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Stochastic compartmental models are important tools for understanding
the course of infectious diseases epidemics in populations and in prospective
evaluation of intervention policies. However, calculating the likelihood for
discretely observed data from even simple models—such as the ubiquitous
susceptible-infectious-removed (SIR) model—has been considered compu-
tationally intractable, since its formulation almost a century ago. Recently re-
searchers have proposed methods to circumvent this limitation through data
augmentation or approximation, but these approaches often suffer from high
computational cost or loss of accuracy. We develop the mathematical foun-
dation and an efficient algorithm to compute the likelihood for discretely
observed data from a broad class of stochastic compartmental models. We
also give expressions for the derivatives of the transition probabilities using
the same technique, making possible inference via Hamiltonian Monte Carlo
(HMC). We use the 17th century plague in Eyam, a classic example of the
SIR model, to compare our recursion method to sequential Monte Carlo, an-
alyze using HMC, and assess the model assumptions. We also apply our di-
rect likelihood evaluation to perform Bayesian inference for the 2014–2015
Ebola outbreak in Guinea. The results suggest that the epidemic infectious
rates have decreased since October 2014 in the Southeast region of Guinea,
while rates remain the same in other regions, facilitating understanding of the
outbreak and the effectiveness of Ebola control interventions.

1. Introduction. Compartmental models have been used extensively in epi-
demiology to study the spread of infectious diseases such as plague [Raggett
(1982)], measles [Cauchemez and Ferguson (2008)], influenza [Dukic, Lopes and
Polson (2012)], HIV [Blum and Tran (2010)], and Ebola [Althaus (2014)]. These
models stratify the population into separate groups according to differing health
states. The famous susceptible-infectious-removed (SIR) model [McKendrick
(1926), Kermack and McKendrick (1927)] divides the population into three sub-
populations: the susceptible (S) group including healthy persons who have no im-
munity to the disease, the infectious (I) group including infected persons who can
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transmit the disease to susceptible persons by contact, and the removed (R) group
including recovered/dead persons who no longer affect disease dynamics. Impor-
tant adaptions of the SIR model abound. For example, allowing for the loss of im-
munity in the removed group such that recovered persons can become susceptible
again results in the susceptible-infectious-removed-susceptible (SIRS) model. As
a simplification, the susceptible-infectious-susceptible (SIS) model assumes that
individuals who recover from the disease have no immunity against reinfection,
thus rejoin the susceptible group immediately after recovery. The more compli-
cated susceptible-exposed-infectious-removed (SEIR) model takes into account an
incubation period by adding an exposed (E) group including individuals who are
infected but not yet infectious.

Compartmental models have been studied in both deterministic and stochastic
settings. One advantage of deterministic models is that they yield simpler statisti-
cal inference than their stochastic counterparts. However, “many infectious disease
systems are fundamentally individual-based stochastic processes, and are more
naturally described by stochastic models” [Roberts et al. (2015)]. Deterministic
models are only appropriate when the populations of the compartments are suf-
ficiently large [Brauer (2008)]. Therefore, stochastic models remain preferable
when their analysis is possible. If we are able to observe all transition events,
likelihood-based inference for stochastic compartment models is straightforward.
For example, Becker and Britton (1999) derive maximum likelihood estimates un-
der complete observation for the SIR model. Unfortunately, it is very unlikely that
we know exactly when an individual contracts the disease. In general, surveillance
data often include total counts of individuals in each compartment at several ob-
servation points. Calculation of the likelihood requires evaluating the transition
probabilities of the underlying stochastic process between these time points and,
thus, becomes intractable due to the requirement of integrating over all unobserved
events [Cauchemez and Ferguson (2008)]. Solving for the transition probabilities
begins, as Renshaw (2011) reminds us, by innocuously writing out the Chapman–
Kolmogorov equations for the compartmental model, but the “associated math-
ematical manipulations required to generate solutions can only be described as
heroic.”

One common solution considers stochastic compartmental models as finite, but
very large, state–space Markov processes and approximates their transition proba-
bilities using matrix exponentiation. Unfortunately, this method is extremely time
consuming and numerically unstable in many instances [Schranz et al. (2008),
Crawford and Suchard (2012)]. Further, when the state–space is infinite, ma-
trix exponentiation can suffer from truncation error [Crawford, Stutz and Lange
(2016)]. Several alternative approaches have been developed to overcome the in-
tractability of compartmental models, including data augmentation, diffusion ap-
proximation, sequential Monte Carlo (SMC)—namely, particle filters—and ap-
proximate Bayesian computation (ABC). However, these methods are limited and
do not completely achieve tractability. In Section 2, we give a formal definition



DIRECT LIKELIHOOD-BASED INFERENCE 1995

of stochastic compartmental models and discuss limitations of existing methods in
more detail.

In this paper, we propose a method with polynomial complexity to compute the
transition probabilities and their derivatives for stochastic compartmental mod-
els, making direct inference scalable to large epidemics. The main technique of
our method is solving the Chapman–Kolmogorov equations in the Laplace do-
main and evaluating the inverse Laplace transform of these solutions numerically
to get back the transition probabilities. Recently, this technique has been success-
fully applied to the SIS model [Crawford and Suchard (2012)] and the SIR model
[Ho et al. (2018)], where the solutions of the Chapman–Kolmogorov equations in
the Laplace domain can be represented by continued fractions. Although these re-
sults make progress toward evaluating the likelihood function efficiently, applying
the continued fraction representation for more complex models such as SEIR and
SIRS remains an open problem. In this work, we bypass the need for an exotic
continued fraction representation by constructing multivariate birth processes that
are equivalent to epidemic processes of the compartmental models. Consequently,
our method does not require evaluating continued fractions, and is therefore sig-
nificantly faster and straightforward to apply to complex compartmental models.
Section 3 explains the construction of multivariate birth process representations
and the dynamic programming algorithm for computing the transition probabili-
ties of compartmental models. In Section 4, we apply this new method to three
prevailing infectious disease models (SIR, SEIR, and SIRS) and illustrate the com-
putation gain for the SIR model compared to the method in Ho et al. (2018), the
SMC method implemented in the increasingly popular R package pomp [King,
Nguyen and Ionides (2016)], and the matrix exponentiation method implemented
in the state-of-the-art software Expokit [Sidje (1998)]. We discuss two further
statistical applications using our recursion which do not appear possible under
previous approaches in Section 5. Specifically, we devise polynomial-time com-
putable derivatives of the transition probabilities of the SIR model, enabling an
analysis of the dynamics of an historical plague outbreak using Hamiltonian Monte
Carlo (HMC). Further, the generality of our method equips us to explore the ade-
quacy of the SIR model assumptions for this outbreak of plague. Finally, in Sec-
tion 6, we turn to the 2014–2015 Ebola outbreak in Guinea and propose a time-
inhomogeneous, hierarchical SIR extension that provides evidence for the slowing
of this outbreak. Moreover, we find that the change in the trajectory only happened
in the Southeast region of Guinea.

2. Stochastic compartmental models. In this section, we formally define
stochastic compartmental models, discuss limitations of current inference methods
when the data are observed discretely, and propose a new method of polynomial
complexity for computing their transition probabilities.
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FIG. 1. A directed graph representation of a 3-compartmental model. The rate matrix R of this
model only has d = 3 positive elements: μ12, μ23, and μ13.

2.1. Notation and definition. A stochastic m-compartmental model strati-
fies the population into m homogeneous subpopulations called compartments.
Let {C1,C2, . . . ,Cm} be the compartments and Y(t) = {Y1(t), Y2(t), . . . , Ym(t)}
be their population at time t ≥ 0, then the rate matrix R is an m × m matrix
[μij (θ,Y)]1≤i,j≤m where μij (θ,Y) ≥ 0 is a function of the parameter of inter-
est θ and Y(t), representing an infinitesimal transition rate from Ci to Cj . We set
μii(θ,Y) = 0 for all i = 1, . . . ,m. Let d count the number of positive elements of
R. Then, there are d possible transitions of Y during a sufficient small time interval
(t, t + dt):

Pr
{
Y(t + dt) = y − ei + ej |Y(t) = y

} = μij (θ,y) dt + o(dt), μij �= 0,
(2.1)

Pr
{
Y(t + dt) = y|Y(t) = y

} = 1 −
(

m∑
i,j=1

μij (θ,y)

)
dt + o(dt),

where ei and ej are the ith and j th coordinate vector of R
m respectively. We

call Y(t) a compartmental process. We can visualize a compartmental model by a
directed graph where nodes correspond to compartments and a directed edge from
node i to node j means μij is positive. Figure 1 gives an example of representing
a 3-compartmental model by a directed graph.

2.2. Limitations of current approaches. The first approach for likelihood-
based inference under discretely-observed stochastic compartmental models ex-
ploits data augmentation. This technique augments the observed data with the
extensive unobserved information needed to evaluate the continuously-observed
likelihood. This method often treats the times of all unobserved events as pa-
rameters and explores the joint posterior distribution by Markov chain Monte
Carlo (MCMC) method [Gibson and Renshaw (1998), O’Neill and Roberts (1999),
O’Neill (2002)]. Although data augmentation works well for small epidemics, it
has been criticized for being computationally prohibitive with large augmented
data [Cauchemez and Ferguson (2008), Blum and Tran (2010)].

An alternative approach to data augmentation entertains a diffusion approxima-
tion. This method approximates the discrete compartmental processes by contin-
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uous diffusion processes whose likelihood function is easy to calculate. For ex-
ample, Cauchemez and Ferguson (2008) propose to mimic the SIR process by a
Cox–Ingersoll–Ross process [Cox, Ingersoll and Ross (1985)], and apply this ap-
proximation to study measles epidemics in London (1948–1964). However, a dif-
fusion approximation is not applicable to epidemics in small communities because
the approximation requires the state–space to be large enough to justify approxi-
mating a discrete process by a continuous one [Karev, Berezovskaya and Koonin
(2005), Golightly and Wilkinson (2005)]. Moreover, this method is often not suf-
ficiently accurate for use even as a simulator [Golightly and Wilkinson (2005)].

Particle filters, as a SMC approach, offer another popular tool for estimating
the likelihood of stochastic models [Arulampalam et al. (2002)]. The R package
pomp [King, Nguyen and Ionides (2016)] provides an increasingly popular SMC
implementation for both frequentist and Bayesian inference settings. For example,
Ionides, Bretó and King (2006) develop an iterated filtering method that uses a
particle filter to approximate the maximum likelihood estimates of the parameters.
In the Bayesian setting, Andrieu, Doucet and Holenstein (2010) construct a particle
marginal Metropolis–Hastings sampler to explore the posterior distribution using
estimates from a particle filter. The computational cost of these methods can be
prohibitive when the convergence is slow because each iteration requires using a
particle filter to estimate the likelihood [Owen, Wilkinson and Gillespie (2015)].

Another alternative to data augmentation is ABC [Blum and Tran (2010)]. This
is a likelihood-free approach replacing the observations with summary statistics
and approximating the posterior of the parameters given the summary statistics
by a simulation-based method. Nonetheless, the ABC method can be biased be-
cause of nonzero tolerance and non-sufficient summary statistics [Sunnåker et al.
(2013)], especially in high dimensions [Blum and Tran (2010)]. Therefore, credi-
ble interval estimates tend to be inflated [Csilléry et al. (2010)], and model selec-
tion using the ABC method cannot be trusted [Robert et al. (2011)].

Finally, Faddy (1977) proposes an approximation for the stochastic SIR model
by assuming that each susceptible person becomes infected independently with the
same rate β × i(t) where i(t) is the number of infected individuals in the determin-
istic SIR model [Kermack and McKendrick (1927)]. The transition probabilities
of this approximated process have analytic formulae because of the independence
assumption, but this approximation becomes less accurate as the epidemic pro-
gresses.

3. Evaluating transition probabilities. We present a new method for com-
puting the transition probabilities of stochastic compartmental models. Our
method achieves polynomial complexity, thus enabling direct likelihood-based
inference for discretely observed data. The main idea is to recast a compartmen-
tal process whose rate matrix R has d positive elements into a d-dimensional
birth process by keeping track of d types of transition events between compart-
ments. This idea has been used in chemical thermodynamics for almost 100 years,
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where the variable measuring the progress of all substances in a chemical reac-
tion is called the degree of advancement or extent of reaction variable [de Donder,
van den Dungen and van Lerberghe (1920)]. By doing this, we can evaluate the
transition probabilities more efficiently because the resulting multivariate birth
processes are monotonically nondecreasing, while the compartment populations
may increase or decrease over time. This monotonicity affords us the opportu-
nity to apply dynamic programming for building the transition probability ma-
trix.

3.1. Multivariate birth process.

DEFINITION 1. A d-dimensional birth process is a continuous-time Markov
process counting the number of “birth” events for d populations. Let X(t) =
{X1(t),X2(t), . . . ,Xd(t)}, t ≥ 0 be a multivariate birth process, whose state–space
is N

d . Then, there are d + 1 possible transitions of X during a sufficiently small
time interval (t, t + dt):

Pr
{
X(t + dt) = x + ek|X(t) = x

} = λ(k)
x dt + o(dt), k ∈ {1,2, . . . , d},

(3.1)

Pr
{
X(t + dt) = x|X(t) = x

} = 1 −
(

d∑
k=1

λ(k)
x

)
dt + o(dt),

where λ
(k)
x ≥ 0 is the birth rate of the kth population given the current population

is x = (x1, x2, . . . , xd).

For two vectors u,v ∈ N
d , denote Puv(t) = Pr{X(t) = v|X(0) = u} be the tran-

sition probability of the multivariate birth process from u to v after t units of time.
We say u ≤ v if uk ≤ vk for every k = 1,2, . . . , d . Notice that Puv(t) �= 0 if and
only if u ≤ v.

Let B ∈ N
d , and set λ

(k)
x = 0 if xk = −1. For i ∈N, we denote

(3.2) Di =
{

x :
d∑

k=1

xk = i

}
and λi = max

x∈Di

{
d∑

k=1

λ(k)
x

}
.

Throughout this section, we make the following assumption:

ASSUMPTION 1 (Regularity condition).

∞∑
i=1

1/λi = ∞.

This condition generalizes the classic regularity condition of a univariate birth
process [Feller (1968)].
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THEOREM 1. Under Assumption 1 (Regularity condition):

(i) the forward transition probabilities {P0x(t)}x≤B are the unique solution of
the Chapman–Kolmogorov forward equations

dP0x(t)

dt
=

d∑
k=1

λ
(k)
x−ek

P0,x−ek
(t) −

(
d∑

k=1

λ(k)
x

)
P0x(t) and(3.3)

(ii) the backward transition probabilities {PxB(t)}x≤B are the unique solution
of the Chapman–Kolmogorov backward equations

dPxB(t)

dt
=

d∑
k=1

λ(k)
x Px+ek,B(t) −

(
d∑

k=1

λ(k)
x

)
PxB(t).(3.4)

PROOF. It is sufficient to prove that the birth rates satisfying Assumption 1
uniquely determine the multivariate birth process. By Theorem 7 in Reuter (1957),
we have to show that if for some ζ > 0, {yx} ∈ [0,1] satisfies the following equa-
tions

(3.5)

(
ζ +

d∑
k=1

λ(k)
x

)
yx =

d∑
k=1

λ(k)
x yx+ek

,

then yx = 0. Let yi = maxx∈Di
{yx} and x∗ = argmaxx∈Di

{yx}, we have

(3.6)

(
ζ +

d∑
k=1

λ
(k)
x∗

)
yi =

d∑
k=1

λ
(k)
x∗ yx∗+ek

≤
(

d∑
k=1

λ
(k)
x∗

)
yi+1.

Therefore,

(3.7) ζyi ≤
(

d∑
k=1

λ
(k)
x∗

)
(yi+1 − yi) ≤ λi(yi+1 − yi).

Assume that there exists i0 > 0 such that yi0 > 0. From (3.7), we conclude that for
every i > i0, yi > yi−1 and

(3.8) yi =
i−1∑
j=i0

ζ

λj

+ yi0 → ∞ as i → ∞,

which contradicts with yi ≤ 1. This contradiction completes the proof. �

Theorem 1 shows that we can evaluate the forward and backward transition
probabilities by solving the Chapman–Kolmogorov equations (3.3) and (3.4).
However, traditional methods like matrix exponentiation and Euler’s method are
either computationally expensive or lack numerical accuracy. Instead, we first
solve the Chapman–Kolmogorov equations in the Laplace domain and then ap-
ply an inverse Laplace transform to recover Puv(t).
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We define the Laplace transform of Puv(t) as

(3.9) fuv(s) = L
[
Puv(t)

]
(s) =

∫ ∞
0

e−stPuv(t) dt.

Note that fuv �= 0 if and only if u ≤ v.

COROLLARY 1. For the multivariate birth process, we have the following re-
cursive formulae:

(3.10)

f00(s) = 1

s + ∑d
j=1 λ

(j)
0

,

fBB(s) = 1

s + ∑d
j=1 λ

(j)
B

,

f0x(s) =
d∑

k=1

λ
(k)
x−ek

s + ∑d
j=1 λ

(j)
x

f0,x−ek
(s),

fxB(s) =
d∑

k=1

λ
(k)
x

s + ∑d
j=1 λ

(j)
x

fx+ek,B(s),

where 0 ≤ x ≤ B.

PROOF. Applying a Laplace transform to both sides of (3.3) and (3.4), we
arrive at

L
[
dP0x(t)

dt

]
(s)

=
d∑

k=1

λ
(k)
x−ek

L
[
P0,x−ek

(t)
]
(s) −

(
d∑

k=1

λ(k)
x

)
L

[
P0x(t)

]
(s) and

(3.11)

L
[
dPxB(t)

dt

]
(s)

=
d∑

k=1

λ(k)
x L

[
Px+ek,B(t)

]
(s) −

(
d∑

k=1

λ(k)
x

)
L

[
PxB(t)

]
(s).

Noting that

(3.12)

L
[
dP0x(t)

dt

]
(s) = sL

[
P0x(t)

]
(s) − P0x(0) and

L
[
dPxB(t)

dt

]
(s) = sL

[
PxB(t)

]
(s) − PxB(0)
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enables us to write

(3.13)

sf0x(s) − P0x(0) =
d∑

k=1

λ
(k)
x−ek

f0,x−ek
(s) −

(
d∑

k=1

λ(k)
x

)
f0x(s) and

sfxB(s) − PxB(0) =
d∑

k=1

λ(k)
x fx+ek,B(s) −

(
d∑

k=1

λ(k)
x

)
fxB(s).

From (3.13), we have

(3.14)

sf00(s) − P00(0) =
d∑

k=1

λ
(k)
−ek

f0,−ek
(s) −

(
d∑

k=1

λ
(k)
0

)
f00(s) and

sfBB(s) − PBB(0) =
d∑

k=1

λ
(k)
B fB+ek,B(s) −

(
d∑

k=1

λ
(k)
B

)
fBB(s).

Since P00(0) = PBB(0) = 1 and P0,−ek
(t) = PB+ek,B(t) = 0, we deduce

(3.15)

f00(s) = 1

s + ∑d
j=1 λ

(j)
0

and

fBB(s) = 1

s + ∑d
j=1 λ

(j)
B

.

Moreover, P0x(0) = 0 for x �= 0 and PxB(0) = 0 for x �= B. Hence, from (3.13), we
obtain

(3.16)

f0x(s) =
d∑

k=1

λ
(k)
x−ek

s + ∑d
j=1 λ

(j)
x

f0,x−ek
(s) and

fxB(s) =
d∑

k=1

λ
(k)
x

s + ∑d
j=1 λ

(j)
x

fx+ek,B(s).

Thus, the proof is complete. �

From Corollary 1, we can derive analytic formulae for all {f0x(s)}x≤B and
{fxB(s)}x≤B. For u ≤ v, let a path from u to v be an increasing sequence p =
{pi}ni=1 such that

p1 = u, pn = v, pi ≤ pi+1 and pi+1 − pi ∈ {e1, e2, . . . , ed}.
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Denote Puv and Ii to be the set of all paths from u to v and the index of the only
nonzero coordinate of pi+1 − pi respectively. We have

(3.17)

f0x(s) = 1

s + ∑d
j=1 λ

(j)
0

( ∑
p∈P,0x

n∏
i=2

λ
(Ii−1)
pi−1

s + ∑d
j=1 λ

(j)
pi

)
,

fxB(s) = 1

s + ∑d
j=1 λ

(j)
B

( ∑
p∈PxB

n−1∏
i=1

λ
(Ii )
pi

s + ∑d
j=1 λ

(j)
pi

)
.

However, evaluating {f0x(s)}x≤B and {fxB(s)}x≤B using (3.17) is infeasible be-
cause the number of paths from 0 to B is extremely large. For example, when all
the birth rates are positive, the number of paths is

(3.18)
d∏

i=1

(
∑d

j=i Bj )!
Bi !(∑d

j=i+1 Bj)!
.

For example, when d = 2 and B1 = B2 = B , the number of paths (3.18) becomes
(B + 1)(B + 2) · · · (2B) > BB .

The sum-product structure in (3.17) suggests that dynamic programming may
lead to efficient computation of {f0x(s)}x≤B and {fxB(s)}x≤B that we achieve
through the recursive formulae (3.10). The computation cost of the recursion is
only O(

∏d
k=1 Bk) because we need one loop for each coordinate. Algorithm 1

presents pseudo-code for computing {f0x(s)}x≤B via dynamic programming. The
algorithm for evaluating {fxB(s)}x≤B is similar.

Then, we approximate the inverse Laplace transform of fuv(s) by the method
proposed in Abate and Whitt (1992), equation (4.6):

Puv(t) = L−1(fuv)(t) ≈ eM/2

2t
R

[
fuv

(
M

2t

)]
(3.19)

+ eM/2

t

∞∑
k=1

(−1)kR
[
fuv

(
M + 2kπi

2t

)]
,

where R[z] is the real part of z. Here, the positive number M is used to control the
discretization error. Specifically, the discretization error is

∞∑
k=1

e−kMPuv
(
(2k + 1)t

)
,

which can be bounded by 1/(eM −1). However, Abate and Whitt (1992) warn that
we should not choose M too large because it makes the infinite sum (3.19) harder
to evaluate. They suggest to aim for 10−7 to 10−8 accuracy on a machine with
14-digit precision. Following this instruction, we choose M = 20 throughout this
paper. We opt to use a Levin acceleration method [Levin (1973)] to improve the
convergence rate of (3.19). Let L be the number of iterations required from Levin
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Algorithm 1 Dynamic programming algorithm for computing {f0x(s)}x≤B

Require: s > 0, {λ(j)
x }dj=1

1: f00 ← 1
2: for i1 = 0 to B1 do
3: for i2 = 0 to B2 do

4:
...

5: for id = 0 to Bd do
6: x ← (i1, i2, . . . , id)

7: m ← s + ∑d
j=1 λ

(j)
x

8: f0x ← f0x/m

9: for k = 1 to d do
10: if ik < Bk then
11: f0,x+ek

← f0,x+ek
+ λ

(k)
x × f0x

12: end if
13: end for
14: end for

15:
...

16: end for
17: end for

acceleration to achieve a certain error bound for the approximation (3.19), then we
have the following corollary:

COROLLARY 2. The total complexity of our algorithm to compute {P0x(t)}x≤B
and {PxB(t)}x≤B is O(L

∏d
k=1 Bk).

Note that when we aim for 10−8 accuracy, L usually ranges from 100 to 1000.

3.2. Re-parameterization. Given an m-compartmental process Y(t) with d

possible types of transition between compartments, computing the transition
probability Pr{Y(t) = v|Y(0) = u} by solving the compartmental Chapman–
Kolmogorov equations is generally intractable because, unlike multivariate birth
processes, individual compartment population Yi(t) may increase or decrease over
time. Here, we recast Y(t) into a d-dimensional birth process X(t) and aim to
compute the transition probabilities of Y(t) from the transition probabilities of
X(t).

We denote i → j be a transition from compartment Ci to compartment Cj . For
k = 1,2, . . . , d , let ik → jk be the kth type of transition. We construct X(t) by
letting Xk(t) be the number of k-type transition events happening from time 0 to t .
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Define an m × d matrix A = [alk] as follows:

(3.20) alk =

⎧⎪⎪⎨
⎪⎪⎩

−1 if l = ik,

1 if l = jk,

0 otherwise,

then we have the following lemma:

LEMMA 1. Y(t) = Y(0) + [AX(t)]T where T denotes the matrix transpose.
Moreover, the birth rates for X(t) are λ

(k)
x = μikjk

(θ,Y(0) + [Ax]T ).

Define W = {w ∈ N
d : Aw = (u − v)T }. By Lemma 1, we deduce that

(3.21) Pr
{
Y(t) = v|Y(0) = u

} = ∑
w∈W

Pr
{
X(t) = w|X(0) = 0

}
.

We want to employ equation (3.21) for computing the transition probabilities of
Y(t). However, evaluating the summation in (3.21) is infeasible when the set W

has infinitely many elements. To limit the cardinality of W , we proffer a small
restriction on the class of compartmental models for which we can compute their
transition probabilities in polynomial complexity.

ASSUMPTION 2 (Finite loops). Each individual visits each compartment at
most U times between two consecutive observations.

Assumption 2 is rarely restrictive for many compartmental models for infec-
tious diseases. Infected individuals usually develop at least partial immunity to re-
inflection that wanes at a rate commensurate with or slower than the observation
process. Further, it is notable that if a compartmental model can be represented by
a directed acyclic graph, then an individual never returns to a compartment after
leaving. In this case, this assumption is satisfied with U = 1.

THEOREM 2. For a compartmental model satisfying Assumption 2 (Finite
loops), the complexity for computing its transition probabilities via equation (3.21)
is O(LUdNd), where N is the total population of all compartments.

PROOF. By Assumption 2, X ≤ UN where N is a d-dimensional vector
(N1,N2, . . . ,Nd). Hence λ

(k)
x = 0 when x ≥ UN. By Theorem 1 and Corollary 2,

we can compute the transition probabilities (Pr{X(t) = x|X(0) = 0})x≤UN at a cost
of O(LUdNd). Then, we can compute the transition probabilities of Y through
equation (3.21) at the same cost. Therefore, the total complexity is O(LUdNd).

�
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FIG. 2. A directed graph representation of the SIR model.

4. Compartmental models of infectious diseases. We apply our recursion
method to three prevailing compartmental models of infectious diseases including
the SIR, SEIR, and SIRS models.

4.1. Susceptible-infectious-removed model. Proposed by McKendrick (1926),
the stochastic SIR model is probably the most famous compartmental model in epi-
demiology. This model divides the population into three different compartments:
susceptible (S), infectious (I ), and removed (R), and allows two possible transi-
tions: infection (S → I ) with rate βSI and removal (I → R) with rate γ I . Here,
β > 0 is the infection rate and γ > 0 is the removal rate of the disease. Figure 2
visualizes the directed graph representing this model.

Because the total population S(t) + I (t) + R(t) is constant, Ho et al. (2018)
consider {S(t), I (t)} as a death/birth-death process and propose an algorithm to
compute its transition probabilities using a continued fraction representation. The
computational cost of this algorithm for evaluating the full transition probabil-
ity matrix is O(LN3). Our present method re-parameterizes the SIR model using
number of infection events NSI(t) and removal events NIR(t). Note that there is a
one-to-one correspondence between {S(t), I (t)} and {NSI(t),NIR(t)}:
(4.1)

(
S(t)

I (t)

)
=

(
s0
i0

)
+

(−1 0
1 −1

)(
NSI(t)

NIR(t)

)
,

where (s0, i0) is the realized value of {S(0), I (0)}. It follows that {NSI(t),NIR(t)}
is a bivariate birth process with birth rates β(s0 − NSI)

+(i0 + NSI − NIR)+ and
γ (i0 + NSI − NIR)+ where a+ = max{a,0}. Since the directed graph representing
the SIR model is acyclic, Assumption 2 is satisfied with U = 1. By Theorem 2, we
have the following Corollary:

COROLLARY 3. The complexity for evaluating the full transition probability
matrix of the SIR model using our method is O(LN2).

We remark that our present method is an order of magnitude in N faster than that
of Ho et al. (2018) for computing the entire transition probability matrix. In prac-
tice, however, we often only need to compute the transition probabilities between
observations. In this case, the computational cost of our present method decreases
further to O(L�S�R) where �S and �R are the changes in susceptible and re-
moved populations between observations. In many situations, �S and �R are sig-
nificantly smaller than the total population N , for example, when tracing the dy-
namics of a rare disease across an entire nation. We implement our method in the R
function SIR_prob (MultiBD package) https://github.com/msuchard/MultiBD.

https://github.com/msuchard/MultiBD
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FIG. 3. CPU time ratios of the continued fraction method (dbd_prob) to the proposed recursion
method (SIR_prob) for computing the full transition probabilities matrix of the SIR model with
γ = 2.73 and β = 0.0178. We set I (0) = 1 and S(0) = 100,150,200.

To illustrate the computation gain of our recursion method compared to the
continued fraction representation of Ho et al. (2018), we evaluate the full forward
transition probability matrix of the SIR model with γ = 2.73 and β = 0.0178 [esti-
mated values from the Eyam plague data by Ho et al. (2018)] using both methods.
The death/birth-death method in Ho et al. (2018) is implemented in the R function
dbd_prob (MultiBD package). We set the starting infectious population i0 to be
1 and consider three different starting susceptible populations s0 = 100,150,200.
For each scenario, we repeat the evaluation 100 times and compare the comput-
ing times and the results from both methods. Figure 3 summarizes this compari-
son, and we see that SIR_prob is more than 150 times faster than dbd_prob.
On the other hand, the two methods return similar transition probability matrices
whose L1 distance is less than 10−12. Here, the L1 distance between two matrices
A = (aij ) and B = (bij ) is

∑
ij |aij − bij |.

4.2. Susceptible-exposed-infectious-removed model. The SEIR model ex-
tends the SIR model by adding an exposed (E) compartment. We visualize the
SEIR model by the directed acyclic graph in Figure 4.

Let {NSE(t),NEI(t),NIR(t)} be the number of transition events S → E, E →
I , and I → R respectively. Then, we have an one-to-one correspondence with
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FIG. 4. A directed graph representation of the SEIR model.

{S(t),E(t), I (t)} as follows:

(4.2)

⎛
⎝S(t)

E(t)

I (t)

⎞
⎠ =

⎛
⎝s0

e0
i0

⎞
⎠ +

⎛
⎝−1 0 0

1 −1 0
0 1 −1

⎞
⎠

⎛
⎝NSE(t)

NEI(t)

NIR(t)

⎞
⎠ ,

where (s0, e0, i0) is the realized value of {S(0),E(0), I (0)}. Again, {NSE,NEI,

NIR} is a trivariate birth process with birth rates β(s0 − NSE)+(i0 + NEI − NIR)+,
κ(e0 + NSE − NEI)

+, and γ (i0 + NEI − NIR)+. By Theorem 2, we have:

COROLLARY 4. The complexity for evaluating the full transition probability
matrix of the SEIR model using our method is O(LN3).

4.3. Susceptible-infectious-removed-susceptible model. For some diseases,
removed persons can lose immunity, making possible transition from the “recov-
ered” (R) to “susceptible” (S) compartments. The SIRS model takes into account
these scenarios by allowing the transition R → S. Figure 5 visualizes the directed
graph representing the SIRS model.

Denote {NSI(t),NIR(t),NRS(t)} as the number of transition events S → I , I →
R, and R → S respectively. We have

(4.3)

⎛
⎝S(t)

I (t)

R(t)

⎞
⎠ =

⎛
⎝s0

i0
r0

⎞
⎠ +

⎛
⎝−1 0 1

1 −1 0
0 1 −1

⎞
⎠

⎛
⎝NSI(t)

NIR(t)

NRS(t)

⎞
⎠ ,

where (s0, i0, r0) is the realized value of {S(0), I (0),R(0)}. In this situation,
{NSI,NIR,NRS} is a trivariate birth process with birth rates β(s0 + NRS −
NSI)

+(i0 +NSI − nIR)+, γ (i0 + nSI − nIR)+, and ν(r0 + nIR − nRS)+. In practice,
ν is much smaller than β × I (t) and γ . Hence, we can assume that during (0, t)

each individual can only be infected at most U times. By Theorem 2, we arrive at

FIG. 5. A directed graph representation of the SIRS model.
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COROLLARY 5. The complexity for evaluating the full transition probability
matrix of the SIRS model using our method is O(LU3N3).

4.4. Comparisons. We use prevalence counts from the plague in Eyam from
June 18th to October 20th, 1666 [Raggett (1982)] to compare our recursion method
with the SMC algorithm implemented in the R function pfilter [pomp pack-
age King, Nguyen and Ionides (2016)] and the matrix exponentiation method im-
plemented in the state-of-the-art software Expokit [Sidje (1998)]. Plague is a
deadly infectious disease caused by the bacterium Yersinia pestis. It is mainly
spread by infected fleas from small animals, particularly rodents, and has killed
100s of millions of people through human history. In Eyam, only 83 of the origi-
nal 350 villagers survived at the end of the plague. The data contain the susceptible
and infectious populations {(sm, im)}nm=1 in Eyam at time {tm}nm=1. The log likeli-
hood function is

log l
(
β,γ |{(sm, im)

}n
m=1

)
(4.4)

=
n−1∑
m=1

log Pr
{
S(tm+1) = sm+1 S(tm) = sm
I (tm+1) = im+1 I (tm) = im

}
.

We compute the log likelihood (4.4) under the stochastic SIR model with β =
0.0178 and γ = 2.73 [estimated values from the Eyam plague data by Ho et al.
(2018)].

4.4.1. Comparing to sequential Monte Carlo. The likelihood calculation is re-
peated a thousand times and the number of attempted simulant particles for each
estimation for pfilter is set as 1000,2000,3000, and 4000. For these data and
parameter estimates, pfilter fails to achieve a 100% success rate for approxi-
mating the likelihood. The success rate is low with 1000 particles (only 20.1%),
and increases as the number of particles increases (see Table 1). Filtering fail-
ure occurs when all particles become incompatible with the data counts; this can
happen frequently when the counts are observed without error. When filtering suc-
ceeds, the approximation is fairly similar to our method, and the standard deviation
of these approximations, while sizable, decreases from 1.28 to 0.97 as the num-
ber of particles increases. When filtering fails, the approximation is off target by a
large margin. The computation time of pfilter is about 10 times slower com-
pared to our algorithm for every 1000 particles (Table 1). This comparison shows
that our recursion method is faster than the SMC method. Moreover, our method
is stable while approximations using SMC are very unstable due to a high failure
rate. It is worth mentioning that SMC is known to be an inefficient algorithm for
computing the likelihood when the observations have no error.
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TABLE 1
Success rates of sequential Monte Carlo method (pfilter) and its average computing time ratios

compared to our algorithm

Number of particles 1000 2000 3000 4000

Success rate 20.1% 53.2% 71.1% 78.8%
Average time ratio 10.14 20.11 30.09 40.1
Standard deviation 1.28 1.11 1.06 0.97

4.4.2. Comparing to matrix exponentiation method. To evaluate the log like-
lihood (4.4) via matrix exponentiation, we use the function expv in expoRkit,
an R-interface to the Fortran package Expokit, to compute the transition proba-
bilities. Again, the likelihood calculation is repeated 1000 times. Our method and
matrix exponentiation method produce similar results: the difference is less than
1.53 × 10−7. In term of speed, the average CPU computation time ratio of ma-
trix exponentiation method to our method is 15 and the standard deviation is 1.
Therefore, our method is more efficient in computing the likelihood function of
the stochastic SIR model than the matrix exponentiation method.

5. Further statistical applications. The ability to efficiently compute the
likelihood function makes it straightforward to use maximum likelihood estima-
tors and Metropolis–Hasting algorithms for Bayesian inference. In this section,
we provide two additional extensions that the recursion opens up to us that were
unavailable with previous methods. The first application is inference via HMC,
which requires evaluating the derivative of the posterior distribution with respect
to the unknown model parameters. The second application is accessing model ad-
equacy for the classic SIR model using Bayes factors.

5.1. Inference via Hamiltonian Monte Carlo. HMC is a MCMC method us-
ing Hamiltonian dynamics to produce proposals for sampling from a continuous
distribution on R

d . Hamiltonian dynamics contain “location” variables q , that are
the parameters of interest, and nuisance “momentum” variables p [see Neal (2011)
for an excellent review]. In a Bayesian setting, we may treat the negative log of the
posterior distribution as the potential energy function:

(5.1) U(q) = − log
[
l(q|D)π(q)

]
,

where l(q|D) is the likelihood given data D and π(q) is the prior distribution. On
the other hand, researchers often place a multivariate Normal distribution N (0,�)

on p and let p be independent of q . Typically, � is the identity matrix and the
corresponding kinetic energy function is

K(p) =
d∑

i=1

p2
i

2
.
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The Hamiltonian is defined as H(q,p) = U(q) + K(p), and the Hamiltonian dy-
namics follow the following system of partial differential equations:

(5.2)

dqi

dt
= ∂H

∂pi

= pi,

dpi

dt
= −∂H

∂qi

= −∂U

∂qi

.

The HMC algorithm consists of two steps. In the first step, a proposal for p is
sampled from N (0,�). In the second step, (qt ,pt ) is obtained from the Hamilto-
nian dynamics (5.2) starting at the current value (qc,pc). In practice, we may use
a leapfrog integration scheme to approximate the solution of (5.2). The proposal
(q∗,p∗) is set as (qt ,−pt) and is accepted with probability

(5.3) min
[
1, eH(qc,pc)−H(q∗,p∗)].

The ability to efficiently compute the derivatives of the transition probabilities
with respect to q opens the possibility of using HMC for studying infectious dis-
ease epidemics. To illustrate, we employ HMC to analyze the 17th century plague
in Eyam. Denote

(5.4) Pm = Pr
{
S(tm+1) = sm+1 S(tm) = sm
I (tm+1) = im+1 I (tm) = im

}
.

Then, the log likelihood function (4.4) can be written as

(5.5) log l
(
β,γ |{(sm, im)

}n
m=1

) =
n−1∑
m=1

logPm.

To satisfy positivity constraints, we opt to use (u, v) := (logβ, logγ ) as our pa-
rameters instead of (β, γ ). To apply HMC, we derive the derivatives of log l with
respect to u and v:

(5.6)

∂ log l

∂u
= ∂ log l

∂β

∂β

∂u
=

n−1∑
m=1

P
(β)
m

Pm

β,

∂ log l

∂v
= ∂ log l

∂γ

∂γ

∂v
=

n−1∑
m=1

P
(γ )
m

Pm

γ.

We assume a priori that u ∼ N (0,1002) and v ∼N (0,1002). We explore the pos-
terior distribution of (u, v) using HMC with 10,000 iterations and discard the first
2000 iterations. Figure 6 visualizes the posterior density of (u, v). This result is
similar to the density estimation using a Metropolis–Hasting algorithm performed
in Ho et al. (2018), but at a significant time cost savings. The average effective
sample size per unit-time of HMC is 60-fold larger, mostly owing to substantial
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FIG. 6. Posterior density of infection β and removal γ rates of the Eyam plague.

computational order reduction in the likelihood evaluation under our multivariate-
birth process formulation. The posterior means of β and γ are 0.0197 and 3.22.
The 95% Bayesian credible intervals are (0.0164,0.0234) and (2.69,3.83) respec-
tively.

5.2. Adequacy of the classic SIR model. Although the classic SIR model has
been used extensively in practice, it makes a strong assumption that each in-
fected person can independently transmit the disease to one susceptible person
with rate β . O’Neill and Wen (2012) argue that this assumption may not be real-
istic in settings where a saturation effect occurs; that is, a newly infected person
contributes less to the overall infection pressure. Therefore, the authors propose
to consider a general SIR model with infection rate βSIω. This model is a spe-
cial case of a more general SIR model where the infection rate is βSαIω and the
removal rate is γ Iη [Severo (1969)]. Figure 7 visualizes the directed graph repre-
senting this model.

Our computational method does not require any special structure for the infec-
tion and removal rates, thus can also be applied to evaluate the likelihood func-
tion under these general SIR models. In particular, {NSI(t),NIR(t)} in the gen-

FIG. 7. A directed graph representation of the general SIR model [Severo (1969)].
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TABLE 2
Bayes factors B01 in favor of nested models M0 over

the general SIR model M1 estimated using the
Savage–Dickey density ratio

Model M0 log10 B01

α = ω = η = 1 6.9
α = ω = 1 4.4
ω = η = 1 4.7
α = η = 1 4.6
α = 1 2.2
ω = 1 2.2
η = 1 2.6

eral SIR model from Severo (1969) is a bivariate birth process with birth rates
β[(s0 −NSI)

+]α[(i0 +NSI −NIR)+]ω and removal rates γ [(i0 +NSI −NIR)+]η. So,
we can address some questions about model adequacy of the classic SIR model.
To illustrate, we use Bayes factors to assess if the classic SIR model is appropri-
ate for the Eyam plague dynamics [Raggett (1982)]. In particular, we test between
the general SIR model against its nested sub-models. Since the tests are between
nested models, we apply the Savage–Dickey density ratio to evaluate the Bayes
factors [Verdinelli and Wasserman (1995)]. To be specific, if model M0 with pa-
rameter (θ = 0, φ) is nested within model M1 with parameter (θ,φ) and the prior
p0(φ) under M0 is proportional to the prior p1(θ = 0, φ) under M1, then the
Bayes factor B01 in favor of M0 over M1 can be estimated via the marginal pos-
terior distribution under M1 as follows:

(5.7) B01 = p(θ = 0|Y,M1)

p(θ = 0|M1)
,

where p(θ = 0|Y,M1) and p(θ = 0|M1) are marginal posterior and prior densi-
ties of θ evaluated at 0 under model M1. Here, we posit independent log-normal
priors lnN (0,1002) for each parameter. Therefore, the condition for applying the
Savage–Dickey density ratio is satisfied. To estimate the posterior distribution un-
der the general SIR model, we use our MCMC tools. The marginal posterior den-
sities are estimated using kernel density estimation implemented in the R package
ks [Duong et al. (2007)] and these estimates are then used to compute the Bayes
factors via the Savage–Dickey density ratio. Table 2 lists these Bayes factors, and
we can see that they strongly support the classic SIR model over the general SIR
model. Although the Savage–Dickey density ratio is not the best approximation
method for Bayes factors, we can safely ignore its drawback because the evidence
supporting the classic SIR model is overwhelming.



DIRECT LIKELIHOOD-BASED INFERENCE 2013

6. Ebola outbreak in Guinea. Ebola is a contagious viral hemorrhagic fever
caused by Zaire ebolavirus. The fatality rate of Ebola is very high, up to 70.8%
[WHO Ebola Response Team (2014)]. The 2014–2015 Ebola outbreak in West
Africa is the largest Ebola epidemic in history. In this section, we focus on the
outbreak in Guinea from January 2014 to May 2015 (73 weeks). During this pe-
riod, the World Health Organization (WHO) has convened five meetings of the
IHR Emergency Committee regarding the Ebola outbreak in West Africa. The first
three meetings happened in three consecutive month August, September, and Octo-
ber 2014. During the fourth meeting in January 2015, World Health Organization
(2015) noted that the number of Ebola cases in Guinea had decreased since the
third meeting. WHO Ebola Response Team (2015) also confirmed that the Ebola
outbreak has slowed down since October 2014.

We study this change in the trajectory of the outbreak using the number of re-
ported Ebola cases reported weekly in 19 prefectures across Guinea. To be specific,
we are interested in finding evidence that the outbreak in Guinea became less se-
vere after the third WHO meeting and in what regions this happened. These 19
prefectures are the only places in Guinea where Ebola cases were reported both
before and after the third WHO meeting.

We employ a hierarchical and time-inhomogeneous, but still Markovian, SIR
model to analyze these data. We re-parameterize the SIR model by replacing the
infection rate β with the basic reproduction number R0 := βN/γ . Basic repro-
duction number is an important concept in epidemiology and can be interpreted as
the average number of secondary infections caused by a new infectious individ-
ual in a susceptible population. When R0 < 1 the disease will die out, and when
R0 > 1 the disease will be able to spread in the population. Researchers often use
the value of R0 to measure the severity of an epidemic. To simplify the analy-
sis, we assume that the population of each prefecture is closed. In other words,
we naïvely assume that the movement between prefectures and the movement in
and out of Guinea are negligible. This assumption is violated if a large number
of healthy persons or a small number of infected persons enter (or leave) a pre-
fecture. We obtain the total populations of these prefectures from the 2014 census
https://en.wikipedia.org/wiki/Prefectures_of_Guinea.

We use a “week” as the unit for time in this analysis. Letting t0 be the week
when the third WHO meeting happened, our model proceeds as follows: the Ebola
cases of each prefecture follow a conditionally independent SIR process with pa-
rameters R0p(t) and γp for prefecture p = 1, . . . ,19. Further, R0p(t) is a time-
inhomogeneous function that satisfies

(6.1) logR0p(t) = log r0p + 1{t≥t0} log δp,

where r0p quantifies the basic reproduction number before t0, and δp is the scale
factor by which the basic reproduction number changes after t0 in prefecture p.
Moreover, we assume a simple hierarchical prior distribution

(6.2) (log r0p, log δp, logγp)t ∼N
(
M,diag(�)

)
,

https://en.wikipedia.org/wiki/Prefectures_of_Guinea
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where M = (μr,μδ,μγ ) is the grand-mean on the log-scale across prefectures and
� = (σ 2

r , σ 2
δ , σ 2

γ ) is the variance, with relatively uninformative conjugate hyper-
priors

μφ ∼ N
(
0,102)

and σ 2
φ ∼ InverseGamma

(
10−3,10−3)

,
(6.3)

φ ∈ {r, δ, γ }.
Of primary scientific interest, δp < 1 corresponds to a reduction in the basic

reproduction number in prefecture p, suggesting that the Ebola outbreak slowed
down in that prefecture. However, an important limitation of the data arises, in that
field epidemiologists were only able to record the number of new cases between
time points. The number of removals is unknown. To overcome this limitation,
we use a Metropolis-within-Gibbs scheme to sample the posterior distribution of
the rate parameters and the number of removals (see Appendix B for more de-
tails). Because we can compute the joint transition probability matrix between
time points, we can draw directly from the full conditional distribution of the re-
moval number, leading to substantially more efficient numerical integration than
previous data augmentation approaches that require all sufficient statistics of the
completely observed likelihood. Further, we can speed up this sampling scheme
by updating the unknown parameters in each prefecture in parallel. The result is
summarized in Figure 8, where we plot estimates of the basic reproduction number
for each prefecture on the map of Guinea. Yellow circles represent r0p and blue
circles represent r0p × δp when the posterior probability that δp < 1 is greater than
97.5%. Note that there is no posterior evidence supporting δp > 1 for any p be-
cause the posterior probability that δp > 1 is less than 0.5 for all p. The radius of
each circle reports a posterior mean estimate. We present the posterior means and
95% Bayesian credible interval of M and of � in Table 3.

We note that a posteriori σ 2
γ is larger than σ 2

r or σ 2
δ , with probability approach-

ing 1. Therefore, the removal rate γ varies across the country more than the repro-
duction number R0. The posterior of (μδ, σ

2
δ ) provides evidence for the slowing

down of the Ebola outbreak in Guinea after the third WHO meeting. However,
Figure 8 suggests that the epidemic only slowed down in the Southeast region of
Guinea while the epidemic in other regions seems to stay the same. This finding
gives a clearer picture of the change in the trajectory of the Ebola epidemic in
Guinea. It raises a very practical question: what made the outbreak in the South-
east region of Guinea slow down? Answering this question could help in efforts to
find a more effective method for controlling the Ebola epidemic.

7. Discussion. In this paper, we develop an algorithm to compute the transi-
tion probabilities of stochastic compartmental models for inference from surveil-
lance data. We introduce a new representation for compartmental processes using
multivariate birth processes and, through this representation, avoid the need for
continued fraction evaluation to solve the Chapman–Kolmogorov equations. With
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FIG. 8. Basic reproduction numbers for 19 prefectures in Guinea before and after the third WHO
meeting.

quadratic complexity in the number of transitions between observations, our ap-
proach emerges as computationally more efficient than previous methods for the
ubiquitous SIR model and applicable to a larger class of compartmental models,
such as the SEIR and SIRS models. Further performance gains through embarrass-
ingly parallel evaluation of the series in equation (3.19) remain open.

Since the formulation of the SIR model over 90 years ago, many have viewed
its transition probabilities as beyond reach. We provide some brief intuition on
why the Laplace transform of the transition probabilities carries mere quadratic

TABLE 3
Posterior mean and 95% Bayesian credible interval of hierarchical parameters M and �

Parameter Posterior mean 95% Bayesian credible interval

μr 7.47 × 10−2 (−0.425,15.1) × 10−2

μδ −1.25 × 10−1 (−2.36,−0.0844) × 10−1

μγ −6.76 × 10−1 (−10.4,−3.19) × 10−1

σ 2
r 4.67 × 10−3 (0.399,24.1) × 10−3

σ 2
δ 2.24 × 10−2 (0.216,8.18) × 10−2

σ 2
γ 5.98 × 10−1 (2.84,12.0) × 10−1
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complexity O(�S�R). Viewed as a multivariate birth process that conveniently
only increases, the transition probabilities we seek are related to the waiting time
until the �S and �R births have occurred. Inter-birth times are independent ex-
ponential random variables with potentially unique rates, and we can arrive at the
distribution of the total waiting time through taking a convolution of �S + �R of
these exponentials. However, the rates depend on the order of births and there are
(�S + �R)!/�S !�R! possible orderings. Putting these pieces together, the tran-
sition probabilities are then exponential sums of multiple convolutions. We recall
several properties of Laplace transformations. First, they are linear operators, so
sums in probability-space remain sums in the transformed space. Second, convo-
lutions metamorphose into simple multiplication in the transformed space. These
properties leave us with a sum-product expression, suggesting a distribution of the
sums within the products. To gain insight into this dynamic programming, consider
the �S × �R lattice graph. Each lattice path from (0,0) to (�S,�R) represents
one possible ordering of the birth events. If we want the transformed probability of
ending at (�S,�R), there are only two possible one-shorter paths that could have
gotten us there, specifically (0,0) to (�S−1,�R) or (�S,�R−1). So, the result-
ing transformed probability becomes the sum of the two shorter-path transformed
probabilities, each multiplied by the Laplace transform of an exponential random
variable that has a simple, closed-form expression. Consequentially, in filling out
the whole lattice graph, we need to visit each point once in increasing order and
there are only �S�R points.

Because differentiation is also a linear operator, our recursion method remains
pertinent for computing the derivatives of the transition probabilities with re-
spect to the unknown parameters of the compartmental model. This feature makes
HMC-based Bayesian inference feasible. As the number of unknown parameters
in the compartmental models grows, we suspect HMC to generally outperform
Metropolis–Hastings algorithms using standard transition kernels. Equally note-
worthy, our algorithm does not require any specific structure in the birth rates λ

(·)
x

of the multivariate birth processes. Therefore, we can apply our method to other
general stochastic epidemic models such as one proposed by Severo (1969). This
opens the possibility to access the model adequacy of traditional epidemic mod-
els. It is worth noticing that our method only works for time-homogeneous rates
between observations. When the rates depend on time, the Chapman–Kolmogorov
equations in the Laplace domain do not have analytic formulae making the current
tool inapplicable. Therefore, an important subject for future direction of this work
is extending to time-inhomogeneous processes.

Finally, we examine the 2014–2015 Ebola outbreak in Guinea using a marginal-
ized, hierarchical and time-inhomogeneous Markovian SIR model. By applying
our recursion method, we can effectively explore the posterior distribution of the
basic reproductive number and removal rate across the country, while simultane-
ously integrating out the unobserved removed population sizes using a Metropolis-
within-Gibbs scheme. This example highlights the flexibility of a Bayesian frame-
work for direct likelihood-based inference for a compartmental model when one
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or more of the compartments are missing or immeasurable, as is common in in-
fectious disease surveillance. Our results provide evidence for the slowing down
of this epidemic in the Southeast region of Guinea. Several important extensions
are immediately obvious. For example, we assume no error in the reported Ebola
case counts, but a simple modification similar to that we accomplished for missing
compartments can relax this assumption.

APPENDIX A: DERIVATIVES OF THE TRANSITION PROBABILITIES OF
SIR MODEL

We propose an efficient method to evaluate the derivatives of the transition
probabilities of the SIR model. Again, we use the bivariate birth presentation for
this model. Denote X = NSI and Y = NIR, and consider the forward transition
probability Pxy(t) = Pr{X(t) = x,Y (t) = y|X(0) = 0, Y (0) = 0}. The forward
Chapman–Kolmogorov equations are:

(A.1)

dPxy(t)

dt
= β(s0 − x + 1)+(i0 + x − 1 − y)+Px−1,y(t)

+ γ (i0 + x − y + 1)+Px,y−1(t)

− [
β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

]
Pxy(t).

Let P
(β)
xy be the derivative of Pxy with respect to β . From (A.1), we have

(A.2)

dP
(β)
xy (t)

dt
= β(s0 − x + 1)+(i0 + x − 1 − y)+P

(β)
x−1,y(t)

+ γ (i0 + x − y + 1)+P
(β)
x,y−1(t)

− [
β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

]
P (β)

xy (t)

+ (s0 − x + 1)+(i0 + x − 1 − y)+Px−1,y(t)

− (s0 − x)+(i0 + x − y)+Pxy(t).

Denote fxy and f
(β)
xy be the Laplace transform of Pxy and P

(β)
xy respectively. Taking

Laplace transform to both sides of (A.2), we have

(A.3)

sf (β)
xy (s) − P (β)

xy (0)

= β(s0 − x + 1)+(i0 + x − 1 − y)+f
(β)
x−1,y(s)

+ γ (i0 + x − y + 1)+f
(β)
x,y−1(s)

− [
β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

]
f (β)

xy (s)

+ (s0 − x + 1)+(i0 + x − 1 − y)+fx−1,y(s)

− (s0 − x)+(i0 + x − y)+fxy(s).
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Since Pxy(0) = 1{x=0,y=0} for all β , we deduce that P
(β)
xy (0) = 0. Therefore, we

can compute f
(β)
xy using the following recursion:

(A.4)

f
(β)
00 (s) = − s0i0f00(s)

s + βs0i0 + γ i0
,

f (β)
xy (s) = β(s0 − x + 1)+(i0 + x − 1 − y)+f

(β)
x−1,y(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

+ γ (i0 + x − y + 1)+f
(β)
x,y−1(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

+ (s0 − x + 1)+(i0 + x − 1 − y)+fx−1,y(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

− (s0 − x)+(i0 + x − y)+fxy(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+
.

Then, we can compute P
(β)
xy by approximating the inverse Laplace transform using

(3.19). Similarly, we can derive the recursive formulae for f
(γ )
xy :

(A.5)

f
(γ )
00 (s) = − i0f00(s)

s + βs0i0 + γ i0
,

f (β)
xy (s) = β(s0 − x + 1)+(i0 + x − 1 − y)+f

(β)
x−1,y(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

+ γ (i0 + x − y + 1)+f
(β)
x,y−1(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

+ (i0 + x − y + 1)+fx,y−1(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+

− (i0 + x − y)+fxy(s)

s + β(s0 − x)+(i0 + x − y)+ + γ (i0 + x − y)+
,

and evaluate P
(γ )
xy using (3.19).

APPENDIX B: METROPOLIS-WITHIN-GIBBS ALGORITHM FOR
INFERENCE OF EBOLA DYNAMICS IN WEST AFRICA

Let t(p) = (t
(p)
1 , t

(p)
2 , . . . , t

(p)
mp ) be the times when the counts of Ebola cases in

prefecture p are reported. We define N(p)
SI and N(p)

IR be the total numbers of new

infection and removal events at t(p)
−1 respectively. Here, t(p)

−j denotes the vector t(p)

without the j th coordinate. Notice that we only observe the total of Ebola cases at
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t(p), thus we only know N(p)
SI . So, our unknown parameters are {N(p)

IR , r0p, δp, γp}
for all p and (M,�). We update our parameters using a Metropolis-within-Gibbs
algorithm as follows:

1. For every p = 1, . . . ,19 in parallel:

(i) For every j = 2,3, . . . ,mp , we can compute P(N(p)
IR (tj ) = n|N(p)

SI ,

N(p)
IR (t(p)

−j ), r0p, δp, γp) using the forward and backward transition probabilities

of the SIR model. Therefore, we sample from N(p)
IR (tj )|N(p)

SI ,

N(p)
IR (t(p)

−j ), r0p, δp, γp directly to update the value of N(p)
IR (tj ).

(ii) Then, we update r0p, δp, γp|N(p)
SI ,N(p)

IR on the log-scale using a random-
walk Metropolis–Hasting algorithm with Gaussian proposals or HMC. This
step is straight forward because we can evaluate the density l(r0p, δp,

γp|N(p)
SI ,N(p)

IR ) efficiently.

2. Finally, since we choose conjugate priors for the hierarchical parameters, we
Gibbs sample M and �.

Note that we update N(p)
IR (tj ) sequentially instead of sampling from the joint

distribution of N(p)
IR because sampling sequentially only requires transition proba-

bility matrices between counts of Ebola cases, which is much smaller compared to
the full transition probability matrix of size N2 × N2, where N is the total popu-
lation, required for sampling from the joint distribution.
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