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A very important problem in finance is the construction of portfolios of
assets that balance risk and reward in an optimal way. A critical issue in port-
folio development is how to address data outliers that reflect very unusual,
generally non-recurring, market conditions. Should we allow these to have
a significant impact on our estimation and portfolio construction process or
should they be considered separately as evidence of a regime shift and/or be
used to adjust baseline results? In financial asset allocation, a fundamental
step is often a mean-variance optimization problem that makes use of the lo-
cation vector and dispersion matrix of the financial assets. In this paper, we
introduce a new high- dimensional covariance estimator that is much less sen-
sitive to outliers compared to its classical counterparts. We then apply this es-
timator to the active asset allocation application, and show that our proposed
new estimator delivers better results compared to many existing asset alloca-
tion methods. An important bonus is that on our examples, the method has a
smaller proportion of stock weights greater than 10% and, in many cases, a
higher alpha. Covariance estimation is more challenging than mean estima-
tion and only locally and not globally optimal solutions are available. Our
proposed new robust covariance estimator uses a regular vine dependence
structure and only pairwise robust partial correlation estimators. The resulting
robust covariance estimator delivers high performance for identifying outliers
for large high dimensional datasets, has a high breakdown point, and is pos-
itive definite. When the full vine structure is not available, we propose using
a minimal spanning tree algorithm to replace missing vine structure.

1. Introduction. In this paper, we propose a new model for active asset allo-
cation and credit risk dependence modeling where the covariance matrix is a key
quantity under the capital asset pricing model (CAPM) [Markowitz (1952)], which
is a mean—variance optimization framework. Since the covariance matrix has to
be estimated from the data, the model is subject to estimation errors. It is well
known that the naive implementation of the CAPM model, with the sample mean
and sample covariance matrix as inputs, performs poorly out of sample [Garcia-
Alvarez and Luger (2011)]. This paper will demonstrate that the mean-variance
portfolio selection using our proposed robust covariance estimator outperforms
many popular allocation methods in the literature.
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Classical sample covariance estimates are very sensitive to outliers, and there-
fore their robust counterparts are considered to address this problem. However,
there are many challenges in the literature of robust covariance estimation for high-
dimensional datasets, which include low breakdown point (i.e., the maximum per-
centage of contamination that can be tolerated), computational inefficiency, and no
guarantee of positive definiteness. Also, in many applications, there may be prior
knowledge about the data dependence structure that can be used in the modeling.
For example, in the asset allocation problem, we know which industry group each
stock falls under, and we should be able to use such knowledge when estimating
the covariance matrix.

Our proposed new robust covariance estimator uses a regular vine dependence
structure and only pairwise robust partial correlation estimators. The resulting ro-
bust covariance estimator delivers high performance for identifying outliers for
large high-dimensional datasets, has a high breakdown point, and is positive defi-
nite. An important bonus is that on our examples, the method has a smaller propor-
tion of stock weights greater than 10% and, in many cases, a higher alpha. When
the full vine structure is not available, we propose using a minimal spanning tree
algorithm to replace missing vine structure.

Our application includes 50 stocks picked from different sectors of the S&P
500, and we use our robust covariance estimator for the covariance to be used in
the mean-variance optimization step. The result shows that our proposed method
outperforms many other methods when measured using the single-index model
based on measures of specific risk and portfolio risk as well as the information
ratio.

2. Example of a financial vine dependence structure. Here is a financial ex-
ample using a basic regular vine structure. Vines are discussed more fully in Sec-
tion 4. Let s be the stock return for a company selling consumer products (seller),
such as Apple. Let s1 and s be the stock returns of two competing suppliers for s,
in this case TSMC and Foxconn.

Figure 1 gives a possible regular vine dependence structure for sq, s, and s,
and the pairwise correlations and partial correlation are displayed on the edges.
For example, the correlation between s and s is 0.8, which shows that supplier 1’s
company stock return is positively correlated to the seller’s company stock return,
and this assumption is reasonable. Similarly, supplier 2’s company stock return
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FI1G. 1. Financial example of a regular vine on three variables.
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is positively correlated to the seller’s company stock return as well. Finally, the
partial correlation between s and s, given s is —0.8, which shows that supplier
1’s company stock return is negatively correlated to supplier 2’s company stock
return while controlling for the seller’s company stock return. This reflects that the
two suppliers are competitors for supplying the same company.

3. Robust covariance literature review. There are many existing robust pro-
cedures for estimating covariance matrices for multivariate datasets, but they suffer
from one or more of the shortcomings mentioned in the previous section.

Multivariate M-estimators use generalized maximum likelihood estimators
(MLEs) when estimating covariance matrices. M-estimators are computationally
efficient in general. However, for monotone M-estimators, the breakdown point
is 1/(p + 1), where p is the number of variables. Tyler (1987) showed an M-
estimator with breakdown being 1/p, which is a bit higher, but when p is large,
such an estimator does not make a difference. Also, S-estimators were introduced
by Rousseeuw and Yohai (1984), and Lopuhai (1989) showed the relation between
S-estimators and M-estimators.

Later, multivariate covariance estimators with high breakdown point were in-
troduced. For example, minimum covariance determinant (MCD) and minimum
volume ellipsoid (MVE) were presented in Rousseeuw and Leroy (1987). These
estimators have many attractive properties, such as high breakdown that can be
specified, guaranteed positive definiteness of the covariance estimate, and affine-
equivariance. Affine-equivariance is a desirable property of an estimator that any
linear transformation of the data is paralleled by the same linear transformation
of the estimator. Lopuhad and Rousseeuw (1991) also presented the breakdown
properties of such affine-equivariant estimators. However, these methods require
heavy computation. For example, MCD was not popular until the introduction of
Fast-MCD [Rousseeuw and Driessen (1999)], but it is still computationally heavy
compared to estimators like M-estimators, and it may get stuck in a local mini-
mum. With a big data set with many variables, MCD may not be computationally
feasible.

Finally, there have been discussions of using robust pair-wise covariances as
entries for the covariance matrix. Since there are many computationally-efficient
robust procedures for estimating pair-wise covariances, the estimation of the co-
variance matrix is also computationally efficient. However, the resulting covari-
ance matrix may not be positive definite, and this violates the fundamental prop-
erty of a covariance matrix. Many papers, such as Maronna and Zamar (2002),
have investigated techniques to ensure positive-definiteness. The estimation of the
covariance matrix is of great interest in many areas of application, including the
field of finance. Fan, Fan and Lv (2008) showed convariance matrix estimation
using a factor model.

This paper will introduce a new robust covariance estimator using a dependence
structure called a vine. Together with high-breakdown robust regression estimators
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to compute partial correlations, our proposed method achieves a high breakdown
point, guaranteed positive-definiteness of the covariance matrix, as well as a faster
run time compared to MCD for datasets with a large number of data points.

4. Formal definition of a vine. A vine is a graphical tool for modeling depen-
dence structure in high dimensions, and it was introduced in Bedford and Cooke
(2002) and Kurowicka and Cooke (2006). A regular vine is a special case where
dependence structures are specified for two variables conditional on some other
variables. Regular vines generalize tree structures, and combined with robust sta-
tistical techniques, they have proven to be a valuable tool in high-dimensional
robust modeling.

Now, we are going to formally define the regular vine structure and its repre-
sentations.

DEFINITION 4.1 (Vine). V is a vine on p elements with E(V) =& U --- U
&p—1 denoting the set of edges of V if:

L V={T,....,Ty—1};

2. Ty is a connected tree [Diestel (2005)] with nodes Ny = {1, ..., p}, and
edges &1;

3. fori=2,...,p—1,T;is atree with nodes N; = &;_;.

There are usually two graphical ways to represent a vine structure. Figure 2
shows the two graphical representations of the same vine. The graph on the left
follows directly from Definition 4.1, and it shows all the trees 7;. In particular,
T has nodes N1 = {1, 2, 3,4} and edges & = {(1, 2), (2, 3), (3,4)}; T> has nodes
Ny =& ={(1,2),(2,3),(3,4)} and edges & = {((1,2), (3,4)), ((2,3), (3,4))}
or in shorthand {(1, 2, 3, 4), (2, 3, 4)} by removing the inner brackets;73 has nodes
Nz =& =1{(1,2,3,4),(2,3,4)} and edges & = {((1,2,3,4),(2,3,4))} or in
short hand {(1, 2, 3,4)}. The graph on the right is a more compact way of rep-
resenting the vine structure. It combines all the trees 7; by connecting the edges
from the previous level.
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FI1G. 2. Two graphical representations of a vine on four variables.
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F1G. 3.  Two graphical representations of a regular vine on four variables.

DEFINITION 4.2 (Regular Vine). V is a regular vine on p elements with
EV) =& U---UE,_1 denoting the set of edges of V if:

1. Vis avine;
2. (proximity) fori =2,...,p — 1, {a, b} € &, #(a A b) =2 where A denotes
the symmetric difference operator, and # denotes the cardinality of a set:

e aAb=(aUb)\ (aNb).

On a regular vine, each edge connecting the nodes a and b corresponds to the
dependence structure of the pair a A b conditional on a N b. The proximity prop-
erty guarantees that a A b always has exactly two variables.

Following Definition 4.2, the vine in Figure 2 is not a regular vine because it
violates the proximity condition. Specifically, at T», {1,2} A {3,4} ={1, 2,3, 4},
so#({1,2} A {3,4}) =4 #2.

Figure 3 shows a sample regular vine with the two graphical representations.

There are two special types of regular vine, namely C-vine and D-vine. They
have very specific structures, and they are very useful as initial dependence struc-
ture models when there is not much prior knowledge about the dependence struc-
ture.

DEFINITION 4.3 (C-vine). A regular vine is called a Canonical or C-vine if
each tree 7; has a unique node of degree [Diestel (2005)] p—i fori =1,..., p—2.
The node with the highest degree in 7; is the root fori =1,..., p — 2.

Figure 4 is a sample C-vine on four variables. The roots are {1} and {1, 2} for
T1 and 7> respectively.

DEFINITION 4.4 (D-vine). A regular vine is called a Drawable or D-vine if
each node in 77 has a degree of at most two.

Figure 5 is a sample D-vine on four variables. Each tree is a path, so it is the
most drawable vine.

There are regular vines, for example the vine shown in Figure 3, which is neither
a C-vine nor a D-vine.
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FI1G. 4. Example of a C-vine on four variables and its two graphical representations.

Regular vines are very useful in modeling the correlation structure. The vine
provides a graphical tree structure of the variables, and in Section 6, we will show
that each edge in this tree structure has a number associated with it, which is called
the partial correlation, and these yield the overall structure.

5. Financial application. Covariance/correlation estimation is of significant
importance in the field of finance. Many areas, including but not limited to as-
set allocation and active portfolio management, hedging instrument selection, and
credit derivative pricing/modeling, require covariance/correlation in the modeling
phase, and they are subject to estimation errors because it is well known that most
financial data series are not normally distributed and have skewed and nonsymmet-
ric tails. As we will demonstrate in an example of asset allocation, our proposed
robust correlation estimator is superior to many existing methods.

The capital asset pricing model (CAPM) is a classical asset allocation method
proposed by Markowitz (1952), and this model and its enhanced versions still re-
main a very prominent approach to asset allocation and active portfolio manage-
ment [Garcia-Alvarez and Luger (2011)]. The CAPM model minimizes the vari-
ance of the portfolio with a target return, and therefore the expected returns and
the covariance matrix are the inputs for the model. In practice, both the expected
return and the covariance matrix have to be estimated from the data, and therefore,
the model is subject to estimation errors. It is well known that the naive implemen-
tation of the CAPM model, with the sample mean and sample covariance matrix as
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FI1G. 5. Example of a D-vine on four variables and its two graphical representations.
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inputs, performs poorly out of sample [Garcia-Alvarez and Luger (2011)]. Further-
more, according to a study by DeMiguel, Garlappi and Uppal (2009), the CAPM
model, together with many enhanced estimation methods for the mean and co-
variance matrix, does not perform better than the simple equal-weight portfolio.
The equal-weight portfolio simply invests equally in all N stocks under consider-
ation, so it is not subject to estimation errors. This paper will demonstrate that the
mean-variance portfolio selection using our proposed robust covariance estima-
tor outperforms many popular allocation methods in the literature, including the
equal-weight portfolio.

5.1. Modeling set-up. Five stocks from each Global Industry Classification
Standard (GICS) sector have been selected from the S&P 500 index based on their
market capitalizations and availability of data. Therefore, a total of 50 stocks have
been chosen for modeling. Historical stock price data were downloaded from Ya-
hoo! Finance using the close price adjusted for dividends and splits.

Here is the list of the GICS sectors and the five stocks chosen from each sector:

Consumer Discretionary: MCD, DIS, CMCSA, HD, NKE;
Consumer Staples: WMT, PG, KO, PEP, MO;

Energy: XOM, CVX, SLB, COP, OXY;

Financials: WFC, JPM, C, BAC, AXP;

Health Care: JNJ, PFE, MRK, ABT, BMY;

Industrials: GE, UTX, CAT, MMM, BA;

Information Technology: AAPL, MSFT, IBM, INTC, ORCL;
Materials: DD, DOW, NEM, MOS, ECL;
Telecommunications Services: T, VZ, CTL, S, FTR;

10. Utilities: SO, D, DUK, NEE, EXC.

NN R WD =

A

At beginning of each week, the following optimization problem is solved with
different estimated location vectors and dispersion matrices.

Minimize w'Sw

Subject to: W'l = Wiarget,
we=1,
w >0,

where w is the weight vector, ft is the estimated location (mean) vector, 3 is the
estimated dispersion (covariance) matrix, fiarget 18 the target return location for the
portfolio, and e is the vector of all ones.

We call this process of recalculation of weights and adjustment of stock allo-
cations weekly rebalance, and we perform such process weekly for the 10-year
period (2002-2012). For each weekly rebalance, we use the past 200 weeks of
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stock return observations for the estimation process. We will consider and com-
pare returns of the following six portfolio allocation rules: Selected vine, D-vine,
equal-weight, OGK, MCD, CAPM and S&P 500. The full derivation of the Se-
lected Vine and D-vine are in Section 6. Obviously, both equal-weight and S&P
500 portfolio allocation rules do not require any model or estimation. The remain-
ing models use the mean-variance optimization model with different estimators for
the location (mean) vector and the dispersion (covariance) matrix.
Estimation methods for each allocation rule:

e Selected vine

o The location vector is estimated using the sample median vector;

o The dispersion matrix is estimated using the optimally selected vine (Algo-
rithm 6.3) as the partial correlation vine structure and LTS with 50% break-
down as the robust partial correlation estimator.

e D-vine

o The location vector is estimated using the sample median vector;

o The dispersion matrix is estimated using D-vine as the partial correlation vine
structure and LTS with 50% breakdown as the robust partial correlation esti-
mator.

— The order of the first level tree for the D-vine is taken to be the same as the
order of the stocks specified above.
e OGK

o The location vector and the dispersion matrix are estimated using OGK
[Maronna and Zamar (2002)] with median and median absolute deviation
(MAD) for the univariate robust location and scale estimates.

e MCD
o The location vector and the dispersion matrix are estimated using the Fast
MCD algorithm [Rousseeuw and Driessen (1999)] with 50% breakdown.
e CAPM
o The location vector is estimated using the classical sample mean;
o The dispersion matrix is estimated using the classical sample covariance.

The target return is the return of the equal-weight portfolio. However, due to
the differences in estimation methods for the location vector of the return, the
estimated target return under different methods may not be identical. In addition,
short selling is not allowed.

Finally, no transaction cost is included. Transaction costs and limits on stock
turn-overs will be considered in future research.

5.2. Model results and comparisons using index model. The four different
covariance estimation techniques result in different weight vectors in the mean-
variance optimization step. One observation is that the traditional CAPM method
using the sample mean and sample covariance estimators have a higher proportion
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TABLE 1
Proportion of weights that are greater than 10%

Selected Vine D-Vine OGK MCD CAPM

4.22% 5.69% 5.75% 6.18% 6.15%

of individual stock weights that are greater than 10% compared to some other ap-
proaches. Also, the MCD method produces a high proportion similar to the CAPM
method, while our proposed selected vine method produces the lowest proportion.
This analysis shows that our proposed Selected Vine method does not produce
many extreme weights compared to the other approaches, so it is most stable. Ta-
ble 1 shows the detailed comparison figures.

We also use the single-index model for model comparisons:

rp—rr=a+Blrm—ryr)+e, GNN(O,OZ),
where:

e rp is the portfolio return;

e ry is the risk free return, and the weekly return of the one-month treasury bill is
used;

e « is the portfolio alpha, estimated by linear regression;

e f is the portfolio beta, estimated by linear regression;

e 1, is the market return, and S&P 500 is used.

Table 2 shows the results for different asset allocation methods. Our proposed
Selected Vine method has produced the highest alpha, which measures the excess
return after taking market risk into account. A high positive alpha is an indication
of good performance of an asset allocation method. Also, the beta of a portfolio
shows its correlation to the S&P 500 market return, so it measures the systematic
risk of the asset portfolio compared to the S&P 500. Our proposed Selected Vine
method has one of the highest betas, which indicates that its return moves more
closely with the S&P 500 market return and it has more systematic risk compared
to other asset allocation methods.

Another measure of the risk-adjusted return of the portfolios is the information
ratio, and it is defined as the expected active return divided by the tracking error.

TABLE 2
Statistics of the single-index model for each asset allocation method

Selected Vine  D-Vine  Equal Weight OGK MCD CAPM S&P 500

o 0.1634 % 0.1091% 0.1477% 0.0931% 0.1073%  0.1019% 0%
B 0.4560 0.3464 0.5074 0.2871 0.2905 0.2846 1
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TABLE 3
Statistics of the realized weekly log-returns for each asset allocation method

Selected Vine D-Vine Equal Weight OGK MCD CAPM S&P 500

Mean 0.1948 % 0.1402% 0.1793% 0.1241% 0.1382% 0.1328%  0.0329%

s.d. 2.4518% 1.8732% 2.4492% 1.8024% 1.8078% 1.7820% 2.6126%

IR 6.2976 % 4.5309% 6.0290% 3.6750% 4.2554% 4.0413% N/A

where the information ratio IR = _ERp—Ry]_ and the benchmark return, Ry, is the S&P 500
JVar(R,—Ry)’ » b

return.

This is a good measure for risk-adjusted return because it incorporates standard
deviation, which is used to measure risk, into the equation, and given the same
amount of risk/standard deviation, the higher the excess return, the better the asset
allocation method is. From Table 3, the allocation method using the Selected Vine
has the highest IR for the realized returns, and therefore, it is considered the best
active asset allocation method under the IR criterion.

The asset allocation application has demonstrated that our proposed robust co-
variance estimation can deliver better results than many existing methods. Also,
by estimating the location vector and the dispersion matrix robustly, one can eas-
ily identify outliers using the robust version of the Mahalanobis distance, and any
data point with a Mahalanobis distance above a certain threshold value would be
considered an extreme observation. This is very useful in risk management when
modeling the different correlation/dependence structures under normal and crisis
situations.

6. Robust correlation estimation. In this section, we introduce a new robust
correlation estimation method using pairwise partial correlations. We first provide
the definition of partial correlation, and then describe the partial correlation vine
structure and its relationship with the correlation matrix. Finally, we incorporate
a robust estimation technique for partial correlations and use it to construct the
robust correlation matrix that guarantees positive-definiteness.

6.1. Partial correlation vine structure.

DEFINITION 6.1 (Partial correlation).  Consider random variables X1, ..., X .

Let X ]"3 » and X; 3p be the best linear approximations to X and X, based
on the variables X3,..., X . Let Y1 =X — XT;3,...,p’ Yo =X, — X;;l...,p be the
residuals. Then, the partial correlation between X| and X, given all other vari-
ables, denoted by p1,2.3,..., p, is defined as the ordinary correlation coefficient be-
tween Y| and Y>.
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Therefore, the partial correlation py 2.3, , can be interpreted as the correlation
between the orthogonal projections of X and X, on the plane orthogonal to the
space spanned by X3, ..., X,. Partial correlations can be computed from correla-
tions using the following recursive formula [Yule and Kendall (1965)]:

£1,2:3,...,p—1 — P1,p:3,....,p—1 " P2,p;3,....p—1
2 2 )
\/1 - pl,p;3,...,p—l ' \/1 - '02,p;3,.‘.,p—l

Also, the partial correlation can be computed directly from the correlation ma-
trix, ¥. Define P = X!, then:

(6.1) £1,2;3,..p =

Pij
\/Piipjj’

(6.2) Pi ji{L,..pN\ij} = —

where p;; is the (i, j)th entry of P.
Theorem 6.1 below provides another method for computing partial correlations.

THEOREM 6.1 [Yule and Kendall (1965)]. Consider a variable X; with zero

mean, i =1, ..., p. Let the numbers b; j.(1, . p)\(i,j) minimize
2
E|:(Xi - Z bi,j;{l,...,p}\{i,j}Xj> } i=1,...,p.
Jij#

Then, the partial correlation can be computed as

THEOREM 6.2 [Bedford and Cooke (2002)]. For any regular vine on p-
elements, there is a one-to-one correspondence between the set of p X p positive
definite correlation matrices and the set of partial correlation specifications for
the vine.

Therefore, by Theorem 6.2, any assignment of the numbers strictly between —1
and 1 to the edges of a partial correlation regular vine is consistent with a positive
definite correlation matrix, and all positive definite correlation matrices can be
obtained this way by allowing for all possible vines. The off-diagonal entries of a
positive definite correlation matrix must be strictly between —1 and 1 as will be
seen in the proof of Theorem 6.3.

It can be verified that the correlation between the ith and jth variables can be
computed from the sub-vine generated by the constraint set of the edge whose
conditioned set is {i, j}. The detailed proof is in the Bedford and Cooke (2002)

paper.

DEFINITION 6.2 (Partial correlation vine). A partial correlation vine is ob-
tained by assigning a partial correlation p,, with a value chosen arbitrarily in the
interval (—1, 1), to each edge ¢ in £()V) of the vine defined in Definition 4.1.
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Theorem 6.2 shows that there is a bijection between the set of all possible regu-
lar partial correlation vines and the set of all (positive definite) correlation matrices.

6.2. Preservation of the breakdown point. As mentioned previously, in robust
covariance estimation, having a high breakdown point is a favorable, yet difficult,
property for a robust estimator. We will first provide a formal definition of the
breakdown point, and then prove that with high-breakdown robust partial corre-
lation estimators, which are readily available, we can produce robust covariance
estimators with the same high breakdown as those robust partial correlation esti-
mators.

DEFINITION 6.3 (Breakdown point or BP). Let 6 be the parameter (or vector
of parameters) of interest that ranges over a set ®. Let 6 = é(x) be an estimate
defined for samples x = {x1, ..., x,}. The replacement finite-sample breakdown
point of 6 at x is the largest proportion €* of data points that can be arbitrarily
replaced by outliers (i.e., contamination of data) without 6 leaving a set which is
bounded and remains away from the boundary of ® [Donoho and Huber (1983)].
In other words, there exists a closed and bounded set K C ® suchthat KNo® = &
(where 9® denotes the boundary of ®), where for any € < ¢* contamination of
data, 6 remains in the set K.

Roughly speaking, the breakdown point (BP) of an estimate is the largest
amount of contamination that the data may contain such that the estimate still
gives some information about the underlying parameter. Now, we will show that
the BP for the robust correlation estimator is preserved using a partial correlation
vine with a robust partial correlation estimator on each edge of the vine.

THEOREM 6.3. Given a partial correlation vine structure )V and a robust par-
tial correlation estimate on each edge € in £(V) of the vine, the correlation matrix
can be derived from the partial correlation estimates using Theorem 6.2. If each
robust partial correlation estimator has BP at least €*, then the resulting correla-
tion matrix also has BP at least €*.

PROOF. There are (%) correlations to be estimated, and each ranges from
—1 to 1 (both inclusive). Therefore, the parameter space for correlations is ® =
[—1, 1](%). Also, for any regular vine, there are (%) number of edges [Kurowicka,
Cooke and Callies (2006)], and therefore, the parameter space for partial correla-
tions on the vine is © = [—1, 1](g). For each edge ¢ of the partial correlation vine,
let ®, =[—1, 1] be the parameter space for the partial correlation on that edge.

First we will show that, given a partial correlation vine structure V), there exists a
continuous function mapping from the correlation matrix to the partial correlations
on the edges £(V) of the vine.
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According to Formula (6.2) and its generalization, if X is the correlation matrix

with P = =71, then Piji(l,..n)i,j) = \/% Because both the matrix inversion

and the computation of partial correlation from the inverse matrix are continuous
mappings, there exists a continuous function mapping, denoted by f, from the
correlation matrix to the partial correlations on the edges £()).

Now, since each robust partial correlation estimator has BP at least €*, by Defi-
nition 6.3 (BP), for each robust partial correlation estimator 98 on the edge ¢, there
exists a closed and bounded set K, C @8 such that K N 8@8 = o, and for any
€ < €* contamination of data, 98 remains in the set Kg. In this case, ©, = [—1, 1],
andBG)g—{ 1,1}, so—1¢K,and 1 ¢ K,.

Let K =[], K, the Cartesian product of the sets. Let K = f —1(K), and
without loss of generality (WLOG), say K C ©, and if not, we can take K =
f~1(K) N ®, and the argument will still follow. Now, since the inverse image of
a closed set under continuous mapping is also closed [Rudin (1976)], K is closed.
Note that § € K.

Finally, we have to prove that K N 0® = &, and we will prove this by showing
that none of the off-diagonal elements of the correlation matrix can be —1 or 1.
Suppose, to reach a contradiction, that there is an off-diagonal element of the cor-
relation matrix that is —1 or 1. Since we can reorder the variables, WLOG, let’s
say such element is pj3. Therefore, the determinant of the upper left 2-by-2 corner
is:

1 ,012} 2
det =1- =0.
[,012 1 P12

By Sylvester’s criterion, the correlation matrix is not positive definite. However,
this violates Theorem 6.2. Therefore, we can conclude that none of the off-diagonal
elements of the correlation matrix can be —1 or 1, and hence K N9® =@. U

Theorem 6.3 shows that BP of the final robust correlation matrix estimator is
inherited from the robust partial correlation estimators. There are many robust par-
tial correlation estimators with high BP, and the resulting robust correlation matrix
estimator will have high BP as well.

6.3. Algorithms for robust estimation. Now, we will propose a robust estima-
tion procedure for computing robust covariance/correlation matrices following the
principles described above.

We apply robust regression estimators, such as the MM estimator with high
breakdown and efficiency [Yohai (1987)], to estimate the robust partial correla-
tions on the vine. Then according to Theorem 6.3, we can estimate the correlation
matrix robustly using these robust partial correlation estimates. These robust re-
gression estimators are generally faster to compute compared to MCD, and we
will demonstrate this in the Benchmark section. Finally, the robust covariance ma-
trix is constructed using the robust correlation matrix and the robust covariance for
each individual variable.
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Theorem 6.2 guarantees the construction of a correlation matrix from partial
correlation vines, but there is no algorithm that specified how to do so in real-life
applications. There are special regular vine structures where algorithms can be
specified for such a process, and we will provide algorithms for both the C-vine
and D-vine.

ALGORITHM 6.1 (Correlation computation for C-vine). For C-vine, the par-
tial correlations are of the form p; .1, ;—1, wherei < j.
From Formula (6.1), we have Yk < i

Pi i1, k=1 — Pki:l,...k—1" Phk.j:1,...k—1
(6.3) Pijil,k = > > .
\/1 Pk, k=1 \/1 T Pkl k—1

Rearrange terms to get a recursive formula for p; ;.1 x—1:

6.4y et TRhhet N TR
+ Ok,izl,.k—1" Pk, ji1,... k—1-

Therefore, for k =i —1,i —2,..., 1, we can recursively compute p; j.1,.. k1,
and when k =1, p; j = pi j;1,...k—1-

This algorithm has O ( p3) runtime.

Here is an example how this is done for p = 4. For a C-vine with four variables,
robust partial correlation estimators give estimates for the following partial corre-
lations: p1,2, 1.3, P1.4> £2,3:1, £2.4:1, and p3 4.1,2. We can compute the remaining
correlations with the following formulas:

P23 = ,02,3;1\/(1 = P1o) (1= pi3) + 12613

P24 = 02,4;1\/(1 —pio) (1= pfy) + p12p14:

P3,4;1 = 03,4;1,2\/(1 - ,0%,3;1)(1 - P%A;l) + 02,3;102,4:1;

P34 = ,03,4;1\/(1 - ,012,3)(1 - /012,4) + 01,301,4-

ALGORITHM 6.2 (Correlation computation for D-vine). For D-vine, the par-
tial correlations are of the form p; j.;41,.. j—1, where i < j.

.....

By Anderson (1958)
(6.5) pi.j =riG, DR2G, )" 3G, j) + pijuitt.. j—1Dij-
Where:

o (i, j) = (Pii41s---sPij—1);
o 75, )= (Pjit1s--sPjj—1);
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1 Pi+li+2 . Pitlj-1
o Pi42,i+1 1 Pi+2,j—1
o Ry(i,j)= ) ) i ;
Pj—1i+1 Pj—lit2 - 1

o D} ;=1 —ri(, DRaG, H'r1G, A =r3(Q, HR2G, )30, 1))

We compute p; ; in the following order: i steps up from 3 to p, and for each i,
Jj steps down from i — 2 to 1.

Here is an example how this is done for p = 4. For a D-vine with four variables,
robust partial correlation estimators give estimates for the following partial corre-
lations: p1.2, 2.3, 03,4, £1,3:2, £2.4:3, and p1 4.2,3. We can compute the remaining
correlations in the order: p; 3, 2.4, 01,4.

We can first calculate pj 3 because:

ri(1,3) = (p1,2) is known;
r3(i, j) = (p2,3) is known;
R>(i, j) = (1) is known;
£1,3;2 is known.

Using Formula (6.5), we can compute p1 3.
Similarly, we can then calculate p 4.
Finally, we can calculate p; 4 because:

e r1(1,4) = (p1,2, p1,3) is known;
o r5(1,4) = (p2,4, p3,4) is known;
e Rr(1,4) = (le3 p21*3) is known;
® p1.4:2,3 is known.

Matrix inversion operations, each with O (p?) runtime, are required, so naively
implementing an algorithm for D-vine requires O (p>) runtime. However, one can
cleverly use block matrix inversion techniques to improve the runtime to O (p*).

Algorithm 6.1 can only be applied when the C-vine structure is pre-specified,
so it is necessary to choose a correct C-vine structure initially. Also, if the variable
labels in the vine are permuted, a different robust covariance estimate may be
found depending on the robust partial correlation estimator. A similar statement
applies to Algorithm 6.2 and the D-vine.

Therefore, we need to discuss how to select a regular vine robustly. We will
use an inductive method to select the optimal tree at each level. A similar method
has been proposed in the literature [Dissmann et al. (2012)], but our method does
not require any specification of the copula structure, and it is more robust against
outliers.

ALGORITHM 6.3 (Robust vine selection). Consider random variables X1, ...,
X . For a given robust partial correlation estimator, let g; ;. p be the robust partial
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correlation between X; and X ; given all variables in the set D: (Note: i ¢ D and
J ¢ D, and when D = &, we shorten the notation to be p;,;.)

1. Select the first level tree, 77, by solving the following maximum spanning
tree problem:
max 0; il
{i,j} in spanning tree Z |pl’j |
2. Fork=2,...,p—1do
3. Select tree Ty by solving the following maximum spanning tree problem over
all pairs {i, j | D} that can be part of tree Tk, i.e. all edges satisfying the proximity
condition (see Definition 6.2):
max Zlﬁi,j;Dl-

{i,j|D} in spanning tree

The vine structure determined by Algorithm 6.3 will be regular vine, but it is
not necessarily a C-vine or D-vine.

If a professional has prior knowledge about the first several level trees, Al-
gorithm 6.3 can be easily adapted by carrying out the inductive steps from the
first unspecified level tree. In this case, the professional would specify the first
several level trees, say T1,...,7;, and then apply Step 3 of Algorithm 6.3 for
k=Il+1,...,p—1.

7. Benchmark. There have been many proposals made to estimate covariance
matrices robustly. Some authors in the field of robust estimation have emphasized
the importance of high breakdown point, and Theorem 6.3 guarantees that our
estimator can achieve a high breakdown point. Others have emphasized speed for
large p [Maechler and Stahel (2009)], and our method has an O( p3) runtime using
a C-vine. However, there is usually one important criterion that is overlooked when
evaluating a robust covariance estimator, namely the effectiveness of identifying
the outlier part. The Barrow Wheel Benchmark [Maechler and Stahel (2009)] has
been proposed as a benchmark to evaluate such a criterion.

EXAMPLE 7.1 (Barrow Wheel). The “Barrow Wheel” distribution is a mix-
ture of a flat multivariate normal distribution contaminated with a portion € = 1/p
(p is the dimension) of gross errors concentrated near a one-dimensional subspace.
Formally, Let

Go= (1 —¢)-N,(0,diag(0{, 1,...,1)) +€-H,

where NV, (0, diag(alz, 1,...,1)) is a p-dimensional multivariate normal distribu-
tion with mean 0 and diagonal covariance matrix with entries (012, 1,...,1). His
the distribution of ¥, where Y!) has a symmetric distribution with (Y My2 ~ X,%fl
(i.e., Chi-squared distribution with p — 1 degrees of freedom) and is independent
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The Barrow Wheel (p=5) Before Rotation
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FIG. 6. Pairwise scatter plot for the barrow wheel distribution (p = 5), after rotation (left) and
before rotation (right).

of YO, . ..,YP) ~ N »(0, 0221 p—1). Then, this distribution is rotated such that the
X1 axis points in the space diagonal direction (1,1, ..., 1), and the components
are rescaled to obtain G, which is the Barrow Wheel distribution.

Figure 6 shows the data generated by the “Barrow Wheel” distribution with
p =15, n=400, oy =0.05, and 0o = 0.1, where n is the number of data points,
and p is the number of variables.

The “good” portion of data is Np (0, diag(dlz, 1,..., 1)), that is, the wheel, and
the outlier portion is H, that is, the axle. An effective robust estimator should
be able capture the wheel and not the axle. We will use the concept of condition
number or kappa to measure a robust estimator’s ability to identify and isolate
outliers.

DEFINITION 7.1 (Condition number or kappa). For any positive definite ma-
trix S, let Amax (S) and Anin(S) be the largest and smallest eigenvalues of S respec-
tively. Then, the condition number or kappa of S is defined as:

Amax (S)

K = i (S)”

With the convention of setting o7 < 1, the theoretical condition number of the
covariance matrix for the wheel should be 1/012. An effective robust estimator
should capture most of the data in the wheel, and hence the condition number of
the estimated covariance matrix should be close to the theoretical value of 1/o?.

As an experiment, we set o1 = 0.05 and o> = 0.1 for the remainder of this sec-
tion and, therefore, the theoretical condition number of the covariance matrix for
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FI1G. 7. Boxplot of the benchmark results from Maechler and Stahel (2009)’s talk comparing 20
different robust estimators.

the wheel is 1/0.05? = 400. Maechler and Stahel (2009) provided box-plots (Fig-
ure 7, permission to use the plots granted by Stahel) of condition numbers for a list
of robust covariance estimators, and they demonstrated that many cheap “robust”
estimators, such as BACON [Billor, Hadi and Velleman (2000)], are as ineffective
as the classical covariance estimator with condition number very close to 1. Also,
methods like MCD and MVE perform really well, but they are computationally
time-consuming. OGK [Maronna and Zamar (2002)] methods perform better than
those cheap “robust” methods, but not by a significant margin.

We performed the Barrow Wheel benchmark using our proposed robust covari-
ance estimator. We used C-vine, D-vine and the optimally selected vine as the
regular vine structures, and we used both the MM-estimator and least trimmed
squares (LTS) as the robust regression estimator for the partial correlations. To
make the result comparable with the ones in Figure 7, we used the same parame-
ters: n = 100, p =5, ngim = 50, where n and p are the sample size and number
of variables in each simulation respectively, and ngy, is the total number of sim-
ulations. We also included the “Oracle” estimator, which gives the estimation of
the covariance matrix knowing which portion is the wheel part. The box-plots in
Figure 8 show that our estimators perform much better than many robust covari-
ance estimators in Figure 7. For example, the OGK estimator in Figure 7, which
uses pair-wise estimation techniques for constructing the robust covariance, has a
median condition number well below 100, and our proposed estimators, as shown
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Condition Number of the Estimated Covariance Matrix
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FI1G. 8. Boxplots of the benchmark results for our four robust estimators.

in Figure 8, all have condition number above 200. The D-Vine (LTS) estimator
even has similar performance to the Oracle one.

Figure 9 shows a comparison of the benchmark result for different dimensions
in terms of condition number between the proposed D-Vine (LTS) estimator and
the OGK estimator. We tested for an increasing p from 20 to 80. It shows in the

Condition Number of the Estimated Covariance Matrix
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FI1G. 9. Boxplots of the benchmark results for different p under OGK and D-Vine (LTS) robust
estimators.
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Average computation time with p =5 and n_sim =50
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F1G. 10. Comparison of computation time between D-vine (LTS) and MCD for different sample
size n ranging from 100 to 30,000.

figure that our proposed estimator is able to better capture the central portion of
the data compared to the OGK estimator as measured by the condition number for
all those tested dimensions.

Figure 10 shows a comparison of computation times for D-Vine (LTS) and
MCD, where ng;;, is the total number of simulations. It is clear that, with large
n, D-Vine (LTS) runs much faster than MCD. Also, the difference grows much
more significantly as n becomes larger. Finally, note that our proposed robust co-
variance estimator may not necessarily be affine equivariant.

8. Conclusion. This paper introduced a new robust covariance estimation
method for multivariate data with important applications in financial portfolio op-
timization, outlier detection, and other areas. We demonstrate the benefit of using
our proposed estimation method in the application of active asset allocation with
50 stocks from the S&P 500 index and comparison of seven different asset allo-
cation methods. Our proposed Selected Vine method for estimating the covariance
matrix has more stable results by producing a smaller proportion of individual
stock weights that are greater than 10%. Also, under the single-index model, the
Selected Vine method has the highest alpha among all considered methods. Fi-
nally, using the information ratio criterion, our proposed Selected Vine method
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generates the highest information ratio for the realized returns while taking the
risk of the asset portfolio, which is measured by the standard deviation, into con-
sideration. This method combines the regular vine structure with robust partial
correlation estimation techniques and it allows the use of prior information such as
knowing which industry group each stock falls under and the supplier relationships
among the target companies. When the vine structure is not completely available,
a minimal spanning tree algorithm is used to replace the missing portion. It guar-
antees the positive definiteness of the correlation/covariance matrix, which is an
important property for robust covariance estimators using pair-wise covariance es-
timates. The breakdown point is also preserved in the estimation process, and this
allows the building of multivariate estimators with high breakdown point. A Bar-
row Wheel benchmark shows that this new approach effectively captures the good
portion of the data while improving the computing time for large datasets.
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