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JOINT SIGNIFICANCE TESTS FOR MEDIATION EFFECTS
OF SOCIOECONOMIC ADVERSITY ON ADIPOSITY

VIA EPIGENETICS1

BY YEN-TSUNG HUANG

Academia Sinica

Mediation analysis has become a popular practice in biomedical re-
search. We conduct mediation analyses to investigate whether epigenetic vari-
ations mediate the effect of socioeconomic disadvantage on adiposity. Me-
diation effects can be expressed as a product of two parameters: one for
the exposure-mediator association and the other for the mediator-outcome
association conditional on the exposure. Under multi-mediator models, we
study joint significance tests which examine the two parameters separately
and compare with the widely used product significance tests which focus on
the product of two parameters. Normal approximation of product significance
tests depends on both effect size and sample size. We show that joint signif-
icance tests are intersection-union tests with size α and asymptotically more
powerful than the normality-based product significance tests. Based on the
theoretical results, we construct powerful testing procedures for gene-based
mediation analyses and path-specific analyses. Advantage of joint signifi-
cance tests is supported by simulation as well as the results of locus-based
and gene-based mediation analyses of chromosome 17. Our analyses suggest
that methylation of FASN gene mediates the effect of socioeconomic adver-
sity on adiposity.

1. Introduction. Mediation analysis first proposed in psychological literature
has been a popular approach [Baron and Kenny (1986), MacKinnon (2008)]. As il-
lustrated in Figure 1a with a directed acyclic graph [Robins (2003)], the mediation
model includes an exposure S, a mediator M , and an outcome Y . Mediation anal-
ysis decomposes the effect of the exposure on the outcome into an indirect effect
mediated through the mediator and a direct effect not through the mediator, aiming
for better understanding of the underlying mechanism. By employing the coun-
terfactuals [Rubin (1978)], ignorability assumptions for effect identifiability have
been carefully studied [Imai, Keele and Yamamoto (2010), Pearl (2001), Robins
and Greenland (1992), VanderWeele and Vansteelandt (2009)]. Built upon that,
advanced methodology of mediation analysis has been developed for dichotomous
outcomes [VanderWeele and Vansteelandt (2010)] as well as time-to-event survival
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(a) Single-mediator
model

(b) Multi-mediator
model without ordering

(c) Two-mediator model
with ordering

FIG. 1. Directed acyclic graph (DAG) of causal mediation models.

outcomes [Lange and Hansen (2011), Tchetgen Tchetgen (2011), VanderWeele
(2011)].

This paper is motivated by a study where 285,163 epigenetic DNA methyla-
tion loci were investigated one at a time as a potential mediator in relation to
the effect of socioeconomic adversity on adiposity measured by body mass in-
dex (BMI) [Loucks et al. (2016)]. Epigenetics has been known as an “epicenter”
that integrates the influence of environment and genetics [Loucks et al. (2016)].
Childhood socioeconomic disadvantage is associated with obesity [Senese et al.
(2009)] and epigenetic DNA methylation [Borghol et al. (2012)]. Genome-wide
analysis has shown that epigenetic marks are associated with later life obesity risk
in New England Family Study (NEFS) [Agha et al. (2015)]. Based on their pair-
wise relationships in existing literature, we hypothesize that adiposity affected by
socioeconomic status may arise as results of alterations of biological mechanisms
via epigenetic regulation.

Suppose that the mediation model as illustrated in Figure 1a contains BMI and
the mediator of DNA methylation level. Under this model, we further assume that
BMI Y is linearly determined by the socioeconomic index S and the mediator
M (DNA methylation): E(Y ) = β0 + βSS + βMM , and the mediator is linearly
determined by the exposure S: E(M) = α0 + αSS. The mediation effect can be
expressed as a product of the two parameters, αSβM [Baron and Kenny (1986),
MacKinnon (2008)]. The product expression for the mediation effect is shared
by mediation analyses for dichotomous or survival outcome under certain model
specification and can be easily extended to incorporate the exposure-by-mediator
interaction [Lange and Hansen (2011), VanderWeele (2011), VanderWeele and
Vansteelandt (2010)]. Two classes of hypothesis tests have been proposed to test
H0 : αSβM = 0. One is to estimate αS and βM with maximum likelihood esti-
mators α̂S and β̂M , respectively, and to compare α̂Sβ̂M with its underlying dis-
tribution, termed product significance test (PT). The underlying distribution can
be approximated by Gaussian distribution using delta method [Sobel (1982)], nor-
mal product distribution (NP), that is, the distribution for product of two normals
[MacKinnon et al. (2002)] or bootstrapping [Bollen and Stine (1990), Preacher
and Hayes (2008)]. The other class of tests examines H0 : αS = 0 and H0 : βM = 0
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separately, termed joint significance test (JT) [MacKinnon et al. (2002)], and JT is
statistically significant if both tests are significant.

Simulation studies by MacKinnon et al. (2002) suggested that PT with boot-
strapping had better power than PT with various distribution approximations. For
the motivating epigenomic study, PT with bootstrapping is not feasible because of
its computation cost. We show in data application that analyses of DNA methy-
lation loci in chromosome 17 with 1000 bootstrap replicates take 16 hours, and
the projected computation time for all chromosomes is >11 days with 1000 repli-
cates and >300 years with precision to reach the genome-wide significance level.
Therefore, there is an imperative need for analytic approaches. The simulation of
MacKinnon et al. (2002) also suggested that JT may have decent power over PT,
which had a lack of theoretical justification. Furthermore, little is studied regard-
ing validity and test size of JT. Besides single-locus analyses, we were particularly
interested to know whether all methylation loci within a gene en bloc mediate the
socioeconomic effect on BMI, which is the so-called gene-based analyses. Gene-
based approach in genome-wide analyses has been shown superior in statistical
power and biological relevance [Wu et al. (2010)]. To our knowledge, however,
none can be found for JT about its application or generalization to multi-mediator
models. This paper aims to characterize the asymptotic properties of JT and PT;
moreover, bootstrap-based PT (PT-B) and a recently developed method based on
normal product distribution (PT-NP) [Huang and Pan (2016)] are compared via
simulation.

The paper is structured as follows. In Section 2, we introduce the New England
Family Study. In Section 3, we study multivariate mediation effects. In Section 4,
we show that joint significance tests are intersection-union tests with size α. In
Section 5, we conduct extensive simulation studies to evaluate the theoretical re-
sults. The epigenetic study is presented in Section 6. The paper concludes with a
discussion in Section 7.

2. The New England Family Study (NEFS). The data used for mediation
analyses were nested within the New England Family Study [Huang et al. (2016)],
which is comprised of 17,921 offspring of pregnant women in the Collaborative
Perinatal Project from Providence (Rhode Island) and Boston (Massachusetts) in
the United States (US), recruited between 1959 and 1974 [Hardy (1971)]. We con-
ducted mediation analyses in 74 women with adequate adipose tissue collected
from needle biopsy for genome-wide epigenetic profiling. Childhood socioeco-
nomic disadvantage at age 7 was assessed by a socioeconomic index, which sum-
marized average percentile of both parents’ educational attainment, occupation,
and income relative to the US population [Loucks et al. (2016)]; and adiposity
was directly assessed using BMI (kg/m2) at mean age 47 years. DNA methyla-
tion of biopsy adipose tissue samples collected at adulthood was evaluated using
the Infinium HumanMethylation450K BeadChip (Illumina, San Diego, CA). We
performed both locus-centric (Figure 1a) and gene-centric analyses (Figure 1b),
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examining 16,394 loci and 1151 genes on chromosome 17. There were 24 methy-
lation loci and 9 genes with p < 0.05 using normality-based product significance
test (PT-N). We are also interested in the mediation effect by epigenetics that is
further mediated by the childhood BMI. It is the so-called path-specific effects
(PSEs), that is, mediation effects through certain sequences of mediators [Avin,
Shpitser and Pearl (2005), Taylor, MacKinnon and Tein (2008), VanderWeele and
Vansteelandt (2013)]. To this end, we set up the mediation model in Figure 1c, with
S, M , G, and Y being socioeconomic index, BMI at age 7, DNA methylation, and
BMI at adulthood, respectively. Normality-based tests for PSE through epigenetics
of an obesity-related genes FASN and childhood BMI showed no promising results
[Table S1 in the Supplementary Material Huang (2018)].

The study demonstrates the utility of mediation analyses in interrogating the
mechanism of well-established exposure-outcome relationships. However, we also
found that the conventional mediation test was not a powerful test, and the normal
approximation may not hold under certain circumstances. To address these, we
propose two multivariate JTs: one for the marginal mediation effect with multiple
mediators (Figure 1b), and the other one for path-specific effects (Figure 1c).

3. Hypothesis test of mediation effect. We propose two joint significance
tests and rigorously study their theoretical properties prior to applying to the epi-
genetic studies.

3.1. Hypothesis test of UT
n Vn. Consider a mediation model in Figure 1b that

can be expressed with two models:

Yi = XT
i βX + SiβS + MT

i βM + εY i,(1)

Mi = AXXi + SiαS + εMi,(2)

where Yi , Mi = (M1i , . . . ,Mpi)
T , Si and Xi are the outcome BMI, the mediators

DNA methylation levels, the exposure measured by a socioeconomic index and co-
variates, respectively, for subject i, i = 1, . . . , n, Xi is a q-by-1 vector with the first
element being 1 (the intercept), AX is a p-by-q matrix, βM = (βM1, . . . , βMp)T ,
αS = (αS1, . . . , αSp)T , εY ∼ N(0, σ 2

Y ), εM ∼ N(0,�M), and �M is a p-by-p
bounded covariance matrix. Under assumptions of no unmeasured confounding,
εY and εM are independent and do not depend on αS or βM , and the mediation
effect can be expressed as αT

S βM [Huang and Pan (2016)].
Model (1) can be extended to incorporate logistic regression models [Vander-

Weele and Vansteelandt (2010)], additive hazard models [Lange and Hansen
(2011)], Cox proportional hazard models [VanderWeele (2011)], with the follow-
ing general model: hi = XT

i βX + SiβS + MT
i βM , where hi = logit Pr(Yi = 1)

for logistic models, hi = λT (t | Xi , Si,Mi), the hazard, for additive hazard mod-
els (T is survival time), and hi = logλT (t | Xi , Si,Mi) for Cox models. Other
extensions such as accelerated failure time (AFT) models [VanderWeele (2011)]
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and semiparametric probit models [Huang and Cai (2016)] can be expressed as:
h(Ti) = XT

i βX + SiβS + MT
i βM + ε∗

Y i , where ε∗
Y ∼ N(0,1) in probit models and

follows a parametric distribution such as Weibull or a nonparametric distribution
in AFT models. The expression of mediation effects from these extensions is iden-
tical to αT

S βM , with interpretation depending on the effect scale and model as-
sumptions. Under these models, maximum likelihood estimators of αS and βM

scaled by
√

n are asymptotically normal, that is,
√

n(α̂S − αS) → N(0,�α) and√
n(β̂M − βM) → N(0,�β) where �α and �β are bounded matrices. Another

extension is to incorporate S-by-M interaction in model (1) by replacing βM with
βM + βSMS. The scaled estimator

√
n(β̂M + β̂SMS) still follows Gaussian distri-

bution asymptotically.
Since mediation effects from the above models share the same expression, a

product of the two parameters αS and βM , we focus on the null hypothesis: H0 :
αT

S βM = 0. Denote θ∗ = (θ∗
1 , . . . , θ∗

p)T and θ∗
j is either αSj or βMj . Here, we do

not consider perfect cancellation of component-wise mediation effects, that is, at
least one of αSj and βMj is 0 for all j under the null, and such a null hypothesis is
equivalent to the following null:

H0 : ⋃
k=1,...,2p

	UT V,k,

	UT V,k =
{
θ = (

αT
S ,βT

M

)T :
p∑

j=1

wjθ
∗
j = 0, θ∗

j ∈ {αSj , βMj }, θ \ θ∗ ∈ �p

}
,

(3)

where wj is an arbitrary nonzero weight. We compare the asymptotic product sig-
nificance test based on nα̂T

S β̂M and a joint significance test proposed in the fol-
lowing.

LEMMA 3.1. Suppose that Un and Vn are two independent multivariate
Gaussian variables with respective means μ1n, μ2n and bounded covariances �1,
�2, where Un and Vn are sequences of random variables, and μ1n and μ2n are
sequences of vectors indexed by n. If μT

1n�2μ1n + μT
2n�1μ2n → ∞ as n → ∞,

then
UT

n Vn−μT
1nμ2n√

μT
1n�2μ1n+μT

2n�1μ2n

→ N(0,1).

REMARK 1. Letting Un ≡ √
nα̂S and Vn ≡ √

nβ̂M , one can use Lemma 3.1 to

show that
n(α̂T

S β̂M−αT
S βM)√

nαT
S �βαS+nβT

M�αβM

converges to standard normal distribution, as n →
∞. To satisfy the condition μT

1n�2μ1n +μT
2n�1μ2n = nαT

S �βαS + nβT
S �αβS →

∞, one needs either large effects or sample size under the alternative hypothe-
sis, and at least one large nonzero effect and large sample size under the null

hypothesis. We denote two test statistics TUT V = (α̂T
S β̂M−0)2

αT
S �βnαS+βT

M�αnβM

for PT-N*
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and T̂UT V = (α̂T
S β̂M−0)2

α̂T
S �βnα̂S+β̂T

M�αnβ̂M

for PT-N where n�βn → �β and n�αn → �α as
n → ∞.

With p = 1, Lemma 3.1 is simplified to an alternative version of the theorem in
Aroian (1947) stating that the product of two normal variables standardized by the
product of their standard deviation, σ1n and σ2n converges to normal as μ1n

σ1n
or μ2n

σ2n

goes to infinity. We next propose a joint significance test for null (3).

DEFINITION 1 (JT of UT
n Vn). Let �n = [ �αn 0

0 �βn

]
, w = (w1, . . . ,wp)T ,

wj ∈ {α̂Sj , β̂Mj }, w∗ = (w∗
1, . . . ,w∗

p,w∗
p+1, . . . ,w

∗
2p)T where if wj = α̂Sj , then

w∗
j = 0 and w∗

p+j = α̂Sj ; if wj = β̂Mj , then w∗
j = β̂Mj and w∗

p+j = 0. Calculate

{w∗T �nw∗} over 2p possible combinations of wj and perform a two-sided z-test

on |α̂T
S β̂M |√
Vmax

, where Vmax = max{w∗T �nw∗}.

It is trivial to show that with p = 1, the above procedure is simplified to the
univariate JT where one tests H0 : αS = 0 and H0 : βM = 0, and picks the larger
p-value [MacKinnon et al. (2002)]. The procedure can be construed as a mul-
tivariate generalization by weighting the parameter (e.g., the mediator-outcome
association) with the other (e.g., the exposure-mediator association). Asymptotic
independence of

√
nα̂S and

√
nβ̂M can be established by the second derivative of

the joint log-likelihood of models (1) and (2): ∂2 logf (Y,M|X,S)

∂βM∂αT
S

= ∂2 logf (Y |X,S,M)

∂βM∂αT
S

+
∂2 logf (M|X,S)

∂βM∂αT
S

= 0, where f (Y | X, S,M) and f (M | X, S) are probability density

functions of models (1) and (2), respectively. We note that w in Definition 1 can
be specified as any arbitrary weights, for example, w = 1. We choose the above
weighting scheme such that we are able to compare its performance with the prod-
uct significance tests. The test conditional on the estimated weights can be viewed
as a test conditional on the data estimating the weighting parameters.

THEOREM 3.1. Suppose that
αT

S �βnαS+βT
M�αnβM

α̂T
S �βnα̂S+β̂T

M�αnβ̂M

→ 1 and n2αT
S �βnαS +

n2βT
M�αnβM → ∞ as n → ∞, and αSjαSkρβ,jk ≥ 0 and βMjβMkρα,jk ≥ 0,

where ρα,jk is covariance of
√

nα̂Sj and
√

nα̂Sk and ρβ,jk is that of
√

nβ̂Mj and√
nβ̂Mk . Under the null (3), the JT in Definition 1 is asymptotically more powerful

than the PT based on T̂UT V.

The condition n2αT
S �βnαS + n2βT

M�αnβM → ∞ (e.g., large sample size or
effect) is for normal approximation of PT. JT works regardless of the effect size.
What Theorem 3.1 establishes is that even under the condition that normal ap-
proximation works well for PT, it is still less powerful than JT. The intuition is
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that under the null of αS �= 0 and βM = 0, for example, (α̂T
S β̂M)2

α̂T
S �βnα̂S+β̂T

M�αnβ̂M

=
(α̂T

S β̂M)2

Vmax
(1 − β̂T

M�αnβ̂M

α̂T
S �βnα̂S+β̂T

M�αnβ̂M

) = (α̂T
S β̂M)2

Vmax
− c, where c = |op(1)| under H0 and

|Op(1)| under H1 (βM �= 0). Therefore, PT and JT follow the same distribution
under the null, but the difference c guarantees a better power in JT. For imple-
mentation, one may transform the mediators to be uncorrelated conditional on S to
ensure ρ̂β,jk = ρ̂α,jk = 0, and thus αSjαSkρβ,jk ≈ βMjβMkρα,jk ≈ 0. Specifically,
we orthogonally diagonalize the sample covariance of residuals in model (2) �̂M

by u�̂MuT = diag(v1, . . . , vp) and perform the proposed tests on the transformed
mediators Pi = uMi [Huang and Pan (2016)].

3.2. Hypothesis test of UnVnWn. Tests for the mediation effect αT
S βM ex-

amine the marginal mediation effect without characterizing the effect mediated
through specific mediators. To address this limitation, mediation effects through
certain sequences of mediators or the path-specific effects (PSEs) have been pro-
posed [Avin, Shpitser and Pearl (2005), Taylor, MacKinnon and Tein (2008),
VanderWeele and Vansteelandt (2013)]. Here, we study PSEs in the model with
two mediators (Figure 1c).

We propose the following three models to represent the two-mediator mediation
model, as illustrated in Figure 1c:

Yi = XT
i βX + SiβS + MiβM + GiβG + εY i,(4)

Gi = XT
i αX + SiαS + MiαM + εGi,(5)

Mi = XT
i γ X + SiγS + εMi,(6)

where εY ∼ N(0, σ 2
Y ), εG ∼ N(0, σ 2

G), and εM ∼ N(0, σ 2
M), all independent of βG,

αM , γS . Under the assumption of no unmeasured confounding, εY , εG, and εM are
also independent, and the effect of socioeconomic adversity S on adult BMI Y

mediated through childhood BMI M and possibly through DNA methylation G

can be expressed as γS(βM + αMβG). One can further identify the effect of S on
Y mediated through M and G (the horizontal path in Figure 1c) with effect size
of γSαMβG under strong identifiability assumptions [Albert and Nelson (2011),
Taylor, MacKinnon and Tein (2008)] or the model assumption βM = 0. The null
hypothesis for this path-specific effect is

(7) H0 : γSαMβG = 0.

Similar to Section 3.1, Y can be dichotomous or survival outcomes, and under cer-
tain model specification, the path-specific effect can be expressed as γSαMβG.
Suppose that γ̂S , α̂M , and β̂G are MLEs of γS , αM , and βG, respectively,
and

√
n(γ̂S − γS) → N(0, σ 2

γ ),
√

n(α̂M − αM) → N(0, σ 2
α ),

√
n(β̂G − βG) →

N(0, σ 2
β ) where σ 2

γ , σ 2
α and σ 2

β are all bounded. One can construct PT of null (7)

by comparing n3/2γ̂Sα̂Mβ̂G with its underlying distribution.
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LEMMA 3.2. Suppose that Un, Vn, and Wn follow independent Gaussian
distributions with respective means μ1n, μ2n, and μ3n, and bounded variances
σ 2

1 , σ 2
2 , and σ 2

3 , where Un, Vn, Wn are sequences of random variables in-
dexed by n. If at least two of μ1n, μ2n, μ3n go to infinity as n → ∞, then

UnVnWn−μ1nμ2nμ3n√
μ2

1nμ2
2nσ 2

3 +μ2
1nμ2

3nσ 2
2 +μ2

2nμ2
3nσ 2

1

converges to the standard normal.

REMARK 2. Let Un ≡ √
nγ̂S , Vn ≡ √

nα̂M and Wn ≡ √
nβ̂G. n3/2(γ̂Sα̂Mβ̂G−

γSαMβG)σ−1
UV W converges to the standard normal distribution where σ 2

UV W =
n2γ 2

S α2
Mσ 2

β + n2γ 2
S β2

Gσ 2
α + n2α2

Mβ2
Gσ 2

γ (→ ∞ as n → ∞) and construct test

statistic TUV W = (γ̂S α̂M β̂G−0)2

γ 2
S α2

Mσ 2
βn+γ 2

S β2
Gσ 2

αn+α2
Mβ2

Gσ 2
γ n

, where nσ 2
γ n → σ 2

γ , nσ 2
αn → σ 2

α ,

nσ 2
βn → σ 2

β . TUV W asymptotically follows the central χ2 distribution with 1 de-

gree of freedom (DF) under the null (PT-N*). By plugging in γ̂S , α̂M and β̂G, we

obtain T̂UV W = (γ̂S α̂M β̂G−0)2

γ̂ 2
S α̂2

Mσ 2
βn+γ̂ 2

S β̂2
Gσ 2

αn+α̂2
Mβ̂2

Gσ 2
γ n

(PT-N).

We next propose a joint significance test to test null (7).

DEFINITION 2 (JT of UnVnWn). Conduct two-sided z-tests on
√

n|γ̂S |√
nσ 2

γ n

,
√

n|α̂M |√
nσ 2

αn

,

and
√

n|β̂G|√
nσ 2

βn

by comparing with N(0,1), and obtain the largest p-value from the

three tests as the p-value of the joint significance test of null (7).

THEOREM 3.2. If
γ 2
S α2

Mσ 2
βn+γ 2

S β2
Gσ 2

αn+α2
Mβ2

Gσ 2
γ n

γ̂ 2
S α̂2

Mσ 2
βn+γ̂ 2

S β̂2
Gσ 2

αn+α̂2
Mβ̂2

Gσ 2
γ n

→ 1 as n → ∞, and at least

two of γS , αM , and βG are nonzero, the joint significance test of γ̂S , α̂M , and β̂G

in Definition 2 is asymptotically more powerful than the product significance test
based on T̂UV W .

Causal assumptions for identifying αT
S βM and γSαMβG are discussed in the

Supplementary Material[Huang (2018)].

4. Size of joint significance test. In this section, we show that the proposed
JTs have proper test sizes. We first establish that JT is an Intersection-Union Test
(IUT), a test with a rejection region of the form R = ⋂K

k=1 Rk , where Rk is the
rejection region for a test of H0k : θ ∈ 	k [Berger and Hsu (1996)]. For JT of
UT

n Vn in Definition 1 for the null (3): H0 : ⋃
k=1,...,2p 	UT

n Vn,k is obviously an

IUT because { (α̂T
S β̂M)2

Vk
> κ} where Vk is an element of {w∗T �nw∗} corresponds to

the rejection region Rk for 	UT V,k and κ is a cut-off value. For JT of UnVnWn in
Definition 2, null (7) is equivalent to

H0 : 	UV W1 ∪ 	UV W2 ∪ 	UV W3,
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where 	UV W1 = {θ = (γS,αM,βG)T : γS = 0, αM ∈ �, βG ∈ �}, 	UV W2 = {θ :
γS ∈ �, αM = 0, βG ∈ �}, 	UV W3 = {θ : γS ∈ �, αM ∈ �, βG = 0}, and the
rejection region is RUV WV 1 ∩ RUV W2 ∩ RUV W3 where RUV W1, RUV W2, and
RUV W3 are the rejection regions for tests of 	UV W1, 	UV W2, and 	UV W3, re-
spectively. Therefore, under the corresponding null, the two proposed JTs are
IUTs, which have been shown level α tests, that is, supθ∈	0

π(θ) ≤ α [Berger
and Hsu (1996)], where π(θ) is the power function and 	0 = ⋃

k=1,...,2p 	UT
n Vn,k

or
⋃

k=1,2,3 	UV Wk . We show in the Appendix that they are also size α tests.

THEOREM 4.1. Under their corresponding null hypotheses, joint significance
tests in Definitions 1 and 2 are intersection-union tests and size α tests, that is,
supθ∈	0

π(θ) = α.

In product significance test, the strong effect of a parameter amplifies the effect
of the other parameter since, for example, α̂Sβ̂M are examined as a product in the
numerator of test statistic T̂UT V. However, it pays the price by introducing more
variability in the denominator of T̂UT V and ends up with lower power than joint
significance test, as shown in Theorem 3.1. The separate testing in JT serves as
a mechanism to protect Type I Error rate. For example, if αS = 0 and βM � 0, a
test that tends to reject the null by being affected by the very large β̂M may inflate
Type I Error rate. In this case, JT is dominated by testing αS = 0, and thus is not
likely to reject the null and has well-protected Type I Error rate.

5. Simulation. Numerical experiment is conducted to demonstrate Lemmas
3.1 and 3.2. For the univariate version of Lemma 3.1, Un and Vn are generated
repeatedly for 10,000 times, from two independent Gaussian distributions with re-
spective means

√
n × 0.5 and

√
n × 0.2 and standard deviations (SD) 1 and 2.

By increasing n, we show that UnVn − n × 0.5 × 0.2 standardized by its limiting
variance n × 0.52 × 22 + n × 0.22 × 12 converges to standard normal (Figure 2a).
For the multivariate setting, Un and Vn are generated repeatedly for 10,000 times,
from two independent multivariate Gaussian distributions with respective means√

n× (0.5,0.25,0.25,0.75,0.75)T and
√

n× (0.2,0.1,0.1,0.3,0.3)T and covari-
ance matrices �U and �V where �U is a 5-by-5 matrix with 1 on the diagonal and
0.3 on the off-diagonal and �V is another 5-by-5 matrix with 1 on the diagonal
and 0.5 on the off-diagonal. By increasing n, we observe that UT

n Vn standardized
by mean and variance converges to standard normal (Figure 2b). For Lemma 3.2,
10,000 Un, Vn, and Wn are generated from three independent Gaussian distribu-
tions with respective means

√
n × 0.5,

√
n × 0.2, and

√
n × 0.3 and SD 1, 2,

and 0.5. We show in Figure 2c that standardized UnVnWn converges to standard
normal.
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(a) (b) (c)

FIG. 2. Quantile–quantile (QQ) plot of UnVn, UT
n Vn, and UnVnWn standardized by mean and

variance against standard normal. Un, Vn, Wn, Un, and Vn follow Gaussian distributions described
in Section 5, and n is the scaling parameter.

5.1. Test of UT
n Vn. To evaluate the finite-sample performance of tests for null

hypothesis (3), we generate S from standard normal and Y and M according
to the models: Yi = 1.2 + 0.5 × Si + ∑

j MjiβMj + εY i and Mji = 0.8 + Si ×
αSj + εMji , where j = 1, . . . ,5, i = 1, . . . , n, αSj = 0.8 × δ, βMj = 0.4 × δ,
αS = (αS1, . . . , αS5)

T , βM = (βM1, . . . , βM5)
T ; εY i follows standard normal;

εMi = (εM1i , . . . , εM5i)
T follows a multivariate normal with zero mean and a 5-

by-5 covariance matrix with 0.8 on the diagonal and 0 on the off-diagonal; and
εY i and εMi are independent. For the null, αS4 = αS5 = βM1 = βM2 = βM3 = 0,
αS1 = αS2 = αS3 = 0.48, and βM4 = βM5 = 0.24 (Figure 3). Two sets of simu-
lation are conducted under the alternative: one with n = 2000 and δ increasing
from 0.005 to 0.4 (Figures 4a and b), and the other with δ = 0.4 and n from 20
to 500 (Figures 4c and d). Three versions of product significance test are imple-
mented: PT-N approximates the mediation effect using Gaussian distributions as
specified in Remark 1 (and 2); and PT-NP approximates the normal product dis-
tribution with {α(b)β(b) − α̂Sβ̂M} where α(b) and β(b) were resampled repeatedly
from N(α̂S, σ̂ 2

αn) and N(β̂M, σ̂ 2
βn), respectively [Huang and Pan (2016)].

Under the null, the test statistic of JT has a faster convergence to χ2
1 distribu-

tion with the same configuration as the sample size increases, compared to PT-N
(Figure 3). With n = 10, p = 5, and δ = 0.4, JT protects Type I Error rate, and dis-

tribution of the test statistic (α̂T
S β̂M)2

Vmax
approaches χ2

1 distribution (Figures 3c and d).
In contrast, PT-N requires n ≥ 100 to ensure a descent convergence (Figure 3b).
Under the null where we set βM1 = βM2 = βM3 = αS4 = αS5 = 0 and the rest of
nonzero parameters as αSj = 0.8 × δ and βMj = 0.4 × δ, Type I Error rate of all
four tests approaches 5%, and standardized T̂UT V is close to normal when δ ≥ 0.12
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(a) Type I error by sample size (b) QQ plot of PT-N test statistic

(c) Type I error of JT by sample size (d) QQ plot of JT test statistic

FIG. 3. Simulation results of tests for UT
n Vn under the null. Proportion of p < 0.05 by sample

size n of mediation tests is depicted for the four tests (a) and for JT with a narrower range (c). Test

statistics of PT-N, (α̂T
S β̂M)2

α̂T
S �βnα̂S+β̂T

M�αnβ̂M

and JT, (α̂T
S β̂M)2

Vmax
are evaluated against χ2 distribution with

1 DF [(b) and (d)].

[see the Supplementary Material Huang (2018)]. Under the null of small nonzero
αSj and βMj , T̂UT V (PT-N) does not follow normal distribution, which explains the
very conservative test size of PT-N.

Due to the poor normal approximation of PT-N with small effect or sample
size, the cut-off for the power simulation is adjusted to ensure 5% error rate. Un-
der the alternative, standardized nα̂T

S β̂M is close to standard normal as δ ≥ 0.052
or n ≥ 50 (Figures 4b and d). The proposed JT has the highest power when the
normal approximation for PT gets better, that is, δ ≥ 0.052 (Figure 4a) or n ≥ 50
(Figure 4c). PT-NP has similar performance to PT-N. Simulation in the univariate
setting, UnVn is presented in the Supplementary Material [Huang (2018)].

5.2. Test of UnVnWn. We simulate S from standard normal, and M , G, and
Y with the following models: Mi = 0.8 + Si × γS + εMi , Gi = 1.2 + 0.5 × Si +
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(a) Power by δ (b) QQ plot by δ

(c) Power by sample size (d) QQ plot by sample size

FIG. 4. Simulation results of tests for UT
n Vn under the alternative. Proportion of p < 0.05 by effect

size indexed by δ (a) and by sample size n (c) of mediation tests is depicted. The distribution of T̂UT V
is evaluated against χ2 distribution with 1 DF [(b) and (d)].

Mi × αM + εGi and Yi = 1.0 + 0.5 × Si + 0.3 × Mi + Gi × βG + εY i , where
γS = 0.8 × δ, αM = 0.6 × δ, βG = 0.5 × δ, and εMi , εGi and εY i are independent
normal random variables with zero mean and SD 0.8. For the null, we study two
scenarios: one with varying n, and αM = 0, γS = 0.48, βG = 0.3 (Figure 5), and
the other with varying δ, and αM = 0, γS = 0.8 × δ, βG = 0.5 × δ, n = 1000 [see
the Supplementary Material Huang (2018)]. We conduct two sets of simulation
under the alternative: one with n = 2000 and δ = 0.005 to 0.8 (Figures 6a and b),
and the other with δ = 0.4 and n = 50 to 1000 (Figures 6c and d).

Under the null, the test statistic of JT converges to χ2
1 distribution faster than that

of PT-N as n increases (Figure 5). PT-N and JT protect Type I Error rate with n ≥
1000 and n ≥ 200, respectively (Figures 5a and c), and their test statistics approach
χ2

1 distribution with the similar sample sizes (Figures 5b and d). The cut-offs for
the power simulation of normality-based tests are adjusted by the test size due to
the poor approximation under small effect or sample size. Under the alternative, we
observe that standardized n3/2γ̂Sα̂Mβ̂G approaches normality as n or δ increases.
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(a) Type I error by sample size (b) QQ plot of PT-N test statistic

(c) Type I error of JT by sample size (d) QQ plot of JT test statistic

FIG. 5. Simulation results of tests for UnVnWn under the null. Proportion of p < 0.05 by sample
size n of mediation tests is depicted for the four tests (a) and for JT with a narrower range (c). Test

statistics of PT-N, (γ̂S α̂M β̂G)2

γ̂ 2
S α̂2

Mσ 2
βn+γ̂ 2

S β̂2
Gσ 2

αn+α̂2
Mβ̂2

Gσ 2
γ n

and JT, min{ γ̂ 2
S

σ 2
γ n

,
α̂2

M

σ 2
αn

,
β̂2

G

σ 2
βn

} are evaluated against

χ2 distribution with 1 DF [(b) and (d)].

JT has the highest power among the four tests as normal approximation for PT
improves, and PT-NP and JT have very similar performance (Figure 6). Under
small n (≤100) or δ (≤0.24), T̂UV W has a severe departure from normality, which
leads to the conservative Type I Error rate [see the Supplementary Material Huang
(2018)].

In summary, the numerical experiment supports the theoretical results in Sec-
tions 3 and 4. Normal approximation of PT works better for larger effects or sam-
ple size. Under the finite sample, joint significance tests have better power than
normality-based PT, and the performance of NP-based product significance test is
in between.

6. Mediation analysis of NEFS. DNA methylation data are preprocessed us-
ing methylumi package in R [Davis et al. (2015)] and normalized using Beta-
Mixture Quantile Dilation approach [Teschendorff et al. (2013)]. The processed
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(a) Power by δ (b) QQ plot by δ

(c) Power by sample size (d) QQ plot by sample size

FIG. 6. Simulation results of tests for UnVnWn under the alternative. Proportion of p < 0.05 by
effect size of the nonzero parameter indexed by δ (a) and by sample size n (c) of mediation tests is
depicted. The distribution of T̂UV W is evaluated by QQ plots against χ2 distribution with 1 degree
of freedom by δ [(b)] and sample size [(d)].

methylation values ranging from 0 to 1 are then logit transformed prior to analy-
ses.

We first set up a mediation model in Figure 1a where S is the socioeconomic in-
dex at age 7, M is methylation level of a locus in chromosome 17, and Y is BMI at
adulthood. We chose to focus on chromosome 17 because (1) it harbors an interest-
ing gene FASN (fatty acid synthase) that has been previously reported for its asso-
ciation with BMI, and (2) the computation cost for analyzing all chromosomes was
too high, especially for the bootstrap-based method. JT and three PTs were con-
ducted to analyze 16,394 methylation loci in chromosome 17 one at a time; and
both PT-NP and PT-B were carried out with 1000 replicates; PT-B approximates
the distribution of α̂Sβ̂M through bootstrapping: {α̂(b)

S β̂
(b)
M − 1

B

∑B
b=1 α̂

(b)
S β̂

(b)
M },

where α̂
(b)
S and β̂

(b)
M are estimated from the bootstrap data, sampled from the orig-

inal data with replacement, and B is the number of bootstrapping, 1000. There are
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FIG. 7. Gene-based mediation analysis of 1151 genes on chromosome 17 using different tests. Red:
p < 0.05; pink: 0.05 ≤ p < 0.1.

243, 24, 193, and 177 methylation loci with p < 0.05 for JT, PT-N, PT-NP, and
PT-B, respectively; computation time is shown in Table 1.

We were interested to examine whether all methylation loci within a gene en
bloc mediate the effect of socioeconomic disadvantage on BMI (Figure 1b) uti-
lizing the multi-mediator analyses in Section 3.1. We conducted the gene-based
analysis, examining 1151 genes with multiple methylation level measures (< 30
loci) one at a time (Figure 7). To satisfy the condition αSjαSkρβ,jk = 0 and
βMjβMkρα,jk = 0, we transformed the methylation levels to be uncorrelated by
carrying out singular value decomposition on the sample covariance of the resid-
uals of model (2) and performed the proposed tests on the transformed media-
tors. Using JT, PT-N, PT-NP, and PT-B, respectively, 21, 9, 4, and 2 genes have
p-values < 0.05, and 51, 28, 11, and 8 genes have p < 0.1. FASN is the most
significant gene with 11, 3, 11, and 10 loci having single-locus p < 0.05 using
JT, PT-N, PT-NP, and PT-B, respectively (Figure 8); respective p-values of the
gene-based overall mediation effect are 0.0013, 0.0076, 0.028, and 0.086. PT-B
took 1.58 hours for the 1151 gene-based analyses, compared to 7.52 seconds for
JT (Table 1).

We investigated whether the significant mediation effect by FASN is further
mediated by the childhood BMI. None of the 26 loci revealed such a path-specific
effect (see Supplementary Material Table S1), and cg04029737 had the smallest
p-value: 0.297 in JT, 0.322 in PT-N, 0.318 in PT-NP, and 0.390 in PT-B. JT had
the smallest p-value among the four tests in 19 out of 26 loci. The results suggest
that DNA methylation level of FASN gene mediates the effect of socioeconomic
disadvantage on BMI in women, which may not be mediated by the childhood
BMI.
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FIG. 8. p-values for mediation effects of 26 methylation loci within FASN gene. The boxes at the
bottom indicate exons of the gene and the numerals indicate the exon numbers.

Studies have shown that FASN is involved in regulation of body weight [Kovacs
et al. (2004), Loftus et al. (2000)]. In mice, FASN expression in adipose tissue
can be affected by high dietary fat [Kadota et al. (2016)]. Compared to those with
high socioeconomic status, individuals with lower socioeconomic status in indus-
trialized nations consume less methyl donor foods such as fruits and vegetables
[Darmon and Drewnowski (2008), Giskes et al. (2010)]. Our analyses support the
mediation mechanism that socioeconomic adversity may affect the dietary habit to
alter epigenetics of FASN, and through regulating gene expression, FASN epige-
netics can further determine body weight.

We conclude that joint significance test is a powerful and very computation-
ally efficient test (Table 1). Implementation codes are available at http://www.stat.
sinica.edu.tw/ythuang/MMT-JT.zip.

7. Discussion. Test size is an upper limit across all parameters in the null
space. As illustrated in simulation studies, the joint significance tests are conserva-
tive if the effect is small and the target size α is achieved if the nonzero parameter
is large. Such a property affects its utility in high-dimensional data analyses. When
applying multiplicity adjustment procedures against theoretical distributions with
exponential or geometric decay of effect size or some empirical distributions close

TABLE 1
Computation time (in seconds unless specified) with 3.40 GHz CPU and 16.0 GB RAM. 1000

replicates for PT-NP and PT-B

No. of analyses JT PT-N PT-NP PT-B

Single-locus analyses (UV ) 16,394 64.4 64.1 67.4 16.0 hours
Gene-based analyses (UT V) 1151 7.52 7.46 11.84 1.58 hours
Path-specific effect (UV W ) 26 0.08 0.13 0.09 142

http://www.stat.sinica.edu.tw/ythuang/MMT-JT.zip
http://www.stat.sinica.edu.tw/ythuang/MMT-JT.zip
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to it, the correction would be very conservative. How to account for multiple test-
ing issue when the majority of signals for both parameters are zero warrants further
studies.

We provide a general insight about why JT is more powerful than PT. In
the univariate mediation effect of αSβM , PT with normal approximation tests√

nα̂S

√
nβ̂M where both

√
nα̂S and

√
nβ̂M vary in their respective distributions;

JT examines α̂S

√
nβ̂M (→ αS

√
nβ̂M ) and β̂M

√
nα̂S (→ βM

√
nα̂S), and both con-

verges to a normal distribution multiplied by a constant. The larger variability in
PT can be explicitly expressed by the inequality in the Appendix, which guaran-
tees that either test of α̂S

√
nβ̂M and β̂M

√
nα̂S is more powerful than the PT, and

the validity of JT in combining the separate tests by picking the least significant
one is supported by the theory of IUT.

APPENDIX

PROOF OF LEMMA 3.1. The moment generating function (mgf ) of UT
n Vn is

MUT
n Vn

(t)

= 1

2π |�1|1/2|�2|1/2

×
∫ +∞
−∞

∫ +∞
−∞

euT vt e− 1
2 (u−μ1n)T �−1

1 (u−μ1n)− 1
2 (v−μ2n)T �−1

2 (v−μ2n) dudv

= ∣∣I − t2�1�2
∣∣−1/2

× e
1
2 t2μT

1n(I−t2�1�2)
−1�2μ1n+ 1

2 t2μT
2n(I−t2�1�2)

−1�1μ2n+tμT
1n(I−t2�1�2)

−1μ2n.

With μT
1n�2μ1n + μT

2n�1μ2n → ∞, it can be easily shown that the mgf of Z ≡
UT

n Vn−μT
1nμ2n√

μT
1n�2μ1n+μT

2n�1μ2n

, MZ(t) → e
1
2 t2

, the mgf of standard normal distribution. Due

to the uniqueness of mgf, Z converges to standard normal distribution. �

PROOF OF THEOREM 3.1. Because
αT

S �βnαS+βT
M�αnβM

α̂T
S �βnα̂S+β̂T

M�αnβ̂M

→ 1 in probability,

under the null, T̂UT V = TUT V
αT

S �βnαS+βT
M�αnβM

α̂T
S �βnα̂S+β̂T

M�αnβ̂M

converges to central χ2 distri-

bution with 1 DF. Under the assumption αSjαSkρβ,jk ≥ 0 and βMjβMkρα,jk ≥ 0,
each term in α̂T

S n�βnα̂S + β̂T
Mn�αnβ̂M = n

∑
j α̂2

Sjσ
2
βnj +n

∑
j �=k α̂Sj α̂Skρβnjk +

n
∑

j β̂2
Mjσ

2
αnj + n

∑
j �=k β̂Mj β̂Mkραnjk converges to a nonnegative value, and

nVmax is a subset of the above 2p2 terms. Therefore, asymptotically

T̂UT V = (
√

nα̂T
S β̂M)2

nα̂T
S �βnα̂S + nβ̂T

M�αnβ̂M

≤ (
√

nα̂T
S β̂M)2

nVmax
.



1552 Y.-T. HUANG

Note the two sides of the above inequality are the test statistics of PT-N and JT.
If the two statistics follow the same asymptotic distribution under the null, the
inequality implies that the proposed JT always has a smaller p-value than the test
based on T̂UT V (PT-N), which guarantees that JT is statistically more powerful

than PT-N: πPT −N(θ) = P(T̂UT V > κ) < P(
(α̂T

S β̂M)2

Vmax
> κ) = πJT (θ) due to the

above inequality, where �(
√

κ) = 1 − α/2 and �(·) is the cumulative distribution
function of standard normal. We show in the following that the test statistic of JT
asymptotically also follows χ2 distribution with 1 DF under the null.

Denote αS = (αT
S1,α

T
S2)

T and βM = (βT
M1,β

T
M2)

T , where αS1 = (αS1, . . . ,

αSp/2)
T and βM1 = (βM1, . . . , βMp/2)

T . Without loss of generality, we focus
on the two different types of null hypotheses: (1) αS1 = 0, αS2 �= 0, βM1 �= 0,
βM2 = 0 and (2) αS1 �= 0, (αS2, . . . , αSp)T = 0 and βM = 0. Under the null of
αS1 = 0, αS2 �= 0, βM1 �= 0, and βM2 = 0, nVmax → w∗T

0 �w∗
0, where w∗T

0 =
(βT

M1,0T ,0T ,αT
S2) and n�n → � = [�α 0

0 �β

]
, a bounded covariance matrix.

Since
√

n(θ̂ − θ) → N(0,�), one can show that
√

nα̂T
S β̂M = √

nw∗T (θ̂ − θ) →
N(0,w∗T

0 �w∗
0). Therefore, (

√
nα̂T

S β̂M)2

nVmax
follows χ2 distribution with 1 DF under

the null.
Under the null of αS1 �= 0, (αS2, . . . , αSp)T = 0 and βM = 0,

nVmax = nα̂2
S1σ

2
βn1 +

p∑
j=2

α̂2
Sjnσ 2

βnj + ∑
j �=k

α̂Sj α̂Sknρβnjk

+ ∑
j

β̂2
Mjnσ 2

αnj + ∑
j �=k

β̂Mj β̂Mknραnjk

= nα̂2
S1σ

2
βn1 + op(1).

Further, we have
√

nα̂T
S β̂M → N(0, α2

S1σ
2
β1) in distribution, provided that

√
n ×

(β̂M − βM) → N(0,�β) in distribution and α̂S → (αS1,0T )T in probability. The
JT test statistic

(
√

nα̂T
S β̂M)2

nVmax
= (

√
nα̂T

S β̂M)2

α2
S1σ

2
β1

( α2
S1σ

2
β1

α̂2
S1nσ 2

βn1

)( α̂2
S1nσ 2

βn1

nVmax

)

converges to central χ2 distribution with 1 DF because the last two parenthe-
ses converge to 1 in probability. Therefore, both test statistics of JT and PT-N
asymptotically follow central χ2 distribution with 1 DF under the null. Note the
theorem does not apply to the null of θ = 0 because it violates the assumption
n2αT

S �βnαS + n2βT
M�αnβM → ∞ for normal approximation of PT. �

PROOF OF LEMMA 3.2. The mgf of UnVnWn is

MUnVnWn(t) = 1

(2π)3/2σ1σ2σ3
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×
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

euvwte
− (u−μ1n)2

2σ2
1

− (v−μ2n)2

2σ2
2

− (w−μ3n)2

2σ2
3 dudvdw

= 1√
2πσ3

∫ +∞
−∞

1√
1 − σ 2

1 σ 2
2 t2w2

× e

2μ1nμ2nwt+(μ2
1n

σ2
2 +μ2

2n
σ2

1 )w2t2

2(1−σ2
1 σ2

2 t2w2) e
− (w−μ3n)2

2σ2
3 dw.

Let Z∗ ≡ UnVnWn√
c

where c = μ2
1nμ

2
2nσ

2
3 +μ2

1nμ
2
3nσ

2
2 +μ2

2nμ
2
3nσ

2
1 → ∞. It follows

that

MZ∗(t) → 1√
2πσ3

∫ +∞
−∞

eμ1nμ2nwt/
√

c+ 1
2 (μ2

1nσ 2
2 +μ2

2nσ 2
1 )w2t2/ce

− (w−μ3n)2

2σ2
3 dw

= 1√
1 − (μ2

1nσ
2
2 σ 2

3 + μ2
2nσ

2
1 σ 2

3 )t2/c

× e

μ1nμ2nμ3nt/
√

c+ 1
2 (μ2

1n
μ2

2n
σ2

3 +μ2
1n

μ2
3n

σ2
2 +μ2

2n
μ2

3n
σ2

1 )t2/c

1−(μ2
1n

σ2
2 σ2

3 +μ2
2n

σ2
1 σ2

3 )t2/c .

Further, by letting Z = Z∗ − μ1nμ2nμ3n√
c

, we show that

lim
at least two of

μ1n,μ2n,μ3n→∞
MZ(t) = e

1
2 t2

,

which is the mgf of the standard normal. �

PROOF OF THEOREM 3.2. As γ̂S , α̂M and β̂G are MLEs, it can be shown that
T̂UV W converges to TUV W following central χ2 distribution with 1 DF under the
null. It can further be shown that

T̂UV W = γ̂ 2
S α̂2

Mβ̂2
G

γ̂ 2
S α̂2

Mσ 2
βn + γ̂ 2

S β̂2
Gσ 2

αn + α̂2
Mβ̂2

Gσ 2
γ n

≤ min
{

γ̂ 2
S

σ 2
γ n

,
α̂2

M

σ 2
αn

,
β̂2

G

σ 2
βn

}
.

Equality is attained if any of γ̂S , α̂M and β̂G is zero. If one can show that

min{ γ̂ 2
S

σ 2
γ n

,
α̂2

M

σ 2
αn

,
β̂2

G

σ 2
βn

} follows central χ2 distribution with 1 DF under the null (see

the following), the above inequality implies that the proposed procedure for joint
significance test of γ̂S , α̂M , and β̂G always has a smaller p-value, and thus better
power than the product significance test based on T̂UV W (PT-N).

Under the null of γS = 0, αM �= 0, and βG �= 0, Pr( (
√

nγ̂S)2

nσ 2
γ n

<
(
√

nα̂M)2

nσ 2
αn

,
(
√

nγ̂S)2

nσ 2
γ n

<

(
√

nβ̂G)2

nσ 2
βn

) → 1 because
√

nγ̂S = Op(1) and both
√

nα̂M [= Op(
√

n)] and
√

nβ̂G
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[= Op(
√

n)] go to infinity. It follows that min{ γ̂ 2
S

σ 2
γ n

,
α̂2

M

σ 2
αn

,
β̂2

G

σ 2
βn

} = γ̂ 2
S

σ 2
γ n

with proba-

bility converging to 1. Similarly, under the null of γS �= 0, αM = 0, and βG �= 0,

min{ γ̂ 2
S

σ 2
γ n

,
α̂2

M

σ 2
αn

,
β̂2

G

σ 2
βn

} is dominated by
α̂2

M

σ 2
αn

; and under the null of γS �= 0, αM �= 0,

and βG = 0, min{ γ̂ 2
S

σ 2
γ n

,
α̂2

M

σ 2
αn

,
β̂2

G

σ 2
βn

} is dominated by
β̂2

G

σ 2
βn

.
γ̂ 2
S

σ 2
γ n

,
α̂2

M

σ 2
αn

, and
β̂2

G

σ 2
βn

all follow

central χ2 distribution with 1 DF under their respective null. �

PROOF OF THEOREM 4.1. We apply Theorem 2 in Berger and Hsu (1996) to
prove the JT in Definitions 1 and 2 are size α tests. We have shown in Section 4
that the JTs are IUT for H0 : θ ∈ 	0 ≡ ⋃K

k=1 	k . To apply the theorem, one needs
to show that there exists a sequence of parameters points θl ∈ 	i (l = 1, . . . ,∞)
for some i = 1, . . . ,K such that (i) liml→∞ Pθl

(Z ∈ Ri) = α and (ii) for every
j = 1, . . . ,K , j �= i, liml→∞ Pθl

(Z ∈ Rj) = 1 where Z is the data.
Let 	UT V = {	A

UT V,	B
UT V}, 	A

UT V = ⋃
k=1,...,2p−1 	A

UT V,k
, and 	B

UT V =⋃
k=1,...,2p−1 	B

UT V,k
, where 	A

UT V,k
= {θ : w1αS1 = 0,

∑p
j=2 wjθ

∗
j = 0} and

	B
UT V,k

= {θ : w1βM1 = 0,
∑p

j=2 wjθ
∗
j = 0}. For JT of UT

n Vn, suppose that

θl = (αT
Sl,β

T
Ml)

T = (0T ,βT
Ml)

T where all elements in βMl except βM1 go to 0
and liml→∞ βM1l → ∞, and thus θl ∈ 	A

UT V. Denote σ 2
α1 and σ 2

β1 as variances of√
nα̂S1 and

√
nβ̂M1, respectively, and �(z1−α) = 1 − α. One can show that

lim
l→∞Pθl

(
Z ∈ RA

UT V

) = lim
l→∞Pθl

(∣∣∣∣w1α̂S1l + ∑p
j=2 wj θ̂

∗
j√

Vmax

∣∣∣∣ > z1−α

∣∣∣ αS1l = 0
)

= lim
l→∞Pθl

(∣∣∣∣
√

nβ̂M1l α̂S1l√
β̂2

M1lσα1

+ op(1)

∣∣∣∣ > z1−α

∣∣∣ αS1l = 0
)

→ α

and

lim
l→∞Pθl

(
Z ∈ RB

UT V

) = lim
l→∞Pθl

(∣∣∣∣w1β̂M1l + ∑p
j=2 wj θ̂

∗
j√

Vmax

∣∣∣∣ > z1−α

∣∣∣ βM1l �= 0
)

= lim
l→∞Pθl

(∣∣∣∣
√

nw1β̂M1l + Op(1)√
nVmax

∣∣∣∣ > z1−α

∣∣∣ βM1l �= 0
)

→ 1,

because nVmax is bounded,
√

nw1 = Op(1) and β̂M1l → ∞.
For JT of UnVnWn, suppose that θl = (γSl, αMl, βGl)

T = (0, αMl, βGl)
T ∈

	UV W1, liml→∞ αMl = ∞, and liml→∞ βGl = ∞. It can be shown that

lim
l→∞Pθl

(Z ∈ RUV W1) = lim
l→∞Pθl

(∣∣∣∣
√

nγ̂Sl√
nσ 2

γ n

∣∣∣∣ > z1−α

∣∣∣ γSl = 0
)

→ α,
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lim
l→∞Pθl

(Z ∈ RUV W2) = lim
l→∞Pθl

(∣∣∣∣
√

nα̂Ml√
nσ 2

αn

∣∣∣∣ > z1−α

∣∣∣ αMl �= 0
)

→ 1,

and similarly, liml→∞ Pθl
(Z ∈ RUV W3) = liml→∞ Pθl

(|
√

nβ̂Gl√
nσ 2

βn

| > z1−α | βGl �=
0) → 1. Therefore, both JTs are IUT and satisfy the two conditions (i) and (ii).
By Theorem 2 in Berger and Hsu (1996), they are size α tests. �
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SUPPLEMENTARY MATERIAL

Supplement to “Joint significance tests for mediation effects of
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sumptions, additional simulation studies, and PSE analyses of 26 methylation loci
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