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CLUSTERING THE PREVALENCE OF PEDIATRIC CHRONIC
CONDITIONS IN THE UNITED STATES USING

DISTRIBUTED COMPUTING1

BY YUCHEN ZHENG AND NICOLETA SERBAN

Georgia Institute of Technology

This research paper presents an approach to clustering the prevalence
of chronic conditions among children with public insurance in the United
States. The data consist of prevalence estimates at the community level for
25 pediatric chronic conditions. We employ a spatial clustering algorithm to
identify clusters of communities with similar chronic condition prevalences.
The primary challenge is the computational effort needed to estimate the spa-
tial clustering for all communities in the U.S. To address this challenge, we
develop a distributed computing approach to spatial clustering. Overall, we
found that the burden of chronic conditions in rural communities tends to be
similar but with wide differences in urban communities. This finding suggests
similar interventions for managing chronic conditions in rural communities
but targeted interventions in urban areas.
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1. Introduction. The Medicaid public insurance program covers more than
36 million children in the United States yearly [Center for Medicare and Medi-
caid Services (2017a)]. Children covered under this program are from low-income
families or/and with severe health disabilities. Disparities in health outcomes for
Medicaid-enrolled children are substantive and of great concern nationally [Center
for Medicare and Medicaid Services (2017b)]. A first step in addressing such dis-
parities is measurement and evaluation of the health outcomes for this population.
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Towards this objective, in this paper, we study the burden of chronic conditions in
the Medicaid-enrolled child population, which can vary across communities within
each state and across states. Characterizing the burden of chronic conditions can
help in identifying communities with most need for interventions for improving
health outcomes.

We compiled a unique (in-treatment) prevalence data on multiple chronic
conditions common in children. The prevalence data are derived from patient-
identifiable medical claims from the 2011 Medicaid Analytic eXtract (MAX) files
acquired from the Centers for Medicare and Medicaid Services (CMS). The preva-
lence data are census tract estimates of the percentage of Medicaid-enrolled chil-
dren diagnosed with a chronic condition, with a total of 64,873 census tracts across
the United States, and 25 chronic conditions. The objective in this study is to char-
acterize the burden of chronic conditions in communities by using a clustering
or segmentation of the population of children based on the level of prevalence of
their chronic conditions. This clustering approach reduces the information content
in such large prevalence data into simple data clustering summaries by borrowing
information across all census tracts (proxies of communities) and across prevalent
childhood chronic conditions. The end point is to create a clustering map of the
burden of chronic conditions, which can be used in informed decision making and
targeted healthcare interventions.

An important challenge in deriving a clustering for the prevalence data is the
presence of strong spatial dependence. Spatial dependence arises because proxi-
mal communities will have similar levels of chronic conditions; proximal commu-
nities will have similar demographics, social-economics and environmental fac-
tors, which can influence the development and the severity of chronic conditions
[The World Health Organization (2005), Cockerham, Hamby and Oates (2017)].
These types of spatial effects have been widely modeled in disease mapping. Re-
views of methodology for spatial epidemiological data in general may be found in
Elliot et al. (2000), Lawson et al. (1999), Wakefield (2006), Waller and Gotway
(2004). Most models were developed in spatial smoothing and regression settings.
Incorporating spatial dependence is vital in understanding geographical patterns in
disease incidence and mapping.

One first attempt for detecting spatial point clusters and hotspots using ex-
ploratory methods is the Geographical Analysis Machine (GAM) developed by
Openshaw et al. (1987) and later improved by Besag and Newell (1991). An-
other popular method is to encode the spatial dependence (or other form of de-
pendence) into the feature space. Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [Ester et al. (1996)], Ordering Points To Identify the
Clustering Structure (OPTICS) [Kriegel et al. (2011)], and other related variations
[Birant and Kut (2007), Wang, Wang and Li (2006)] are the most well-known
density based clustering algorithms for correlated data, where distance based mea-
sures are used to allocate data to clusters. Carson et al. (2002) transformed raw
pixel data in images into a joint color-texture-position feature space, and used the
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Expectation Maximization for Gaussian Mixtures to construct a small set of image
regions that are coherent in color and texture. Jiang and Serban (2012) introduced
a model-based method for clustering random time-varying functions under spatial
interdependence. Green and Richardson (2002) extended the hidden Markov mod-
els to the spatial domain with a finite-mixture model for Poisson rates, where the
mixture component follows a spatially correlated process, the Potts model. This
model is flexible in terms of assumptions but may be cumbersome to implement
on extremely large data.

In this paper, we apply a general spatial clustering approach to cluster high-
dimensional data assuming spatial dependence in the observed response data,
while not restricting the spatial effect to be the same across the spatial domain.
The main challenge in implementing this spatial clustering method to the nation-
wide prevalence data is the computational effort; the method is not scalable to a
large number of spatially-dependent responses. To address this challenge, in this
paper, we develop a distributed-computing spatial clustering method.

Distributed computing has become a much needed alternative modeling ap-
proach in many research domains, particularly in statistical learning, due to the
advent of large size and complex datasets. The size of the data collected are some-
times too large to be stored at a central location, and the level of computation
needed for statistical learning may not scale up to the data dimensionality. In addi-
tion, data in some cases are naturally collected in a decentralized fashion at a local
level, and communication between local servers and a central machine is expen-
sive and wasteful. The data are usually assumed to be independent to alleviate the
computational burden, since data in each node can be calculated separately in a dis-
tributed fashion. Chu et al. (2007) indicated that algorithms applied to independent
data are easily parallelizable on multicore computers, in a Map Reduce framework.
Wolfe, Haghighi and Klein (2008) provided a general framework for distributing
expectation-maximization algorithms under independence of the response data in
which not only is the computation distributed, but the storage of parameters and
expected sufficient statistics is also fully distributed. However, when strong are
present among the response variables, the independence assumption is therefore
violated, which can produce misleading inferences.

One contribution of this paper is thus the derivation and development of a dis-
tributed computing solution to the estimation of the clustering model under spa-
tially interdependence. The estimation approach requires innovation in the decom-
position of the log-likelihood function in a way that its maximization can be dis-
tributed across multiple computing cores. A second contribution in this paper is
that we not only derive the distributed estimation approach but also implement
it within the applied problem, specifically, identifying geographic clusters of the
burden of pediatric chronic conditions, where each cluster can be characterized
by different prevalence levels of chronic conditions and by different groups of the
conditions.
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In the following section, we present the approach for deriving the prevalence
data. In the section that follows, we will continue with the introduction of the gen-
eral form of the expectation-maximization (EM) algorithm in solving Gaussian
Mixture Models, then we relax the independence assumption by re-formulating
the E-step and M-step, and proposing an efficient parallel EM Algorithm. We ap-
ply the proposed algorithm to deriving the clustering map of the chronic disease
prevalence among children enrolled in Medicaid using the large-scale prevalence
data. We conclude with a discussion on the implications of the clustering map
towards targeted healthcare interventions.

2. Chronic condition prevalence for the Medicaid-enrolled children.

2.1. Data source. We analyze the patient-level claims from the 2011 Medi-
caid Analytic eXtract (MAX) files obtained from the Centers for Medicare and
Medicaid Services (CMS). The research in this study was approved by CMS (Data
Use Agreement #23621) and by the Institutional Review Board of Georgia Tech
(protocol #H11287). All data derived from the MAX files meet a minimum cell
size of 11 in terms of number of patients according to the Data Use Agreement
with CMS. We focus on children age 0 to 17.

2.2. Prevalence estimation. Prevalence estimation is an important research
topic in health services research; prevalence estimates can be used for targeted
interventions to improve health outcomes for a specific condition. Approaches for
prevalence estimation range from micro-simulation models [Davila-Payan et al.
(2015), Cameron et al. (2015), Kopec et al. (2010)] to geostatistical models [Diggle
and Giorgi (2016)]. Such models can be applied when information on the popu-
lation diagnosed and/or treated for a condition is sparse, in other words, for only
a small subset of the population. In this study, information on children treated for
a specific condition is available at the individual level across the entire Medicaid
population and thus our prevalence estimates are derived as population rates of the
Medicaid population treated for a specific condition, called treated prevalence.

We derive the prevalence estimates using the 3M Clinical Risk Grouping soft-
ware [Neff et al. (2002)]. Episode Diagnostic Categories (EDCs) are derived for
each child enrolled in Medicaid using the child’s diagnosis codes, procedure codes,
and national drug codes (NDCs) found in the recorded medical claims in the MAX
files. EDCs are used to determine a patient’s Primary Chronic Disease, which is
the most significant chronic disease actively being treated, and its severity for each
organ system.

We consider EDCs for the following 25 conditions: Acute Bronchitis and Bron-
chiolitis, Acute Respiratory Diagnoses—Moderate, Acute Skin Diagnoses, Acute
Stress and Anxiety, Attention Deficit Hyperactivity Disorder (ADHD), Allergies,
Asthma, Autism, Bipolar, Chronic Mental Health, Chronic Stress, Conduct and
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Behavior, Dental Diagnoses, Depression, Depressive and Other Psychoses, De-
velopmental Language Disorder, Developmental Speech and Learning, Diabetes2,
Epilepsy and Epilepsy Complex, Major Mental Health, Psoriasis, Schizophrenia,
Social Problems, Upper Respiratory Infections. These conditions were selected
due to their high prevalence among children enrolled in the Medicaid program.
According to the data use agreement with CMS, we cannot disclose any infor-
mation when the cohort population is less than 11 patients, thus lower prevalence
conditions cannot be captured in our analysis.

For each condition or EDC, we obtained the population of Medicaid-enrolled
children with the condition along with the number of enrollment months of these
children within each zip code and county. We derived the prevalences of conditions
by dividing the total number of member months of patients treated for a given
condition by the total number of member months of all children on Medicaid for
each county and zip code area. We further estimated the census tract prevalence
using the zip code and county estimates along with geographic information of the
boundaries of the different geographic devisions (county, zip code, census tracts)
and the information on the population count across the geographic divisions. For
cells with less than 11 patients, we used the mean estimation at the county level,
along with a generated beta noise term based on zip code level and state level
estimations.

Overall, we have a total of 64,873 census tracts for which we have obtained
prevalence estimates for the 25 conditions. The census tracts cover the entire
United States excluding Colorado and Idaho due to data unavailability. Details
on the prevalence of the EDCs and their denomination as provided by the 3M
Clinical Risk Grouping software along with details on the derivation of the census
tract prevalence estimates using the MAX claims data are provided in the Online
Supplemental Material A [Zheng and Serban (2018)].

2.3. Exploratory analysis. The number of Medicaid enrolled children in each
census tract varies from 0 to 10,319, with an average of 401. Out of the total 1.62
million data cells or prevalence estimates across all the conditions considered in
this study, 58 % of the cells have less than 11 patients. Most of instances corre-
spond to rare conditions and rural areas, where the estimates at the census tract
level are very similar to those at the county level. On average, patients are enrolled
in Medicaid for 10 months within the year, with very low state to state variation.
The prevalence across the 25 chronic conditions varies widely, with Epilepsy as
the least prevalent condition (ranging from 0.2% to 0.8%) and upper respiratory
infections as the most prevalent condition (ranging from 12.6% to 61.3%). Fig-
ure 1 shows the histogram and heat map of the prevalence for upper respiratory
infections and major mental health in the state of Georgia. The distribution for the
upper respiratory infections is approximately uni-modal but for the major mental
health condition it is multi-modal. The heat map shows the presence of spatial
dependencies, where nearby geographical locations tend to have similar level of
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FIG. 1. Histogram and heat map of prevalence for upper respiratory infections and major mental
health in the state of Georgia.

prevalence. The strength of spatial dependence however differs from region to re-
gion and by condition. In urban locations, such as the Atlanta metropolitan area,
the census tracts tend to be much smaller and denser. The prevalences are more
similar in these areas than in rural locations where census tracts are larger and fur-
ther away. For more prevalent conditions, such as the upper respiratory infections,
the prevalence across the map is smoother than for less prevalent conditions, thus
differences between nearby census tracts are relatively small.

3. Statistical modeling using distributed computing.

3.1. Nominal EM algorithm for Gaussian mixture models. The Expectation
Maximization (EM) Algorithm is a class of iterative methods for finding maximum
likelihood estimates of parameters in statistical models, where the model depends
on unobservable or latent variables [Dempster, Laird and Rubin (1977)]. Each EM
iteration alternates between performing an expectation E-step, which updates the
expectation of the log-likelihood function evaluated using the current estimates
for the parameters, and a maximization M-step, which estimates parameters max-
imizing the expected log-likelihood given the input from the E-step of the previ-
ous iteration. The EM is frequently used for modeling mixtures of distributions,
where data are commonly assumed to be generated from mixtures of multivariate
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Gaussian distributions (GMM) assuming unknown number of mixtures and un-
known mixture weights. Modeling the mixture of Gaussian distributions can also
be viewed as a data clustering method [Fraley and Raftery (1998, 2002)].

The observed response data are Y1, Y2, . . . , YN where Yi is a p-dimensional
vector of measurements, in this paper, the prevalence estimates for the 25 pedi-
atric chronic conditions. N is the number of responses. We further assume that
the distribution of Yi is a realization from a finite Gaussian mixture model with C

components:

p(y|�) =
C∑

k=1

wkpk(y|θk).

• pk(y|θk) is the kth mixture component where this mixture is identified by
the parameter θk . For mixtures of Gaussians, θk = {μk,�k} are the mean and the
covariance specifying the kth Gaussian.

• wk are the mixture weights, representing the probability that a randomly se-
lected Y was generated by component k.

The unobserved data are the latent variables Z1,Z2, . . . ,ZN where Zi has a
C-dimensional multinomial distribution specifying the cluster membership of Yi .
Thus given Zik = 1 and Zic = 0 for c �= k where k takes values in {1,2, . . . ,C},
Yi has a distribution with the density function pk(y|θk).

The EM algorithm is an iterative algorithm that starts from some initial esti-
mates of � = (θ1, . . . , θC) and of w = (w1, . . . ,wC), and then proceeds to itera-
tively update � and w until convergence. Each iteration consists of an E-step at
which we update the mixture weights and impute the cluster memberships and an
M-step at which we estimate � given the imputed cluster membership.

For classic mixtures of multivariate Gaussian distributions, the responses to be
clustered are generally assumed independent and hence the EM algorithm can be
distributed easily across multiple computing nodes [Wolfe, Haghighi and Klein
(2008)]. However, in this paper, we assume the response data are spatially interde-
pendent.

3.2. Correlation structure. The proposed spatial EM algorithm extends the
nominal EM algorithm (under independence assumption) by incorporating spa-
tially correlated random errors. In our application, the spatial correlation structure
is a function of the proximity between pairs of census tract centroids, assumed to
be defined by an exponential correlation function, which is widely used in spatial
statistics and geostatistics [Ripley (2005), Cressie (2015)].

The most granular information we have for each patient is the residential zip
code, not the exact address. Therefore, we are treating the prevalence estimates as
point masses at the centroids of each area unit, instead of a point process across the
geographic area. Alternatively, we can use a power law on the order or proximity
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of the neighborhoods, such that a small neighboring region would be attributed a
stronger link than a large neighbor with its centroid further apart [Meyer and Held
(2014)]. However, as census tracts are defined based on settlement density, it is
desirable that dense areas, mostly consisting of small neighboring regions, have
stronger spatial dependencies than rural areas, where large neighbors’ centroids
are further apart.

Furthermore, instead of considering spatial correlation between every possi-
ble pair of locations, which deems to be intractable, we enforce a neighborhood
structure—that is, for each location, we only consider the closest M −1 number of
neighbors, resulting in a neighborhood of size M . M can be fixed, or can vary for
different response i. For example, we can assign a larger M to urban locations than
to rural locations, since the spatial effect is expected to be stronger. An alternative
is to sparsify the spatial correlation matrix by setting a hard threshold. In addition,
the correlation is assumed to decay exponentially as the distance between two lo-
cations increases. Other correlation structures can be considered but for simplicity
of the interpretation and implementation, we use classic approaches to specify the
correlation structure.

The neighborhood criterion is similar to spatial tampering and the Gaussian
Markov random fields (GMRF) advocated in Furrer, Genton and Nychka (2006),
Rue and Held (2005), Rue, Martino and Chopin (2009). Under GMRF model-
ing, the conditional distribution of a latent GMRF parameter depends only on the
neighbors [Rue and Held (2005), Rue, Martino and Chopin (2009)]. GMRF can
efficiently model most of the spatial covariance functions [Rue and Tjelmeland
(2002)]. While this method applies effectively to moderate size dataset, an appli-
cation with a large number of spatial points, for example, 64,873 locations as for
the U.S. prevalence data, can be computationally challenging.

We also assume the features are uncorrelated. This can be achieved by assuming
independence on the feature space; to achieve independence between the features,
the feature set can be preprocessed into uncorrelated orthogonal basis set, for ex-
ample, using the Principal Component Analysis (PCA), which is common practice
[Ding and He (2004)]. In the next section, we will see that the assumption of inde-
pendence on the feature space significantly reduces the computational complexity
and makes the algorithm parallelizable.

3.3. Expectation step. In the E-step, we evaluate the expected cluster mem-
bership probability for each response based on the parameters estimated in the
M-step. In the derivations below, since the parameters specifying the mixtures
� = (θ1, . . . , θC) are assumed fixed in the E-step (provided by the estimates de-
rived in the M-step), we drop the conditioning on the set of parameters � for ease
of illustration.

Conditional model: The model for the ith response or measurement is:

Yi |(Zik = 1) = μ + μk + si + ei,
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where Zi is the latent variable (cluster membership) for the response i, μ is the
global mean, μk is the cluster mean for cluster k, with

∑C
k=1 μk = 0, where C is

the total number of clusters, the spatial random effect si , and the independent error
term ei . Y denotes the vector of all responses and Yi denotes the ith response; the
kth membership probability for the response i is denoted as wik .

Under interdependence among the responses, the estimation of wik involves
more complex computations:

wik = E[Zik = 1|Y ] = P(Zik = 1|Y) ≈ P(Zik = 1|Yi, YN(i))

= P(Zik = 1)f (Yi, YN(i)|Zik = 1)∑C
c=1 P(Zic = 1)f (Yi, YN(i)|Zic = 1)

,

where N(i) denotes the set of indexes of the responses that are neighbors of the
ith response. In this case, the dependence structure among the responses is en-
coded in the parameter estimations of the latent classes, which we will discuss
in more detail in the M-step. Therefore, the expected membership probability
for sample i depends on its neighbors, that is, the probability density function
f (Yi, YN(i)|Zik = 1) needs to be calculated jointly. In what follows, we will focus
on how to estimate this joint probability efficiently. For ease of presentation, we
will use μ to represent μ + μk .

Denote the mth neighbor of response i as YN(i,m), where m = 1,2, . . . ,

M − 1. Calculating the joint probability of this neighborhood can be computa-
tionally intense and not scalable, since only Zik = 1 is given, but not its neighbor’s
cluster memberships. The joint density is calculated as

f (Yi, YN(i)|Zik = 1)

= f (Yi, YN(i,1), . . . , YN(i,M−1)|Zik = 1)

=
C∑

kN(i,1)=1

f (Yi, YN(i,1), . . . , YN(i,M−1)|Zik = 1,ZN(i,1)kN(i,1)
= 1)

× P(ZN(i,1)kN(i,1)
= 1).

For ease of display, we rewrite ZN(i,m)kN(i,m)
as Zi,m,k and denote the mixture

weight P(ZN(i,m)kN(i,m)
= 1) with wi,m,k . We then expand the joint density func-

tion for all responses in the neighborhood:

f (Yi, YN(i)|Zik = 1)

=
C∑

kN(i,M−1)=1

wi,1,k · · ·
C∑

kN(i,M−1)=1

wi,M−1,k

× f (Yi, YN(i,1), . . . , YN(i,M−1)|Zik = 1,Zi,1,k = 1, . . . ,Zi,M−1,k = 1).

In each summation, the joint density function are conditioned on the membership
of the response i and its neighbors. However, the amount of computation doesn’t
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scale with the increasing size of the neighborhood, as the joint density function
needs to be expanded in the neighborhood of each response and in each cluster,
which results in CM joint density estimations. One alternative is to perform a hard
clustering on wi,m,k ∀m = 1,2, . . . ,M − 1 such that wi,m,k∗ = 1 for k∗

N(i,m) which
maximizes over all kN(i,m) and wi,m,k = 0 for all other kN(i,m). Thus we have the
following approximation:

f (Yi, YN(i)|Zik = 1)

≈ f (Yi, YN(i,1), . . . , YN(i,M−1)|Zik = 1,Zi,1,k∗ = 1, . . . ,Zi,M−1,k∗ = 1).

An interpretation of the approximation above is as follows: the memberships of the
neighboring responses are assumed to be fixed based on the membership matrix
calculated in the previous M-step, and only the membership of response i varies.
This heuristic is similar to successive methods such as backfitting and Gauss–
Seidel. We denote the approximation of f (Yi, YN(i)|Zik = 1) as f (Yi |Zik = 1),
where Yi is a M-by-p matrix. Denote the M-by-M matrix Si as the spatial covari-
ance matrix for the neighborhood around i, and the p-by-p matrix �i as the co-
variance matrix for the random error εi for response i, i = 1,2, . . . ,M , where �i is
a diagonal matrix with the diagonal provided by [σ 2

i1, . . . , σ
2
ip]. The neighborhood

Yi thus follows a matrix normal distribution, whose variance is the Kronecker
product of the Si and the corresponding �i for each response in the neighborhood.

We further decompose

Yi |(Zik = 1) = μ + S
1
2
i A,

where each row l of A is independent, Al· ∼ N(μl,�l). We then have

f (Yi |Zik = 1) =
M∏
l=1

1√
det(Si)

f (Al·|μ = 0,� = �l).

f (Yi |Zik = 1) ∀i = 1, . . . , n, k = 1, . . . ,C can be computed using distributed
computing, for each i separately or for groups of i’s. This can further be used
in estimating the cluster weights wik , concluding the E-Step.

3.4. Maximization step. In the Spatial EM algorithm, the parameter set � con-
tains of (μk,�k) = θk , for all k = 1, . . . ,C. It is however computationally chal-
lenging to obtain the MLEs for these parameters when there is dependence in the
sample data. Alternatively, we can use the Maximum Pseudo-likelihood Estima-
tion [Besag (1986), Liu and Ihler (2012)]

maxE
[
l(�;Y)

] = max
n∑

i=1

C∑
k=1

wik logf (Yi |YN(i),Zik = 1).
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We use a similar technique as used in the computation in the E-step to account for
the dependence structure. For each response i belonging to cluster k, we have

Xi = (Yi − μk)�
− 1

2
k ,

XN(i) =
M−1∑
l=1

el

C∑
k=1

wik(Yil − μ̃k)�̃
− 1

2
k ,

where el is a vector of length M − 1, where the lth element is 1 with all other
values being zero, μ̃k and �̃k are parameters estimated in the previous iteration of
the EM algorithm. We then have the following:

max
C∑

k=1

n∑
i=1

wik logf (Yi |YN(i),Zik = 1)

= max
C∑

k=1

n∑
i=1

p∑
j=1

wik log
(

1

σkj

f
(
Xij |[XN(i)]·j ,Zik = 1

))
.

Expand the spatial correlation matrix Si as
[
Si11, Si12

Si21, Si22

]
,

where Si11 is 1, the vector Si12 of length M −1 is the correlation between response i

and its neighbors, Si21 is the correlation between response i’s neighbors and itself,
and the (M − 1)-by-(M − 1) matrix Si22 is the correlation matrix among response
i’s neighbors. We then have Xij |[XN(i)]·j ,Zik = 1 ∼ N(μ̄ij , �̄ij ), where

μ̄ij = Si12S
−1
i22

[XN(i)]·j ,
�̄ij = 1 − Si12S

−1
i22

Si21 .

Therefore, we have

max
C∑

k=1

n∑
i=1

p∑
j=1

wik log
(

1

σkj

f
(
Xij |[XN(i)]·j ,Zik = 1

))

= max
C∑

k=1

n∑
i=1

p∑
j=1

wik

(
− log(σkj ) −

(
Yij−μkj

σkj
− μ̄ij )

2

2�̄ij

)
= G(Y).

Setting the first derivatives of the pseudo-likelihood to zero, we get the following
estimation:

μ̂
mple
kj =

∑n
i=1

wik

�̄ij
(Yij − μ̄ij σkj )∑n
i=1

wik

�̄ij

,
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and σ
mple
kj is the positive root of the following quadratic equation:

n∑
i=1

wikσ
2
kj −

n∑
i=1

wik

�̄ij

(Yij − μkj )μ̄ij σkj +
n∑

i=1

wik

�̄ij

(Yij − μkj )
2 = 0.

We initialize μ̂
mple
kj and σ̂

mple
kj with the estimates from the previous iteration, and

solve the equations iteratively.
If the correlation among samples is minimal, the spatial correlation matrix Si

∀i = 1, . . . , n becomes diagonal, with μ̄ij = 0 and �̄ij = 1; therefore, we have

μkj =
∑n

i=1 wikYij∑n
i=1 wik

,

σ 2
kj =

∑n
i=1 wik(Yij − μkj )

2∑n
i=1 wik

,

which coincides with the estimation based on the nominal EM algorithm with
independent responses. The proposed method is therefore a generalization of the
nominal EM algorithm.

3.5. Model selection. Similar to most of the model-based clustering algo-
rithms, the number of clusters needs to be finely tuned to obtain a set of meaningful
clusters. Common variable selection methods such as the Akaike information cri-
terion (AIC), and Bayesian information criterion (BIC) have been employed for
estimating the number of clusters [Fraley and Raftery (2002)]. In our application,
we chose to use BIC as a starting point to identify an inflection point (where BIC
starts to tip-off) to identify an initial number of clusters, then merge similar clusters
in a more empirical way, resulting in the most sensible clustering of the prevalence
responses.

3.6. Distributed implementation. There are two important challenges of the
distributed computing implementation of the clustering algorithm. The first chal-
lenge is the storage and retrieval of the data throughout the computation process.
The size of the data can be too large to be stored and computed using only one
computing node. Thus in our implementation, we partition the data onto multiple
storage nodes and execute the algorithm on each subset of data in a Map Reduce
fashion. In more complex cases where data are naturally collected and stored in a
decentralized approach, communicating all the data onto one centralized location
can be very expensive. More sophisticated design of distributed storage topologies
are required, as outlined in Wolfe, Haghighi and Klein (2008).

A second challenge is in the distributed computation itself for making the EM
algorithm more scalable. However, without the independence assumption, the rows
of the data matrix are coupled, thus the likelihood function cannot be decomposed
in a way that allows distribution of the computation of its maximization. To address



PREVALENCE OF PEDIATRIC CHRONIC CONDITIONS IN THE US 927

this challenge, we decompose and transform the correlation structure, allowing for
the implementation of both the distributed data storage/retrieval and the parallel
computation. In the E Step, the estimation of ith response’s membership proba-
bility in cluster k only requires information from its immediate neighbors. The
expected sufficient statistics for each observed response can be computed inde-
pendently in blocks given a current estimate of the parameters. In the M Step, the
data in each neighborhood are transformed assuming the correlation structure. The
parameter estimation can then be written in closed form summation, which can be
efficiently implemented in a Map Reduce fashion in parallel.

The algorithm was implemented in Julia, a high-performance dynamic program-
ming language for numerical and distributed computing [Bezanson et al. (2017)].
The implementation will be made available as a supplemental online material.

4. Results. In this section, we present the results for the clustering approach
to study the burden of chronic conditions for Medicaid-enrolled children in the
United States. We first compare the clustering results under the Nominal EM (un-
der the independence assumption) and the Spatial EM algorithm, to motivate the
need of the additional computational effort of modeling the spatial structure in
the chronic condition prevalence data. We then show the superior performance in
runtime utilizing distributed computing versus sequential computing. Last, we pro-
vide results on the overall clustering throughout the United States with inference
on differences of the chronic condition burden across states and urbanicity levels.

4.1. Nominal vs. spatial clustering. We study and compare the clusters of cen-
sus tracts under the nominal EM algorithm and the Spatial EM algorithm. Both
algorithms use a randomized membership initiation scheme; that is, each census
tract was randomly assigned to a cluster and an initial estimation of mean and co-
variance were calculated thereafter. In this section, for illustration purposes, we
choose the number of clusters to be three since it produces the most meaningful
division of census tracts among other selections for the number of clusters. Details
on the model selection can be found in Section 4.3.

Although most of the health conditions have very weak correlation, between
−0.1 and 0.1, there still exists some moderate correlation, especially in the group
of mental health conditions. Therefore, the features are first transformed into
orthogonal principal components using principal component analysis. By using
PCA, we are assuming that the feature correlation structures are approximately the
same among different clusters. To test the validity of this assumption, we calculate
the sample correlation matrices among the 25 conditions in their original scale for
the entire population, and for each of the clusters. The point-wise 95% confidence
interval for the difference between the population correlation matrix and the cor-
relation matrices for cluster 1, 2, and 3 are [−0.01,−0.003], [−0.008,0.009], and
[−0.008,0.003] respectively. The differences are minimal, which justifies using
PCA in our study.
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FIG. 2. Make up of the prevalence in each cluster under (a) nominal EM Algorithm and (b) spatial
EM Algorithm. The values are normalized so that each row sums to 1.

Figure 2 shows the prevalence for all the chronic conditions for each of the
three clusters, contrasting the results based on the two clustering approaches. To
better compare the composition of conditions across clusters, each row of the plot
was normalized to sum to one. Under the Nominal EM algorithm, we see a clear
separation of conditions in each cluster. Cluster 1 consists of 11,512 census tracts
(17.7%), predominantly with chronic and moderate mental health diseases, along
with some acute and major conditions. Cluster 2 consists of 25,473 census tracts
(39.3%), where the prevalences of mental diseases are mostly low, with moder-
ate prevalence in some respiratory and skin related diseases. Cluster 3 consists of
27,888 census tracts (43%), where moderate prevalences for all conditions exist,
except for some severe chronic mental conditions, Diabetes, and Dental diseases.
The clear separation is as expected, since the nominal EM algorithm clusters the
census tracts solely based on the absolute distribution of the prevalence of each
condition.

Under the Spatial EM algorithm, the conditions are more blended in each clus-
ter. Cluster 1 is very similar to the first cluster under the nominal EM algorithm
in composition, with 23,896 census tracts (36.8%). Cluster 2 consists of 11,964
(18.4%) census tracts, where all of the respiratory related conditions, such as
acute/moderate respiratory diagnoses, Asthma, Allergies, upper respiratory infec-
tions, Bronchiolitis among others are moderately prevalent. Cluster 3 consists of
29,013 census tracts (44.7%), with less respiratory and skin conditions, but more
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FIG. 3. Maps of the census tracts located in the east coast states of the United States, color coded
by the cluster membership under (a) nominal EM Algorithm and (b) spatial EM Algorithm. Each
black dot represents a major city.

mental health conditions, in contrast to the Cluster 3 from the nominal EM algo-
rithm.

Figure 3 shows the map of census tracts located in the states near the east coast
of the United States. The census tracts are color coded based on the cluster mem-
bership under the two EM algorithms. Figure 4 takes a closer look at the areas
near major cities, the coast line near Miami, New York City area, and Washing-
ton D.C.–Baltimore area. Generally, the locations of different clusters are similar,
with rural areas consisting primarily of census tracts in Cluster 3, representing a
larger portion of acute and major mental health issues. Pennsylvania, Vermont,
New Hampshire, and Maine exhibit considerably less prevalence for acute and
major mental conditions.

The biggest difference between the two maps are the areas around major cities,
labeled as black dots. The clusters generated from the nominal EM are homo-
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FIG. 4. Zoomed-in maps of the census tracts close to major cities, color coded by the cluster
membership under (a) nominal EM Algorithm and (b) spatial EM Algorithm.

geneous across the map. Census tracts in the same area tend to be from the same
cluster, such as the coast line near Miami, and around New York City. The nominal
EM algorithm failed to capture the heterogeneity in small areas, especially where
the population is dense and diverse. On the contrary, in addition to the absolute
distribution of the features, the Spatial EM algorithm accounts for the magnitude
of prevalence values on the relative scale by modeling the spatial correlation in
small areas. Therefore, it discovers relative differences on the spatial domain.

4.2. Distributed computation. The computation of the Spatial EM algorithm
is significantly more complex than the nominal EM algorithm and requires more
time and computing resources to execute. In this section, we illustrate how dis-
tributed computation can help alleviate the computational burden. In order to com-
pare the computational results under the sequential and parallel implementations,
we fix the number of iterations to be 100. Figure 5 shows the computational re-
sults with different number of computing cores (Intel Core Haswell Processors).
The algorithm was written in Julia, and executed on a Linux server with X86-64
bit architecture.

The job execution required a total of 36.3 GB in memory allocation, thus in-
feasible to store and retrieve the data on a single machine/computing node—even
the implementation using serial computation (one computing core) had to utilize
a distributed storage framework. Running the algorithm using one computing core
took more than 11 hours. This number can easily skyrocket to weeks as additional
runs are required for sensitivity analysis, parameter tuning (e.g., number of clus-
ters, size of neighborhood), and statistical inference, for example. Running the
algorithm in a parallel fashion greatly reduces the computational time. With 10
computing cores, the run time was reduced to 1.8 hours, with a 6.3 times speed
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FIG. 5. Runtime comparison in seconds and speed up with varying number of computing cores.

up. We note that the speed up is not exactly proportional to the number of comput-
ing cores. In fact, the run time improvement is most significant with the first few
added cores, and gradually decays as the number of cores further increases. This
is commonly known as the Amdahl’s Law, where the potential program speedup is
defined by the fraction of code that can be parallelized [Amdahl (1967)]. In addi-
tion, other architectural and synchronization constraints such as memory-CPU bus
bandwidth, communication bandwidth, load balancing and memory locks play key
roles in coordinating the distributed execution and become more complex as the
number of cores increases.

4.3. Model selection. We use the BIC score as the model selection criteria to
identify the number of clusters. In addition, since the clustering results tend to
vary with different initializations, we run the algorithm five times for each setting
to study the sensitivity of the imputed cluster membership and number of clusters
to initialization. Part (a) of Figure 6 shows that the BIC curve decreases with the
number of clusters ranging from 2 to 12, and starts to flatten after 10 clusters. This
suggests that, using the BIC criterion, the number of clusters chosen can be large

FIG. 6. (a) BIC score under different number of clusters. (b) The upper triangle shows the adjusted
Rand index, and the lower triangle shows the matching percentage under varying neighborhood
sizes.
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thus BIC may not provide an upper threshold for the number of clusters. This is
a possible indication that there are a few outliers that do not belong to any given
cluster.

We visually inspected the clustering results with varying number of clusters. As
the number of clusters increases to more than three, additional clusters yield sim-
ilar patterns, with a few very small clusters in size (≤0.01%) that capture mostly
the outlying features and big clusters that are not clearly distinguishable. Conse-
quently, we choose to analyze the clustering with three clusters. More details of
the analysis on the number of clusters can be found in Appendix B.

4.4. Sensitivity analysis. To evaluate how the uncertainty or the sampling error
in the prevalence estimates affects the clustering results, we simulated 20 samples
of prevalence data from a binomial sampling model. The prevalence of each con-
dition in each simulation was calculated by dividing the simulated total number of
member months of patients treated for the given condition by the total number of
member months of all patients on Medicaid for each census area. We then mea-
sure the change of membership among the census tracts relative to the baseline
prevalence in percentages and through the adjusted Rand Index, which measures
the similarity between two clusterings, adjusting for the chance of grouping [Rand
(1971)]. For the 20 comparisons, the adjusted Rand Index values have an average
of 0.9, with a small standard deviation of 0.008, and the percentages of census
tracts that changed membership are consistently less than 4%. Thus the standard
errors from the prevalence estimates have limited impact on the clustering mem-
bership. This is due to the fact that the total number of member months of all
Medicaid-enrolled children for most of the census tracts is large and thus the er-
rors are small. Rural areas with low member months exhibit relatively large varia-
tion in prevalence estimates comparing to more population dense areas. However,
the sets of census tracts that changed memberships are not the same when com-
pared across the 20 simulated samples, and appear randomly on the map, with
only slightly lower average member months of 3702 comparing to the nationwide
average of 4011 member months.

In order to reduce the computation complexity, we assumed a fixed neighbor-
hood structure. Part (b) of Figure 6 shows two measures for comparing any two
clusterings obtained for varying neighborhood sizes. The upper triangle shows the
adjusted Rand Index, and the lower triangle shows the matching percentage. The
nominal EM algorithm coincides with the spatial EM algorithm when the size of
neighborhood is 0. When the neighborhood size is small, a slight change of the
neighborhood can have big impact on the clustering result. This is an indication
that the results can be sensitive when the spatial effect is not properly incorporated.
As the neighborhood size increases, the similarity between clusterings improves
drastically. It is therefore not necessary to consider the spatial correlation between
every possible pair of locations, since a neighborhood of size 10 can produce a
sufficiently stable clustering result.
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FIG. 7. The entropy and proportion of census tracts within each state that belongs to each of the
clusters.

4.5. Clustering results: United States. Figure 7 displays the similarity (or dis-
similarity) in clustering at the state level using the entropy measure (upper left
map) and using the percentages for the three clusters. The west states have less
variability in the clustering (lower entropy) than south west states. West states ei-
ther predominantly are in cluster 1 (primarily represented by more severe chronic
conditions) or cluster 3 (represented by mental health and respiratory chronic con-
ditions). Cluster 2 (primarily represented by respiratory conditions) has low repre-
sentation in most of the states except for a few southern states (e.g., FL, LA, NM,
TX) and northern states (e.g., IL, NY, NJ, VA). These state-level differences point
to pediatric chronic conditions the states might need to focus on disease manage-
ment as well as prevention of severe outcomes.

Figure 8 shows the composition of each cluster by state and urbanicity for a sub-
set of states. Urbanicity is defined using the rural-urban commuting area (RUCA)
codes, which classify U.S. counties using measures of population density, urban-
ization, and daily commuting. The code is a single digit (1–9) classification, group-
ing counties based on the population of their metro area or their proximity to an
urban area [United States Department of Agriculture (2004)]. We further grouped
the 1–9 code into 3 major categories. Category 1, with an RUCA index 1, repre-
sents urbanized metropolitans areas; Category 2, with an RUCA index 2–6, rep-
resents smaller metropolitans and micropolitan areas; Category 3, with an RUCA
index 7 and above, represents small towns and rural areas. The distribution of the
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FIG. 8. Visualization of the composition of each cluster by state and urbanicity for the top five and
bottom five states by population under the Spatial EM Algorithm.

census tracts across the three clusters in these areas varies by state. As the census
tracts become more rural, the proportion of clusters 1 and 2 decreases drastically;
that is, chronic mental conditions, Diabetes, Autism, and Respiratory conditions
are more prevalent in urban areas. For states with the least dense population, Clus-
ter 1 dominates across different urbanicity, and Cluster 2 is mostly nonexistent.
These states exhibit much less heterogeneity comparing to states with higher pop-
ulation density and larger metropolitan areas. Further insights across other states
are provided in Supplemental Material C [Zheng and Serban (2018)].

Figure 9 shows community-level cluster membership for Georgia. Most rural
Georgia is predominantly in Cluster 3, with a mix of both mental health and res-
piratory chronic conditions, while suburban and urban areas are predominantly in
Cluster 1 or 2, pointing to either heavily weighted mental and behavioral condi-
tions or severe chronic conditions. We zoomed in the metropolitan Atlanta area,
where several communities are assigned to Cluster 1 or 2. As noted in the heat
map of Figure 2, the prevalences of the 25 conditions are differently weighted in
Clusters 1 and 2; however, we see that there are many neighboring communities
in the Atlanta area which are assigned to different clusters. Overall, this suggests
that interventions for managing chronic conditions need to be much more targeted
in urban areas.

Similar geographically granular analysis can be performed for other states. The
maps for other states will be made available upon request from the authors of this
paper.

5. Conclusions. The primary focus of this research paper is on deriving a
spatial clustering of pediatric chronic conditions at the community level in the
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FIG. 9. Clustering membership for the state of Georgia.

United States. The data supporting this analysis consists of prevalences for 25
chronic conditions for the Medicaid-enrolled children.

The implementation of the spatial clustering approach relies on distributed com-
puting to overcome the computational effort needed to perform the clustering anal-
ysis. While we were able to obtain the clustering after 11 hours of computing time
with only the distribution of the data storage and retrieval, for a thorough analysis
on the sensitivity of the clustering to the EM initialization and on the selection
of the number of clusters, we needed much faster computations. Such large-scale
studies can only be tackled by bridging statistical modeling and computational
innovations.

This study has several limitations. The approach for estimating the prevalences
at the census tract level from the prevalences observed at other geographic di-
visions, for example, zip code, falls under the modifiable areal unit problem or
MAUP. Our approach is one of the simplest MAUP approaches, with noted limita-
tions [Gotway and Young (2002)]. However, obtaining more rigorous prevalence
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estimates at the census tract level requires extensive computational effort, which
may be infeasible given the large scale of our data.

The correlation structure in the response data was assumed to follow an expo-
nential correlation function using the Euclidean distance between pairs of census
tracts centroids. The distance metric can be further improved, such as to use road
distance between centroids, or similarity measures in urbanicity, socio-economics
factors, or demographics. Follow up analysis based on the clustering results and
additional area specific covariates can provide insights in determining the main
drivers of the spatial variation and discrepancies in prevalence. Although we lim-
ited the implementation of the proposed distributed model-based clustering anal-
ysis to spatial correlation, the proposed algorithm can be applied to any type of
correlation structures. In addition, we assumed the correlation structure to be fixed
for each feature and each of the C components. Alternatively, we can extend the
model to concurrently re-evaluate the correlation functions for each feature and
cluster component at each EM iteration as the membership changes. Moreover,
the neighborhood size was assumed to be fixed across all census tracts, which can
be improved by a more granular definition of neighborhood based on urbanicity,
for example.

Even though this research has several limitations, it has some important impli-
cations for interventions in managing chronic conditions. Many rural communi-
ties across the United States do not show a high burden of any particular condi-
tion, with similar weighting across respiratory conditions and behavioral & mental
health conditions, with the lowest weight on more severe chronic conditions. This
similarity in clustering across most of the rural communities points to that gener-
ally rural communities are in need of similar interventions, for example, improving
access to mental and behavioral health providers. On the other hand, urban com-
munities and some suburban communities present wide heterogeneity in cluster-
ing, with many of the urban communities being assigned in either high prevalence
of severe chronic conditions or high prevalence of mental & behavioral conditions,
which often are more severe for the Medicaid child population, overall pointing
to a higher burden of severe conditions in some communities. While we cannot
pinpoint the factors triggering such variations, we do recommend more targeted
interventions for urban communities, with a focus on managing severe conditions.
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SUPPLEMENTARY MATERIAL

Supplement to “Clustering the prevalence of pediatric chronic condi-
tions in the United States using distributed computing” (DOI: 10.1214/18-
AOAS1173SUPP; .pdf). Supplementary Materials contain four sections. In Sup-
plementary Material A, we describe the approach for estimating the census tract
prevalence for chronic conditions using the Medicaid Analytic eXtract (MAX)
claims data. In Supplementary Material B, we provide further details on the selec-
tion of the number of clusters. In Supplementary Material C, we present additional
mosaic maps showing the composition of each cluster by state and urbanicity for
all the states in our analysis. In Supplementary Material D, we share the imple-
mentation of the distributed computing approach for spatial clustering along with
a read me file for guidance on how to use the software implementation.
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