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The randomized response technique (RRT) is a classical and effective
method used to mitigate the distortion arising from dishonest answers. The
traditional RRT usually focuses on the case of a single sensitive attribute,
and discussion of the case of multiple sensitive attributes is limited. Here,
we study a business case to identify some individual and organizational de-
terminants driving information systems (IS) resource misuse in the work-
place. People who actually engage in IS resource misuse are probably not
willing to provide honest answers, given the sensitivity of the topic. Yet, to
develop the causal relationship between IS resource misuse and its deter-
minants, a version of the RRT for multivariate analysis is required. To im-
plement the RRT with multiple sensitive attributes, we propose a Bayesian
approach for estimating covariance matrices with incomplete information (re-
sulting from the randomization procedure in the RRT case). The proposed
approach (i) accommodates the positive definite condition and other intrinsic
parameter constraints in the posterior to improve statistical precision, (ii) in-
corporates Bayesian shrinkage estimation for covariance matrices despite in-
complete information, and (iii) adopts a quasi-likelihood method to achieve
Bayesian semiparametric inference for enhancing flexibility. We show the ef-
fectiveness of the proposed method in a simulation study. We also apply the
Bayesian RRT method and structural equation modeling to identify the causal
relationship between IS resource misuse and its determinants.

1. Introduction. Surveys involving multiple sensitive questions appear in
various fields of applications [Minsky-Kelly et al. (2005), Nuno and St. John
(2015), Höglinger, Jann and Diekmann (2016), Rosenfeld, Imai and Shapiro
(2016)]. Existing statistical inference techniques mainly focus on analyzing a sin-
gle sensitive question or bivariate relationship. In this paper, we address a research
gap by proposing a Bayesian method to estimate the covariance of multiple sen-
sitive and direct questions in surveys while ensuring positive definiteness and al-
lowing possible sparsity in the covariance matrix of all responses of interest. We
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use a business case on information systems (IS) resource misuse to illustrate our
Bayesian method. IS resource misuse is defined as the unauthorized use of any
IS resources, including applications, the Internet, and networks in the workplace
[Chu, Chau and So (2015), page 521]. It is a serious problem in the workplace
because it may increase the risk of attacks on organizations’ computer systems in
addition to company information loss or leakage [Lin and Ding (2003), D’Arcy
and Devaraj (2012)]. We launch a survey with questions measuring the factors of
interest and actual IS resource misuse behavior. However, as IS resource misuse is
unpleasant behavior that may incur legal liability, respondents who actually mis-
use IS resources would probably not provide honest answers to those questions
[Locander, Sudman and Blackburn (1976)].

Warner (1965) introduced a randomization scheme, usually known as the ran-
domized response technique (RRT), to mitigate the response distortion result-
ing from sensitive questions. Under RRT settings, respondents are asked either
“whether you have a sensitive attribute” or “whether you don’t have a sensitive
attribute”. Assigning of these questions is randomized to ensure respondents’ pri-
vacy, but the researchers can still estimate the proportion of the population with
the sensitive attribute from the randomized responses. Numerous extensions and
alternative designs of Warner’s RRT have been developed in the past 50 years
[e.g., Kuk (1990), Mangat and Singh (1990), Mangat (1994), Gjestvang and Singh
(2006)]. In particular, Horvitz, Shah and Simmons (1967) and Greenberg et al.
(1969) proposed the unrelated question design (UQD), where respondents are in-
structed to answer a sensitive question or an unrelated and innocuous question at
random. The UQD has an advantage over other designs in that it can also han-
dle quantitative data [Greenberg et al. (1971), Pollock and Bek (1976)]. There are
also other designs of the RRT, including the forced response design, the disguised
response design [Blair, Imai and Zhou (2015)], the randomized sum score/list ex-
periment [Raghavarao and Federer (1979), Cruyff, van den Hout and van der Hei-
jden (2008), Imai (2011), Blair and Imai (2012), Imai, Park and Greene (2015),
Rosenfeld, Imai and Shapiro (2016)], and the nonrandomized response techniques
[Tan, Tian and Tang (2009)] adopted in various domains. Comprehensive reviews
of the RRT can be found in Fox and Tracy (1986), Singh (2003), and Chaudhuri
(2011).

In the first 20 years of RRT research after Warner (1965), works focused on
collecting and analyzing a single sensitive attribute, that is, asking one sensitive
question. However, our study estimates the dependency in a set of sensitive at-
tributes, which are asked under a randomization procedure, and a set of standard
attributes, which are asked directly. Discussions of the RRT in this kind of set-
ting are very limited in the literature. Some exceptions are Tamhane (1981) and
Christofides (2005), who extended the method to deal with more than one sensi-
tive dichotomous question. Yet, their results cannot be applied to our study, as the
questions in our survey are quantitative. Fox and Tracy (1984) investigated a bi-
variate case and estimated the correlation between two sensitive responses under
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the UQD, with the unrelated and innocuous question distribution assumed to be
known. Kwan, So and Tam (2010) handled a more general case under the UQD
to capture the covariance between a randomized sensitive response and a direct
response. Nevertheless, both Fox and Tracy (1984) and Kwan, So and Tam (2010)
ignored the intrinsic positive definite constraint in a covariance matrix, and hence
we can easily produce invalid covariance matrices (see Section 4) by their meth-
ods. As several questions are included in a wide range of surveys, the problem of
invalid covariance matrices is highly significant if we apply the method of Fox and
Tracy (1984) or Kwan, So and Tam (2010).

We restrict our discussion to the UQD in our study, as the questions in our sur-
vey are quantitative rather than the typical binary “Yes”/“No” response of most of
other RRT designs. To deal with the problem of invalid estimates of covariance ma-
trices, we develop a Bayesian RRT method that is applied specifically to the UQD.
Applications of the Bayesian approach to RRT problems have been discussed in
the literature. For example, Chen and Singh (2011) and Jayaraj, Odumade and
Singh (2014) studied pseudo-Bayes estimators for one sensitive dichotomous ques-
tion. Blair and Zhou (2016) adopted a Bayesian implementation of the method in
Blair, Imai and Zhou (2015). In contrast, our Bayesian RRT method is designed to
return a positive-definite estimate of the covariance matrix of a set of randomized
sensitive and direct questions simultaneously, even under a high-dimensional set-
ting. In our Bayesian RRT approach, we reparameterize the covariance matrix by
the modified Cholesky decomposition to ensure its positive definiteness. We use a
Laplace prior to impose sparsity on the inference of the covariance matrix for en-
hancing statistical precision. In addition, we adopt a quasi-likelihood constructed
from moment equations to allow the distribution of attributes to be unspecified,
thus enhancing the flexibility of the RRT modeling. We also prove the posterior
consistency to justify the use of the quasi-likelihood and show that the Bayesian
RRT method can increase the stability of the covariance-matrix estimates even
when the dimension of variables is high.

In Section 2, we describe the UQD and the challenges in enforcing the posi-
tive definiteness constraint when estimating the covariance matrix with multiple
sensitive attributes. Section 3 presents the Bayesian RRT method with the quasi-
likelihood. In Section 4, we conduct a simulation study to compare the perfor-
mance of the Bayesian RRT method with a benchmark method-of-moments esti-
mator, and highlight the superiority of the Bayesian approach. In Section 5, we
apply the Bayesian RRT method to investigate the individual and organizational
determinants triggering IS resource misuse in the workplace, and provide a de-
tailed explanation of the research model and the steps of the survey. Section 6
presents the conclusion and discussion.

2. Unrelated question design.

2.1. Single sensitive attribute setting. Horvitz, Shah and Simmons (1967) and
Greenberg et al. (1971) proposed the UQD to decrease the distortion of responses
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to quantitative questions in a survey when the questions are sensitive to respon-
dents. Under the UQD, respondents are presented with a pair of questions. One
question is sensitive and of interest, while the other question is innocuous, unre-
lated to the sensitive question, and not of interest. In statistical terms, the unrelated
question response is assumed to be independent of the sensitive question response.
The respondents are instructed to generate a dichotomous outcome from a private
random choice procedure, and answer only one of the two questions according
to the generated outcome. For example, the respondent may be asked to draw a
card from a poker deck and keep the card secret. The respondent then answers
the sensitive question if the card drawn is red or the unrelated question if it is not
red, without disclosing which question he or she actually answers. As the outcome
from the private random choice procedure is unknown to the interviewer, the inter-
viewer does not know which question has been answered. In this way, the true re-
sponse of the respondent to the sensitive question is masked by the private random
choice procedure. It is hoped that this encourages the respondent to give a truthful
response. In our experimental setting, we require that the probability governing
the private random choice procedure be known. In addition, we need to collect
two samples, named Samples 1 and 2, and assign different probabilities governing
the private random choice procedure to the two samples. Greenberg et al. (1969)
demonstrated that it is not necessary to split the sample into two pieces provided
that the mean of the unrelated question response is known in advance.

2.2. Multiple sensitive attribute setting. Assume there are p sensitive ques-
tions, and that each sensitive question is paired with an unrelated question. Re-
spondents are asked to generate a random outcome for each pair of sensitive and
unrelated questions to determine which question is answered for that pair. We re-
quire that the random outcomes of the question pairs be independent, and that the
probability of answering sensitive questions be kept constant for all of the question
pairs within a particular sample. Let S1, . . . , Sp be the responses to the p sensitive
questions and U1, . . . ,Up be the responses to the p unrelated questions. Let nk be
the size of Sample k, ωk be the probability of respondents in Sample k answering

the sensitive question in any question pair, and Iki
i.i.d.∼ Bernoulli(ωk) be the binary

variables indicating whether a respondent in Sample k answers the ith sensitive
(Iki = 1) or the ith unrelated question (Iki = 0), for k = 1,2. For Zki denoting the
observed response of a respondent in Sample k to the ith randomized question, it
can be expressed as Zki = IkiSi + (1−Iki)Ui , for i = 1, . . . , p and k = 1,2. Under
the UQD, we assume (i) ωk is known, (ii) Samples 1 and 2 are homogeneous, and
(iii) ω1 �= ω2.

Here, S1, . . . , Sp are measured using the RRT because they are sensitive. As-
sume that there are also q attributes of interest that are not sensitive and their re-
sponses D1, . . . ,Dq can be measured by direct questioning. Let S = (S1, . . . , Sp)T

be the vector of sensitive question responses, U = (U1, . . . ,Up)T be the vector of
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unrelated question responses, D = (D1, . . . ,Dq)
T be the vector of direct question

responses, and Y = (ST ,DT )T be the pooled responses of interest. Define ap to
be a pth dimensional vector and ap×q to be a p × q matrix, both with all entries
equal to a, for any real number a. The (p + q) × 1 vector of the pooled observed
responses in Sample k for k = 1,2, denoted by Zk , is

(2.1) Zk =
(

Ik � S + (1p − Ik) � U
D

)
,

where � is the pointwise (Hadamard) product and Ik = (Ik1, . . . , Ikp)T .
As U reflects the responses to the unrelated questions, Y and U are assumed to

be independent. To enable wide applicability and to accommodate various types of
survey responses, we leave the distribution of Y and U unspecified. In conducting
multivariate analysis, we are interested in the covariance matrix of the responses to
the questions of interest Y, denoted by �Y . Furthermore, let �U be the covariance
matrix of U. Without loss of generality, we assume E(Y) = 0p+q and E(U) = 0p .
By the derivation given in Appendix A,

(2.2) �Y = C1∗ � E
(
Z1ZT

1
) + C2∗ � E

(
Z2ZT

2
)
,

where Ck∗ = C◦−1
0 � Ck ,

C1 =
( Pc

2 1p×q

1q×p 1q×q

)
, C2 =

(−Pc
1 1p×q

1q×p 1q×q

)
,

C0 =
(Pc

2 �P1 −Pc
1 �P2 (ω1 + ω2)p×q

(ω1 + ω2)q×p 2q×q

)
,

A◦−1 denotes the Hadamard inverse of a matrix A,2 Pk is a p × p matrix with
diagonal elements given by ωk and other elements given by p2

k , Pc
k is defined in

the same way as Pk but with ωk replaced by 1−ωk , for k = 1,2, and (ω1 +ω2)p×q

is a p × q matrix with all entries equal to ω1 + ω2. As in the cases where we have
a single sensitive attribute, only one sample is needed if �U is known. However,
in the rest of the discussion, we assume that �U of the unrelated questions is
unknown, making two samples necessary.

In theory, we can apply the method of moments and (2.2) to estimate �Y . How-
ever, the resulting estimator suffers from two problems: (i) the estimate of �Y may
not be positive definite and (ii) the estimation error will increase drastically when
the dimension of Y grows. To handle these problems, we introduce a Bayesian
RRT method that is designed for the multiple-attribute UQD problem.

3. A Bayesian RRT method.

3.1. Reparameterization. Clumsy constraints, such as the smallest eigenvalue
being greater than 0, are usually imposed on the space of the prior distribution

2If ai,j is the (i, j)th element of A, the (i, j)th element of A◦−1 is given by a−1
i,j .
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of �Y to ensure its positive definiteness. This makes the inference complicated,
especially when the dimension of �Y is high. To avoid nontrivial and clumsy
constraints, we reparameterize �Y based on a modified Cholesky decomposition.
Following the idea of Huang et al. (2006), we interpret the modified Cholesky
decomposition as a series of linear regressions. Y is expressed as

(3.1) Yi =

⎧⎪⎪⎨⎪⎪⎩
εi if i = 1,

i−1∑
j=1

φi,jYj + εi if 2 ≤ i ≤ p + q,

where the εi ’s are i.i.d. errors with variance vi . Therefore,

(3.2)

⎛⎜⎜⎜⎝
Y1
Y2
...

Yp+q

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 0 0 · · · 0

φ2,1 0 0 · · · 0
...

...
...

. . . 0
φp+q,1 φp+q,2 φp+q,3 · · · 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Y1
Y2
...

Yp+q

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
ε1
ε2
...

εp+q

⎞⎟⎟⎟⎠ ,

which implies ε = TY, where ε = (ε1, . . . , εp+q)
T and T is a lower triangular

matrix with diagonal elements equal to 1 and the (i, j)th element equal to −φi,j

for i > j . Using the covariance of ε = TY, we can recover �Y from the equation

(3.3) T�Y TT = B,

where B is a diagonal matrix with its diagonal given by (v1, . . . , vp+q)
T . After

reparameterization by (3.3), the parameters of interest switch from {σi,j }, the el-
ements of �Y , to {φi,j } and {vi}. We also reparameterize {vi} to {logvi}. Under
the new parameterization, the spaces of φi,j and logvi are on the whole real line,
without further constraints imposed on the parameter space. Thus, the posterior
distribution of �Y is naturally supported in the space of positive definite matrices.
In this way, we avoid complicated support in the prior distribution of �Y .

3.2. Bayesian inference with quasi-likelihood. After the reparameterization
by (3.3), the inference on �Y is made through the φi,j ’s and logvi ’s. We intro-
duce the Bayesian inference on the φi,j ’s and logvi ’s in this section.

3.2.1. Prior distribution to induce sparsity. We assume that the prior distribu-
tions of the φi,j ’s and logvi ’s are independent. When Y is of high dimension, it
may be that many of the variables in Y are pairwise-independent or the dependence
is negligible. In this case, the off-diagonal elements of �Y may contain many zero
values. This feature is usually known as covariance sparsity. Referring to (3.1), the
sparsity of �Y can be interpreted as the existence of several zero values in {φi,j }.
In addition, (3.1) gives us insight that φi,j behaves like a regression parameter.
Motivated by Park and Casella (2008), who imposed shrinkage on regression pa-
rameters through the Laplace prior, we specify the prior distribution of φi,j as a
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Laplace distribution π(φi,j ) ∝ exp(−λ|φi,j |), where λ is a nonnegative hyperpa-
rameter and a larger λ represents a stronger shrinkage effect on φi,j . Given that
sparsity exists, Park and Casella (2008) demonstrated that the Laplace prior could
effectively decrease the estimation error. We illustrate the advantage of the shrink-
age prior in Section 4. We set the prior distribution of logvi to be normal with
mean 0 and variance η.

3.2.2. Quasi-likelihood. We proceed to define a quasi-likelihood of Y for the
Bayesian inference. In practice, the entries of Y may possess very different statis-
tical properties. For example, the first variable of Y may be discrete and the second
variable of Y may be continuous. As such, specifying the joint distribution of Y
is often difficult. However, the traditional Bayesian inference cannot be conducted
with likelihoods omitted. In this paper, we follow the approach of Yin (2009) to
construct a quasi-likelihood from generalized method of moments (GMM) equa-
tions. Let Zkt be an i.i.d. copy of Zk representing the observed responses of the t th
respondent in Sample k for k = 1,2. Assume that θ is the h-dimensional param-
eter vector collecting φi,j ’s and logvi ’s, h is the number of parameters given by
(p +q)(p +q + 1)/2, and �Y (θ) is �Y but reparameterized in terms of θ through
(3.3). In addition, assume that n = min (n1, n2) → ∞, for k = 1,2. According to
(2.2), we can form a moment equation given by Gn(θ) = 0, where

(3.4) Gn(θ) = vech

(
n−1

1 C1∗ �
n1∑
t=1

Z1tZT
1t + n−1

2 C2∗ �
n2∑
t=1

Z2tZT
2t − �Y (θ)

)
.

Some variables of Gn(θ) may be more important than others; hence, we need
to allocate higher weights to those variables. Therefore, we define the weighted
moment equation as GW

n (θ) = 0, where GW
n (θ) = WGn(θ) and W is a diago-

nal matrix with its diagonal elements equal to the weights of the corresponding
variables of Gn(θ). Note that each variable of Gn(θ) is the moment equation of a
particular entry of �Y . In addition, the complexity of the variable of Gn(θ) corre-
sponding to σi,j , i > j , increases with i, as the variable with larger i contains more
elements of θ . Based on our empirical experience, the accuracy will be increased if
the more complex variable of Gn(θ) is down-weighted. Therefore, the variable of
Gn(θ) corresponding to σi,j , i > j , is assigned a weight of w− i, where w = p+q

is the dimension of Y in our settings.
From (3.4) and the definition of GW

n (θ), Vn = var(GW
n (θ)) can be estimated

by V̂n = W{n−2
1

∑n1
t=1(g1t − g1)(g1t − g1)

T +n−2
2

∑n2
t=1(g2t − g2)(g2t − g2)

T }W,
where gkt = vech(Ck∗ � (ZktZT

kt )) and gk = n−1
k

∑nk

t=1 gkt for k = 1,2. We de-
fine the GMM estimator θ̂n as the vector minimizing the quadratic objective
function Qn(θ) = (GW

n (θ))T V̂−1
n GW

n (θ). The asymptotic distribution of θ̂n is

given by (HT
n V−1

n Hn)
1/2(̂θn − θ0)

d−→ N(0, I), where θ0 is the true value of θ ,
Hn = E(ĠW

n (θ0)), and ḟ = ∂
∂θ f(θ) for f(θ) being a function of θ [Hansen (1982)].
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Yin (2009) considered exp(−Qn(θ)/2) as the quasi-likelihood for the Bayesian
inference. Yin (2009) justified the use of the quasi-likelihood based on the intu-
ition that the quasi-likelihood and the true likelihood have the same asymptotic
behavior. To strengthen the argument of Yin (2009), we introduce the following
theorem, and give its proof in Appendix B.

THEOREM 3.1. Suppose that:

1. there exists a sequence of GMM estimators {̂θn} s.t. P(GW
n (̂θn) = 0) −→ 1,

θ̂n
p−→ θ0 as n → ∞,

2. Vn and Hn are invertible for large n,
3. for any ε > 0, there exists δ > 0 s.t.

P
{

sup
θ∈N0(δ)

∥∥[
ĠW

n (θ0)
]−1(

ĠW
n (θ) − ĠW

n (θ0)
)∥∥ > ε

}
−→ 0,

where N0(δ) is the neighborhood of θ0 with radius of δ,

4. V̂−1
n Vn

p−→ I, (ĠW
n (θ0))

−1Hn
p−→ I,

5. ‖(HT
n V−1

n Hn)
−1‖ = o(1) and

6. π(·) is independent of n, continuous at θ0, and positive at θ = θ0.

For π̂ (θ | z,d) ∝ π(θ) exp(−1/2 · Qn(θ)) denoting the quasi-posterior density of
θ and π̂(η | z,d) denoting the quasi-posterior density of η = (HT

n V−1
n Hn)

1/2(θ −
θ̂n), π̂(η | z,d)

p−→ φ(η) for any η ∈ (−∞,∞)d , where φ(η) ∝ exp(−‖η‖2/2).

As the dimensions of GW
n (θ) and θ are identical in our settings, we may find θ̂n

that solves the equation GW
n (̂θn) = 0 exactly. In such a case, θ̂n can be regarded

as a generalized estimating equation (GEE) estimator [Shao (2003), Chapter 5.4]
in addition to the GMM estimator. Shao [(2003), Proposition 5.3] suggested stan-
dard sufficient conditions for condition 1 in Theorem 3.1 under the GEE frame-
work. Conditions 2–5 in Theorem 3.1 are also variations of the standard sufficient
conditions for the asymptotic normality of the GEE estimator [Shao (2003), The-
orem 5.14]. Theorem 3.1 implies that with a large sample size, the quasi-posterior
distribution of θ behaves like the normal distribution with mean θ̂n and covariance
(HT

n V−1
n Hn)

−1. Remember that the asymptotic distribution of θ̂n under the fre-
quentist approach is given by the multivariate normal with mean θ0 and covariance
(HT

n V−1
n Hn)

−1. Therefore, provided that the regularity conditions of Theorem 3.1
are satisfied, the limiting quasi-posterior distribution provides us with information
analogous to that provided by the limiting sampling distribution of θ̂n. This justi-
fies the validity of the information provided by the quasi-posterior distribution.

3.3. MCMC sampling algorithm. As the quasi-posterior distribution π̂(θ |
z,d) is analytically intractable, we adopt Markov chain Monte Carlo (MCMC)
sampling with a Metropolis–Hastings (MH) algorithm to draw samples from
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π̂(θ | z,d). Nevertheless, the traditional MH algorithm with random-walk pro-
posal kernel fails to work, as the dimension of θ is very high: over 100 in our case.
Thus, the resulting curse of dimensionality and multi-modal nature severely hinder
the sampling efficiency. To tackle the problem, we adopt a multiple-try algorithm
[Liu, Liang and Wong (2000)]. The multiple-try algorithm is designed to propose
multiple trial points in each sampling iteration, increasing the chances of accep-
tance and of escaping from local modes. This facilitates the efficient sampling of
θ with a high dimension in our RRT cases.

We block θ as follows during the sampling. {φi,j } and {logvi} are blocked on a
row-by-row basis in relation to the matrices shown in (3.2). In other words, each
block is a subvector of θ in the form (φi,1, . . . , φi,i−1, logvi), i = 1, . . . , p + q .
If the number of elements within a particular block is too large, we subdivide
the block into smaller blocks by (i) permuting the elements within the block and
(ii) separating the block into smaller blocks using the “stochastic knots” method
[Shephard and Pitt (1997)]. From our experience in both simulated and real RRT
examples, the MCMC algorithm proposed facilitates efficient sampling of θ with
a fast mixing rate.

The MCMC simulation is coded in R and executed on a Linux platform installed
in a computer with a 3.50 GHz Intel Core i7-4771 CPU and 32 GB memory. The
R function BayeRRT(), which carries out the MCMC simulation in this section,
can be accessed in the Supplementary Material [Chung, Chu and So (2018)]. We
can follow the instruction of the HTML file attached to BayeRRT() to obtain the
results of one simulated dataset as an example. BayeRRT() is also capable of
implementing an adaptation algorithm that further increases the mixing rate of the
Markov chain. Section 5.3 presents details of the adaptation algorithm.

4. Simulation study.

4.1. Design of the simulation study. In this section, we outline the simulation
study to investigate the performance of our proposed Bayesian estimator. We con-
sider two �Y to give two dependence structures of Y . The first �Y , denoted by
�1, is of the form (3.3) with vi = 2 for i = 1, . . . ,19, φi,i−1 = 0.5 and φi,j = 0
for 2 ≤ j < i ≤ 19, j �= i − 1. This is an AR(1) structure that Huang et al. (2006)
adopted in their simulation study. The second �Y , denoted by �2, is the covari-
ance matrix implied by the structural equation model in Figure 2. Therefore, �2
mimics the covariance structure of the behavioral model observed in the survey
data. To understand the effect of the distribution of Y on the performance of the
Bayesian estimator, we set Y to follow two Gaussian copulas whose correlation
parameters are specified by the standardized version of �1 and �2, and (i) normal
margins and (ii) Poisson margins, with their marginal variances equal to the diago-
nal elements of �j . Hence, four experimental settings, �1 and �2 combined with
normal and Poisson margins, are produced. We set U as a p-dimensional random



1978 R. S. W. CHUNG, A. M. Y. CHU AND M. K. P. SO

vector independent of Y, following a normal distribution with mean 0 and a di-
agonal covariance matrix having all entries equal to 2. We accompany the first p

elements of Y by U, and generate {Zk,i}i=1,...,p through the randomization proce-
dure in (2.1). The remaining q elements of Y are defined as D. Two samples with
different ωk are generated. Their sample sizes, n1 and n2, are both set to 200, so
that the sample sizes here are comparable with those in Section 5. Moreover, we
set p = 7, q = 12, ω1 = 1/3, and ω2 = 2/3 based on our settings in Section 5. We
generate 100 datasets under each experimental setting and implement the MCMC
simulation algorithm described in Sections 3.3 and 4.1. We use Ando’s (2011)
information criterion to set the shrinkage parameter λ to be 10.

We denote the MCMC estimate of the posterior mean of �Y by �̂Y . To eval-
uate the accuracy of �̂Y , we consider two loss functions for covariance matrix
estimators, known as entropy and quadratic losses [Muirhead (2005), Chapter 4],
which are defined by �1(�Y , �̂Y ) = tr(�−1

Y �̂Y ) − log |�−1
Y �̂Y | − (p + q) and

�2(�Y , �̂Y ) = tr{(�−1
Y �̂Y − I)2}, respectively. The entropy and quadratic risks,

defined as Rj(�Y , �̂Y ) = E(�j (�Y , �̂Y )) for j = 1,2, respectively, can be es-
timated by the mean loss of the replicated datasets. We use Rj(�Y , �̂Y ) to sum-
marize the expected deviation of �̂Y from �Y . We then compare the estimation
performance of �̂Y with the method-of-moments estimator [Kwan, So and Tam
(2010)], denoted by �̃Y , which is given by (2.2) but with the theoretical mo-
ments replaced by their empirical analogue. We also replicate datasets to evaluate
Rj(�Y , �̃Y ), j = 1,2. Note that �̃Y may not be positive definite (P.D.), especially
when the sample size is small. In those cases, we repeatedly replicate datasets and
discard the datasets in which �̃Y is not P.D. until we can retain 100 datasets for
comparing �̂Y and �̃Y . We obtain the relative efficiency (R.E.) of �̂Y with respect
to �̃Y under �j , calculated by Rj(�Y , �̃Y )/Rj (�Y , �̂Y ), to compare estimation
performance. We also calculate the proportion of datasets with P.D. �̃Y .

We set the initial values of {φi,j } and {logvi} to 0 for all i and j , and �t,k ,
the covariance of the proposal kernel for the kth sampling block of θ at iteration
t , to ci(t,k)I, where i(t, k) = i if the kth sampling block is a subset of the block
(φi,1, . . . , φi,i−1, logvi) and ci is a positive constant. In other words, the φi,j ’s
and logvi in the same block of (φi,1, . . . , φi,i−1, logvi) share the same scaling
constant ci . We tune ci to maintain the acceptance rates of the Markov chain at
25–50%. As the posterior variance of some logvi is much different from that of the
φi,j ’s under the same block, we may need to assign a specific scaling constant for
logvi . Overall, we carry out 15,000 burn-in iterations followed by another 40,000
iterations for sample sizes of n1 = n2 = 200, which on average takes two hours in
each replication.

4.2. Evaluating the Bayesian estimator using relative efficiency. We conduct
a simulation study to evaluate the estimation performance of our Bayesian RRT
method under the four data-generating processes described in Section 4.1. Table 1
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TABLE 1
The R.E. and the proportion of datasets with P.D. �̃Y in the simulation study

Normal Poisson

�1 �2 �1 �2

R.E. under �1 2.05 1.72 1.91 1.63
R.E. under �2 1.40 1.46 1.38 1.48
Proportion of P.D. �̃Y 36.5% 4.6% 40.5% 5.4%

reports the R.E. of �̂Y with respect to �̃Y under �j , j = 1,2, and the P.D. pro-
portion of �̃Y under each of the preceding four experimental settings. For the
dependence structure given by �1, �̂Y is 105%/91% and 40%/38% more efficient
than �̃Y for Y following normal/Poisson margins under �1 and �2, respectively.
For the dependence structure given by �2, �̂Y is also 72%/63% and 46%/48%
more efficient than �̃Y for Y following normal/Poisson margins under �1 and �2,
respectively. These results show that our Bayesian RRT estimator is significantly
more accurate than the method-of-moments estimator. Furthermore, the P.D. pro-
portion of �̃Y is low in all of the experimental settings. When the dependence
structure of Y is given by �2, the P.D. proportion is even as low as 5%, meaning
that the method-of-moments estimator cannot provide valid estimates about 95%
of the time. However, our Bayesian estimator does not suffer from the P.D. prob-
lem. The results demonstrate that the modified Cholesky decomposition greatly
improves the regularity of the estimate of �Y , so that the positive definiteness can
be achieved easily. Together with the shrinkage effect imposed by the Laplace prior
of φi,j , the estimation error can be reduced drastically.

4.3. Effect of sample size on the performance. In this section, we evaluate
the performance of our Bayesian RRT method under different sample sizes. The
settings here are the same as those in Section 4.1, except that we consider four dif-
ferent combinations of sample sizes with n1 = n2 = n and n = 200,400,600,800.
For each combination of sample size, we generate 100 datasets using �2. We im-
plement the MCMC algorithm described in Sections 3.3 and 4.1, and regard the
posterior mean �̂Y as the point estimator. We adopt the entropy and quadratic
risks again to assess the estimation accuracy of �̂Y and the benchmark method-of-
moments estimator �̃Y . Figure 1 presents the entropy and quadratic risks of �̂Y

and �̃Y under different combinations of sample size.
When the sample size is small, such as n = 200, using �̂Y instead of �̃Y reduces

both entropy and quadratic risks by more than 30%. Nevertheless, the proportion of
error reduction decreases with the sample size, which is not surprising as the curse
of dimensionality is abated with sample size. Although the modified Cholesky
decomposition and shrinkage effect mentioned in Section 4.2 no longer help much
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FIG. 1. Entropy and quadratic risks of the Bayesian RRT estimator and method-of-moments esti-
mator of Kwan, So and Tam (2010) under different sample sizes.

in terms of reducing �1 and �2 in the case of n = 800, the Bayesian RRT method
still outperforms the method in Kwan, So and Tam (2010) and avoids the P.D.
problem. Based on the experiment, our Bayesian RRT method is more useful in
cases with a small to moderate sample size, in which the curse of dimensionality
is significant. If we want to keep the entropy or quadratic risk of estimation under
a certain level, we can refer to Figure 1 to determine suitable sample sizes for both
the Bayesian RRT method and the method-of-moments.

5. Empirical study.

5.1. Motivation and model. In this section, we apply the Bayesian RRT
method developed in Section 3 to study IS resource misuse via structural equa-
tion modeling (SEM), a method extensively used in the social sciences literature to
study the causal relationship between human behavior and its determinants. A brief
introduction to SEM can be found in Kaplan (2009). We investigate the causal re-
lationship between organizational commitment, punishment severity, attitude, and
IS resource misuse.

Organizational commitment [Cohen (1996), Jaros (1997), Panaccio and Van-
denberghe (2009)] and punishment severity [Peace, Galletta and Thong (2003)] are
two commonly investigated determinants of work-relevant activities in the social
sciences literature. There are three forms of organizational commitment [Meyer,



BAYESIAN RRT WITH MULTIPLE SENSITIVE ATTRIBUTES 1981

FIG. 2. Relations between latent variables under the structural equation model. All of the determi-
nants and behavior, including AFF, CON, NOR, PUN, ATT, and ACT, are regarded as latent variables
represented by ovals. Each is measured by a set of questions with observable responses, represented
by rectangles (e.g., AFF1-3; ATT1-3).

Allen and Smith (1993)], including (i) affective commitment (AFF), which refers
to employees’ emotional attachment to their organizations; (ii) continuance com-
mitment (CON), which represents employees’ awareness of the costs associated
with leaving their organizations; and (iii) normative commitment (NOR), which
denotes employees’ feeling of obligation to remain in their organizations. Punish-
ment severity (PUN) is defined as the fear of punishment from being caught mis-
using IS resources. We hypothesize that all of the aforementioned determinants
affect one’s attitude toward IS resources (ATT), which further determines the ac-
tual IS resource misuse behavior (ACT). We also hypothesize that the punishment
severity has a direct effect on the actual IS resource misuse behavior. To describe
the causal relationship mentioned previously, we construct a structural equation
model with the form given in Figure 2. As the determinants and behavior are ab-
stract, we may not be able to measure them directly using a single question. To
address this problem, the standard SEM framework assumes that all of the deter-
minants and behavior, including AFF, CON, NOR, PUN, ATT, and ACT, are latent
variables represented by ovals in Figure 2. Each is measured by a set of questions
with observable responses, represented by rectangles in Figure 2 (e.g., AFF1-3;
ATT1-3).

5.2. Survey design and data collection. To fit the structural equation model in
Figure 2, we first estimate the covariance matrix of the questions in the research
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model (represented by rectangles in Figure 2). Then, we input the estimated co-
variance matrix into an R function called sem() in R package lavaan, which
is designed to fit a variety of latent variable models, to obtain the estimated path
coefficients of the research model. The questions adopted in this study and their
corresponding scale of answers are listed in Table 2. As the questions measuring
attitude toward misuse and actual misuse behavior are sensitive, they are asked un-
der the randomization procedure of the RRT. Hence, this study consists of q = 12
direct questions and p = 7 randomized questions. We collected the responses to
the questions via an online survey.

We followed the advice of Kwan, So and Tam (2010) to choose the two different
probabilities of answering sensitive questions as ω1 = 1/3 and ω2 = 2/3 for the
two independent samples, that is, Samples 1 and 2, respectively. To implement the
randomization procedure in Sample 1, the respondents were asked to write down
one of three numbers (e.g., 1, 2, 3) in secret on a piece of paper randomly and click
a button on the screen to confirm the action. An example of the question format for
a randomized item is shown in Figure 3. The online survey then generated a ran-
dom number from the three numbers, and displayed the sensitive and the unrelated
questions simultaneously. When the generated number matched with the secret
number from the respondent (for ω1 = 1/3), the respondent answered the sensitive
question. Otherwise, the respondent answered the unrelated question, which was
innocuous and nonsensitive. The randomization procedure in Sample 2 was sim-
ilar, except that respondents needed to answer the sensitive question in case the
written number differed from, rather than coincided with, the random number (for
ω2 = 2/3). With their own secret number, the respondents had more confidence in
their privacy while enabling the randomization in the RRT, as nobody knew their
secret number. Our procedure is preferable to the usual computer-assisted setting
[Coutts and Jann (2011)], where the random number generated by the computer
alone determines whether the respondents answer the sensitive question, because
the respondents may not trust the true randomness of the random number. We col-
lected responses from a database of a marketing research firm. Finally, we used
n1 = n2 = 225 completed responses in Samples 1 and 2.

5.3. Results and implications. After collecting the data, we centered the re-
sponses to the questions listed in Table 2 by the sample means so that the items
were of mean zero. We then applied the MCMC method introduced in Section 3,
with the posterior mean of �Y , that is, the covariance matrix of the responses in
the research model in the context of this section, considered as the point estimate
of �Y . We inputted the point estimate of �Y into the R function sem() men-
tioned previously, and the sem() returned a solution of the path coefficients of
the research model. We divided the MCMC simulation into three stages. In the
first stage, we set �t,k = ci(t,k)I, where ci(t,k) is a positive constant as defined in
Section 4.1. We generated 10,000 burn-in observations followed by 10,000 ob-
servations. In the second stage, we set �t,k to be the scaled sample covariance
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TABLE 2
Items involved in the study

Latent Item
variable description Randomized Scale#

Affective commitment [Meyer, Allen and Smith (1993)]
AFF1 I would be very happy to spend the rest of my No A

career with my organization.
AFF2 I feel a strong sense of belongingness to my No A

organization.
AFF3 I feel like part of the family at my organization. No A

Continuance commitment [Meyer, Allen and Smith (1993)]
CON1 Right now, staying with my organization is No A

a matter of necessity.
CON2 It would be very hard for me to leave my No A

organization right now, even if I wanted to.
CON3 Too much of my life would be disrupted if No A

I decided to leave my organization now.

Normative commitment [Meyer, Allen and Smith (1993)]
NOR1 Even if it were to my advantage, I do not feel it No A

would be right to leave my organization now.
NOR2 I would feel guilty if I left my organization now. No A
NOR3 My organization deserves my loyalty. No A

Punishment severity [D’Arcy, Hovav and Galletta (2009), Kwan, So and Tam (2010)]
PUN1 If I were caught engaging in IS resource misuse, No A

I would be severely reprimanded.
PUN2 If I were caught engaging in IS resource misuse, No A

I would be severely punished.
PUN3 Even if I am caught engaging in IS resource No A

misuse, I would not be subject to severe
punishment. (Reverse.)

Attitude toward the behavior∗ [Hsieh, Rai and Keil (2008), Kwan, So and Tam (2010)]
ATT1 Committing IS resource misuse is a bad/good Yes B

idea.
(I find saving money in time deposit is a bad/
good idea.)

ATT2 Committing IS resource misuse is a foolish/wise Yes B
idea.
(I find recording daily expenses in detail is a
foolish/wise idea.)

ATT3 Committing IS resource misuse is harmful/ Yes B
beneficial to the organization.
(To me, taking vitamin pills every day is harmful/
beneficial.)
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TABLE 2
(Continued)

Latent Item
variable description Randomized Scale#

Actual misuse behavior∗ [Kwan, So and Tam (2010), Chu and Chau (2014)]
ACT1 Using untrusted network (e.g., the Internet) for Yes C

data transmission at work.
(Taking public transportation.)

ACT2 Installing untrusted applications for personal Yes C
purposes at work.
(Having dinner at home.)

ACT3 Running untrusted applications for personal Yes C
purposes at work.
(Going shopping.)

ACT4 Using instant messaging services at work Yes C
without permission.
(Singing karaoke.)

∗Statements in parenthesis are the unrelated questions paired with their respective sensitive ques-
tions.
#A: 7-point Likert scale (Strongly agree–Strongly disagree), B: 7-point bipolar adjective scale, C:
7-point scale (Never–Very many times).

matrix of the last 10,000 observations from the first stage of the MCMC simula-
tion. Then, we generated another 10,000 burn-in observations followed by 10,000
observations. The third stage was similar to the second stage, in that we set �t,k to
the scaled sample covariance matrix of the last 10,000 observations from the sec-
ond stage, and generated 10,000 burn-in observations followed by 50,000 observa-
tions. The inference was solely based on the last 50,000 observations generated in

FIG. 3. Sample layout of an online page for the unrelated question design.
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FIG. 4. Trace plots and histograms of the MCMC sample of some elements of �Y in the empirical
study.

the third stage. This adaptation method was applied in So, Chen and Chen (2005).
We set the shrinkage intensity parameter λ to 12.0, following Ando’s (2011) infor-
mation criterion.

Figure 4 shows the trace plots and histograms of the MCMC sample of a ran-
domly selected diagonal element and a randomly selected off-diagonal element of
�Y . From Figure 4, we can observe that the generated Markov chain reaches a sta-
tionary state after burn-in. Therefore, the stationary distribution of the chain pro-
vides a good approximation to the quasi-posterior distribution π̂(θ | z,d) of �Y .
In the histograms, the quasi-posterior distribution of the elements of �Y is in a bell
shape, showing that the shape of the posterior distribution is proper even though
the true likelihood is replaced by a quasi-likelihood. Table 3 presents the point
estimate (i.e., the posterior mean estimated from the MCMC sampling) of the cor-
relation matrix of the sensitive items (i.e., ATT1-3 and ACT1-4), whose responses
are collected by the RRT. We also present the estimate obtained from the method-
of-moments of Kwan, So and Tam (2010) in the table. The correlations within the
block of variables comprising ATT1-3 are high, with the magnitudes given by 0.45,
0.51, and 0.47. The correlations within the block of variables comprising ACT1-4
are significant, with all estimates greater than 0.2. In addition, the correlations of
ATT1 with ACT3, ATT2 with ACT1, ATT3 with ACT3, and ATT3 with ACT4 are
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TABLE 3
Correlation matrix estimate of the randomized items. The numbers in the parentheses are estimates

from the method-of-moments

ATT1 ATT2 ATT3 ACT1 ACT2 ACT3 ACT4

ATT1

ATT2 0.45
(0.51)

ATT3 0.51 0.47
(0.55) (0.53)

ACT1 0.08 0.36 0.25
(0.09) (0.45) (0.31)

ACT2 0.01 0.17 0.18 0.34
(0.00) (0.20) (0.20) (0.35)

ACT3 0.24 −0.04 0.25 0.25 0.34
(0.24) (−0.15) (0.28) (0.30) (0.44)

ACT4 0.04 0.15 0.39 0.26 0.26 0.50
(−0.01) (0.13) (0.44) (0.32) (0.29) (0.53)

equal to 0.24, 0.36, 0.25, and 0.39, respectively, indicating that the latent factor
characterized by ATT1-3 may be positively correlated with that characterized by
ACT1-4. The estimate of the covariance matrix from the method-of-moments is
different from that of our Bayesian method. Furthermore, the estimate from the
method-of-moments is not positive definite, and hence we cannot proceed further
to obtain the estimates of the path coefficients of the structural equation model. In
short, our Bayesian method can simultaneously return a reasonable estimate of the
covariance matrix and keep the estimate of the covariance matrix positive definite.

Figure 2 gives the estimated standardized path coefficients of the research model
from sem(). The path coefficients from continuance commitment to attitude and
from normative commitment to attitude are positive. Therefore, continuance and
normative commitment have direct positive effects on the employees’ attitudes to-
ward misuse behavior. Affective commitment does not help much in weakening
attitude toward misuse behavior, as observed from the corresponding near-to-zero
path coefficient. Punishment severity affects employees’ attitude toward misuse
behavior directly, however, its effect on actual misuse behavior is very weak. As
predicted, attitude is positively associated with actual misuse behavior. The rela-
tionships shown in Figure 2 provides insight into how the three forms of organi-
zational commitment and the punishment severity affect employees’ engagement
in IS resource misuse behavior. In fact, we observe from Table 3 that ATT1-3 and
ACT1-4 are very much correlated, explaining why the attitude in Figure 2 has di-
rect effect on the actual misuse behavior (path coefficient = 0.46). In short, we
provide evidence using the structural equation model with sensitive responses that
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employees’ attitude toward IS resource misuse, driven by continuance commit-
ment (path coefficient = 0.14), normative commitment (path coefficient = 0.15),
and punishment severity (path coefficient = 0.22), is a main determinant of the
actual misuse behavior.

6. Conclusion and discussion. Our study of IS resource misuse in the work-
place reveals the importance of multivariate analysis on sensitive quantitative at-
tributes. The RRT is a classical method for analysis of sensitive attributes, and the
method-of-moments approach studied by Kwan, So and Tam (2010) permits multi-
variate analysis of sensitive quantitative attributes. However, existing methods are
unstable and probably return invalid covariance estimates. The problem is espe-
cially significant when the number of questions involved is large. This deficiency
motivates us to introduce a new Bayesian RRT method.

In detail, we first reparameterize the covariance matrix of the attributes via a
modified Cholesky decomposition, so that the intrinsic constraint of positive def-
initeness can be imposed naturally. We also impose a shrinkage effect on the es-
timate of the covariance matrix through the Laplace prior. Provided that the true
covariance matrix is sparse, the shrinkage effect helps to decrease the estimation
error. We demonstrate the advantage of using the shrinkage prior by the results in
Section 4. A novelty of our Bayesian RRT method is its replacement of the true
likelihood by a quasi-likelihood constructed from a set of moment equations. We
also prove Bayesian consistency to theoretically justify our Bayesian RRT method
using a quasi-likelihood. As the quasi-likelihood relies only on semi-parametric in-
formation instead of full parametric information, we can implement the Bayesian
RRT method without specifying the joint distribution of the attributes.

We conduct a simulation to demonstrate that our Bayesian RRT method can
smoothly be applied with the aid of a specially designed MCMC simulation algo-
rithm, whose code is included in an R function called BayeRRT() for convenient
application. We have also conducted other simulation studies to verify that our
Bayesian RRT method outperforms Kwan, So and Tam (2010) in dealing with
multiple sensitive attributes. We apply our Bayesian RRT to investigate the causal
relationships of three forms of organizational commitment, punishment severity,
attitude toward IS resource misuse, and actual IS resource misuse behavior. With
the aid of the SEM, we identify the relationships between different determinants
of the actual IS resource misuse behavior.

We may estimate �Y by projecting the method-of-moments estimator into the
space of positive definite matrices. Nevertheless, when Y contains a moderately
large number of questions, we need to optimize a high-dimensional objective
function in estimation. This may result in an unreliable estimate that is trapped
at either a local minimum or the boundary set of the parameter space. In con-
trast, our Bayesian RRT method returns a robust estimate of �Y even though Y
contains a moderately large or large number of questions. Hence, our method
is preferable to projection methods when estimating the covariances among a
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large number of questions under the UQD settings. Although we focus on UQD
in this paper, in principle, we can also use the Bayesian RRT method in other
RRT designs. When adapting the method for another RRT design, the main thing
is to rewrite Zki in terms of the indicator Iki and the sensitive response Si . In
the mirrored question design of Warner (1965), we need only one sample and
can write Z1i = I1iSi + (1 − I1i )(1 − Si). For the forced response design [Blair,
Imai and Zhou (2015)], Z1i = I1i + (1 − I1i − I2i )Si , where the indicator vari-
ables I1i = I (forced to say YES or 1) and I2i = I (forced to say NO or 0) are de-
fined. Then, we can derive all of the moment equations accordingly. The proposed
Bayesian RRT method is not only able to deal with the RRT case, but also appli-
cable to estimating covariance matrices with incomplete data information semi-
parametrically. It would also be interesting to investigate the Cramer–Rao lower
bound [Singh and Sedory (2011), Lee, Sedory and Singh (2016)] for continuous
responses in further research.

APPENDIX A: MOMENT EQUATIONS

Define the augmented unrelated question vector as Ũ = (UT ,1T
q )T . Equation

(2.1) can be expressed in

Zk =
(

Ik

1q

)
� Y +

(
Ic
k

0q

)
� Ũ,

where Ic
k = 1p − Ik for k = 1,2. Using the above relation, we have

ZkZT
k =

((
Ik

1q

)(
IT
k 1T

q

)) � YYT +
((

Ic
k

0q

)(
IcT
k 0T

q

)) � ŨŨT

+
((

Ik

1q

)(
IcT
k 0T

q

)) � YŨT +
((

Ic
k

0q

)(
IT
k 1T

q

)) � ŨYT .

Taking expectation on both sides of the above equation and using the facts that Y,
U, and Ik are independent, we can derive

E
(
ZkZT

k

) =
( Pk ωkp×q

ωkq×p 1q×q

)
� �Y +

(Pc
k � �U 0p×q

0q×p 0q×q

)
,

where ωkp×q is a p×q matrix with all elements given by ωk . Taking the operation
Ck �· on both sides of E(ZkZT

k ) for k = 1,2 and summing the resulting equations,
we have C1 � E(Z1ZT

1 ) + C2 � E(Z2ZT
2 ) = C0 � �Y . As such, �Y = C1∗ �

E(Z1ZT
1 ) + C2∗ � E(Z2ZT

2 ).

APPENDIX B: PROOF OF THEOREM 3.1

Applying Taylor series expansion on GW
n (θ) about θ̂n and given condition 1,

we have GW
n (θ) = ĠW

n (θ∗
n)(θ − θ̂n)(1 + op(1)), where θ∗

n lies between θ and θ̂n.
In addition, by conditions 1, 3, and 4 in Theorem 3.1,

ĠW
n

(
θ∗

n

) = ĠW
n (θ0)

{
I + (

ĠW
n (θ0)

)−1(
ĠW

n

(
θ∗

n

) − ĠW
n (θ0)

)} = Hn

(
1 + op(1)

)
.
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Therefore, the posterior distribution of θ can be expressed as

π̂(θ | z, s) ∝ π(θ) exp
{
−1

2

(
GW

n (θ)
)T V̂−1

n GW
n (θ)

}
= π(θ) exp

{
−1

2
(θ − θ̂n)

T HT
n V−1

n Hn(θ − θ̂n)
(
1 + op(1)

)}
.

Let η = �
−1/2
n (θ − θ̂n), where �n = (HT

n V−1
n Hn)

−1. Denote the posterior dis-
tribution of η by π̂(η | z, s). Then,

(B.1) π̂(η | z, s) ∝ π
(̂
θn + �1/2

n η
)

exp
{
−1

2
‖η‖2(

1 + op(1)
)}

.

Conditions 1 and 5 imply θ̂n+�
1/2
n η

p−→ θ0, and hence π(̂θn+�
1/2
n η)

p−→ π(θ0)

by condition 6 and the continuous mapping theorem. Together with the fact that
π(θ0) > 0, we have

π̂ (η | z, s) ∝ π(θ0) exp
(
−1

2
‖η‖2

)(
1 + op(1)

) ∝ exp
(
−1

2
‖η‖2

)(
1 + op(1)

)
.

The result follows.
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