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Most existing methods for optimal treatment regimes, with few excep-
tions, focus on estimation and are not designed for variable selection with
the objective of optimizing treatment decisions. In clinical trials and obser-
vational studies, often numerous baseline variables are collected and vari-
able selection is essential for deriving reliable optimal treatment regimes. Al-
though many variable selection methods exist, they mostly focus on select-
ing variables that are important for prediction (predictive variables) instead
of variables that have a qualitative interaction with treatment (prescriptive
variables) and hence are important for making treatment decisions. We pro-
pose a variable selection method within a general classification framework
to select prescriptive variables and estimate the optimal treatment regime si-
multaneously. In this framework, an optimal treatment regime is equivalently
defined as the one that minimizes a weighted misclassification error rate and
the proposed method forward sequentially select prescriptive variables by
minimizing this weighted misclassification error. A main advantage of this
method is that it specifically targets selection of prescriptive variables and in
the meantime is able to exploit predictive variables to improve performance.
The method can be applied to both single- and multiple-decision point setting.
The performance of the proposed method is evaluated by simulation studies
and application to a clinical trial.

1. Introduction. Personalized medicine that explicitly recognizes individual
heterogeneity in response to treatments and focuses on making treatment deci-
sions for a patient based on his/her own characteristics (e.g., demographic, clin-
ical, genetic information, etc.) has received much attention recently. The idea of
personalized medicine can be formalized using the concept of treatment regimes,
which are one or a sequence of decision rules that specify which treatment (among
available options) a given subject receives based on a subject’s characteristics
at the time of the decision. In the last decade, there has been increasing inter-
est and more vigorous research on developing methodologies for estimating the
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optimal treatment regimes [Murphy (2003), Robins (2004), Moodie, Richardson
and Stephens (2007), Robins, Orellana and Rotnitzky (2008), Brinkley, Tsiatis
and Anstrom (2010), Qian and Murphy (2011), Chakraborty, Murphy and Strecher
(2010), Zhang et al. (2012a, 2012b, 2013), Zhao et al. (2012, 2015), Geng, Zhang
and Lu (2015), Barrett, Henderson and Rosthøj (2014), Young et al. (2011), Tian
et al. (2014)].

Most existing methods, with few exceptions, focus on estimation and are not de-
signed for selecting important variables from among a large number of covariates
for optimizing treatment decisions. Clinical trials and observational studies (e.g.,
clinical registries), on which estimation of the optimal treatment regime is based,
often collect a large amount of potentially useful patient information. Although it
is likely that many of those variables are useful for predicting outcomes, realisti-
cally perhaps only a small number of patient characteristics are useful in making
treatment decisions since only those variables with a qualitative interaction with
treatment are useful in making treatment decisions. The importance of variables
that have qualitative interactions with treatments in a medical decision-making
setting has been noted previously [Peto (1982)] and are referred to as prescriptive
variables. In the presence of a high-dimensional set of covariates, many existing
methods developed for estimating the optimal treatment regime may lead to unnec-
essarily complicated decision rules that are of little practical use. Often times these
methods may even fail to work due to the difficulty of handling a high-dimensional
set of covariates. Therefore, variable selection from a high-dimensional set of co-
variates targeted towards optimal decision making is an essential step in construct-
ing a meaningful and practically useful treatment decision rule.

Variable selection has been an active research area in statistics; however, as
pointed out by Gunter, Zhu and Murphy (2011), current variable selection work
has been focused on prediction and their use in decision making has not been well
developed and tested. As a matter of fact, variable selection approaches focused on
prediction may neglect variables vital for decision making since the effect of inter-
actions is often weaker than that of the main effect. Fairly recent literature started
to see more research on variable selection methods for making treatment decisions
[Gunter, Zhu and Murphy (2011), Qian and Murphy (2011), Lu, Zhang and Zeng
(2013), Fan, Lu and Song (2016)]. Penalized least squares methods were proposed
in the framework of Q-learning by Qian and Murphy (2011) and in the frame-
work of A-learning by Lu, Zhang and Zeng (2013) to select important variables
in the corresponding outcome regression, leading to estimated regimes with fewer
variables. However, the variable selection in the two penalized methods are not
directly targeted towards selecting prescriptive variables. Gunter, Zhu and Murphy
(2011) proposed a variable selection ranking method for variable selection, where
the ranking is based on a measure that specifically characterizes the qualitative
interaction of a variable with treatment. As a result, the method of Gunter, Zhu
and Murphy (2011) focuses specifically on selection of prescriptive variables. As
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noted by Biernot and Moodie (2010) and Fan, Lu and Song (2016), since the rank-
ing method considers each variable separately and ignores correlations between
covariates, they may identify too many covariates as potential prescriptive vari-
ables or miss some variables important for decision making. Building upon the
work of Gunter, Zhu and Murphy (2011), Fan, Lu and Song (2016) proposed a
sequential advantage selection method which takes into account variables already
selected in previous steps and assesses the additional value of a new variable in-
stead of considering variables individually. One advantage of this method is that
it avoids selecting variables that are marginally important for decision making but
are jointly unimportant. Although not directly focused on estimating optimal treat-
ment regimes, one other recent relevant work is that of Tian et al. (2014), which
considers estimating interactions between treatment and a large number of covari-
ates.

In this paper, we propose a new method to select important prescriptive vari-
ables for estimating the optimal treatment regimes in a classification framework.
The proposed method is motivated by directly targeting and optimizing the objec-
tive function of the optimal treatment regime, that is, the expectation of potential
outcomes under the optimal regime if it is followed by the entire population. This
is in contrast with existing methods discussed above, which select/rank variables
by focusing on studying models for outcomes or interaction terms. We show that
optimizing the objective function is equivalent to minimizing a function that can
be interpreted as weighted misclassification error rate for classifying patients to
classes corresponding to their optimal treatment. The weighted misclassfication
error is defined in terms of contrast between treatments given covariates and hence
directly targets on selection of variables with qualitative interaction with treat-
ments. Our proposed algorithm is then based on forward sequentially minimizing
the weighted misclassification error rate and, as Fan, Lu and Song (2016), in each
step it takes into account previously selected variables. The performance and merit
of the proposed method relative to the sequential advantage selection method of
Fan, Lu and Song (2016) are evaluated by various simulation studies.

The remainder of the paper is organized as follows. In Section 2, we describe
the framework and objective function for variable selection for optimal treatment
regimes and propose a forward minimal misclassification error selection algorithm
that selects variables important for decision making. We evaluate the performance
of the proposed method by simulations studies in Section 3 and illustrate the use
of the proposed method using data from the Nefazodone CBASP trial in Section 4,
followed by a discussion in Section 5.

2. Method.

2.1. Notation and assumptions. We first focus on presenting the method in
the simpler setting where only a single treatment decision point is involved; Sec-
tion 2.4 considers the extension to multiple decision point setting. Consider a clin-
ical trial or observational study involving n subjects, who receive either treatment
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A = 0 or A = 1. Let X be a p-dimensional vector of subject characteristics col-
lected before the treatment. Let Y denote the observed outcome of interest and,
without loss of generality, assume that larger values of Y are preferred. The ob-
served data are then (Xi,Ai, Yi), i = 1, . . . , n, which are assumed to be indepen-
dent and identically distributed (i.i.d.) across i. The goal is to use the data to find
the optimal treatment decision rule which determines which treatment a patient
should receive based on his/her baseline characteristics.

Formally, a treatment regime or rule, g, is a function which maps the values
of X to the domain of A, for example, A = {0,1}. Let Y ∗(0) and Y ∗(1) denote
the potential outcomes for a subject that would be observed had the subject re-
ceived treatment 0 or 1, respectively. Then for each treatment regime g, there is
a corresponding potential outcome, which is defined as Y ∗(g) = Y ∗(1)g(X) +
Y ∗(0){1 − g(X)}. The expectation of potential outcomes if the entire population
had followed regime g, E{Y ∗(g)}, is referred to as the value of regime g and the
optimal treatment regime gopt is the one that leads to the optimal value, that is,
gopt = arg maxg∈G E{Y ∗(g)}, where G is the class of all regimes under consider-
ation. We make the commonly assumed stable unit treatment value assumption
(SUTVA), which states that the observed outcome is the same as the potential out-
come under the treatment actually received; that is, Y = Y ∗(1)A + Y ∗(0)(1 − A).
This assumption allows identification of the optimal treatment regime based on
the observed data. We also assume the standard no unmeasured confounders as-
sumption, that is, {Y ∗(0), Y ∗(1)}⊥⊥A|X, where ⊥⊥ denotes statistical indepen-
dence. This assumption holds automatically for clinical trials and has to be eval-
uated for observational studies. See a review paper by Schulte et al. (2014) for
more background on potential outcomes and optimal treatment regimes. As with
most existing methods on estimating optimal treatment regimes, in this article we
focus on considering regimes that are of a linear form, that is, for any g ∈ G,
g(X) = I (βT X > 0) for some β .

2.2. Framework for variable selection for optimal treatment regimes. In terms
of estimating the optimal treatment regimes, approaches can be categorized into
two broad classes: outcome regression-based methods (Q- and A-learning) and di-
rect optimization methods [e.g., Zhao et al. (2012, 2015), Zhang et al. (2012a,
2012b, 2013)]. In outcome regression-based methods, one aims to build good
(parametric or semiparametric) regression models for outcomes given covari-
ates and treatments and then optimal treatment regimes are estimated by in-
verting the relationship. Specifically, in Q-learning, one postulates models for
μ(A,X) ≡ E(Y |A,X) by some parametric model and in A-learning one mod-
els μ(A,X) by some semiparametric model where only the treatment contrast,
that is, C(X) = μ(1,X) − μ(0,X), is modeled parametrically leaving the other
part unspecified [e.g., Murphy (2003), Watkins and Dayan (1992)]. These meth-
ods work well if the posited regression models are correctly specified and if they
are misspecified the estimated regime may be far from optimal. This is due to, as
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first pointed out by Murphy (2003), a mismatch between the target of outcome
regression-based methods and the goal of learning the optimal treatment regime.
That is, outcome regression-based methods target good models for the outcome
instead of optimizing decision rules to yield the maximum expected potential out-
comes. More recently, direct optimization approaches have been developed to miti-
gate the concern of outcome model misspecification and they aim to directly max-
imize estimates of E{Y ∗(g)} across a class of regimes, consistent with the defi-
nition. If E{Y ∗(g)} can be robustly and efficiently estimated then the estimated
regimes from direct optimization methods will have good property. By viewing
the problem as a missing data problem, that is, Y ∗(g) is observed if the observed
treatment is the same as the one that is dictated by regime g, E{Y ∗(g)} can be
more robustly estimated by the (augmented) inverse probability weighted estima-
tor (AIPWE, or IPWE). In IPWE one models treatment probability and in AIPWE
one additionally incorporates outcome regression models through augmentation
terms to further improve efficiency and robustness. It is well-known in the miss-
ing data and causal inference literature that, AIPWE/IPWE are always consistent
if treatments are randomized and, in observational studies, AIPWE is consistent
if either treatment or outcome regression models, but not necessarily both, are
correctly specified, referred to as the double-robustness property [e.g., Bang and
Robins (2005)]. Therefore, direct optimization methods that directly target opti-
mizing E{Y ∗(g)} can be more robust. The advantages of direct optimization meth-
ods are discussed in detail in Zhao et al. (2012, 2015), Zhang et al. (2012a, 2012b,
2013) and Kang, Janes and Huang (2014) and discussion papers.

Variable selection methods are proposed within the framework of outcome
regression-based methods [Qian and Murphy (2011), Lu, Zhang and Zeng (2013)].
As discussed in Section 1, these methods are not directly targeted towards select-
ing prescriptive variables. Moreover, as they are developed within the framework
of outcome regression-based methods, they suffer from the mismatch problem as
well.

Following the principle of direct optimization, naturally one should also aim to
maximize E{Y ∗(g)} in selecting prescriptive variables for constructing the opti-
mal treatment regime. However, to the best of our knowledge, none of the existing
prescriptive variable selection methods directly target this objective function. In
this article, we propose a direct optimization method for selecting variables useful
for making treatment decisions and as a result this method does not suffer from
the mismatch problem of outcome-regression based methods and enjoys advan-
tages of direct optimization methods for estimating the optimal treatment regimes
discussed above. Specifically we adapt the classification framework for estimat-
ing optimal treatment regimes developed by Zhang et al. (2012b); we refer to this
general classification framework as C-learning where “C” stands for “classifica-
tion.” Within the C-learning framework we propose a method for simultaneously
estimating the optimal treatment regime and selecting prescriptive variables by
explicitly optimizing E{Y ∗(g)}, where optimization of E{Y ∗(g)} is achieved by
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equivalently minimizing an objective function that can be intuitively interpreted as
a weighted misclassification error rate. We provide a brief review of the C-learning
framework below.

Intuitively, it is easy to see that we can view subjects as coming from two la-
tent classes corresponding to gopt(X) = 0 or 1; that is, the class corresponding to
gopt(X) = a includes all subjects whose expected potential outcome under treat-
ment a is greater than that under treatment 1−a. Equivalently, only the contrast be-
tween treatments is relevant in determining which class a subject belongs to as well
as whether a variable is prescriptive or not. Denoting μ(a,X) = E(Y |A = a,X),
it is easy to see that

(1) E
{
Y ∗(g)

} = EX

{
C(X)g(X) + μ(0,X)

}
,

where C(X) = μ(1,X) − μ(0,X), denoting the contrast between treatment 1 and
0. According to (1), it is clear that the optimal treatment regime corresponds to
I {C(X) > 0}. Zhang et al. (2012b) show that maximizing (1) is equivalent to

(2) gopt(X) = arg min
g∈G E

[∣∣C(X)
∣∣I{

Z �= g(X)
}]

.

This alternative definition corresponds exactly to the intuition described above.
That is, we can view each subject as belonging to one of two latent classes with
the class label denoted by Z = I {C(X) > 0}. We can then view E[|C(X)|I {Z �=
g(X)}] as a weighted misclassification error rate corresponding to treatment
regime (or classifier) g(X). That is, if g(X) �= Z, then an error is made since the
treatment decision according to g(X) is not optimal and the loss corresponding
to this error is |C(X)|, the difference in expected outcomes between g(X) and
gopt(X). In practice, the class label Zi as well as the weight |C(Xi)| is unknown
and Zhang et al. (2012b) discussed various ways to estimate C(Xi) and then Zi .
Zhang et al. (2012b) recommend estimating C(Xi) by the more robust AIPWE
estimator defined as

(3) ĈAIPWE(Xi) = Ai

π̂i

Yi − Ai − π̂i

π̂i

μ̂(1,Xi)−
{

1 − Ai

1 − π̂i

Yi − π̂i − Ai

1 − π̂i

μ̂(0,Xi)

}
,

where π̂i estimates πi = P(A = 1|Xi) and is simply the sample proportion cor-
responding to A = 1 for a randomized clinical trial, and terms involving μ̂(a,Xi)

are referred to as augmentation terms. One may also postulate parametric models
respectively for μ(a,X), a = 0,1, and estimate C(Xi) by Ĉreg(Xi) ≡ μ̂(1,Xi) −
μ̂(0,Xi), where μ̂(a,X) estimates μ(a,X) based on the fitted model. Denoting
an estimate of C(Xi) by Ĉ(Xi) and Ẑi = I {Ĉ(Xi) > 0}, then gopt(X) can be esti-
mated by arg ming∈G

∑n
i=1 |Ĉ(Xi)|I {Ẑi �= g(Xi)}.

It may seem that the definition (2) and the resulting C-learning are unnecessar-
ily complicated since by (1) one can directly estimate gopt(X) by I {Ĉ(X) > 0},
whereas the C-learning involves an additional step of optimization after obtain-
ing Ĉ(X). As a matter of fact, decoupling the optimization step from the step for
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building good outcome models has several advantages and is the key to variable
selection for prescriptive variables. Among them, one advantage is that, as opposed
to outcome-regression based methods, it leads to a direct optimization method that
optimizes estimates of E{Y ∗(g)} or E[|C(X)|I {Z �= g(X)}] explicitly, which can
lead to more robust estimation of the optimal treatment regime by using the ro-
bust estimator of C(X). As explained in Zhang et al. (2012b), some algebra can
show that, as far as estimating the optimal treatment regime is concerned, estimat-
ing C(X) by ĈAIPWE(X) is equivalent to estimating E{Y ∗(g)} by the well-known
doubly-robust AIPWE estimator, which is consistent if either the model for A or
the model for Y used in augmentation terms, but not necessarily both, is correctly
specified. In a randomized study, as one can always model treatment correctly, re-
gardless of whether the postulated model for μ(a,X) is correct or not, AIPWE
always consistently estimates E{Y ∗(g)} and leads to robust estimation of the op-
timal treatment regime. Therefore, as opposed to outcome regression-based meth-
ods, the performance of the estimated treatment regimes is not completely dictated
by outcome regression models used for estimating μ(a,X) and is more robust to
model misspecification. See Zhang et al. (2012a, 2012b) and Zhang and Zhang
(2015) for detailed discussions on AIPWE-based direct optimization method and
the classification framework. We also comment that when ĈAIPWE(Xi) is used
then the optimization step within G is necessary to obtain a valid regime because
ĈAIPWE(Xi) still depends on Yi and is not a function of covariates only. When
Ĉreg(Xi) is used and μ(a,Xi), a = 0,1, are modeled using parametric models with
implied regimes in the class of G, then I {Ĉreg(X) > 0} is a valid treatment regime
in G. However, postulating models for μ(a,Xi), a = 0,1, separately is equivalent
to including interaction of treatment with all available covariates, which leads to
unnecessarily overcomplicated decision rules. In this case, an additional optimiza-
tion step is still important for prescriptive variable selection as we describe below.
Equally important, (2) provides a natural objective function for prescriptive vari-
able selection for estimating the optimal treatment regime since it only depends on
the contrast function, the part relevant for optimizing treatment decisions. See also
the discussion at the end of Section 2.3 for advantages of decoupling optimization
step from the outcome model building step.

2.3. Forward minimal misclassification error rate (ForMMER) selection. In
C-learning, the estimated weighted misclassification error rate corresponding to
regime g(X) is given by

(4)
1

n

n∑
i=1

[
ŴiI

{
Ẑi �= g(Xi)

}]
,

where Ẑi = I {Ĉ(Xi) > 0}, Ŵi = |Ĉ(Xi)| and Ĉ(Xi) is an estimate of C(Xi). This
weighted misclassification error rate is for a given regime g(X) ≡ g(X1, . . . ,Xp).
Now we use this to define a measure that is helpful for quantifying the importance
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of a potential prescriptive variable given a set of already selected prescriptive vari-
ables. For that, we define the weighted misclassification error rate corresponding
to a set of variables {Xj1, . . . ,Xjm} as

err(Xj1, . . . ,Xjm)

= min
β={β0,...,βm}n

−1
n∑

i=1

ŴiI
{
Ẑi �= I (β0 + β1Xj1 + · · · + βmXjm > 0)

}
,

which can be interpreted as the minimum weighted misclassification error rate
among a subclass of regimes that are constructed by linear combinations of the
set of variables (Xj1, . . . ,Xjm). Then naturally we can quantify the importance
of a potential prescriptive variable, say Xj , given a set of selected prescrip-
tive variables {Xj1, . . . ,Xjm} by the difference in misclassification error, that is,
err(Xj1, . . . ,Xjm) − err(Xj1, . . . ,Xjm,Xj ).

Based on the idea described above, we propose the following forward minimal
misclassification error rate (ForMMER) selection algorithm to sequentially select
variables that are important for treatment decision making. Our algorithm starts
with an empty set corresponding to the case where there is no prescriptive variable
and hence the optimal treatment is a fixed treatment for everyone.

Step 1 (Initial step). Let

err(0) ≡ err(null set) = min

{
n−1

n∑
i=1

ŴiI (Ẑi �= 1), n−1
n∑

i=1

ŴiI (Ẑi �= 0)

}
,

where the equality is due to that there are only two treatment regimes (a = 0,1)
when the set of covariates under consideration is null. Here err(0) is the weighted
misclassification error rate by assigning the treatment with better average treatment
effect to all patients regardless of their characteristics. We term this as the baseline
weighted misclassification error rate and use it as a reference in the criterion for
the initial selection that selects the first important prescriptive variable.

When the number of candidate variables is huge, it is preferable to initially
screen variables for consideration in subsequent steps. For each Xj , let err(Xj ) =
minβ={β0,β1} n−1 ∑n

i=1 ŴiI {Ẑi �= I (β0 + β1Xj > 0)} and calculate

err(0) − err(Xj ), j = 1, . . . , p.

As explained above, this difference characterizes the degree of reduction in
weighted misclassification error rate under the optimal treatment regime within
a subclass of regimes based on variable Xj , relative to the optimal treatment
regime based on a null set of covariates. Therefore, the ranking (from the largest
to the lowest) of err(0) − err(Xj ), j = 1, . . . , p, quantifies the relative impor-
tance of variables in treatment decision making. We propose to use the ranking
of err(0) − err(Xj ) to initially select the set of covariates considered in subsequent
steps when the dimension of covariates is high. For example, one may consider
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the first 30 or 40 variables based on the ranking of err(0) − err(Xj ) and include
them into a set F0, which includes variables considered in subsequent steps. In
addition, one may add into F0 any variables that are thought to be potentially im-
portant in making treatment decisions based on clinical/scientific reasons or on
evidence from empirical data. The purpose of this step is only to screen variables
when the number of candidate variables is very large to make it computationally
easier; for example, in our simulations we considered 1000 covariates. When the
dimension is not super large, for example, in our real data analysis there are only
50 baseline covariates, then the screening step can be omitted, that is, all candidate
variables are included in F0.

We comment that, even with the screen, the proposed variable selection method
is still selecting prescriptive variables from the entire p-dimensional covariates
instead of only selecting among variables in F0. The reason is that in the first step
in selecting Xj1 (as is clear from the formula below), it is selecting among all
(X1, . . . ,Xp) using a principled approach based on importance of variables. Our
simulations demonstrate that it works well in practice even with a large number of
candidate variables.

Step 2 (Forward selection). Let

Xj1 = arg min
Xj∈(X1,...,Xp)

err(Xj ) and err(1) ≡ min
Xj∈(X1,...,Xp)

err(Xj ).

Then Xj1 is the first selected variable and S(1) = {Xj1}, denoting the set of se-
lected variables from step (1). We note that the selected Xj1 is always included in
F0 as F0 includes variables ranked high based on err(0) − err(Xj ) and hence Xj1 .

In the mth step (m > 1), we have S(m−1) = {Xj1, . . . ,Xjm−1}, which denotes the
set of selected variables in steps prior to the mth step. For every Xj ∈F0\S(m−1),
we compute each err(S(m−1),Xj ), which is the minimum weighted misclassifica-
tion error rate for regimes constructed using variables in S(m−1) and Xj . The mth
variable to be selected is the one with the smallest weighted misclassification error
rate in this step, that is,

Xjm = arg min
Xj∈F0\S(m−1)

err
(
S(m−1),Xj

)
.

We update the set of selected variables, that is, S(m) = S(m−1) ∪ {Xjm}.
Weighted misclassification error rate corresponding to the optimal treatment
regime among regimes that are based on the m variables in S(m) is also updated
accordingly as follows:

err(m) ≡ min
Xj∈F0\S(m−1)

err
(
S(m−1),Xj

)
.

Step 3 (Stopping criterion). Continue forward selection until prop(m) ≤ α,
where α is a cut-off point and

prop(m) = err(m−1) − err(m)

err(m−1)
.
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Several ways can be used to choose the tuning parameter α. The simplest way is
to pre-specify α, say at 0.05, which says that the algorithm would stop when the
reduction in error rate is less than 5%. Alternatively and more rigorously, as in
many other statistical methods involving tuning parameters, we may choose the
cut-off point using, for example, five- or ten-fold cross-validation, where the final
α is chosen as the one that leads to estimated regimes with the smallest value of (4)
overall on validation data sets. Similar to a scree plot used in selecting the number
of principal components to be included in principal component analysis, one other
alternative is to make a plot of errm against m and identify the point where error
rate starts to level off (the so-called “elbow”). It can be argued that, when values of
decision rules are similar, rules with less numbers of variables and rules with vari-
ables that are easy to measure should be preferred from a practical point of view.
Then when to stop the algorithm can even be determined subjectively by balanc-
ing consideration of the reduction in errm, the number of additional variables to be
selected, the cost of collecting variables and other factors based on clinical/subject
matter knowledge.

In our simulations as well as the data analysis, the optimization is implemented
using a genetic algorithm discussed by Goldberg (1989), implemented in the rge-
noud package in R [Mebane and Sekhon (2011)]. As well as the sequential ad-
vantage selection (SAS) method of Fan, Lu and Song (2016), the proposed For-
MMER algorithm sequentially selects potential prescriptive variables by assess-
ing the added advantage of a new variable relative to existing ones, in contrast to
the S-score based method of Gunter, Zhu and Murphy (2011) that considers each
variable individually. Therefore, ForMMER enjoys the same advantage as SAS,
namely, it tends not to select those unnecessary variables that are only marginally
important but not important given other variables. One key difference between For-
MMER and SAS lies in the function used in quantifying the advantage. In SAS,
the sequential advantage of a variable, say Xj , given a set of selected prescriptive
variables Sm−1 = {Xj1, . . . ,Xjm−1}, is given by

(5)
1

n

n∑
i=1

{
max

a
Ê

(
Yi |Sm−1

i ,Xij ,Ai = a
) − Ê

(
Yi |Sm−1

i ,Xij ,Ai = aopt
(
Sm−1

i

))}
,

where aopt(S
m−1
i ) is the optimal decision based on variables in Sm−1

i . This sequen-
tial advantage extends the S-score of Gunter, Zhu and Murphy (2011) in that the
second term of the sequential advantage additionally conditions on Sk−1, whereas
the second term of S-score conditions on Xj only. Subject i contributes to the se-
quential advantage only if the optimal decision based on (Sm−1

i ,Xij ) is different
from the optimal decision based on Sm−1

i and hence the sequential advantage quan-
tifies the importance of Xj in addition to Sm−1 for decision making. At each step
in the sequential advantage selection, it fits a model conditional on potential pre-
scriptive variables selected in previous steps and a new variable. As a result of the
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SAS algorithm, variables with only main effect but no qualitative interactive effect
tend to be not selected, which of course is an intended property; however, since
at each step it builds conditional models conditional on only variables selected
in previous steps, those only predictive but not prescriptive variables will not be
able to be used in the outcome-regression models in subsequent steps, which is
clearly not desirable as it misses the chance of exploiting those predictive vari-
ables to improve performance. In the proposed ForMMER method, the forward
selection algorithm for selecting prescriptive variables are separated from estima-
tion of the contrast function. In principle any model selection methods developed
for prediction can be used to best model the outcome given covariates includ-
ing those predictive but not prescriptive variables in the estimation of the contrast
function. Therefore, ForMMER is able to exploit predictive variables for improv-
ing efficiency in the outcome-regression step or equivalently the contrast function
estimation step. In the meantime, the variable selection step focuses on selecting
prescriptive variables, aiming towards minimizing a weighted misclassification er-
ror rate or equivalently maximizing the expected potential outcome of a regime.
This difference explains the superior performance of ForMMER relative to SAS,
especially when the number of predictive variables is large, as illustrated by our
simulation studies.

2.4. Extension to multiple decision point setting. The ForMMER algorithm
extends naturally to multi-stage treatment decision problems where decisions are
made at K decision points and at each stage there are two treatment options (0
or 1). Suppose data are obtained from sequentially randomized clinical trials or
observational studies where the no unmeasured confounders assumption holds.
We denote the treatment received at stage k as Ak and the observed treatment
history up to decision k as Āk = (A1, . . . ,Ak). Let Xk be the covariate information
observed between decision k − 1 and k and X̄k = (X1, . . . ,Xk) be the observed
covariate history up to k. The overall outcome of interest is still denoted by Y .
A dynamic treatment regime is a set of sequential decision rules, g = (g1, . . . , gK),
where gk is a function of x̄k and āk−1, denoted as gk(x̄k, āk−1), that determines the
treatment decision at stage k based on patient’s covariate and treatment history
available up to decision k. We denote Lk = (X̄k, Āk).

Similar to the single decision point setting, only the treatment contrast at each
stage is relevant for treatment decision. Analogously we define a contrast function
at each stage, that is, Ck(Lk) = Qk(Lk, ak = 1) − Qk(Lk, ak = 0), where ak is
a treatment decision at stage k and Qk(Lk, ak) is the so-called Q-functions with
“Q” for “quality”. At the last stage K , QK(LK,aK) = E(Y |LK,AK = aK). The
Q-functions at stage k < K are defined recursively and can be interpreted as the
conditional expected outcomes given that the optimal decisions are made in the fu-
ture. Therefore, the contrast function Ck(Lk) represents the contrast in the quality
between treatment 1 or 0 at stage k assuming the optimal decisions are made in the
future. We refer readers to Schulte et al. (2014) for more details.
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Intuitively, at each stage, subjects can be viewed as coming from two la-
tent classes for whom the optimal decision at stage k is 1 or 0 [or equivalently
Zk ≡ I {Ck(Lk) > 0}], assuming the optimal decisions are made in the future.
Zhang and Zhang (2015) show that for multiple-stage decision problems, the op-
timal treatment regimes can be identified by backward sequentially minimizes
E[|Ck(Lk)|I {Zk �= gk(Lk)}], which is the expected loss of misclassifying a pa-
tient at stage k by decision rule gk . In practice, Zk and Ck(Lk) have to be estimated
and, as in the single-decision point setting, various methods (e.g., parametric re-
gression method Ĉreg and the AIPWE ĈAIPWE) can be used to estimate the contrast
functions as well as Zk . Then the empirical analog of E[|Ck(Lk)|I {Zk �= gk(Lk)}]
can be used as an objective function in estimating the optimal treatment regime
at each stage. We refer readers to Zhang and Zhang (2015) for details on the
C-learning framework for multiple-decision point settings and for discussions on
the connection and distinction of C-learning with existing methods. The proposed
ForMMER can naturally be embedded in the C-learning framework to select vari-
ables important for decision-making and estimate the optimal treatment regime at
each stage. Specifically, one only needs to modify the objective function in (4)
to 1

n

∑n
i=1[ŴkiI {Ẑki �= gk(Li)}], where Ŵki = |Ck(Lki)|, and modify err(m) ac-

cordingly. ForMMER can then be used to identify the linear decision rule that
minimizes the weighted misclassification error rate at each stage.

3. Simulations. We conducted simulation studies to evaluate the performance
of the proposed methods. Data generating scenarios are adopted from Fan, Lu and
Song (2016) and additionally we considered two new scenarios. We consider both
single-decision point and multiple-decision point settings. We compare our meth-
ods with SAS developed by Fan, Lu and Song (2016) since in their simulations
they demonstrated that SAS has superior performance than the S-score method of
Gunter, Zhu and Murphy (2011) and the method of Lu, Zhang and Zeng (2013)
with LASSO selection.

For the single decision point setting, data were generated according to six
scenarios, where Scenarios I–IV are directly adopted from Fan, Lu and Song
(2016). Specifically, Covariates X = (X1, . . . ,Xp)T , p = 1000, are generated
from multivariate normal distribution with mean zero, variance 1 and correlation
corr(Xj ,Xk) = ρ|j−k|, where ρ = 0.2 or 0.8. Treatment A is generated from a
Bernoulli distribution with probability 0.5 and the error term ε is normally dis-
tributed with mean 0 and variance 0.25. Defining X̃ = (1,XT )T and 0p as a p-
dimensional vector with all zero elements, the outcomes are generated according
to:

– Scenario I: Y = 1 + γ T
1 X + AβT X̃ + ε with γ1 = (1,−1,0p−2)

T , β =
(0.1,1,07,−0.9,0.8,0p−10);

– Scenario II: Y = 1 + 0.5 sin(πγ T
1 X)+ 0.25(1 +γ T

2 X)2 +AβT X̃ + ε with γ1

and β the same as in Scenario I and γ2 = (1,02,−1,05,1,0p−10)
T .
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– Scenario III: Y = 1 + γ T
1 X + AβT X̃ + ε with γ1 the same as in Scenario I,

and β = (0.1,1,07,−0.9,0.8,010,1,0.8,−1,05,1,−0.8,0p−30).
– Scenario IV: Y = 1 + 0.5 sin(πγ T

1 X) + 0.25(1 + γ T
2 X)2 + AβT X̃ + ε with

γ1, and γ2 the same as in Scenario II, and β the same as in Scenario III.
– Scenario V: Y = 1+γ T

1 X+AβT X̃+ε with γ1 = (1,−0.8,1,0.9,0.8,1,0.9,
0.8,0p−8)

T , β = (0.1,08,1,0.8,0p−10).
– Scenario VI: Y = 2 + γ T

1 X − |γ T
2 X̃|{A − I (βT X̃ > 0)}2 + ε with γ1 =

(1,−1,0p−2)
T , γ2 = (0.5,1.5,−2,0p−2)

T and β = (0.1,08,1,0.8,0p−10).

Scenarios I and II have three prescriptive variables and Scenarios III and IV have
eight prescriptive variables. In Scenarios I and III, the relationship between out-
come and covariates are linear, whereas in Scenarios II and IV, the relationship
is nonlinear. In Scenarios I–IV, the number of prescriptive variables is more than
the number of predictive variables. However, in reality, it is perhaps more plausi-
ble or often believed that many covariates have a main effect but not a qualitative
interaction effect with treatment. Considering this, we also generated data from
Scenario V, which is modified based on Scenario I but more variables have a main
effect and less variables have a qualitative interaction with treatment. Scenario VI
also considers a Scenario where treatment interacts with covariates nonlinearly
but still the optimal treatment regime is of a linear form. Based on Scenario VI,
the subgroup of subjects whose optimal treatment option is 1 is determined by
I (βT X̃ > 0) and the contrast between optimal treatment option and the other op-
tion is |γ T

2 X̃|. The sample size we considered in the single-decision point setting
is n = 200 and 400.

As for the multiple-decision point setting, again we adopted the same data gen-
erating process as in Fan, Lu and Song (2016). Specifically, data are generated to
mimic a two-stage decision problem, where the outcome Y is generated according
to

Y = A1A2 + A2
(
a + βT

12X1 + βT
21X2

) + A1
(
a + βT

11X1
) + ε,

where treatment A1 and A2 follow Bernoulli (0.5), baseline covariats X1 =
(X1,1, . . . ,X1,p1) follow multivariate normal distribution with mean 0, variance
1 and corr(X1,j ,X1,k) = 0.2|j−k|, j �= k, and ε follows normal distribution with
mean 0 and variance 0.25. The intermediate covariate X2 is generated accord-
ing to X2 = c0 + c1X1,1 + c2A2 + C3A1X1,1 + e with e generated from nor-
mal with mean 0 and variance 0.25. The parameter values are chosen as: β12 =
(0,0,1,−1,0p1−4), β11 = (04,1,−1,0p1−6)

T , a = 0, and c = (0,1,0,0)T . Also
we chose p1 = 500.

We implemented the proposed methods using two ways. In ForMMER-reg,
parametric regression models are used to model μ(a,X) and the contrast func-
tions are estimated by Ĉreg. Specifically, forward selection based on AIC is used to
build models for μ(0,X) and μ(1,X) respectively, where the maximum number
of steps is set to be 10. In ForMMER-AIPWE, the contrast functions are estimated
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using ĈAIPWE, where the same parametric models as in ForMMER-reg are used
in the augmentation terms of the AIPWEs. We used the union of the variables se-
lected in the model for μ(1,X) and the first 10 variables based on the ranking
of err(0) − err(Xj ) as the initially selected set to be considered in the ForMMER
procedure. We implemented ForMMER by setting α = 0.02,0.05 and 0.08 and
also we used ten-fold cross-validation to select α for Scenario VI. In addition to
SAS, we compare our method to the usual regression method where we model
outcomes given treatment, covariates and treatment, and covariates interaction and
select variables to be included in the final model by forward selection based on
AIC. In the usual regression method with forward selection, the final estimated
regime is then I {μ̂(1,X) − μ̂(0,X) > 0}.

We evaluate the performance of each method using three metrics. TP (true pos-
itive) is the number of correctly identified prescriptive variables. VR (value ratio)
is the value ratio of the estimated regime relative to the true optimal regime, that
is, VR = E{Y ∗(ĝopt)}/E{Y ∗(gopt)}, where the value of a regime E{Y ∗(g)} is cal-
culated by the average of outcomes generated from the true model with treatment
determined by the regime using 100,000 Monte Carlo Replicates. ER (error rate)
is the rate of incorrect treatment decision of the estimated regime, that is, an incor-
rect decision is made if the treatment decision determined by a regime is different
from the correct optimal decision. Reported results are averages across 500 Monte
Carlo simulations and the standard deviation are reported in parenthesis. Although
all three metrics are useful in evaluating the performance of a method, from the
perspective of optimizing expected potential outcomes, VR is in our view the most
relevant one as it takes into account whether or not a correct decision is made and
the magnitude of the consequence of an incorrect decision, whereas ER only ac-
counts for whether the optimal decision is made ignoring the magnitude of loss
associated with an incorrect decision. Although TP can provide some useful infor-
mation, we note that it cannot be used as a metric alone to evaluate methods since
it does not account for the size of the selected variables, also it does not account
for the different importance of variables in terms of treatment decision making. In
addition, the number (size) of prescriptive variables in the estimated regime is also
reported, which is important for interpreting TP.

Main results are shown in Tables 1–3 and additional results are shown in the
Supplementary Material [Zhang and Zhang (2018)]. We report results on ForM-
MER with α = 0.05 here and results on ForMMER with different α values are
reported in the Supplementary Material [Zhang and Zhang (2018)], which show
that for scenarios considered in this paper all three choices of α (0.02, 0.05 and
0.08) lead to comparable results. Results on ForMMER with α chosen by cross-
validation is marked with a †.

Results on scenarios adopted from Fan, Lu and Song (2016), that is, Scenar-
ios I–IV, for sample size n = 200 and ρ = 0.2 are summarized in Table 1; addi-
tional results on n = 200, ρ = 0.8 and other values of α are in Tables S1–S3 in
the Supplementary Material [Zhang and Zhang (2018)]. Table 1 shows that, under
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TABLE 1
Simulation results for single-decision point setting based on 500 replications based on sample size
n = 200 [Scenarios adopted from Fan, Lu and Song (2016)]. Size: number of selected prescriptive

variables; TP: number of true positive (important) prescriptive variables; ER: error rate of the
treatment decision; VR: ratio of the value of the estimated regime relative to that of the true optimal

regime. Numbers in parenthesis are Monte Carlo standard deviation

Method ρ Size TP ER VR

Scenario I
SAS 0.2 6.81 (1.65) 2.98 (0.25) 6.2 (4.8) 99.0 (3.4)
Forward 14.50 (2.63) 2.93 (0.25) 12.7 (5.2) 96.8 (3.4)
ForMMER-AIPWE 4.93 (1.05) 2.93 (0.26) 10.7 (5.1) 97.6 (2.6)
ForMMER-reg 5.78 (1.47) 2.93 (0.26) 10.3 (6.3) 97.6 (3.3)

Scenario II
SAS 0.2 11.90 (2.87) 2.09 (1.12) 32.7 (10.3) 88.7 (6.2)
Forward 12.16 (3.03) 2.72 (0.54) 24.7 (6.9) 93.3 (3.6)
ForMMER-AIPWE 4.82 (1.23) 2.49 (0.69) 22.6 (9.2) 94.0 (4.4)
ForMMER-reg 6.37 (1.58) 2.76 (0.48) 20.7 (7.5) 95.0 (3.4)

Scenario III
SAS 0.2 11.06 (2.92) 5.08 (2.56) 23.0 (15.0) 84.2 (15.5)
Forward 20.03 (3.48) 7.42 (0.74) 12.9 (7.1) 95.0 (5.1)
ForMMER-AIPWE 7.50 (1.28) 6.79 (1.39) 14.2 (7.2) 94.3 (5.6)
ForMMER-reg 8.58 (1.13) 7.17 (1.14) 12.0 (7.5) 95.5 (5.4)

Scenario IV
SAS 0.2 12.02 (2.28) 3.36 (2.02) 35.0 (10.0) 81.5 (8.2)
Forward 16.07 (2.64) 6.89 (1.34) 20.3 (6.9) 93.0 (4.6)
ForMMER-AIPWE 6.08 (1.48) 5.11 (1.62) 23.4 (6.9) 91.1 (4.8)
ForMMER-reg 7.84 (1.47) 6.33 (1.52) 18.6 (7.3) 94.0 (4.5)

Scenarios II, III and IV, ForMMER-AIPWE and ForMMER-reg are comparable
and the proposed methods (both implementations) have better performances than
SAS. Under Scenario I the proposed methods and SAS have comparable perfor-
mance with SAS being slightly better. We also note that the usual forward selection
method works well in these scenarios and are even better than SAS.

Table 2 shows results under Scenario V, which is similar to Scenario I except
that there are more predictive variables and less prescriptive variables. Under this
scenario, the proposed ForMMER (both implementations) has considerably bet-
ter performances than SAS. This difference in performance is expected to be even
larger under other scenarios (e.g., scenarios similar to II and IV ) since Scenario V
is modified based on Scenario I where SAS has relatively the best performance
compared with other scenarios in Table 1. This result is consistent with and sup-
ports our conjecture that SAS may not perform well when many covariates are
predictive but not prescriptive as explained at the end of Section 2.2. This is be-
cause in SAS predictive but not prescriptive variables will not be selected in pre-
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TABLE 2
Simulation results for single-decision point setting based on 500 replications. Size: number of
selected prescriptive variables; TP: number of true positive (important) prescriptive variables;

ER: error rate of the treatment decision; VR (value ratio): ratio of the value of the estimated regime
relative to that of the true optimal regime. Numbers in parenthesis are Monte Carlo standard

deviations

Method ρ Size TP ER VR

Scenario V
n = 200

SAS 0.2 14.49 (2.07) 0.72 (0.60) 43.9 (5.3) 71.8 (5.6)
Forward 10.46 (2.21) 1.98 (0.13) 12.9 (4.5) 96.9 (2.3)
ForMMER-AIPWE 3.99 (0.95) 1.97 (0.16) 11.8 (5.1) 97.3 (2.5)
ForMMER-reg 4.39 (1.04) 1.98 (0.15) 12.5 (6.3) 96.7 (2.9)

SAS 0.8 8.55 (2.03) 0.96 (0.35) 21.3 (6.3) 90.9 (5.1)
Forward 11.59 (2.06) 2.00 (0.00) 8.7 (1.4) 98.5 (0.5)
ForMMER-AIPWE 3.57 (1.00) 1.81 (0.39) 7.7 (2.9) 98.7 (0.9)
ForMMER-reg 3.84 (1.00) 1.99 (0.11) 4.4 (1.8) 99.6 (0.4)

Scenario VI
n = 200

SAS 0.2 12.98 (2.24) 1.67 (0.47) 32.7 (4.9) 70.0 (4.5)
Forward 8.84 (2.44) 1.47 (0.53) 32.1 (7.2) 70.1 (6.6)
ForMMER-AIPWE 3.39 (1.23) 1.96 (0.23) 7.2 (7.6) 93.4 (6.9)
ForMMER-reg 5.75 (1.59) 1.85 (0.38) 19.5 (8.2) 81.9 (7.6)
ForMMER-AIPWE† 2.82 (0.92) 1.96 (0.25) 6.0 (7.2) 94.5 (6.6)
ForMMER-reg† 5.14 (1.61) 1.78 (0.44) 18.6 (8.6) 82.8 (8.0)

SAS 0.8 11.33 (2.23) 1.01 (0.27) 31.6 (3.8) 83.7 (2.0)
Forward 10.42 (2.45) 0.99 (0.43) 31.6 (6.7) 83.6 (3.5)
ForMMER-AIPWE 3.66 (1.28) 1.61 (0.59) 13.7 (10.8) 92.9 (56)
ForMMER-reg 5.44 (1.64) 1.33 (0.57) 22.2 (8.7) 88.5 (4.5)

vious steps and as a result cannot be used in the conditional models in subsequent
steps to improve performance, even though predictive variables (regardless of be-
ing prescriptive or not) are useful for improving the performance of the models and
estimation of optimal regimes. Our methods do not suffer from this issue and are
able to take advantages of predictive variables to improve efficiency while still tar-
geting selection of only prescriptive variables in the forward selection algorithm.
This is achieved by decoupling the step for estimating the contrast function and the
step for variable selection in the optimization step. This difference also explains
the better performance of ForMMER in Table 1.

We also note under Scenarios I–V, scenarios either directly adopted from or
modified based upon Fan, Lu and Song (2016), not only the proposed methods
have overall better performance than SAS, the usual forward selection method has
also better performance than SAS and in addition ForMMER-reg has compara-
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TABLE 3
Simulation results for two-stage setting based on 500 replications [scenario adopted from Fan, Lu

and Song (2016)]. Size: number of selected prescriptive variables; TP: number of true positive
(important) prescriptive variables; ER: error rate of the treatment decision at the stage; overall VR
(value ratio): ratio of the value of the estimated regime relative to that of the true optimal regime.

Numbers in parenthesis are Monte Carlo standard deviations

Stage 2 Stage 1

Method Size TP ER Size TP ER Overall VR

n = 200
SAS 6.59 3.53 14.0 11.70 2.19 30.2 79.1

(2.16) (0.59) (5.5) (2.68) (0.93) (7.0) (8.7)
ForMMER-AIPWE 4.59 3.14 14.0 4.07 2.19 13.4 87.3

(1.05) (0.61) (4.1) (1.23) (0.82) (4.4) (6.4)
ForMMER-reg 5.12 3.34 11.8 4.75 2.61 11.3 91.6

(1.21) (0.54) (3.6) (1.35) (0.82) (3.8) (4.2)

n = 400
SAS 5.77 3.93 7.6 13.00 3.95 16.2 93.3

(1.80) (0.26) (3.6) (3.75) (1.13) (5.3) (3.9)
ForMMER-AIPWE 3.88 3.27 10.8 3.00 2.20 10.5 94.1

(0.81) (0.48) (3.0) (0.78) (0.51) (3.3) (2.7)
ForMMER-reg 4.36 3.37 9.1 3.55 2.45 8.7 96.0

(0.96) (0.49) (3.4) (1.01) (0.62) (3.5) (1.6)

ble but slightly better performance than the more robust ForMMER-AIPWE. We
think this is due to the particular data generating process. For example, in these
scenarios even though nonlinear models are considered, linear models can pro-
vide a good approximation and treatment only interacts linearly with covariates.
Under Scenario VI, ForMMER-AIPWE considerably outperforms SAS, the usual
forward selection method and in addition, ForMMER-AIPWE has better perfor-
mance than ForMMER-reg. For example, when n = 200 and ρ = 0.2, relative to
SAS, ForMMER-AIPWE with α set at 0.05 decreases the error rate of treatment
decision from 32.7% to 7.2% and increases the value from 70.0 to 93.4. Yet the
decision rules from ForMMER-AIPWE are much simpler, involving about three
variables as opposed to about 13 variables from SAS. As expected, performance of
ForMMER is further improved when the tuning parameter α is selected by cross-
validation as shown in Table 2, Scenario VI.

Results on the two-stage setting are shown in Table 3. We report on the size of
selected prescriptive variables, true positive (TP) and error rate (ER) of treatment
decisions for each stage separately. The value ratio (VR) of the final estimated dy-
namic two-stage treatment regime is reported as overall VR. Table 3 shows that
the proposed methods and SAS have comparable performance at the last stage
(stage 2), SAS selects a slightly larger number of variables and hence a slightly
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larger number of true prescriptive variables. At stage 1, SAS tends to select a con-
siderably larger number of variables with true positive, only slightly different from
the proposed methods. ForMMER (both implementations) have considerably bet-
ter error rate than SAS at stage 1. Overall, for both sample size n = 200 and 400,
the proposed methods have better value than SAS; for example, for n = 200, the
value ratio using SAS is 79.1% and 91.6% using the proposed ForMMER-reg. As
the value of a regime takes into account the magnitude of incorrect decisions and
the overall and long-term effect of decisions at multiple stages, it is the most rel-
evant metric in evaluating the overall performance of an estimated dynamic treat-
ment regime.

To summarize, overall forMMER-AIPWE has the most robust performance in
terms of higher values and lower error rates of identifying the optimal treatment
decision for an individual patient. In addition, the proposed method achieved high
values with considerably simpler decision rules, relative to SAS and the usual for-
ward selection based on AIC, across all scenarios. This is obviously an advantage
of the proposed method as it can greatly improve practicality of the estimated treat-
ment regime because simpler decision rules can increase interpretability and also
reduce the burden of collecting patient-level information useful for decision mak-
ing. Finally, we note that the proposed method is applicable in practice in terms of
computational cost. Taking a simulated data set from Scenario IV (p = 1000) as
an example, the proposed method takes less than four minutes to run using R on a
PC with an Intel(R) Core(TM)i7-6700 CPU@3.4 GHz and 8 GB RAM, which we
think is affordable in practice.

4. Application to Nefazodone CBASP trial. We applied the proposed
method to the Nefazodone CBASP trial, where 681 patients with nonpsychotic
chronic major depressive disorder (MDD) were randomized to receive either Ne-
fazodone, cognitive behavioral analysis system of psychotherapy (CBASP) or the
combination of the two treatments [Keller et al. (2000)]. Subjects were followed
for 12 weeks with various assessments taken throughout the study. We consider
the score on the 24-item Hamilton Rating Scale for Depression (HRSD) at 12
weeks after treatment as our outcome of interest and our analysis includes 577
subjects for whom the HRSD score at 12 weeks are available. We considered a
total of 50 baseline variables in constructing optimal treatment regimes. Baseline
variables considered in this analysis are listed in Table 4. Lower HRSD indicates
low depression and better outcome. Previous analyses have found that the combi-
nation treatment leads to lower HRSD score than the other two single treatments,
whereas there is no significance difference between the two single treatments.
Based on these results, in our analysis, we first combined the two single treatment
arms into one arm and the treatment decision to be made is either combination
treatment or single treatment. Then, we limit our analysis to patients who were
randomized to receive single treatment (Nefazodone or CBASP) and consider the
treatment decision being either Nefazodone or CBASP. Also in our analysis, we
consider −HRSD as our outcome such that larger value means better outcome.
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TABLE 4
List of covariates used in the analysis of Nefazodone CBASP trial

1 Female
2 White
3–4 Marital Status (single, widowed/divorced/separated)
5 Body mass index
6 Age of MDD onset 7 Age at screening
8 Live alone 9 IDSSR Anxiety/Arousal Score
10 IDSSR General/Mood Cognition Score 11 IDSSR total score
12 IDSSR sleep score 1 13 IDSSR sleep score 2
14 HAMD Anxiety/Somatic Symptoms 15 HAMD Cognitive Disturbance
16 HAMD Retardation Score 17 HAMD Sleep Disturbance factor score
18 Total HAMD-17 score 19 Total HAMD-24 score
20 MOS36 Cognitive Functioning Factor Score 21 MOS36 General Health Factor Score
22 MOS36 Mental Health Factor Score 23 MOS36 Social Functioning
24 Total HAMA score 25 HAMA Psychic Anxiety Score
26 HAMA Somatic Anxiety Score
27–28 MDD type (neither melancholic or atypical, melancholic)
29–30 Main study diagnosis (no antecedent, continuous)
31–32 MDD current severity (mild, moderate)
33 Anxiety disorder NOS
34–35 Alcohol (abuse, dependence)
36-37 Anxiety (sub-threshold, threshold)
38 Other psychological problems
39 Body dysmorphic current
40 Drug abuse
41 Anorexia or bulimia nervosa
42 Obsessive compulsive
43–44 Specific phobia (sub-threshold, threshold)
45–46 Social phobia (sub-threshold, threshold)
47–48 Post traumatic stress (sub-threshold, threshold)
49–50 Panic (sub-threshold, threshold)

We analyzed the data using the proposed ForMMER-reg and SAS. For ForM-
MER, we first built a parametric linear regression model for each treatment group
and the final models were chosen using forward selection based on BIC infor-
mation number. Then the contrast for each subjects was used in the ForMMER
algorithm to estimate the optimal treatment regime. Since the number of candidate
variables in our data is only 50 and far less than the number of covariates (1000) in
our simulations, we chose to use a less stringent cutoff value α = 0.02. For com-
bination (a = 1) versus single treatment (a = 0), the estimated optimal regimes by
ForMMER and SAS are, respectively,

ĝ
opt
ForMMER = I (55 − X6 > 0),

ĝ
opt
SAS = I (4.55 − 1.97X14 + 0.16X18 − 5.88X35 > 0).
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The forms of regimes from the two methods seem very different and completely
different sets of covariates are selected. However, we note that, despite the form
of the decision rules, the actual treatment decisions are actually very similar. Both
rules suggest that for the majority of patients the optimal treatment option is the
combination treatment (a = 1). For patients in our data set, ForMMER suggests
that 555 patients out of 557 should receive the combination treatment and SAS
suggests 545 patients should receive treatment 1. There is a lot of overlap in terms
of the estimated optimal decisions and all the 545 patients identified by SAS that
should receive the combination treatment are also identified by ForMMER. In Ta-
ble S4 in the Supplementary Material [Zhang and Zhang (2018)], the estimated op-
timal treatment decisions from the two methods are given as a two-by-two table.
The estimated values of the two regimes using the inverse probability weighted
method are almost the same: −9.8 (95% CI: −10.9,−8.7) and −9.8 (95% CI:
−10.9, −8.6). We note that, in constructing confidence intervals, regimes are taken
to be given without taking into account that regimes are estimated from the data.
The estimated values are very close to the value (−9.9) of a regime that assigns
everyone to the combined treatment (a = 1) and much better than a regime that
assigns everyone to single treatment (Table 5). These results are consistent with
the previously published results, which indicate that the combined treatment is su-
perior to single treatment. Although ForMMER and SAS lead to similar treatment
decisions and estimated values, the form of decision rule from ForMMER is much
simpler than SAS, which is consistent with our simulation studies. From a practi-
cal point of view, a simpler decision rule with less variables is more convenient to
use in practice and should be preferred.

For Nefazodone (a = 1) versus CBASP (a = 0), the estimated optimal regimes
by ForMMER and SAS are, respectively,

ĝ
opt
ForMMER = I (−0.55 − 0.30X1 − 0.17X8 + 0.20X12

− 0.12X13 − 0.60X15

+ 0.33X16 + 0.71X40 − 0.88X50 > 0)

TABLE 5
Data analysis results: estimated value of the estimated optimal treatment. The values are estimated
using inverse probability weighted method. g = 1 is a regime that assigns everyone to treatment 1

and g = 0 is a regime that assign everyone to treatment 0. Numbers in parenthesis are 95%
confidence intervals

Combination (a = 1) vs. single (a = 0) Nefazodone (a = 1) vs. CBASP (a = 0)

ForMMER −9.8 (−10.9,−8.7) −11.0 (−12.6,−9.4)

SAS −9.8 (10.9,−8.6) −12.1 (−13.8,−10.4)

g = 1 −9.9 (−11.0,−8.8) −14.9 (−16.4,−14.9)

g = 0 −14.9 (−15.8,−13.9) −14.8 (−16.2,−13.4)
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and

ĝ
opt
SAS = I (−15.03 − 5.15X1 − 2.71X8 + 1.01X12 + 6.60X14 + 4.17X16

+ 0.09X22 − 2.49X28 + 6.16X31 − 14.69X33

− 7.69X36 − 12.53X37 − 4.56X38

+ 5.37X40 − 17.87X42 − 5.87X46

− 7.59X48 + 7.98X49 − 6.71X50 > 0).

Again the estimated optimal treatment regime from ForMMER is much simpler
than that from SAS. Six out of eight selected variables by ForMMER are also
selected by SAS. There is also a fair amount of overlap in terms of treatment deci-
sions. ForMMER recommends 152 patients receive Nefazodone and 121 of them
are also suggested by SAS to receive Nefazodone; see Table S4 in the Supple-
mentary Material for treatment decisions from the two methods [Zhang and Zhang
(2018)]. The estimated value of ĝ

opt
ForMMER and ĝ

opt
SAS are −11.0 (95% CI: −12.6,

−9.4) and −12.1 (95% CI: −13.8, −10.4) respectively, with ĝ
opt
ForMMER having

slightly larger estimated value while selecting less variables. The value of both
regimes perform much better than the two regimes that assign everyone to Ne-
fazodone or CBASP. More results are reported in Table 5. In addition to Table
S4, Tables S4 and S5 in the Supplementary Material provide additional summary
statistics on this data application [Zhang and Zhang (2018)].

5. Discussion. Within the classification framework (C-learning) for estimat-
ing the optimal treatment regimes, in this article we further developed a variable
selection algorithm for selecting variables that have qualitative interactions with
treatment and hence are important for making treatment decisions, namely, pre-
scriptive variables. This variable selection algorithm directly targets prescriptive
variables with the objective of optimizing treatment rules, in contrast to methods
focusing on selecting predictive variables and prediction. Within the C-learning
framework, the optimal treatment regime can be equivalently defined as the clas-
sifier that minimizes a weighted misclassification error, where the objective of the
classifier is to, based on patient’s characteristics, classify patients to the treatment
option that leads to larger expected potential outcomes. A major advantage of this
framework is that it naturally accommodates a strategy for variable selection tar-
geting prescriptive variables, since only prescriptive variables are relevant in de-
termining the contrast functions and the weighted misclassification error. In the
proposed ForMMER algorithm, it forward sequentially selects important prescrip-
tive variables and estimates the optimal treatment regimes simultaneously. The
proposed prescriptive variable selection method is based on a direct optimization
strategy by directly optimizing the value of treatment decision rules and as a result
it enjoys the advantages of direct optimization methods for estimating the optimal
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treatment regimes discussed in detail in Section 2.2. This also explains the superior
performance of the proposed method as demonstrated in our simulations.

The ForMMER algorithm selects prescriptive variables sequentially and at each
step it assesses the additional merit of a new variable given variables that have
already been selected. As a result, similar to SAS, it tends not to select those vari-
ables that are only marginally important for decision making but are not important
jointly. Therefore, as SAS, it tends to select fewer variables overall but more true
prescriptive variables than methods that consider each variables individually. Fur-
thermore, the proposed ForMMER algorithm decouples the step for estimating the
contrast functions from the step for optimization and prescriptive variable selec-
tion and, as a result, it is able to target directly on prescriptive variables while still
taking advantage of predictive variables in the outcome-regression step to improve
performance. This is one of the main differences between ForMMER and SAS and
in SAS variables that are only predictive but not prescriptive tend not to be selected
and hence will not be able to be exploited in subsequent steps to improve perfor-
mance. This point is discussed in detail at the end of Section 2.3 and illustrated in
simulations, especially in Table 2. To summarize, the flexibility of modeling the
contrast functions using various ways, the sequential selection strategy, and the
separation of the optimization step for variable selection and optimizing decision
rules from the estimation of the contrast functions together contribute to the su-
perior performance of the proposed ForMMER method. As demonstrated by our
simulations and real data application, ForMMER selects considerably less vari-
ables yet with better value and lower error rate than SAS and the same statement
can be made for its performance relative to other methods evaluated in Fan, Lu and
Song (2016) [i.e., the S-score method of Gunter, Zhu and Murphy (2011), and the
method of Lu, Zhang and Zeng (2013), with LASSO selection] as our simulation
settings are adopted from Fan, Lu and Song (2016). Finally, we note the measure
(weighted misclassification error) used in the forward sequential variable selection
in our method is directly related to the definition of an optimal treatment regime
and has a very intuitive interpretation, making it easier to communicate with clin-
icians. As argued at the end of Section 3, overall we think the proposed method
offers a reasonable and practical solution to a clinically very important issue.

SUPPLEMENTARY MATERIAL

Additional results (DOI: 10.1214/18-AOAS1154SUPP; .pdf). We provide ad-
ditional simulation and data analysis results.
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