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Epidemic-type aftershock sequence (ETAS) point process is a common
model for the occurrence of earthquake events. The ETAS model consists of
a stationary background Poisson process modeling spontaneous earthquakes
and a triggering kernel representing the space–time-magnitude distribution
of aftershocks. Popular nonparametric methods for estimation of the back-
ground intensity include histograms and kernel density estimators. While
these methods are able to capture local spatial heterogeneity in the intensity of
spontaneous events, they do not capture well patterns resulting from fault line
structure over larger spatial scales. Here we propose a two-layer infinite Gaus-
sian mixture model for clustering of earthquake events into fault-like groups
over intermediate spatial scales. We introduce a Monte Carlo expectation-
maximization (EM) algorithm for joint inference of the ETAS-I2GMM model
and then apply the model to the Southern California Earthquake Catalog. We
illustrate the advantages of the ETAS-I2GMM model in terms of both good-
ness of fit of the intensity and recovery of fault line clusters in the Community
Fault Model 3.0 from earthquake occurrence data.

1. Introduction.

1.1. Background on point-process models of seismicity. The epidemic-type af-
tershock sequence (ETAS) model of earthquake occurrence [Ogata (1988, 1998)]
is a self-exciting point-process model where the conditional intensity λ(t, x, y|Ht)

of events is determined by a stationary Poisson intensity generating spontaneous
earthquake events along with a dynamic term representing a branching process of
aftershocks:

(1) λ(t, x, y|Ht) = μ(x, y) + ∑
i:ti<t

g(t − ti , x − xi, y − yi,mi).

Here (x, y) is the epicenter of an earthquake event described by longitude and
latitude in decimal degrees, m is its magnitude on the Richter scale computed
using a body-wave magnitude formula [Spence, Sipkin and Choy (1989)], Ht =
{(ti , xi, yi,mi) : ti < t} is the history of all earthquake events up to time t in a
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catalog, and μ(x, y) is the background intensity reflecting spatial heterogeneity
of spontaneous earthquakes and the fact that earthquake catalogs with aftershocks
removed are approximately Poisson in time [Gardner and Knopoff (1974)].

The space–time-magnitude distribution of parent-offspring events in the branch-
ing process given by the function g(t, x, y,m) is called the triggering kernel, typ-
ically following Omori’s law [Utsu (1961)]:

(2)

g(t − ti , x − xi, y − yi,mi)

= K0e
a(mi−m0)

(t − ti + c)(1+ω)((x − xi)
2 + (y − yi)

2 + d)
(1+ρ)

,

where m0 is the cutoff magnitude of the dataset under study [Ogata (1988)] and
(K0, a, c,ω, d,ρ) > 0 are parameters to be estimated. Estimation of equation
(1) typically consists of constructing a nonparametric estimate for μ(x, y) along
with finding maximum-likelihood estimators for the parameters of the trigger-
ing kernel in equation (2). Methods for maximizing the likelihood include quasi-
Newton [Ogata (1988)] and expectation-maximization (EM) [Veen and Schoen-
berg (2008)], and the most common estimators for μ(x, y) are spatial histograms
[Marsan and Lengline (2008), Veen and Schoenberg (2008)] or isotropic kernel
density estimators [Adelfio and Chiodi (2015), Zhuang, Ogata and Vere-Jones
(2002)].

1.2. A new model: Coupled ETAS-I2GMM. Earthquakes cluster at multiple
scales, as earthquakes cluster locally through aftershock activity but also over
larger scales along fault lines (see Figure 1). While there is research on the recon-
struction of aftershock clusters from event data [Zaliapin et al. (2008), Zhuang,
Ogata and Vere-Jones (2002)], existing point-process models of earthquake ac-
tivity fail to capture spatial clustering patterns at the larger scale of fault lines.
In particular, histograms and kernel density estimators are able to capture spatial
heterogeneity in the risk of spontaneous earthquakes, but the methods capture vari-
ation over only one scale. To our knowledge, our work here is the first to attempt
to reconstruct the community fault model [Plesch et al. (2007)] with a statistical
model based on earthquake event data.

In this paper we introduce a new type of ETAS model that can capture multi-
scale clustering in earthquake patterns. In particular, we propose using an infinite
mixture of infinite Gaussian mixtures (I2GMM) [Yerebakan, Rajwa and Dundar
(2014)] to estimate the background rate of earthquakes μ(x, y). For each spa-
tial cluster, the I2GMM uses a different Dirichlet process mixture of Gaussians
(DPMG) that simultaneously predicts the number of clusters along with perform-
ing model inference. While I2GMM has been introduced for high-dimensional
clustering and ETAS is well known in seismology, what is new in this paper is
the use of I2GMM for modeling the intensity of a point process and the cou-
pling of these two techniques for multiscale modeling of space–time event pat-
terns. Through the use of an expectation-maximization algorithm, the benefit of
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FIG. 1. Southern California earthquakes magnitude 2.5 and greater (black) and faults correspond-
ing to the Community Fault Model 3.0 (marked by lines).

our approach is that earthquakes are assigned membership to aftershock clusters
in addition to a larger scale fault line cluster.

Another advantage of our approach is that multi-modal and skewed spatial clus-
ters are more accurately captured. In the case of spatial earthquake patterns, each
fault may be considered as a separate cluster with multi-modality and skewness
that the I2GMM can handle better than histograms and KDE estimators. In partic-
ular, a fault is represented in the background rate of spontaneous earthquakes by
I2GMM as a cluster of several Gaussians. Unlike kernel density estimation where
each kernel corresponds to one event in the dataset at which it is centered, each
Gaussian in a spatial cluster of I2GMM is not necessarily centered at a histori-
cal event and can generate multiple spontaneous earthquakes in the future. One
additional advantage of the I2GMM model is that earthquakes are assigned mem-
bership to spatial clusters inferred by the model. In this research, we explore the
relevance of spatial cluster membership to automatic detection of fault lines within
the ETAS-I2GMM framework.

1.3. Outline of the paper. In Section 2 we describe our methodology, includ-
ing an overview of the I2GMM model and details on a Monte Carlo EM algorithm
for joint inference of the ETAS-I2GMM model. In Section 3 we present results for
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several experiments where the ETAS-I2GMM is applied to a Southern California
earthquake catalog [SCEDC (2013)]. We compare the goodness of fit of the esti-
mated intensity of the model to a baseline approach. We also use the Community
Fault Model 3.0 [Plesch et al. (2007)] to explore the ability of the ETAS-I2GMM
model to detect fault locations and event-fault linkage from space–time event data.

2. Methods.

2.1. Infinite mixture of infinite Gaussian mixtures. The finite Gaussian mix-
ture model (GMM) uses a single Gaussian for each cluster and requires the num-
ber of clusters to be specified. In the infinite version of GMM (IGMM) [Ferguson
(1973)], the number of components is estimated along with the component mean
vectors and covariances. Both GMM and IGMM are used for clustering problems,
albeit with limited success, as these techniques often overestimate the number of
mixture components so as to more accurately estimate the density of the underly-
ing dataset. However, a more accurate estimation of the density does not neces-
sarily translate into a more accurate estimation of cluster distributions, as density
estimation does not readily solve the problem of many-to-one mappings between
components and clusters. Two different approaches to overcome this limitation are
considered in the literature.

The first approach replaces Gaussian mixture components by Student-t
[Andrews and McNicholas (2012), Archambeau and Verleysen (2007), Peel and
McLachlan (2000), Svensén and Bishop (2005)] or skewed-t [Lee and McLachlan
(2014)] distributions and their Pearson-type extensions [Forbes and Wraith (2014),
Sun, Kaban and Garibaldi (2010)] in an effort to better model cluster distributions
with heavy tails. Although closed-form solutions for maximum-likelihood estima-
tions of parameters do not in general exist under these settings, extensions of the
EM algorithm can still be derived for this family of mixture models by placing
certain restrictions on the original model. This line of models has proved quite
effective in clustering datasets with skewed distributions but are less ideal for clus-
ters with multi-mode distributions.

The second approach generates a large number of Gaussian components and
merges them according to various metrics in an effort to recover true cluster distri-
butions. The study in [Figueiredo and Jain (2002)] initializes the model with a large
number of components and uses the concept of minimum message length to merge
components. Another technique uses the Bayesian information criterion (BIC) to
choose the initial number of components and merges components to minimize en-
tropy [Baudry et al. (2010)]. Other options for assigning components to clusters
include clustering modes of components [Ge and Sealfon (2012)] and ridgeline
analysis and Bhattacharyya dissimilarity [Hennig (2010)]. Compared to mixtures
of Student-t or skewed-t distributions, this line of models is more flexible in terms
of the type of distributions they can model. However, the main limitation of these
techniques is the independence assumption made during component estimation
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that makes EM derivations possible. These techniques assume that all components
are generated independently, which is not a very realistic assumption in a setting
where some clusters are known to be multi-mode, and components originating
from the same cluster are more likely to share certain latent parameters than do two
random components. Another limitation of these techniques is the computational
complexity that increases with the square of the number of Gaussian components,
as the decision to merge two components requires evaluating the metric for every
possible pair of components. This puts a constraint on the maximum number of
components that can be used to model datasets.

When clustering datasets with skewed/multi-mode cluster distributions, two de-
pendent subproblems, namely density estimation and component clustering, need
to be addressed jointly. The two-layer nonparametric GMM (I2GMM) model,
which can grow arbitrarily large in the number of components and clusters gener-
ated, was introduced earlier to more accurately cluster datasets with multi-mode
and skewed cluster distributions [Yerebakan, Rajwa and Dundar (2014)].

In I2GMM the lower layer estimates the density of the overall dataset by clus-
tering individual data points to components, while the upper layer associates com-
ponents with clusters to allow for cluster recovery. In the ETAS-I2GMM model,
each upper layer cluster of I2GMM corresponds to a fault in the background rate
and events assigned to an upper-layer cluster are assumed to be spontaneously
triggered by that fault. We note that upper-layer cluster membership is separate
from space–time aftershock clustering generated by the triggering kernel, though
aftershock clustering may be used to link offspring events back to a fault line. The
lower-layer clusters of I2GMM serve to represent complicated geometries within
a single fault (for example, a fault that is not straight but instead bends) and rep-
resent different families of background events within a single fault that could be
viewed as sub-faults. The generative model of I2GMM is a two-layer hierarchical
Dirichlet process mixture (DPM) model where the lower layer uses one DPM for
each cluster and the upper layer uses a global DPM for modeling cluster shapes
and sizes. The dependency between the two layers is achieved by centering the
base distributions of DPMs in the lower layer on a unique parameter distributed
according to the global DPM. Inference, which involves sampling component in-
dicator variables for individual data points and sampling cluster indicator variables
for components, is performed by a collapsed Gibbs sampler, enabling optimization
of two subproblems simultaneously.

We believe that I2GMM has three unique features that make it very suitable for
the estimation of background intensity μ(x, y) in the ETAS model.

• As a two-layer nonparametric model, I2GMM allows the number of clusters
and the number of mixture components in each cluster to grow arbitrarily large,
offering great flexibility in modeling clusters with multi-mode/skewed distri-
butions. This is the main feature that distinguishes I2GMM from other model-
based clustering techniques that use one component for each cluster.
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• As a Bayesian model, I2GMM has hyper-parameters that can be tuned to re-
cover clusters with varying shapes and different levels of rarity without facing
singularities during model estimation. This distinguishes I2GMM from purely
data-driven techniques such as finite mixture of Gaussians and t-distributions
that rely on EM and its extensions during model learning.

• As a hierarchical model, I2GMM can share parameters not only across different
clusters but also across different components of the same cluster. In other words,
I2GMM assumes that components are generated independently only when con-
ditioned on the unique parameter defining their clusters of origin. This differ-
entiates the proposed work from other techniques that estimate a large number
of Gaussian components and merges them sequentially to recover clusters, thus
violating component dependence.

In Figure 2 we provide an illustration of the generative model for I2GMM: tkl

indicates the lth component in the kth cluster Ck ; xkli indicates the ith data point
in the lth component in the kth cluster. In the generative process, tkl is a Gaus-
sian distribution and Ck is a Gaussian mixture defined by its components. We will

FIG. 2. The hierarchy of I2GMM model illustrated on a synthetic dataset.
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use the top-level label (i.e., Ck) to identify different clusters of spontaneous earth-
quakes that can be used to predict fault membership of each event. The lower-level
labels could also be used to identify faults or sub-faults (where seismologists may
want to consider refining their labels); however, in this paper we will restrict our
analysis to the top-level labels.

The generative model for I2GMM is given by

(3)

H = NIW(μ,�|μ0,�0, κ0,m) = N
(
μ|μ0,�κ−1

0

)
W−1(�|�0,m),

G ∼ DP(γH),

(μk,�k) = θk ∼ G,

Hk = N
(
μk, κ

−1
1 �k

)
,

Gk = DP(αHk),

μkl ∼ Gk,

xkli ∼ N(μkl,�k).

In this generative model DP(γH) is a global Dirichlet process with normal-
inverse-Wishart base distribution H and a concentration parameter γ . G is a dis-
crete mixing measure sampled from the global DP. Center μk and covariance �k

of the cluster k are drawn from G. For each cluster generated by the global DPM,
a local DPM is defined with base distribution Hk and concentration parameter α.
All Hk are Gaussian distributions with centers μk and covariances κ−1

1 �k . Gk is
the cluster-specific discrete mixing measure drawn from the local DP. The com-
ponents in cluster k are generated with mean vectors μkl drawn from Gk . Data
points xkli are generated from the Gaussian components with mean vectors μkl and
covariance matrices �k . User-specified hyper-parameters (μ0,�0, κ0, κ1, α, γ,m)

are listed in Table 1 along with their descriptions.
To perform inference with the I2GMM model using spatial event data, we first

initialize the cluster and component indicators for each event to some arbitrary
values (for example, put all data in the same component of a cluster) and then use a
collapsed Gibbs sampler to infer values for indicator variables one at a time, given
all other indicator variables [Yerebakan, Rajwa and Dundar (2014)]. Conditioned
on the indicator variables, the location vectors and scale matrices are determined
by maximizing the complete data log-likelihood and have closed-form solutions.
One sweep of the Gibbs sampler will go over all events in the dataset; convergence
typically requires several hundred to thousand Gibbs sweeps.

2.2. EM inference for ETAS. The ETAS model given in equation (1) can be
viewed as a branching process where spontaneous events occur according to a
Poisson process with intensity μ(x, y). Events (from all generations) give birth to
direct offspring events determined by the triggering kernel g(t − ti , x − xi, y −
yi,mi).
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TABLE 1
Hyper-parameters for I2GMM

μ0 Expected mean vector for each cluster. This is usually set to the mean of the overall
dataset.

�0
�0

m−d−1 is the expected covariance matrix for clusters. This is usually set to identity.
κ0 A positive scaling constant that adjusts the separation among clusters. The smaller the

κ0, the more separated the clusters will be from each other.
κ1 A positive scaling constant that adjusts the separation among components of a given

cluster. The smaller the κ1, the more separated the components will be from each
other, and clusters will tend to emerge with multi-modal distributions.

α The concentration parameter for the local DPMs that controls the expected number of
components and their sizes within a cluster.

γ The concentration parameters for the global DPM that controls the expected number of
clusters and their sizes.

m Degree of freedom for the inverse Wishart that controls the degree of deviation of
actual component covariances from the expected covariance. The higher the m, the less
the deviation and the more similar component shapes will be.

Given an initial guess for the parameters of the triggering kernel in equation (2)
and the background rate μ(x, y), the branching structure along with the model pa-
rameters of the triggering kernel can be estimated using an EM algorithm [Mohler
et al. (2011), Veen and Schoenberg (2008)]. In the E-step of the EM algorithm the
probability pij that event i is a direct offspring of event j is estimated, along with
the probability pb

i that the event was generated by the Poisson process with rate
μ(xi, yi):

pij = g(ti − tj , xi − xj , yi − yj )

λ(ti, xi, yi)
,(4)

pb
i = μ(xi, yi)

λ(ti, xi, yi)
.(5)

Given the probabilistic estimate of the branching structure, the complete data log-
likelihood is then maximized in the M-step (using standard methods for estimating
a Pareto distribution) [Veen and Schoenberg (2008)], providing an estimate of the
model parameters.

2.3. Joint inference of the ETAS-I2GMM. We propose three variants for infer-
ring the joint ETAS-I2GMM model.

ETAS-I2GMM 1. In the first variant we start by clustering all events spatially us-
ing I2GMM. We then evaluate the convex hull of each cluster and enforce μ(x, y)

to be constant in the convex hull. μ(x, y) and other parameters are then estimated
using the EM algorithm in Section 2.2 with the rectangular cells in Section 2.4
replaced by the estimated convex hulls.
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ETAS-I2GMM 2. In the next variant we perform joint inference using a Monte
Carlo EM algorithm. In particular, at each EM iteration we perform the following
steps:

i. (I2GMM-step) Sample background events from probabilistic branching struc-
ture pij . Rather than clustering all events using I2GMM now we cluster the sam-
pled background events only. Estimate μ(x, y) based on the clusters of background
events the same as in ETAS-I2GMM 1.

ii. (E-step) Estimate probabilistic branching structure and model parameters of
triggering kernel as in Section 2.2.

ETAS-I2GMM 3. In the last variant we use a weighted I2GMM algorithm in
place of the i step in variant two above. Instead of estimating μ(x, y) based on
clusters of sampled background events, we estimate μ(x, y) based on clusters gen-
erated by weighted I2GMM on all events whose weights are estimated by (5). In
the first EM iteration, since pb

i does not exist we initialize the weight to 1.

2.4. Baseline ETAS model with histogram estimator. We use the histogram
estimator proposed in Veen and Schoenberg (2008) as a baseline model for com-
parison. In particular, we let the background rate μ(x, y) be a constant:

(6) μ(x, y) = μk if (x, y) is in cell k, k ∈ 1, . . . ,K

over each rectangular cell of a regular grid. There are then K + 6 parameters
θ = (μ1, . . .,μK,a, c, d,w,ρ,K0) that we need to estimate (assuming there are
K cells in the grid) and for that purpose we use the EM algorithm in Veen and
Schoenberg (2008).

2.5. ETAS model with variable kernel estimates. For a second comparison we
use kernel density estimation with variable bandwidth as proposed in Zhuang,
Ogata and Vere-Jones (2002). Here μ(x, y) is estimated as

(7) μ(x, y) = 1

T

∑
j

pb
j kdj

(x − xj , y − yj ),

where T is the time span of all events, pb
j is the background probability defined

in (5), dj is the varying bandwidth calculated for each event j according to the
distance of its np nearest neighbor, and kd(x, y) denotes the Gaussian kernel func-

tion 1
2πd

exp{−x2+y2

2d2 }. For all experiments, we set the parameter np = 3 as sug-
gested by Zhuang (2011). The rest of the parameters are estimated according to
Section 2.2 using the same EM algorithm.



1862 Y. CHENG, M. DUNDAR AND G. MOHLER

3. Experiments and results.

3.1. Experiment 1: Goodness of fit of ETAS-I2GMM applied to CA earthquakes
3.5 and greater since 2000. We apply our models to the California earthquake-
event data filtered by year (greater than 2000) and magnitude (greater than 3.5).
The geographic bounds range from 46.116 > latitude > 29.615 and −113.581 >

longitude > −130.427. The dataset is divided into training and testing using time
point 2010-01-01 00:00:00 as cutoff. All events before this time stamp are placed
in the training dataset, while all events after it are placed in the testing dataset.
We performed experiments with the following seven models to analyze how the
performance varies by adopting different modeling strategies:

1. ETAS-I2GMM 1.
2. ETAS-I2GMM 2.
3. ETAS-I2GMM 3.
4. 4×4 grid baseline model.
5. 3×4 grid baseline model.
6. 3×3 grid baseline model.
7. ETAS-KDE described in Section 2.5.

Note that experiments 1 to 3 are repeated 10 times and the means of the
likelihoods are recorded. For I2GMM we run 400 Gibbs sweeps; the hyper-
parameters are set as follows: μ0 = [36.4603;−119.3265] the mean of the dataset;
�0 = [21.4972 0;0 23.1351)] the diagonal matrix with diagonal entries equal
to the latitude-longitude variances of the dataset; m = 22; κ0 = 0.1; κ1 = 0.5. The
values of m, κ0, κ1 are tuned to let I2GMM generate fewer or equivalent number
of clusters as the 4 × 4 grid baseline model.

We use the log-likelihood function

(8) logL =
N∑

i=1

log
(
λ(ti, xi, yi)

) −
∫ T

0

∫
S
λ(t, x, y) dx dy dt

to evaluate the competing models for the background intensity. The results are
shown in Table 2.

All three ETAS-I2GMM models outperform those with histogram or kernel den-
sity estimators. Between the three ETAS-I2GMM variants, the best-performing
model is variant 1, where I2GMM is first estimated and the EM algorithm is run
separately to estimate the parameters of the triggering kernel. It is worthwhile to
note that finer clusters do not necessarily yield better results. Even though the 4×4
grid model generates more clusters it produces lower likelihood than the 3×4 grid
model.
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TABLE 2
Log-likelihood model comparison

Model logL
∑

i log(λi)
∫

λ

ETAS-I2GMM 1 −4619 −1206 3413
ETAS-I2GMM 2 −4686 −1283 3403
ETAS−I2GMM 3 −4716 −1319 3397
4 × 4 Grid −4980 −1590 3390
3 × 4 Grid −4937 −1607 3330
3 × 3 Grid −5023 −1582 3440
ETAS−KDE −4860 −1441 3419

3.2. Experiment 2: ETAS-I2GMM for event-fault linkage from space–time event
data. Next, we investigate the extent to which the ETAS-I2GMM model can learn
fault structure from space–time event data. For this purpose we use the Community
Fault Model 3.0 [Plesch et al. (2007)], which is a three dimensional representation
(latitude, longitude, and elevation) of faults in Southern California. The CFM is
a collaborative project undertaken by scientists of the Southern California Earth-
quake Center (SCEC) for studying active faults and earthquake phenomena and to
improve regional earthquake hazard assessments. Our goal here is to assess how
well ETAS-I2GMM recovers a 2D projection of the CFM 3.0 using only space–
time-magnitude earthquake incident data as input. In particular, we generate a fault
label for each event in the dataset by assigning fault membership as the nearest
fault in CFM 3.0 (see Figure 3).

The ETAS-I2GMM-predicted label is taken from the first layer of the I2GMM
model clusters, where offspring events are assigned to the spatial cluster of
their nearest neighbor among background events. To allow for comparison to the
CFM 3.0, we restrict the geographic bounds of the CA earthquake event data to
36.958 > latitude > 31.518 and −113.719 > longitude > −121.176, but we ex-
pand the magnitude threshold down to 2.5.

There are 145 actual fault lines in CFM 3.0, but all the models we used in
previous experiments generate at most 26 clusters. For this dataset, we added two
additional models in the experiments for fault recovery:

• An I2GMM with parameters tuned to generate approximately 145 clusters on
average; this version is named as ETAS-I2GMM 145 in our experiments.

• A 16 × 15 grid model that contains 143 nonempty clusters.

Given that the number of clusters estimated by I2GMM may be different from
the number of faults in the CFM 3.0, we evaluate the success of fault-cluster recov-
ery by considering the percentage of correctly classified data points. In addition to
the overall clustering accuracy, we evaluate the mean clustering accuracy for the
10 largest faults, which contains 67% of data points across 145 faults. In Table 3
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FIG. 3. Fault line cluster membership using the nearest CFM 3.0 fault to each earthquake (ground
truth).

we present the clustering accuracy for the seven models listed in 3.1 as well as the
two additional models. To calculate the clustering accuracy, we first align the gen-
erated clusters with the ground-truth classes using the Hungarian algorithm [Kuhn
(1955), Stephens (2000)], and then calculate the percentage of the data points that
fall into their classes of origin. We adopt clustering accuracy for its simplicity and
its invariance to potential misalignment between ground truth and predicted class

TABLE 3
Clustering accuracy comparison of fault classification. The log-likelihoods are also included. We

are not able to evaluate the accuracy score for ETAS-KDE since it doesn’t generate spatial clusters

Accuracy Acc10 logL
∑

i log(λi)
∫

λ

ETAS-I2GMM 145 0.46 0.52 5495 16,772 11,277
ETAS-I2GMM 1 0.50 0.67 4688 16,034 11,346
ETAS-I2GMM 2 0.45 0.46 4466 15,820 11,354
ETAS-I2GMM 3 0.41 0.33 4495 15,904 11,409

Grid 16x15 0.45 0.47 4384 15,703 11,319
Grid 4x4 0.37 0.37 4247 15,723 11,476
Grid 3x4 0.36 0.28 4224 15,694 11,470
Grid 3x3 0.35 0.32 4198 15,673 11,475
ETAS-KDE – – 4066 15,464 11,398
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labels. Mean clustering accuracy is calculated as below:

(9) Acc = 1

|C∗|
∑

C∗
k ∈C∗

|C∗
k ∩ Ck|
|C∗

k | ,

where for each event, C∗
k is fault cluster assignment of event k and Ck is the pre-

dicted cluster assignment of event k. Here C∗ contains all fault clusters under
consideration; Ck is the predicted cluster corresponding to C∗

k after alignment;
C∗

k ∩ Ck indicates data points in both C∗
k and Ck ; |S| denote the cardinality of the

set S. To compute the mean clustering accuracy for the 10 largest faults Acc10 we
set C∗ to contain the 10 largest true fault clusters in the above equation.

Here again we see that ETAS-I2GMM 1 performs best both in terms of cluster-
ing accuracy and Acc10. All the ETAS-I2GMM models outperform ETAS with a
histogram estimator or a kernel density estimator in terms of likelihood, which is
consistent with the results we have in Experiment 1 on the CA earthquake data.
In Figure 4 we plot the clusters recovered corresponding to ETAS-I2GMM 145,
ETAS-I2GMM 1, 16 × 15 grid, 4 × 4 grid, and the true clusters for a better under-
standing of this outcome. Despite the fact that I2GMM generated only 26 unique
clusters on average compared to 145 actual fault lines in CFM 3.0, a meaningful
clustering accuracy of 0.5 was achieved. Results suggest that a majority of events
in fault clusters that tend to have elongated, skewed, and in some cases multi-mode
shapes are clustered correctly by I2GMM. In contrast, the clusters in the two his-
togram models have abrupt boundaries formed from the grid irrespective of the
shape of the underlying faults, as shown in Figure 4. Moreover, when we adjust
the parameters of the I2GMM to get approximately the same number of clusters
as the true number of fault clusters, we observe that the clustering accuracy does
not improve owing to erroneous splitting of events belonging to larger fault lines
into multiple clusters. This is also true for the 16 × 15 grid model that generates
143 nonempty clusters. Although the clustering accuracy improves with this model
compared to the grid model with a smaller number of clusters, overall clustering
accuracy achieved by this model is still less than that achieved by I2GMM with
26 clusters (0.45 vs 0.50). The difference in clustering accuracy between the two
models increases in favor of I2GMM when we take into account only the largest 10
fault clusters (0.47 vs 0.67). This is a natural result of the grid model’s arbitrarily
splitting fault clusters, compared to the more effective handling of elongated fault
cluster shapes by I2GMM.

We illustrate this over-splitting problem in Figure 5 by plotting the clustering
results of the 10 largest faults. From the Acc10 results in Table 3 and Figure 5 we
can see that ETAS-I2GMM 1 did the best by achieving a mean clustering accuracy
of 0.67 across 10 faults while recovering several of them by a clustering accuracy
of over 0.9. On the other hand, for the grid models the Acc10 values are consistent
with their corresponding overall accuracies.
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FIG. 4. True and predicted CFM fault groupings. Events with same labels are shown by the same
color.

4. Discussion. We introduced a coupled ETAS-I2GMM model for jointly esti-
mating multi-scale clustering in earthquake data with parameters governing earth-
quake productivity and self-excitation. We also introduced what we believe is a
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FIG. 5. 10 largest CFM faults and recovered clusters. Events with same labels are shown by the
same color.

novel machine-learning task for statistical seismology, namely estimating CFM
fault clusters using unlabeled space–time-magnitude event data. Improving upon
algorithms aimed at solving this task could aid in the development of future ver-
sions of CFM, as well as fault models in other regions of the world.
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The I2GMM model may have applications to point processes beyond those aris-
ing in seismology. Space–time self-exciting point processes arise in the study of
crime [Mohler et al. (2011, 2015), Mohler (2014)], conflict [Lewis and Mohler
(2011)], and terrorism [Mohler (2013), Porter and White (2012), White and Porter
(2014), White, Porter and Mazerolle (2013)], as well as in social-network event dy-
namics, for example in social media [Lai et al. (2014), Simma and Jordan (2012),
Zhao et al. (2015)]. In the case of crime, clusters arise naturally from the super-
position of events committed by different offenders with different modi operandi.
Similar clusters may arise from the operations of different terrorist groups within a
geographic region. I2GMM is a flexible model for capturing this type of clustering
in the intensity of events of a point process.

Acknowledgment. The content is solely the responsibility of the authors and
does not necessarily represent the official view of the NSF.
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