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MULTI-RUBRIC MODELS FOR ORDINAL SPATIAL DATA
WITH APPLICATION TO ONLINE RATINGS DATA

BY ANTONIO R. LINERO1, JONATHAN R. BRADLEY2 AND APURVA DESAI

Florida State University

Interest in online rating data has increased in recent years in which ordi-
nal ratings of products or local businesses are provided by users of a website,
such as Yelp! or Amazon. One source of heterogeneity in ratings is that
users apply different standards when supplying their ratings; even if two users
benefit from a product the same amount, they may translate their benefit into
ratings in different ways. In this article we propose an ordinal data model,
which we refer to as a multi-rubric model, which treats the criteria used to
convert a latent utility into a rating as user-specific random effects, with the
distribution of these random effects being modeled nonparametrically. We
demonstrate that this approach is capable of accounting for this type of vari-
ability in addition to usual sources of heterogeneity due to item quality, user
biases, interactions between items and users and the spatial structure of the
users and items. We apply the model developed here to publicly available data
from the website Yelp! and demonstrate that it produces interpretable clus-
terings of users according to their rating behavior, in addition to providing
better predictions of ratings and better summaries of overall item quality.

1. Introduction. In recent years the complexity of data used to make de-
cisions has increased dramatically. An example of this is the use of online re-
views to decide whether to purchase a product or visit a local business; we refer
to the objects being reviewed as items. Consider data provided by Yelp! (see,
http://www.yelp.com/), which allows users to rate items, such as restaurants, con-
venience stores and so forth, on a discrete scale from one to five “stars.” Additional
features of the businesses are also known, such as the spatial location and type of
business. Datasets of this type are typically very large and exhibit complex depen-
dencies.

As an example of this complexity, users of Yelp! determine their own stan-
dards when rating a local business. We refer to the particular standards a user
applies as a rubric. We might imagine a latent variable Yiu representing the util-
ity, or benefit, user u obtained from item i. For a given level of utility, however,
different users may still give different ratings due to having different standards
for the ratings; for example, one user may rate a restaurant five stars as long as
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it provides a nonoffensive experience, a second user might require an exceptional
experience to rate the same restaurant five stars, and a third user may rate all items
with one star in order to “troll” the website. Each of these users are applying dif-
ferent rubrics in translating their utility to a rating for the restaurant. In addition
we also expect user-specific selection bias in the sense that some users may rate
every restaurant they attend, while other users may only rate restaurants that they
feel strongly about.

This article makes several contributions. First, we develop a semiparametric
Bayesian model which accounts for the existence of multiple rubrics for ratings
data that are observed over multiple locations. To do this, we use a spatial cumula-
tive probit model [e.g., see Higgs and Hoeting (2010), Berrett and Calder (2012),
Schliep and Hoeting (2015)] in which the breakpoints are modeled as user-specific
random effects. This requires a flexible model for the distribution F of the random
effects, which we model as a discrete mixture. A by-product of our approach is
that we obtain a clustering of users according to the rubrics they are using.

Second, we use the multi-rubric model to address novel inferential questions.
For example, ratings provided to a user might be adjusted to match that user’s
rubric or to provide a distribution for the rating that a user would provide condi-
tional on having a particular rubric. Utilizing this user-specific standardization of
ratings may provide users with better intuition for the overall quality of an item.

This adjustment of restaurant quality for the rubrics is similar to, but distinct
from, the task of predicting a user’s ratings. Good predictive performance is re-
quired for filtering, which refers to the task of processing the rating history of a
user and producing a list of recommendations [for a review, see Bobadilla et al.
(2013)]. As a third contribution, we show that allowing for multiple rubrics im-
proves predictions.

The model proposed here also has interesting statistical features. A useful fea-
ture of our model is that it allows for more accurate comparisons across items. For
example, if a user rates all items with one star, then the model discounts this user’s
ratings. This behavior is desirable for two reasons. First, if a user genuinely rates
all items with one star, then their rating is unhelpful. Second, it downweights the
ratings of users who are exhibiting selection bias and only rating items which they
feel strongly about, which is desirable as comparisons across items will be more
indicative of true quality if they are based on individuals who are not exhibiting
large degrees of selection bias.

Additionally, the rubrics themselves may be of intrinsic interest. We demon-
strate that the rubrics learned by our model are highly interpretable. For example,
when analyzing the Yelp! dataset in Section 4, we obtain Figure 7 which dis-
plays the ratings observed for users assigned to a discrete collection of rubrics and
reveals several distinct rating patterns displayed by users.

Other features of our model are also of potentially independent interest. The
multi-rubric model can be interpreted as a novel semiparametric random-effects
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model for ordinal data, even for problems in which the intuition behind the multi-
rubric model in terms of latent utility does not hold. Other study designs in which
the multi-rubric analogy may be useful include longitudinal survey studies or more
general ordinal repeated-measures designs. Additionally, the cumulative probit
model we use to model latent user preferences includes a spatial process to ac-
count for spatial dependencies across local businesses. Recovering an underlying
spatial process allows for recommending entire regions to visit rather than singular
items. The development of low-rank spatial methodology for large-scale depen-
dent ordinal data is of interest within the spatial literature, as the current spatial
literature for ordinal data do not typically address large datasets on a similar order
of the Yelp! dataset [e.g., see De Oliveira (2000, 2004), Chen and Dey (2000),
Cargnoni, Müller and West (1997), Knorr-Held (1995), Dawid (1992), Higgs and
Hoeting (2010), Berrett and Calder (2012), Velozo, Alves and Schmidt (2014)
among others]. We model the underlying spatial process using a low-rank approx-
imation [Cressie and Johannesson (2008)] to a desired Gaussian process [Banerjee
et al. (2008), Bradley, Holan and Wikle (2015)].

Starting from Koren and Sill (2011), several works in the recommender systems
literature have considered ordinal matrix factorization (OMF) procedures which
are similar in many respects to our model [see also Paquet, Thomson and Winther
(2012) and Houlsby, Hernández-Lobato and Ghahramani (2014)]. Our work dif-
fers from these works in that the multi-rubric model treats the breakpoints as user-
specific random effects, with a nonparametric prior used for the random effects
distribution F . For the Yelp! dataset, this extra flexibility leads to improved pre-
dictive performance. Additionally, our focus in this work extends to inferential
goals beyond prediction; for example, depending on the distribution of the rubrics
of users who rate a given item, the estimate of overall quality for that item can be
shrunk to a variety of different centers producing novel multiple-shrinkage effects.
Several works in the Bayesian nonparametric literature have also considered flex-
ible models for random effects in multivariate ordinal models [Kottas, Müller and
Quintana (2005), DeYoreo and Kottas (2014), Bao and Hanson (2015)] but do not
treat the breakpoints themselves as random effects.

The paper is organized as follows. In Section 2 we develop the multi-rubric
model, with an eye toward the Yelp! dataset and provide implementation de-
tails. In Section 3 we illustrate the methodology on synthetic data designed to
mirror features of the Yelp! dataset and demonstrate that we can accurately re-
cover the number and structure of the rubrics when the model holds, as well as
effectively estimate the underlying latent utility field. In Section 4 we illustrate the
methodology on the Yelp! dataset. We conclude with a discussion in Section 5. In
the Supplementary Material [Linero, Bradley and Desai (2018)] we present sim-
ulation experiments which demonstrate identifiability of key components of the
model.
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2. The multi-rubric model.

2.1. Preliminary notation. We consider ordinal response variables Ziu taking
values in {1, . . . ,K}. In the context of online ratings data, Ziu represents the rating
that user u provides for item i. In the context of survey data, on the other hand, Ziu

might represent the response subject u gives to question i. We do not assume that
Ziu is observed for all (i, u) pairs, but instead we observe (i, u) ∈ S ⊆ {1, . . . , I }×
{1, . . . ,U}, where U is the total number of subjects and I is the total number of
items. For fixed i we let Ui = {u : (i, u) ∈ S} be the set of users that rate item i,
and similarly for fixed u we let Iu = {i : (i, u) ∈ S} be the set of items that user u

rates.

2.2. Review of cumulative probit models. Cumulative probit models [Albert
and Chib (1993, 1997)] provide a convenient framework for modeling ordinal rat-
ing data. Consider the univariate setting with ordinal observations {Zi : 1 ≤ i ≤ N}
taking values in {1, . . . ,K}. We assume that Zi is a rounded version of a la-
tent variable Yi such that Zi = k if θk−1 ≤ Yi < θk . Here, −∞ = θ0 ≤ θ1 ≤
· · · ≤ θK = ∞ are unknown breakpoints. When Yi has the Gaussian distribu-
tion Yi ∼ Gau(x�

i γ ,1), this leads to the ordinal probit model, where Pr(Zi = k |
θ, γ ) = �(θk − x�

i γ ) − �(θk−1 − x�
i γ ).

We assume Var(Yi) = 1, as the variance of Yi is confounded with the break-
points θ = (θ1, . . . , θK−1). Any global intercept term is also confounded with the
θ ’s; there are two resolutions to this issue. The first is to fix one of the θk’s, for
example, θ1 ≡ 0. The second is to exclude an intercept term from xi . While the for-
mer approach is often taken [Albert and Chib (1997), Higgs and Hoeting (2010)],
it is more convenient in the multi-rubric setting to use the latter approach to avoid
placing asymmetric restrictions on the breakpoints.

The ordinal probit model is convenient for Bayesian inference in part because
it admits a simple data augmentation algorithm which iterates between sampling

Yi
indep∼ TruncGau(x�

i γ ,1, θZi−1, θZi
) for 1 ≤ i ≤ N and, assuming a flat prior for

γ , sampling γ ∼ Gau{(X�X)−1X�Y , (X�X)−1}, where X has ith row x�
i and

Y = (Y1, . . . , YN). Here, TruncGau(μ,σ 2, a, b) denotes the Gaussian distribution
truncated to the interval (a, b). Additionally, an update for θ is needed. Efficient
updates for θ can be implemented by using a Metropolis-within-Gibbs step to
update θ as a block [for details, see Albert and Chib (1997), as well as Cowles
(1996) for alternative MCMC schemes].

2.3. Description of the proposed model.

2.3.1. The multi-rubric model. We develop an extension of the cumulative
probit model to generic repeated-measures ordinal data {Ziu : (i, u) ∈ S}. Follow-
ing Albert and Chib (1997) we introduce latent utilities Yiu but specify a generic
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FIG. 1. Visualization of the multi-rubric model. The point on the density indicates the realized
value of Y .

ANOVA model

Yiu = fiu + νu + ξi + εiu, εiu
i.i.d.∼ Gau(0,1),(1)

where νu and ξi are main effects and fiu is an interaction effect. The multi-rubric
model modifies the cumulative probit model by replacing the break-point param-

eter θ with u-specific random effects θu = (θu0, . . . , θuK) with [θu | F ] indep∼ F for
some unknown F . As before we let Ziu = k if θu(k−1) ≤ Yiu ≤ θuk .

For concreteness we take F to be a finite mixture F = ∑M
m=1 ωmδθ(m) for some

large M , with θ(m) i.i.d.∼ H and ω ∼ Dirichlet(a, . . . , a), where δθ(m) is a point-mass
distribution at θ(m). We note that it is also straightforward to use a nonparamet-
ric prior for F such as a Dirichlet process [Escobar and West (1995), Ferguson
(1973)]. We refer to the random effects θ(1), . . . , θ (M) as rubrics. Note that for
each subject u there exists a latent class m such that θu = θ(m).

Figure 1 displays the essential idea for the model. Viewing Y as a latent utility,
the rubric with which the user is associated leads to different values of the observed
rating Z. In this example the second rubric is associated to users who rate many
items with a 3, while the first rubric is associated to users who do not rate many
items with a 3.

Treating the breakpoints as random effects has several benefits. First, it offers
additional flexibility over approaches for ordinal data which incorporate a random
intercept [Gill and Casella (2009)]. Due to the fact that the θu’s are confounded
with both the location and scale of Yiu, treating the breakpoints as random effects is
at least as flexible as treating the location and scale of the distribution of the Yiu’s as
random effects. We require this additional flexibility as merely treating the location
and scale of the Yiu’s as random effects does not allow for the variety of rating
behaviors exhibited by users. By treating the breakpoints as random effects, we
are able to capture any distribution of ratings in a given rubric (see, e.g., Figure 7).
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In addition to flexibility, specifying F as a discrete mixture induces a clustering of
users into latent classes. To each user u we associate a latent variable Cu such that
Cu = m if θu = θ(m). As will be demonstrated in Section 4, the latent classes of
users discovered in this way are highly interpretable.

2.3.2. Model for the Yelp! data. Our model for the Yelp! data takes Yiu ∼
Gau(μiu,1) where

μiu = x�
i γ + α�

u βi + Wi + bi, Wi = ψ(si)
�η.

This is model (1) with fiu = α�
u βi , ξi = x�

i γ + Wi + bi and νu removed. This
model can be motivated as a combination of the fixed-rank kriging approach of
Cressie and Johannesson (2008) with the probabilistic matrix factorization ap-
proach of Mnih and Salakhutdinov (2008). The terms x�

i γ , Wi , and bi are used
to account for heterogeneity in the items. The term x�

i γ accounts for known co-
variates xi ∈ R

p associated to each item. The term Wi is used to capture spa-
tial structure and is modeled with a basis function expansion Wi = ψ(si)

�η

where si denotes the longitude-latitude coordinates associated to the item and
ψ(s) = (ψ1(s), . . . ,ψr(s))

� is a vector of basis functions. We note that it is
straightforward to replace our low-rank approach for Wi with more elaborate ap-
proaches such as the full-scale approach of Sang and Huang (2012). The term bi

is an item-specific random effect which is used to capture any item heterogeneity
that cannot be accounted for by the covariates or the low-rank spatial structure.

The vectors αu and βi intuitively correspond to unmeasured user-specific and
item-specific latent features. The term α�

u βi is large/positive when αu and βi point
in the same direction (i.e., the user’s preferences align with the item’s characteris-
tics) and is large/negative when αu and βi point in opposite directions. This allows
the model to account not only for user-specific biases (θu) and item-specific biases
(xi,Wi, bi) but also interaction effects.

The multi-rubric model can be summarized by the following hierarchical model.
For each model we implicitly assume the statements hold conditionally on all vari-
ables in the models below and that conditional independence holds within each
model unless otherwise stated.

Response model: Ziu = k with probability wiuk = �(θuk −μiu)−�(θu(k−1) −
μiu) and μiu = x�

i γ + α�
u βi + Wi + bi .

Random effect model: θu
i.i.d.∼ F , αu ∼ Gau(0, σ 2

α I), βi ∼ Gau(0, σ 2
β I), and bi ∼

Gau(0, σ 2
b ).

Spatial process model: Wi = ψ(si)
�η where η ∼ Gau(0,�η).

Parameter model: γ ∼ Flat and F = ∑M
m=1 ωmδθ(m) where ω ∼

Dirichlet(a, . . . , a) and θ(m) i.i.d.∼ H .

To complete the model we must specify values for the hyperparameters
σα,σβ, σb,�η, a and H , as well as the number of rubrics M and the number of
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latent factors L. In our illustrations we place half-Gaussian priors for the scale pa-

rameters with (σβ, σb)
i.i.d.∼ Gau+(0,1) and σα ≡ 1. We let �η = diag(σ 2

η , . . . , σ 2
η )

and set ση ∼ Gau+(0,1). Here, Gau+(0,1) denotes a standard Gaussian distri-
bution truncated to the positive reals. For a discussion of prior specification for
variance parameters, see Gelman (2006) and Simpson et al. (2017).

In our illustrations we use M = 20. For the Yelp! dataset, the choice of M =
20 rubrics is conservative, and by setting a = κ/M for some fixed κ > 0 we en-
courage ω to be nearly-sparse [Ishwaran and Zarepour (2002), Linero (2018)]. This
strategy effectively lets the data determine how many rubrics are needed, as the
prior encourages ωm ≈ 0 if rubric m is not needed. The prior H for θ(1), . . . , θ (M)

is chosen to have density h(θ) = ∏K
k=1 Gau(θk | 0, σ 2

θ )I (θ1 ≤ · · · ≤ θK−1) so that
θ(m) has the distribution of the order statistics of K − 1 independent Gau(0, σ 2

θ )

variables.

2.4. Evaluating item quality. A commonly used measure of item quality is
the average rating of a user from the population λi = E(Ziu | xi, φi, γ ) where
φi = (βi, bi,Wi). This quantity is given by

λi =
K∑

k=1

k · Pr(Ziu = k | xi, φi, γ )

=
K∑

k=1

M∑
m=1

k · ωm ·
∫

Pr(Ziu = k | xi, φi, αu, γ,Cu = m)Gau
(
α | 0, σ 2

α I
)
dα.

Using properties of the Gaussian distribution and recalling that σ 2
α = 1, it can be

shown that

λi =
K∑

k=1

M∑
m=1

k · ωm ·
{
�

(
θ

(m)
k − ξi√
1 + ‖βi‖2

)
− �

(
θ

(m)
k−1 − ξi√
1 + ‖βi‖2

)}
,(2)

where ξi = x�
i γ + bi + Wi . In Section 4 we demonstrate the particular users who

rated item i exert a strong influence on the λi ’s, particularly for restaurants with
few ratings.

Rather than focusing on an omnibus measure of overall quality, we can also ad-
just the overall quality of an item to be rubric specific. This amounts to calculating
λim = E(Ziu | xi, φi, γ,Cu = m), which represents the average rating of item i if
all used rubric m. Similar to (2), this quantity can be computed as

λim =
K∑

k=1

k ·
{
�

(
θ

(m)
k − ξi√
1 + ‖βi‖2

)
− �

(
θ

(m)
k−1 − ξi√
1 + ‖βi‖2

)}
.(3)

In Section 4 we use both (2) and (3) to examine the statistical features of the multi-
rubric model.
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2.5. Implementation details. We use the reduced rank model W = �η + b

where � ∈ R
I×r has ith row given by ψ(si)

�. We choose � so that Cov(�η)

is an optimal low-rank approximation to σ 2
η � where � is associated to a target

positive semi-definite covariogram. This is accomplished by taking � composed
of the first r columns of �D1/2 where � = �D�� is the spectral decomposi-
tion of �. The Eckart–Young–Mirsky theorem states that this approximation is
optimal with respect to both the operator norm and Frobenius norm [see, e.g.,
Rasmussen and Williams (2006), Chapter 8]. A similar strategy is used by Bradley,
Holan and Wikle (2015), Bradley, Wikle and Holan (2016), who use an optimal
low-rank approximation of a target covariance structure � ≈ ��η�

� where the
basis � is held fixed but �η is allowed to vary over all positive-definite r × r

matrices. In our illustrations we use the squared-exponential covariance, that is,
�ij = exp(−ρ‖si − sj‖2) [Cressie (2015)].

To complete the specification of the model, we must specify the bandwidth ρ,
the number of latent factors L and the number of basis functions r . We regard L as
a tuning parameter, which can be selected by assessing prediction performance on
a held-out subset of the data. In principle a prior can be placed on ρ, however, this
results in a large computational burden. We instead evaluate several fixed values of
ρ chosen according to some rules of thumb and select the value with the best per-
formance. For the Yelp! dataset, we selected ρ = 1000, which corresponds un-
dersmoothing the spatial field relative to Scott’s rule [see, e.g., Härdle and Müller
(2000)] by roughly a factor of two and remark that substantively similar results are
obtained with other bandwidths. Finally, r can be selected so that the proportion
of the variance

∑r
d=1 D2

ii/
∑n

d=1 D2
ii in � accounted for by the low-rank approx-

imation exceeds some preset threshold; for the Yelp! dataset, we chose r = 500
to account for 99% of the variance in �.

When specifying the number of rubrics M , we have found that the model is
most reliable when M is chosen large and a = κ/M for some κ > 0. Under these
conditions, the prior for F is approximately a Dirichlet process with concentration
κ and base measure H [see, e.g., Teh et al. (2006)]. We recommend choosing M

to be conservatively large and allowing the model to remove unneeded rubrics
through the sparsity-inducing prior on ω. We have found that taking M large is
necessary for good performance even in simulations in which the true number of
rubrics is small and known.

We use Markov chain Monte Carlo to approximately sample from the poste-
rior distribution of the parameters. A description of the sampler is given in the
Appendix.

2.6. A note on selection bias. Let �iu = 1 if (i, u) ∈ S , and �iu = 0 oth-
erwise. In not modeling the distribution of �iu, we are implicitly modeling the
distribution of the Ziu’s conditional on �iu = 1. When selection bias is present,
this may be quite different than the marginal distribution of Ziu’s. Experiments
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due to Marlin et al. (2007) provide evidence that selection bias may be present in
practice.

A useful feature of the approach presented here is that it naturally down-weights
users who are exhibiting selection bias. For example, if user u only rates items they
feel negatively about, they will be assigned to a rubric m for which θ

(m)
1 is very

large; this has the effect of ignoring their ratings as there will be effectively no
information in the data about their latent utility. As a result, when estimating over-
all item quality, the model naturally filters out users who are exhibiting extreme
selection bias, which may be desirable.

In the context of prediction, the predictive distribution for Ziu should be under-
stood as being conditional on the event �iu = 1; that is, the prediction is made
with the additional information that user u chose to rate item i. This is the case for
nearly all collaborative filtering methods, as correcting for the selection bias neces-
sitates collecting Ziu’s for which �iu = 0 would occurred naturally; for example,
as done by Marlin et al. (2007), we might assess selection bias by conducting a pi-
lot study which forces users to rate items they would not have normally rated. With
the understanding that all methods are predicting ratings conditional on �iu = 1,
the results in Section 4 show that the multi-rubric model leads to increased predic-
tive performance.

Selection bias should also be taken into account when interpreting the latent
rubrics produced by our model. Our model naturally provides a clustering of users
into latent classes, which we presented as representing differing standards in user
ratings; however, we expect that the model is also detecting differences in selection
bias across users. We emphasize that our goal is to identify and account for het-
erogeneity in rating patterns, and we avoid speculating on whether heterogeneity
is caused by different rating standards or selection bias. For example, a user who
rates items with only one star or five stars might be either (i) using a rubric which
results in extreme behavior, with most of the breakpoints very close together, or
(ii) actively choosing to rate items about which they feel strongly.

3. Simulation study. The goal of this simulation is to illustrate that we can
accurately learn the existence of multiple rubrics in settings where one would ex-
pect it would be difficult to detect them. We consider a situation where the data
is generated according to two rubrics that are similar to each other. This allows
us to assess the robustness of our model to various “degrees” of the multi-rubric
assumption. The performance of our multi-rubric model is assessed relative to the
single-rubric model, which is the standard assumption made in the ordinal data
literature.

We calibrate components of the simulation model toward the Yelp! dataset to
produce realistic simulated data. Specifically, we set η and σ 2

b equal to the posterior
means obtained from fitting the model to the Yelp! dataset in Section 4. We set
�η = 0.5I, corresponding to a much stronger spatial effect than what was observed
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FIG. 2. Empirical distribution of the Ziu’s in the simulation model, for θ1, θ
(0.8)
2 , and θ

(0)
2 .

in the data, and for simplicity we removed the latent-factor aspect of the model by
fixing σ 2

β ≡ 0. A two-rubric model is used with ω1 = ω2 = 0.5. We also use the
same spatial basis functions and observed values of (i, u) as in the Yelp! analysis
in Section 4.

We now describe how the two rubrics θ1 and θ2 were chosen. First, θ1 was se-
lected so that {Ziu : Cu = 1, i = 1, . . . , I } was evenly distributed among the five
responses. Associated to θ1 is a probability vector p1 = (0.2,0.2,0.2,0.2,0.2).
To specify θ2, we use the same approach with a difference choice of p. Let
p2 = (0,0.25,0.5,0.25,0). Then θ

(τ)
2 is associated to τp1 + (1− τ)p2 in the same

manner as θ1 is associated to p1. Here, τ indexes the similarity of θ1 and θ2, and
it can be shown that the total variation distance between the empirical distribution
of {Ziu : Cu = 1} and {Ziu : Cu = 2} is 0.8(1 − τ). Thus, values of τ near 1 imply
that the rubrics are similar, while values of τ near 0 imply that they are dissimilar.
Figure 2 presents the distribution of the Ziu’s with Cu = 2 when τ = 0,0.8, and 1.

We fit a 10-rubric and single-rubric model for τ = 0.0,0.1, . . . ,1.0. Figure 3
displays the proportion of individuals assigned to each rubric for a given value of τ .
If the model is accurately recovering the underlying rubric structure, we expect to
see a half of the observations assigned to one rubric and half to another; due to
permutation invariance, which of the 10 rubrics is associated to θ1 and θ

(τ)
2 vary

by simulation. Up to τ = 0.9, the model is capable of accurately recovering the
existence of two rubrics. We also see that, even at τ = 0.8, the model accurately
recovers the empirical distribution of the Ziu’s associated to each rubric.

Next, we assess the benefit of using the multi-rubric model to predict missing
values. For each value of τ , we fit a single-rubric and multi-rubric model. Using
the same train-test split as in the our real data illustration, we compute the log
likelihood on the held-out data logliktest = ∑

(i,u)∈Stest
log Pr(Ziu | D), which is

further discussed in detail in Section 4. Figure 4 shows the difference in held-out
log likelihood for the single-rubric and multi-rubric model as a function of τ . Up to
τ = 0.8, there is a meaningful increase in the held-out log-likelihood obtained from
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FIG. 3. Top: proportion of individuals assigned to each rubric at the last iteration of the Markov
chain. Bottom: The empirical distribution of Ziu for the two rubrics associated to Cu = 1 and Cu = 2
when τ = 0.8; compare with the left and middle plots in Figure 2.

using the multi-rubric model. The case where τ = 1 is also particularly interesting,
as this implies that the data were generated from the single rubric model. Here, the
predictive performance of our model at missing values appears to be robust to the
case when the multiple rubric assumption is incorrect.

Displayed above each point in Figure 4 is the proportion of observations which
are assigned to the correct rubric, where each observation is assigned to their most
likely rubric. When the rubrics are far apart the model is capable of accurately
assigning observations to rubrics. As the rubrics get closer together, the task of
assigning observations to rubrics becomes much more difficult.

This simulation study suggests that the model specified here is able to disentan-
gle the two-rubric structure, even when the rubrics are only subtly different. This
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FIG. 4. Difference in logliktest for the single-rubric and multi-rubric model obtained in the sim-
ulation study, as a function of τ . Above each point, we provide the proportion of users whose most
likely rubric assignment matched their true rubric.

leads to clear improvements in predictive performance for small and moderate val-
ues for τ . Additionally, when the multi-rubric assumption is negligible, or even
incorrect, our model performs as well as the single-rubric model.

4. Analysis of Yelp data. We now apply the multi-rubric model to the Yelp!
dataset, which is publicly available at https://www.yelp.com/dataset_challenge.
We begin by preprocessing the data to include reviews only between January 1st,
2013, and December 31st, 2016, and restrict attention to restaurants in Phoenix and
its surrounding areas. We further narrow the data to include only users who rated at
least 10 restaurants; this filtering is done in an attempt to minimize selection bias,
as we believe that “frequent raters” should be less influenced by selection bias.

We first evaluate the performance of the single-rubric and multi-rubric models
for various values of the latent factor dimension L. We set M = 20 and induce spar-
sity in ω by setting ω ∼ Dirichlet(1/20, . . . ,1/20). We divide the indices (i, u) ∈ S
into a training set Strain and testing set Stest of equal sizes by randomly allocating
half of the indices to the training set. We evaluate predictions using a held-out
log-likelihood criteria

logliktest = |Stest|−1
∑

(i,u)∈Stest

log Pr(Ziu | D)

≈ |Stest|−1
∑

(i,u)∈Stest

logT −1
T∑

t=1

Pr
(
Ziu | C(t)

u , θ(t),μ
(t)
iu

)
,

(4)

where D = {Ziu : (i, u) ∈ Strain}, Pr(Ziu | D) denotes the posterior predictive dis-
tribution of Ziu and t = 1, . . . , T indexes the approximate draws from the poste-
rior obtained by MCMC. Results for the values L = 1,3 and 5, over 10 splits into

https://www.yelp.com/dataset_challenge
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FIG. 5. Boxplots of −2.0 · logliktest for the mixture multinomial model (MMM, which does not
have latent factors), ordinal matrix factorization (OMF), the single rubric model (Single) and the
multi-rubric model (Multi), for 10 splits into training and testing data.

training and test data, are given in Figure 5. We also compare our methodology to
ordinal matrix factorization [Paquet, Thomson and Winther (2012)] with learned
breakpoints and spatial smoothing, and the mixture multinomial model [Marlin
and Zemel (2009)] with 10 mixture components. The multi-rubric model leads to
an increase in the held-out data log-likelihood (4) of roughly 5% over ordinal ma-
trix factorization and 8% over the mixture multinomial model. Additionally, we
note that the held-out log-likelihood was very stable over replications. The single-
rubric model is essentially equivalent to ordinal matrix factorization.

The dimension of the latent factors αu and βi has little effect on the quality of
the model. We attribute this to the fact that |Ui | and Iu| are typically small, mak-
ing it difficult for the model to recover the latent factors. On other datasets where
this is not the case, such as the Netflix challenge dataset, latent-factor models rep-
resent the state of the art and are likely essential for the multi-rubric model. In
supplementary material [Linero, Bradley and Desai (2018)] we show in simula-
tion experiments that the αu’s, βi ’s, and L are partially identified.

Figure 6 displays the learned spatial field Ŵ (s) = ψ(s)�η̂ where η̂ is the pos-
terior mean of η. The results suggest that the downtown Phoenix business district
and the area surrounding the affluent Paradise Valley possess a higher concentra-
tion of highly-rated restaurants than the rest of the Phoenix area. More sparsely
populated areas, such as such as Litchfield Park, or areas with lower income, such
as Guadalupe, seem to have fewer highly-rated restaurants.

We now examine the individual rubrics. First, we obtain a clustering of
users into their rubrics by minimizing Binder’s loss function [Binder (1978)]
L(c) = ∑

u,u′ |δcu,cu′ − �u,u′ |, where δij = I (i = j) is the Kronecker delta, c =
(c1, . . . , cU ) is an assignment of users to rubrics and �u,u′ is the posterior prob-
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FIG. 6. Estimate of the underlying spatial field W(s) = ψ(s)�η at each realized restaurant loca-
tion using its posterior mean.

ability of Cu = Cu′ . See Fritsch and Ickstadt (2009) for additional approaches to
clustering objects using samples of the Cu’s.

The multi-rubric model produces interesting effects on the overall estimate of
restaurant quality. Consider the rubric corresponding to m = 7 in Figure 7. Users
assigned to this rubric give the majority of restaurants a rating of five stars. As a
result, a rating of five stars for the m = 7 rubric is less valuable to a restaurant
than a rating of five stars from a user with the m = 6 rubric. Similarly, a rating of
three stars from the m = 7 rubric is more damaging to the estimate of a restaurant’s
quality than a rating of three stars from the m = 6 rubric.

For restaurants with a large number of reviews the effect mentioned above
is negligible, as the restaurants typically have a good mix of users from differ-
ent rubrics. The effect on restaurants with a small number of reviews, however,
can be much more pronounced. To illustrate this effect, Figure 8 displays the
posterior distribution of the quantity λi defined in (2) for the restaurants with
i ∈ {3356,3809,9}. Each of these businesses has four reviews total, with empiri-
cally averaged ratings of 4.25, 3.75, and three stars. For i = 3809 and i = 9, the
users are predominantly from the rubric with m = 7; as a consequence the fact
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FIG. 7. Top: bar chart giving the number of users assigned to each rubric, where users are assigned
to rubrics by minimizing Binder’s loss function. Bottom: bar charts giving the proportions of the
observed ratings Ziu for each item-user pair for the top nine most common rubrics.

that these restaurants do not have an average rating closer to five stars is damag-
ing to the estimate of the restaurant quality. In the case of i = 3809, the effect is
strong enough that what was ostensibly an above-average restaurant is actually es-
timated to be below average by the multi-rubric model. Conversely, item i = 3356
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FIG. 8. Posterior density of λi for i ∈ {9,3356,3809}. The dashed line is the empirical average
rating of item i; the dotted line is the overall average of all ratings. Error bars are centered at the
posterior mean with a radius of one standard deviation.

has ratings of four,five,five, and three stars, but one of the five-star ratings comes
from a user assigned to the rubric m = 2 which gave a five-star rating to only
8% of businesses. As a result, the five-star ratings are weighted more heavily than
they would otherwise be, causing the distribution of λi to be shifted slightly up-
wards.

Lastly, we consider rescaling the average ratings according to a specific rubric.
This may be of interest, for example, if one wishes to standardize the ratings to
match a rubric which evenly disperses ratings evenly across the possible stars. To
do this, we examine the rubric-adjusted average ratings λim given by (3). Figure 9
displays the posterior density of λim for i = 24 and i = 44, for the nine most
common rubrics. These two restaurants have over 100 reviews, and so the overall
quality can be estimated accurately. We see some expected features; for example,
the quality of each restaurant has been adjusted downwards for users of the m = 10
rubric, and upwards for the m = 7 rubric. The multi-rubric model allows for more
nuanced behavior of the adjusted ratings than simple upward/downward shifts. For
example, for the mediocre item i = 44, we see that little adjustment is made for
the m = 13 rubric, while for the high-quality item i = 24 a substantial downward
adjustment is made. This occurs because the model interprets the users with m =
13 as requiring a relatively large amount of utility to rate an item five stars, so that
a downward adjustment is made for the high-quality item; on the other hand, users
with m = 13 tend to rate things near a 3.5, so little adjustment needs to be made
for the mediocre item.
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FIG. 9. Posterior density of λim for i = 44,24. Horizontal lines display the empirical average
rating for each item. Rubrics are organized by the average rating assigned to i = 44 for visualization
purposes.

5. Discussion. In this paper we introduced the multi-rubric model for the
analysis of rating data and applied it to public data from the website Yelp!. We
found that the multi-rubric model yields improved predictions and induces sophis-
ticated shrinkage effects on the estimated quality of the items. We also showed
how the model developed can be used to partition the users into interpretable la-
tent classes.

There are several interesting areas for future work. First, while Markov chain
Monte Carlo works well for the Yelp! dataset (it took 90 minutes to fit the model
of Section 4), it would be desirable to develop a more scalable procedure, such
as stochastic variational inference [Hoffman et al. (2013)]. Second, the model de-
scribed here features limited modeling of the users. Information regarding which
items the users have rated has been shown in other settings to improve predictive
performance; temporal heterogeneity may also be present in users.

The latent class model described here can also be extended to allow for more
flexible models for the αu’s and βi ’s. For example, a referee pointed out the possi-
bility of quantifying how controversial an item is across latent classes, which could
be accomplished naturally by using a mixture model for the αu’s.

A fruitful area for future research is the development of methodology for when
MAR fails. One possibility for future work is to extend the model to also model
the missing data indicators �iu. This is complicated by the fact that, while {Yiu :
1 ≤ i ≤ I,1 ≤ u ≤ U} is not completely observed, {�iu : 1 ≤ i ≤ I,1 ≤ u ≤ U} is.
As a result, the data becomes much larger when modeling the �iu’s.
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APPENDIX: MARKOV CHAIN MONTE CARLO ALGORITHM

Before describing the algorithm, we define several quantities. First, define

R
(α)
iu = Yiu − μiu + α�

i βu, R
(b)
iu = Yiu − μiu + bi,

R
(γ )
iu = Yiu − μiu + x�

i γ , R
(η)
iu = Yiu − μiu + ψ(si)

�η.

Let R(α)
u = vec(R(α)

iu : i ∈ Ii ),R
(β) = vec(R(α)

iu : u ∈ Ui ),R
(b)
i = vec(R(b)

iu :
u ∈ Ui ),R

(γ ) = vec(R(γ )
iu : (i, u) ∈ S), and R

(η)
i = vec(R(η)

iu : (i, u) ∈ S). Then
we can write

R
(β)
i = Aiβi + εi , R

(b)
i = 1bi + εi ,

R(α)
u = Buαi + εi , R(γ )

u = Xγ + ε,

R(η)
u = �η + ε,

where Ai has rows composed of α’s associated to users who rated item i, Bu has
rows composed of β’s associated to items which were rated by user u and X and
� are design matrices associated to the covariates and basis functions respectively.
Holding the other parameters fixed, each term above on the left-hand side is suffi-
cient for its associated parameter on the right-hand side.

A data augmentation strategy similar to the one proposed by Albert and Chib
(1997) is employed. The updates for the parameters η,α,β , and γ use a back-
fitting strategy based on the R’s above. The Markov chain operates on the state
space (C,Y, θ, b,α,β, γ, η,ω,σα, σβ, ση). We perform the following updates for
each iteration of the sampling algorithm, where each step is understood to be done
for each relevant u and i.

1. Draw Cu ∼ Categorical(ω̂u1, . . . , ω̂uM) where ω̂um is proportional to ωm ×∏
i∈Uu

[�(θ
(m)
Ziu

− μiu) − �(θ
(m)
Ziu−1 − μiu)].

2. Draw Yiu ∼ TruncGau(μiu,1, θ
(Cu)
k−1 , θ

(Cu)
k ), for (i, u) ∈ S .

3. Draw αu ∼ Gau(α̂u, �̂αu) where �̂αu = (B�
u Bu + σ 2

αI )−1 and α̂u =
�̂αuB

�
u R(α)

u .
4. Draw βi ∼ Gau(β̂i , �̂βi

) where �̂βi
= (A�

i Ai + σ 2
β I )−1 and β̂i =

�̂βi
A�

i R
(β)
i .

5. Draw γ ∼ Gau(γ̂ , �̂γ ) where �̂γ = (X�X)−1 and γ̂ = �̂γ X�R(γ ).
6. Draw bi ∼ Gau(b̂i , σ̂

2
bi

) where σ̂ 2
bi

= (σ−2
b + |Ui |)−1, and b̂i =

σ̂ 2
bi

∑
u∈Ui

R
(b)
iu .

7. Draw η ∼ Gau(η̂, �̂η) where �̂η = (��� + �−1
η )−1 and η̂ = �̂η�

�R(η).
8. Draw ω ∼ Dirichlet(â1, . . . , âM) where âm = a + ∑

u:Cu=m 1.
9. Make an update to σ 2

b which leaves Ga(σ 2
b | 0.5,0.5)

∏I
i=1 Gau(bi | 0, σ 2

b )

invariant.
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10. Make an update to σ 2
β which leaves Ga(σ 2

β | 0.5,0.5)
∏I

i=1
∏L

�=1 Gau(βi� |
0, σ 2

β ) invariant.

11. Make an update to σ 2
η which leaves Ga(σ 2

η | 0.5,0.5)
∏r

j=1 Gau(ηj | 0, σ 2
η )

invariant.
12. Make an update to θ(m) which leaves Gau(θ(m) | 0, σ 2

θ I)I (θ
(m)
1 < · · · <

θ
(m)
K−1) · ∏

u:Cu=m

∏
i∈Iu

log[�(θ
(m)
Ziu

− μiu) − �(θ
(m)
Ziu−1 − μiu)], invariant.

In our illustrations, we use slice sampling [Neal (2003)] to do updates 9–11. The
chain is initialized by simulation from the prior with a = 1. The only nontrivial
step is constructing an update for the θ(m)’s. We use a modification of the ap-
proach outlined in Albert and Chib (1997), which uses a Laplace approximation
to construct a proposal for the full conditional of the parameters δ

(m)
1 = θ

(m)
1 and

δ
(m)
k = log(θ

(m)
k − θ

(m)
k−1) for k = 2, . . . ,K − 1. To alleviate computational burden,

the proposal is updated every 50th iteration.

SUPPLEMENTARY MATERIAL

Identifiability of model parameters (DOI: 10.1214/18-AOAS1143SUPP;
.pdf). In this supplementary material we discuss identifiability of the model pa-
rameters; we give empirical evidence that the latent variables are identified up to
orthogonal transformations.
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