterior draw of T2(xobs
1 ) obtained

by first drawing μ̃1 ∼ p(μ1 | z,yobs,D) and then drawing from p(T2(xobs
1 ) |

z,yobs,D, μ̃1). The discrepancy measure instead draws μ̃1 ∼ p(μ1 | D), which
approximates p(μ1 | z,yobs,D), and then solves for the unknown realized total
equivalent amounts as in equation (2.1) given the drawn μ̃1. This is less com-
putationally complex than sampling from the conditional posterior of T2(xobs

1 )
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given μ̃1. Inferences obtained from the discrepancy measure will be similar to
those from the full Bayesian calculation when p1 is a Normal probability density
function (which is illustrated in the calibration study of Section 4.2). We recom-
mend this discrepancy measure for practical model transfer in the case of large N

or high-dimensional model parameters.
After the marginal posterior distribution of T2(xobs

1 ) is obtained, we examine it
by means of exploratory data analytic and visualization methods to specify a model
T2(zi, x1;β) for the total equivalent amounts of points under the second process
as a function of their covariates and compensations, with β denoting a parameter
vector. Further elaborations and illustrations of these examinations are provided in
our analyses in Sections 3.3 and 4.3. Model transfer will then be complete upon
incorporating T2(zi, x1;β) in p1.

3. Deviation model transfer: Real scenario 1.

3.1. Data and mean effect equivalence for overexposure. An important case of
model transfer in stereolithography involves the lurking variable of overexposure,
or the unintended expansion of a shape due to the faulty spread of light beams on
its boundary. This factor F2, with its levels consisting of positive real-valued func-
tions on [0,2π ], was present in the study of Huang et al. (2015) on the cylinders
in Figure 2(a). Huang et al. [(2015), pages 434, 436] hypothesized the following
probability density function for the deviation of a point i on a cylinder of nominal
radius rnom

i under no overexposure:

p1(y | zi, x1,μ1, σ1) = (
2πσ 2

1
)−1/2 exp

[
− 1

2σ 2
1

{
y − x1 − α0

(
rnom
i + x1

)a0

− α1
(
rnom
i + x1

)a1 cos(2θi)
}2

]
,

(3.1)

with zi = (θi, r
nom
i )T, μ1 = (α0, α1, a0, a1)

T, �1 = R
4 × R>0 and independent

outcomes. In terms of the notation in Section 1.1, this setting corresponds to a
previous process A, and the expected deviation model fi,A : R × R>0 → R for
point i on a cylinder of nominal radius rnom

i with compensation xi,1 manufactured
under it is derived from equation (3.1) as

fi,A

(
xi,1, r

nom
i

) = xi,1 + α0
(
rnom
i + xi,1

)a0

+ α1
(
rnom
i + xi,1

)a1 cos(2θi).

Also, for N points on a cylinder of nominal radius rnom with compensation plan
x1 = (x1,1, . . . , xN,1)

T,

fA

(
x1, r

nom) = (
f1,A

(
x1,1, r

nom)
, . . . , fN,A

(
xN,1, r

nom))T
.
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This model performed poorly for the data in Figure 2(a) and in validation exper-
iments. Huang et al. [(2015), pages 436, 438] then identified overexposure as the
lurking variable. They effectively provided a physical justification for F1

e∼ F2
that prespecified Ti,2(x1, x2(·)) = x1 + x2(θi) under overexposure x2(·) ∈ X2. The
transferred deviation model for this process B then follows from the probability
density function p1(y | zi, Ti,2(x1, x2(·)),μ1, σ2) with a distinct standard deviation
σ2. The remaining task is to learn Ti,2.

We proceed to infer and model the realized total equivalent amounts of overex-
posure in terms of compensation with respect to the mean. Following Sabbaghi
et al. [(2014), pages 1401, 1411–1413] and Huang et al. [(2015), page 435],
we assume independent outcomes conditional on covariates and total equivalent
amounts. Approximately a thousand equally spaced points were collected from
each cylinder.

3.2. Inference for the total equivalent amount of overexposure in terms of com-
pensation. The likelihood function for the realized total equivalent amounts is
obtained from equation (3.1). The following prior is specified:

p
(
μ1, σ

2
2 ,T2

(
xobs

1
)) ∝ (

σ 2
2
)−4 exp

{
−0.0016

σ 2
2

}

×
N∏

i=1

I
{
0 ≤ Ti,2

(
0, x2(·)) ≤ 0.015

}

× exp
{
−50α2

0 − 50α2
1 − (a0 − 1)2

8
− (a1 − 1)2

2

}
.

This prior is based on previous literature and studies, as we describe below.
First, consider the prior for the total equivalent amounts. We observed from the

work of Zhou, Chen and Waltz (2009) and Zhou and Chen (2012) that a product’s
size should not impact the spread of light beams on its boundary, and that this im-
pact in terms of the equivalent amount of compensation should be relatively small
(in inches). These observations led to our bounds 0 ≤ Ti,2(0, x2(·)) ≤ 0.015 for all
points with the upper bound not depending on the nominal radius of the cylinder
on which a point resides. We consider the upper bound 0.015 a conservative prior
estimate of the greatest possible total equivalent amount of overexposure in terms
of compensation under our process. This value is also justified by noting that we
are considering cylinders of nominal radii 0.5′′ to 3′′, and that overexposure is at
most a single-digit percentage of the 0.5′′ cylinder’s radius. After this range of
overexposure values was elicited, we then specified the corresponding Uniform
prior to reflect our uncertainty about which values within it are more likely than
others. A different distribution (e.g., a truncated Normal) could also be specified
given additional information on the likely overexposure values.
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Now consider the prior for (α0, α1, a0, a1, σ
2
2 )T. Our specified prior for these

parameters was also informed by domain knowledge of our process. For example,
the physical reasoning of Huang et al. [(2015), page 436] suggests that the priors
of both a0 and a1 should be centered at 1, and we accordingly specified dispersed
Normal priors for these parameters. Similarly, the priors for α0 and α1 are dis-
persed Normal distributions centered at zero, and the prior for σ 2

2 is an Inverse-χ2

with small degrees of freedom and scale that reflect our prior conception of the
level of variation for cylinder deviations.

It is important to recognize that data does not exist on a process with no overex-
posure in this case, and so our prior specification must necessarily be informative
to prevent identifiability issues. In addition, as the deviation model in equation
(3.1) is a nonlinear regression, specifying noninformative or improper prior dis-
tributions for the total equivalent amounts and model parameters and verifying
that the corresponding posteriors are proper is difficult. It is simpler in practice
to specify proper and informative priors that guarantee a proper posterior and are
straightforward to interpret.

Our blocked Gibbs sampler to compute the posterior distribution proceeds via
three steps. Let μ

(t)
1 , σ

(t)
2 and T(t)

2 (xobs
1 ) denote the draws in iteration t . First, a

draw of σ
(t)
2 from p(σ2 | z,yobs,T(t−1)

2 (xobs
1 ),μ

(t−1)
1 ) follows as the square root of

a scaled Inverse-χ2. Second, a draw of μ
(t)
1 from p(μ1 | z,yobs,T(t−1)

2 (xobs
1 ), σ

(t)
2 )

is obtained using a Metropolis random walk. Finally, each entry in T(t)
2 (xobs

1 ) is in-

dependently drawn from their respective posteriors conditional on μ
(t)
1 and σ

(t)
2 us-

ing a Metropolis random walk. This Gibbs sampler was implemented with 10,000
draws obtained after a burn-in of 200,000. Convergence was verified by trace and
autocorrelation plots and the Gelman and Rubin (1992) statistic of the evaluated
log posterior.

3.3. Model for the total equivalent amount of overexposure in terms of compen-
sation. We examine the posterior of T2(xobs

1 ) with a visualization in Figure 4 of
the points’ posterior means stratified according to their nominal radii. The high-
frequency oscillations for the 1′′, 2′′ and 3′′ cylinders are an artifact of the lower
resolution of the process for them. More importantly, we observe that the posterior
means lie in a small range. This suggests that the total equivalent amount does not
depend on θi or rnom

i . It also explains why the corresponding assumption in Huang
et al. (2015) provided a good fit.

Thus, from this exploratory visualization of the posterior of T2(xobs
1 ) we model

the total equivalent amount as

(3.2) T2(zi, x1;β0) = β0 + x1,

with the additive nature of this model prespecified as before. Parameter β0 corre-
sponds to x0 in the model of Huang et al. (2015), page 438. The corresponding
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FIG. 4. Posterior expectations of the realized total equivalent amounts of overexposure in terms of
compensation with respect to the mean.

transferred model is defined by the probability density function

p(y | zi, x1,μ2, σ2) = (
2πσ 2

2
)−1/2 exp

[
− 1

2σ 2
2

{
y − β0 − x1

− α0
(
rnom
i + β0 + x1

)a0

− α1
(
rnom
i + β0 + x1

)a1 cos(2θi)
}2

]
,

(3.3)

with μ2 = (α0, α1, a0, a1, β0)
T ∈ R

4 ×R>0. Note that for points i = 1, . . . ,N ,

fi,B

(
xi,1, r

nom
i

) = fi,A

(
β0 + xi,1, r

nom
i

)

= β0 + xi,1 + α0
(
rnom
i + β0 + xi,1

)a0

+ α1
(
rnom
i + β0 + xi,1

)a1 cos(2θi),

fB

(
x1, r

nom) = (
f1,B

(
x1,1, r

nom)
, . . . , fN,B

(
xN,1, r

nom))T
.

The validation experiments of Huang et al. [(2015), pages 437, 439] effectively
illustrate the utility of this model for deviation control under overexposure. As
Ti,2(x1, x2(·)) = x1 + x2(θi) was prespecified and x1 is known, we have explicitly
inferred and derived the fixed, unknown overexposure.
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4. Deviation model transfer: Real scenario 2.

4.1. Data and mean effect equivalence for calibration. An important case of
model transfer for general types of AM processes involves the lurking variable of
calibration, that is, unknown hardware settings, which is denoted by F3. In general
F3

e∼ F1, because a change to the process calibration, which yields a new process
B , can be viewed as equivalent to a compensation plan under a previous calibration
setting A. This effect equivalence for the processes A and B in Section 1.1 can be
justified by the physics of stereolithography.

In this section, we formally infer and model the total equivalent amount of cal-
ibration in terms of compensation with respect to the mean. We incorporate the
data and model for process A specified in equation (3.3), which operated with
overexposure and the original calibration setting, for this inference, and transfer
the model to process B . Approximately a thousand equally spaced points were
collected from each of the cylinders under B .

4.2. Inference for the total equivalent amount of calibration in terms of com-
pensation. Our prior distribution for (μ2, σ

2
2 , σ 2

3 ,T3(xobs
1 ))T is

p
(
μ2, σ

2
2 , σ 2

3 ,T3
(
xobs

1
)) ∝ σ−2

2 σ−2
3 β−1

0

N∏
i=1

I

{
−rnom

i

10
≤ Ti,3(0, x3) ≤ rnom

i

10

}

× exp
{
−(a0 − 1)2

8
− (a1 − 1)2

2
− (logβ0)

2

2

}
.

We specify noninformative priors for α0, α1, σ
2
2 and σ 2

3 because our incorporation
of data from the previous process eliminates possible identifiability issues. Our
priors for the Ti,3(0, x3) now depend on the nominal radius rnom

i of the cylinder on
which a point resides because our prior knowledge of process calibration does not
preclude this dependence. The lower and upper bounds are our prior estimates of
their possible magnitudes.

We calculate the posterior of T3(xobs
1 ) based on all seven cylinders by blocked

Gibbs sampling and summarize it in Figure 5 with visualizations that stratify it
according to the nominal radii and halves of the cylinders. We also calculate the
expectations of the discrepancy measure defined in Section 2.4, where D is the
data on cylinders under overexposure, and

e(t | zi,μ2) = β0 + t + α0
(
rnom
i + β0 + t

)a0 + α1
(
rnom
i + β0 + t

)a1 cos(2θi).

The posterior p(μ2 | D) has been calculated from the previous process. The dis-
crepancy measure Ti for point i under the new process is

Ti = argmin
t∈X1

{
yobs
i − β̃0 − t − α̃0

(
rnom
i + β̃0 + t

)ã0

− α̃1
(
rnom
i + β̃0 + t

)ã1 cos(2θi)
}2

.
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FIG. 5. (a) Posterior expectations (solid) and 95% central credible intervals (dashed) of the total
equivalent amounts of calibration in terms of compensation with respect to the mean. The compensa-
tion plans from Huang et al. (2015) are dotted lines. (b) Posterior expectations of the total equivalent
amounts for the upper (gray) and lower (black) cylinder halves, where the angles on the lower halves
are matched to those on the upper halves directly above them.

Our visual comparison of the results obtained from the blocked Gibbs sampler
and the discrepancy measure in Figure 6 demonstrates that they yield identical
inferences. In either case they enable the specification of a total equivalent amount
model, as described next.

FIG. 6. (a) Posterior means of the total equivalent amounts of calibration in terms of compensation.
(b) Expectations of the discrepancy measure.



MODEL TRANSFER VIA MEAN EFFECT EQUIVALENCE 2425

4.3. Model for the total equivalent amount of calibration in terms of compen-
sation. We observe in Figure 5(a) that the posterior trends of the realized to-
tal equivalent amounts are similar to the optimum compensation plans of Huang
et al. (2015) but exhibit discrepancies that explain the complicated deviations. For
example, these discrepancies explain the apparent underexposure of B compared
to A. Figure 5(b) highlights the asymmetry in the realized total equivalent amounts
between the lower and upper halves of the cylinders, which explains the asymmet-
rical profiles in Figure 2(b).

We incorporate our observations from the exploratory visualizations of the pos-
terior of the total equivalent amounts against angles, nominal radii and cylinder
halves to model the total equivalent amount of calibration as

T3(zi, x1;β) = T2(zi, x1;β0)

+ I(0 ≤ θ < π)
[
x0,U + β0,U

(
rnom
i + x0,U

)b0,U

+ β1,U

(
rnom
i + x0,U

)b1,U cos
{
2(θi − ψU)

}]

+ {
1 − I(0 ≤ θ < π)

}[
x0,L + β0,L

(
rnom
i + x0,L

)b0,L

+ β1,L

(
rnom
i + x0,L

)b1,L cos
{
2(θi − ψL)

}]
,

where T2(zi, x1;β0) is defined in equation (3.2), and β is a vector of length
12 containing all parameters in the above equation. Flat priors are placed on
β0,U , β1,U , β0,L, β1,L, and the priors for the other parameters are

b0,U , b0,L ∼ N
(
1,22)

, b1,U , b1,L ∼ N
(
1,12)

,

log
(

0.5 + x0,U

0.5 − x0,U

)
, log

(
0.5 + x0,L

0.5 − x0,L

)
∼ N

(
0,12)

,

log
(

ψU/π

1 − ψU/π

)
, log

(
ψL/π

1 − ψL/π

)
∼ N

(
0,

(
21/2)2)

.

We assume all parameters in β are mutually independent a priori.
The transferred deviation model was fit using Hamiltonian Monte Carlo [Duane

et al. (1987)], which is a Markov chain Monte Carlo algorithm for sampling from a
distribution based on Hamiltonian dynamics [Neal (2011)]. Figure 7 demonstrates
that this transferred model provides a good fit for the new calibration setting. Thus,
although the change in calibration introduced strikingly different and complicated
deviation profiles, we are able to transfer the model from process A to B in a
simple manner.

5. Concluding remarks. We developed a novel framework for deviation
model transfer across distinct AM processes characterized by different settings
of lurking variables in an AM system. A key component of our framework is the
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FIG. 7. Posterior predictive means (solid) and 95% central posterior predictive intervals (dashed)
of shape deviations under process B obtained from the transferred deviation model.

total equivalent amount of a lurking variable in terms of a base factor with re-
spect to the process mean. We described a Bayesian method for learning the total
equivalent amount in terms of compensation for a new process. Inferences on total
equivalent amounts facilitate one’s understanding of changes in the lurking vari-
ables. Once the total equivalent amount is modeled, it can be directly incorporated
into a previously learned process’ deviation model to effectively transfer it to the
new condition. Our two real studies illustrate deviation model transfer across the
three stereolithography process conditions of no overexposure, constant overexpo-
sure and the combination of constant overexposure and a new calibration setting.
They also demonstrate that, if considerable resources have been expended in the
specification of a model for one process, its features can then be transferred in a
simple manner, with little further expenditure, to a new process. This addresses the
fundamental challenge of deviation modeling in an AM system.

Our general framework can have broader impacts in engineering and statis-
tics. As our framework effectively extends engineering insights across processes,
it can permit comprehensive modeling of distinct processes connected in a dis-
tributed manufacturing environment. In addition, the construction of a catalog of
total equivalent amounts in terms of a base factor can enable insightful statisti-
cal conclusions to be made on a system’s lurking variables. For example, if it is
thought that a system is operating under a new condition, then its inferred total
equivalent amount can be compared to the catalog’s entries to obtain statistical as-
sessments of the most likely change in its lurking variables. Our framework can
also provide a new approach to address the statistical problem of external valid-
ity or the generalizability of empirical findings to new settings in the presence of
lurking variables.
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A host of interesting tasks remain for future study. One is relaxing the as-
sumption of fixed lurking variables to address the case of dynamic lurking vari-
ables. Another is to develop automated model transfer algorithms that are appli-
cable to a variety of systems, which can provide further impetus to the growing
trend of automation in advanced manufacturing. In line with this is combining our
effect equivalence framework with the adaptive Bayesian modeling approach in
Sabbaghi, Huang and Dasgupta (2018) to enable deviation model building across
different shapes and AM processes. When factors can affect multiple model fea-
tures, an important issue is how the total equivalent amounts with respect to the
different features can be learned simultaneously. One important consideration is
the effect of factors on the variability of deviation in which the goal is to identify
the levels that minimize it. This and similar considerations are part of our ongoing
research on the theory of effect equivalence. Another issue is inference of the total
equivalent amounts of multiple lurking variables across processes. For example,
in uncontrolled, or observational, studies of AM systems alignment issues or de-
vice precision could constitute additional lurking variables, and their effects would
be entangled with those of other lurking variables. From a statistical viewpoint it
would not be possible to disentangle these effects without further information or
data. Disentanglement of their effects could perhaps be accomplished by including
data from a designed experiment that involved the alignments or device precision.
These issues require new research on the design of experiments and observational
studies for learning total equivalent amounts.
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