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EMPIRICAL ASSESSMENT OF PROGRAMS TO PROMOTE
COLLABORATION: A NETWORK MODEL APPROACH1

BY KATHERINE R. MCLAUGHLIN AND JOSHUA D. EMBREE

Oregon State University and RAND Corporation

Collaboration networks are thought to be desirable to foster both individ-
ual and population productivity. Often programs are implemented to promote
collaboration, for example, at academic institutions. However, few tools are
available to assess the efficacy of these programs, and very few are data-
driven. We carried out a survey at California State University, San Marcos
during the 2012–2013 academic year to measure five types of collaboration
ties among professors in five science departments at the university over time.
During the time period of study, professors participated in NIH-sponsored
curriculum development activities with members of other departments. It was
hypothesized that participation in these activities would also foster overall
collaboration between these departments.

This survey enables the exploration of several methodological and theo-
retical challenges in network research. In this paper we develop a statistical
approach to assess the impact of programmatic interventions on collaboration
using model-assisted social network analysis. We derive and implement a hi-
erarchical Bayesian approach to modeling error-prone responses in surveys
and examine the effect of an intervention on network structure. Based on this
analysis we find an increase in educational collaboration over time after ad-
justing for the length of time each professor had to form collaborative ties at
the university.

1. Introduction. It has long been recognized that many projects benefit from
a collaborative approach. Every year, numerous grants are funded to promote co-
operation and collaboration among a variety of entities. For example, efforts to
promote healthy eating in schools may bring together food vendors, school offi-
cials, and nutritionists. In an academic setting, an interdisciplinary approach that
brings together experts from a variety of fields is thought to be beneficial. These
projects are often undertaken on the understanding that collaboration is not a one-
time benefit, but instead something that once fostered has long-lasting merits. Such
programs are promoted explicitly and implicitly by the National Science Founda-
tion and National Institutes of Health [McCullough (1992)]. How do we evaluate
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these claims? How can we tell if new relationships are formed, if they are necessary
or beneficial, and if they are likely to continue promoting collaborative behavior?

This general question falls within the context of the assessment literature.
Evaluating the efficacy of funding is a problem without an obvious solution
[McCullough (1992)]. Efforts to tackle assessment have been largely based on
subjective or anecdotal evidence, and not data-driven. We now discuss several of
the data-driven methods that do exist.

Gajda (2004) creates an assessment tool called the Strategic Alliance Formative
Assessment Rubric (SAFAR), where program evaluators rate collaboration at each
stage of alliance development. A collaboration baseline was established at a focus
group meeting, and then “integration scores” ranging from 1 to 5 were gathered
after one and two years for a project intended to promote the collaboration of
mental health, law enforcement, and social service agencies to aid children and
families. This study did not have a rigorous quantitative approach, as rankings were
somewhat arbitrary. Gajda (2004) notes that the integration score increased from 1
to 2.2 during the first year and from 2.2 to 2.6 over the second year. However, we
have no way of knowing whether or not this was a significant increase.

Similarly, Gajda and Koliba (2007) design and use a tool called the Community
of Practice: Collaboration Assessment Rubric (CoPCAR), which presents qual-
ity of interpersonal collaboration across a continuum of 1 to 6. In another scale
method, Frey et al. (2006) introduce the Levels of Collaboration Scale, where re-
spondents were asked to what extent they collaborated with each other grant part-
ner on a scale from 0 to 5. Looking for simple increases over time misses more
complex questions, such as localized collaboration within subgroups, or identi-
fying particularly influential nodes. A more complex approach could begin to ad-
dress these questions. Woodland and Hutton (2012) refine the approaches of Gajda
(2004) and Gajda and Koliba (2007), among others, into the Collaboration Eval-
uation and Improvement Framework (CEIF). They examine a bipartite network
between individuals and groups, and use social network analysis to look for bot-
tlenecks, individuals that may be overextended or underextended, and groups that
may be too big or too small.

Cross et al. (2009) used network data to assess the development of interagency
relationships by evaluating changes in tie strength over time. All entities first met
at a retreat where they were asked to rate on a scale from 1 to 5 their level of
collaboration with all other participants. The same measures were recorded at a
second retreat and two follow-up group meetings. Again, these ratings are subject
to the same pitfalls as those of Gajda (2004). Cross et al. (2009) focus on the
formation of communities within the network, including the homophilous behavior
of such subgroups. They use modularity (clustering measured on edges, but not
covariates) to assess goodness of fit for the clusters they created. Although this
approach demonstrates one of the many promising ways in which network analysis
can be incorporated into the assessment literature, it is subject to the same data
quality issues and subjectivity of qualitative metrics.
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McCullough (1992) focuses on the assessment efforts undertaken by the Na-
tional Science Foundation (NSF). He notes that peer opinion is the most frequently
utilized tool for evaluating research results, which commonly takes the form of the
assessment of publications. However, although “bibliometrics” (i.e., examining the
counts, content, and citations of publications) is quantitative, it is still quite subjec-
tive. Metrics are subject to methodological problems such as self-citation, circular
citation among a small group of researchers, and the separation of one project into
many small publications. Additionally, publications may not tell the entire story
of a project or its intangible effects. McCullough (1992) notes that NSF-supported
researchers in 3–5 fields produce “many more” publications than researchers in
the same fields supported by other sources. However, causal conclusions should
not be drawn from this observation. Perhaps NSF-supported researchers feel more
obligated to publish, something that is not necessarily indicative of the impact of
the research.

Eisenberg and Swanson (1996) incorporate network analysis to examine the ef-
ficacy of Connecticut’s Healthy Start program. They looked at the position of this
program within a network of groups providing similar services in several commu-
nities, and performed descriptive social network analysis. In particular, they con-
sidered measures of density and centrality, and attempted to identify subgroups or
cliques within the network. Eisenberg and Swanson (1996) noted that since the
Healthy Start programs tended to be “brokers” (have both high out-referrals and
in-referrals), they served an important role in the community. While informative,
this type of descriptive analysis relies heavily on the collected data and often over-
looks potential shortcomings such as missing information and various types of
survey bias, and is limited to the scope of the original project. For example, in this
analysis, the networks were constructed using open-ended interviews and possibly
incomplete directories.

An effective data-driven assessment, then, requires data that are collected from
nonsubjective questions. For example, “Have you ever submitted a grant as co-PI
with Person A,” not “Rate your collaboration with Person A on a scale from 1 to 5.”
Direct surveying of the persons or entities involved is also preferable to indirect
metrics, like publication counts. Finally, it is essential to correct for survey error,
particularly if there is reason to believe responses are error-prone. Error could
result from nonresponse, recall bias, social desirability bias, or a variety of other
measurement errors.

Assessing and adjusting total survey error in network surveys is more complex
than in traditional surveys because of the dependence between the observations
[Marsden (1990)]. Handcock and Gile (2010) develop a modeling framework for
sampled network data. Although sampling error is an important component of total
survey error, in our survey we conducted a census and therefore focus on measure-
ment error. Borgatti, Carley and Krackhardt (2006) evaluate network centrality
measures when random errors are added to the network, including edge addition
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and deletion, which we are concerned with in this paper. They find that the accu-
racy of centrality measures declines smoothly and predictably with the amount of
error, and that dense networks were more robust to edge addition while sparse net-
works were more robust to edge deletion. To address measurement error, Borgatti,
Carley and Krackhardt (2006) suggest creating confidence intervals for centrality
measures and using caution when more than 5% of ties are erroneous. Wang et al.
(2012) simulate a variety of measurement error scenarios, including false negative
and false positive edges. They find that networks with low average clustering and
less positively skewed degree distributions are most resistant to measurement er-
ror. They also find that false negative edges tend to affect network measures, but
that most node-level network measures are relatively robust to false positive edges.
These studies examined the effect of measurement error; our model provides a way
to adjust for it for erroneous edges.

A variety of dynamic social network models exist, including the separable tem-
poral exponential-family random graph model (STERGM) [Krivitsky and Hand-
cock (2014)] and the stochastic actor-oriented model (SAOM) [Snijders (1996)].
Due to the nature of our survey, where data were collected retroactively at only one
time point as described in Section 2, we cannot fit a dynamic model. In general we
support dynamic network models for collaboration assessment, as they allow for
more complex relationships to be evaluated over time. However, such models are
not always possible. We focus on a model-assisted approach to adjust error-prone
survey responses, and rely on a descriptive comparison to assess change.

In Section 2 we describe our survey design and implementation, and motivate
the use of a network model to elucidate our initial findings. Then in Section 3 we
describe the derivation and implementation of the latent network model used to
improve upon this rudimentary analysis. We assess model performance through a
simulation study in Section 4, apply it to our survey data in Section 5, and provide
concluding statements in Section 6.

2. Survey design and description. Our motivating case study is a network
of education collaboration ties among professors at California State University
(CSU), San Marcos in five science departments. A grant was awarded to CSU, San
Marcos, along with several other universities, aimed at improving the quantitative
and computational (Q&C) skills of biology majors at the school. The steering com-
mittee for the grant at CSU, San Marcos decided to focus on cross-departmental
curriculum development to achieve this goal.2 Each year, a cohort of professors
(ideally from a variety of departments) formed a panel to design and/or modify
one of six courses in the biology department to create a more fully integrated cur-
riculum. After implementing this approach, members of the Steering Committee
were interested in a method of evaluating the efficacy of their approach.

2Other universities took very different approaches, for example using the money from the grant to
build a computer laboratory and upgrade the technology available to students.
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We designed a survey intended to measure changes in collaboration over time,
which we gave to the complete set of professors among the five departments. This
survey was implemented during the Spring of 2013. Professors were given a ros-
ter of all other names and asked to nominate anyone they had a certain type of
relation with. Definitions were given for the different relations. Five potential rela-
tions were posited: grant-writing collaborations, educational project collaborations
(such as the Q&C grant), research collaborations, seeking professional advice, and
discussing personal matters. For this paper, we focus on the educational project
collaborations network, as it is the one that most directly pertains to the grant.
On the survey, an educational project collaboration was defined as “professional
collaboration on an education-motivated project (e.g., curriculum development,
pedagogy workshops and/or research).” Noneducational research was a separate
question and is not considered in the education collaboration network.

Additionally, the professors were asked to give the academic term (Spring, Sum-
mer, or Fall) and year that the interaction began. Because we were only collecting
data at the end of the grant retroactively (and not when it began in Fall 2008, or
earlier), we had to rely on respondents’ memories, which could be unreliable. In
an attempt to obtain accurate timestamps, we encouraged the faculty to refer to
their email or other records to attempt to ascertain when a given relation began.
Despite our efforts, the large number of asymmetric ties in the data suggests the
presence of both memory recall and perception bias. A person may not recall a re-
lationship at all, or may recall that it began at a different time than it actually did.
This could be due to simple forgetfulness or to a different definition of what con-
stitutes the relationship forming. In order to account for these issues with memory
recall and perception bias, we postulate the existence of a “true” or latent network
that stochastically generates the observed network. We will model these sources of
disparity between the observed and latent networks.

The survey also posed a variety of demographic questions to complement those
aimed at gathering information on the network ties. The covariate most directly
related to tie formation is department, as professors tended to form more collabo-
rative ties within departments than between them. Additional variables were used
to threshold the data, as explained below, and to adjust for possible differences in
rates of tie formation.

To construct the final data sets used for analysis, several modifications were
made. First, the survey was originally given to 46 professors among the five de-
partments at CSU, San Marcos. We received 37 completed surveys (a response
rate of 80.4%), with nine professors away from the university or otherwise un-
able to answer.3 The surveys were administered in person by a member of the
Steering Committee who was not affiliated with any of the departments of inter-
est, and who was not a subject in the study. Only the 37 professors who returned

3Additionally, two of these nine people were the dean and assistant dean of the university, who
perhaps should be ineligible in any case as they are not strictly research or teaching faculty.
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completed surveys are eligible nodes in the networks considered here, so we dis-
regarded nominations of professors who did not return the survey. We discussed
potential nonresponse biases with the steering committee who were very familiar
with all 46 professors we attempted to survey. They did not think that those who
were missing would problematically bias our analysis, so we proceeded with the
smaller network of 37 professors.

For each tie, the professor was asked to identify when that type of interaction
began, in terms of an academic term (Spring, Summer, or Fall), and a year. We then
created a new network for each academic year (i.e., Fall 2008, Spring 2009, and
Summer 2009 are one academic year). The Q&C grant took effect during the Fall
2008 semester. For this paper, we consider the five years during the Q&C grant,
and the five years preceding it. This allows us to look at the changes in the network
over time both before the grant took effect and during it to examine trends in tie
formation.

It is also worth making note of an implicit assumption here. Since we only
gathered information about the formation of ties, and not the possible dissolution
of existing ties, our network can only grow over time. We feel that this is a safe
assumption to make regarding educational collaboration, as the dissolution of a
collaborative tie would require a relatively significant event, such as a professional
feud. Collaborative relationships can remain dormant—that is, even if two people
are not currently engaged in a project together but have collaborated in the past,
they may still collaborate in the future, so we would consider a tie to be present
between them. Even a professor who left the university (which did not happen in
our study) could still collaborate with colleagues from the original university, so
the tie should still exist.

We also recorded the academic term in which a professor was first hired at
CSU, San Marcos. No professors nominated each other before they had both begun
working at the university. In cases when a professor nominated someone but did
not provide a year for the tie formation, we by default assigned the year as the first
year in which both professors worked at the university (i.e., the later of the two hire
dates in the dyad). This is a conservative assumption because ties are attributed in
most cases to a time before the start of the Q&C grant, rather than during it.

We chose to examine ten different time points: the five years during the Q&C
grant, and the five years immediately preceding it. The dyad census for these 10
years for the education research collaboration network, showing the counts of mu-
tual, asymmetric, and null ties, is displayed in Table 1, as well as the size of the
network at each time.

Since we asked people about their education collaborations, we anticipated ob-
serving a relatively large proportion of mutual ties in the network, that is, two
people who work together in some respect will nominate one another on the sur-
vey. To the contrary, we observe the opposite: many asymmetric ties and few mu-
tual ties. The inconsistency in reported ties is likely an unfortunate byproduct of
a retroactive survey. Specifically, people have a difficult time recalling all of their
collaborative relationships over the course of up to 20 years. Moreover, individuals
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TABLE 1
Observed dyad counts for 10 years. Times 1–5 are before the

inception of the Q&C grant; times 6–10 are during the grant. The
network size n of CSU, San Marcos professors who had been hired by

each time is also given

Time n Mutual Asymmetric Null Total

1 28 9 44 325 378
2 29 11 48 347 406
3 30 12 50 373 435
4 30 12 53 370 435
5 31 13 57 395 465

6 33 20 71 437 528
7 33 37 82 409 528
8 34 45 91 425 561
9 36 64 105 461 630

10 37 80 106 480 666

have different thresholds for what constitutes a collaboration, despite our efforts
to provide a clear definition on the survey. Thus, differences in both recall accu-
racy and perception threshold can contribute to the reporting of asymmetric ties in
cases where we believe we should only observe mutual ties. In the next section,
we propose a model to address this issue.

3. A model for error-prone responses. To account for differences in recall
accuracy and perception, we propose a Bayesian framework to model “false nega-
tive” and “false positive” rates within a network. By definition, a false negative is
the omission of a tie in the observed network where we believe one truly exists in
the latent network, and a false positive is the inclusion of a tie where one should
not exist.4

3.1. Statistical framework. We assume that at each time point k there exists
a true latent collaboration network which arises from some unobserved stochastic
mechanism. The model can be fit on a single time point k, and is not dynamic
by nature. This means that separate models are fit to each time point k and then
evaluated as a collection after model fitting. This is a potential drawback of the
work, but we note that our data necessitated this format and that a model for error-
prone responses is also an important contribution to the literature. Let �k denote

4These false positives and false negatives are “errors” only in the sense that there is a discrepancy
between the latent and observed networks. We are not implying that a person’s perception is incorrect.
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the latent network at time k. Since we assume that collaboration is by definition
mutual, �k is an undirected binary network. Thus,

(1) �ij,k = �ji,k =
{

1 (i, j) ∈ E(�k),

0 (i, j) /∈ E(�k),

where E(�k) is the edge set of �k . By definition, i, j ∈ V (�k), the vertex set
of �k , and ‖V (�k)‖ = n for a network �k with n nodes. �ii,k = 0 by defini-
tion.

Let Yk denote the observed network at time k. This network is potentially di-
rected, that is, Yij,k :�= Yji,k . We assume that V (�k) = V (Yk), that is, the vertex
set is the same between the latent and observed networks at each time. Define

(2) Yij,k =
{

1 (i, j) ∈ E(Yk),

0 (i, j) /∈ E(Yk).

For the San Marcos data, we use k = 1, . . . ,10 to represent ten academic years
(the five during the Q&C grant: 08/09, 09/10, 10/11, 11/12, and 12/13; and the five
immediately preceding the Q&C grant: 03/04, 04/05, 05/06, 06/07, and 07/08);
and i, j ∈ {1, . . . ,37} for the 37 professors in the network.

For a potential tie from actor i to actor j , there are four possible outcomes,
summarized below.

Yij,k = 1 | �ij,k = 1 Correctly identified tie
Yij,k = 1 | �ij,k = 0 False positive
Yij,k = 0 | �ij,k = 1 False negative
Yij,k = 0 | �ij,k = 0 Correctly omitted tie

We ascribe the following probabilities to these nontrivial erroneous situations:

pi,k = P(Yij,k = 0 | �ij,k = 1) false negative,

qi,k = P(Yij,k = 1 | �ij,k = 0) false positive.

These are, respectively, the false negative and false positive rates. Note that pi,k

and qi,k are only referenced by the subscripts i and k, that is, we are assuming each
actor has a unique value of p and q at each time point, but it remains the same for
all possible out-ties from that actor. That is, an actor is equally likely to falsely
nominate any actors to whom she is not tied to in the latent network.

The likelihood is a Bernoulli mixture,

(3)
P(Yij,k = yij,k | �ij,k = θij,k,pi,k, qi,k)

= [
(1 − pi,k)

yij,k (pi,k)
1−yij,k

]θij,k
[
(qi,k)

yij,k (1 − qi,k)
1−yij,k

]1−θij,k
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and we assume general dyad independence so we can write the joint likelihood as

P(Yk | �k,pk, qk) =
n∏

i=1

n∏
j=1

[
(1 − pi,k)

yij,kθij,k
][

(pi,k)
(1−yij,k)θij,k

]
(4)

× [
(qi,k)

yij,k(1−θij,k)
][

(1 − qi,k)
(1−yij,k)(1−θij,k)

]
=

n∏
i=1

[
(1 − pi,k)

∑n
j=1 yij,kθij,k

][
(pi,k)

∑n
j=1(1−yij,k)θij,k

]
(5)

× [
(qi,k)

∑n
j=1 yij,k(1−θij,k)

]
× [

(1 − qi,k)
∑n

j=1(1−yij,k)(1−θij,k)
]
.

3.2. Specifying prior knowledge about reporting accuracy. Following the
work of Butts (2003) and referencing examples in Marcum, Bevc and Butts (2012)
and Butts, Acton and Marcum (2012), we construct a hierarchical Bayesian model.
We ascribe priors to the false negative rate, the false positive rate, and the latent net-
work. We base our a priori knowledge of p1,k, . . . , pn,k and q1,k, . . . , qn,k on a beta
distribution because of its generalizability. Further, since the actors are surveyed in
isolation, we can consider the priors p1,k, . . . , pn,k and q1,k, . . . , qn,k independent.
The distributions are explicitly defined below:

[pi,k | αp,k, βp,k] ∼ Beta(αp,k, βp,k),

[qi,k | αq,k, βq,k] ∼ Beta(αq,k, βq,k).

Thus, up to a normalizing constant,

P(pk | αp,k, βp,k) ∝
n∏

i=1

(pi,k)
αp,k−1(1 − pi,k)

βp,k−1,(6)

P(qk | αq,k, βq,k) ∝
n∏

i=1

(qi,k)
αq,k−1(1 − qi,k)

βq,k−1.(7)

Finally, we need to put a prior on �k . Again, we follow the recommendations
of Butts (2003) and use an informative a priori value for the network density based
on similar collaboration networks as the prior for �ij,k when both persons i and j

have been hired at time k. Therefore, the probability of a tie existing from i to j is

(8) P(�ij,k = 1) = δij,k =
{
dk if i, j ∈ V (�k),

0 if i and/or j /∈ V (�k),

where dk is the informed prior network density at time k. Note that in this case dk

is not considered random or differentiated between respondents, but a natural ex-
tension would allow for these possibilities. In this form we can impose a structural
zero for any professor who has not yet been hired at time k.
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3.3. Derivation of posterior distributions. The posterior distribution of [�k,

pk, qk | Yk] results from 5, 6, 7, and 8. The full derivation is provided in Ap-
pendix A:

P(�k,pk, qk | Yk) ∝ P(Yk | �k,pk, qk)(9)

× P(�k,pk, qk | δk, αp,k, βp,k, αq,k, βq,k)

∝ P(Yk | �k,pk, qk)

× P(pk | αp,k, βp,k)P (qk | αq,k, βq,k)P (�k | δk)

∝
n∏

i=1

(pi,k)
αp,k+∑n

j=1(1−yij,k)θij,k−1(10)

×
n∏

i=1

(1 − pi,k)
βp,k+∑n

j=1 yij,kθij,k−1

×
n∏

i=1

(qi,k)
αq,k+∑n

j=1 yij,k(1−θij,k)−1

×
n∏

i=1

(1 − qij,k)
βq,k+∑n

j=1(1−yij,k)(1−θij,k)−1

×
n∏

i=1

n∏
j=1

(δij,k)
θij,k (1 − δij,k)

(1−θij,k).

This posterior is difficult to explore analytically, so we implement a Gibbs sam-
pler to draw samples from the distribution.

3.4. Computational algorithm. The Gibbs sampler works by taking a series
of draws from the full conditionals of the posterior, constructing a Markov chain
whose equilibrium distribution converges to that of the joint posterior. Therefore,
to draw samples from the posterior distribution in Equation (10) using a Gibbs
sampler, we need to specify the full conditional distributions. The full derivations
can be found in Appendix A.

For each i ∈ V (�k), noting that p1,k, . . . , pn,k and q1,k, . . . , qn,k are indepen-
dent,

[pi,k | �k,Yk]

∼ Beta

(
αp,k +

n∑
j=1

(1 − yij,k)θij,k, βp,k +
n∑

j=1

yij,kθij,k

)
,

(11)
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[qi,k | �k,Yk]

∼ Beta

(
αq,k +

n∑
j=1

yij,k(1 − θij,k), βq,k +
n∑

j=1

(1 − yij,k)(1 − θij,k)

)
.

(12)

For each i, j ∈ V (�k) such that i �= j ,

(13) [�ij,k | Yk,pk, qk] ∼ Bernoulli(rij,k),

where

rij,k = P(�ij,k = 1 | Yk,pk, qk)

P (�ij,k = 1 | Yk,pk, qk) + P(�ij,k = 0 | Yk,pk, qk)
(14)

and

P(�ij,k = 1 | Yk,pk, qk) ∝ δij,k(pi,k)
(1−yij,k)(1 − pi,k)

yji,k(15)

× (pj,k)
(1−yji,k)(1 − pj,k)

yji,k ,

P (�ij,k = 0 | Yk,pk, qk) ∝ (1 − δij,k)(qi,k)
yij,k (1 − qi,k)

(1−yij,k)(16)

× (qj,k)
yji,k (1 − qj,k)

(1−yji,k).

With the conditional distributions in 11, 12, and 13, we can iterate through the
Gibbs sampler. The algorithm is given in Algorithm 1.

At each time point k, we have modeled the latent network �k along with the
false negative (pk) and false positive (qk) rates for each actor. A simulation study
to assess the model is provided in Section 4 and application to the CSU, San Mar-
cos education collaboration network is in Section 5. Note that in this model we
cannot separate sources of error (e.g., recall accuracy vs. perception bias vs. filling
in the wrong bubble on the survey table by mistake), but that is not of primary
interest in this study. Instead, we seek to examine the structure of the latent net-
works.

4. Simulation study. To explore model performance, we conduct a simula-
tion study. For each simulation, we generate an undirected latent (“true”) network
� with n ∼ Unif[25,40] and δ ∼ Unif[0.05,0.2], representing a range of credible
values. Then �ij ∼ Bernoulli(δ), where �ij = �ji and �ii = 0 by definition.

We then simulate an observed network Y from this latent network, which
will contain asymmetric ties and some error. We draw p ∼ Beta(2,8) and q ∼
Beta(2,8), as these distributions have mean 0.2, which we believe a reasonable
amount of error, while still having large enough variance to encompass a variety
of scenarios. Y is then simulated such that Yij ∼ Bernoulli((1 − p)�ij q1−�ij ),
where Yii = 0 by definition.

We then apply the model to Y using the hyperparameters αp = αq = 2, βp =
βq = 8, and d = 0.15. We use a burn-in of 1000 and a thinning interval of
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Algorithm 1: Gibbs sampler

Input: For each time k, observed adjacency matrix Yk and hyperparameters
αp,k , βp,k , αq,k , βq,k , and δk

Output: Posterior distributions �
(·)
k ,p

(·)
k , q

(·)
k

1 for k = 1, . . . ,K do
2 Initialize �

(0)
k , p

(0)
k , and q

(0)
k ;

3 l := 1;
4 for i = 1, . . . , n do
5 p

(l)
i,k ∼ Beta(αp,k + ∑n

j=1(1 − yij,k)θ
(l−1)
ij,k , βp,k + ∑n

j=1 yij,kθ
(l−1)
ij,k );

6 q
(l)
i,k ∼ Beta(αq,k + ∑n

j=1 yij,k(1 − θ
(l−1)
ij,k ),

βq,k + ∑n
j=1(1 − yij,k)(1 − θ

(l−1)
ij,k ));

7 end
8 for j = 2, . . . , n and i = 1, . . . , j − 1 do
9 �

(l)
ij,k ∼ Bernoulli(r(l)

ij,k) where rij,k is defined in Equation (14);

10 Set �
(l)
ij,k = �

(l)
ji,k since �k is undirected;

11 end
12 l := l + 1;

13 Repeat until �
(·)
k ,p

(·)
k , q

(·)
k ∼ �k,pk, qk | Yk ;

14 end

25 iterations to make 1000 draws from the posterior distribution of θ . That is,
for each simulation we get 1000 draws for the error-corrected network, denoted
θ(1), . . . , θ (1000).

We performed 100 simulations as outlined above, and also the special case
where � = Y (resulting from p = q = 0). To assess the model performance in
these simulations, we considered several metrics. First, we examined how dif-
ferent the observed network Y was from the latent network � by looking at the

proportion of edges that were incorrect: ρy =
∑n

i=1
∑n

j=1(Yij−�ij )2

n(n−1)
. We also cal-

culated this proportion for each of the l = 1, . . . ,1000 posterior draws of θ(l):

ρ
(l)
θ =

∑n
i=1

∑n
j=1(θ

(l)
ij −�ij )2

n(n−1)
. If the model is correcting error-prone responses, we

would expect ρ
(l)
θ < ρy .

Figure 1 compares ρy and ρ
(l)
θ for each of the 101 simulations, with each of the

posterior draws l shown as a gray dot and the average of ρ
(l)
θ , denoted ρ̄θ , for that

simulation shown as a short black line. The y = x line is provided for comparison.
Note that the model does a good job of correcting error-prone responses, especially
for larger proportions of incorrect edges in the observed network. An “incorrect
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FIG. 1. Comparison of the proportion of edges that were incorrect, where the x-axis compares the
observed network to the latent network (ρy ) and the y-axis compares each of the posterior draws

from the model to the latent network ρ
(l)
θ . The average of the posterior draws ρ̄θ for each simulation

is shown as a short black line. The y = x line is provided, demonstrating that the model does a good
job of correcting error-prone responses, especially for larger proportions of incorrect edges in the
observed network.

edge” refers to an edge (i, j) in a given network that is different from �ij ; it
could be either an edge that should exist but does not, or an edge that should not
exist but does. For ρy > 0.1 (at least 10% of the edges in the observed network
are incorrect, as compared to the latent network), ρ̄θ is almost always below the
y = x line, indicating the model is correcting some error-prone responses. And for
ρy > 0.25, all posterior draws l have a smaller ρ

(l)
θ than ρy .

The preceding comparison examined differences between the observed and la-
tent networks, and between the modeled and latent networks. We also compare the
modeled networks to the observed network on edges where the observed network
differs from the latent network. For all the edges (i, j) such that �ij �= Yij , we

calculate the proportion of them that are fixed by the model such that �ij = θ
(l)
ij

for each simulation and each posterior draw. More precisely, let

ρ
(l)
f =

∑n
i=1

∑n
j=1((Yij − �ij )

2(1 − (θ
(l)
ij − �ij )

2))∑n
i=1

∑n
j=1(Yij − �ij )2 .

Figure 2(a) shows the proportion of incorrect edges fixed by the model for each
of 1000 posterior draws for each of 100 simulations. The proportion of incorrect
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FIG. 2. Comparison of (a) proportion of incorrect edges fixed, ρ
(l)
f , and (b) proportion of correct

edges changed, ρ
(l)
c , to various simulation parameters, for 1000 posterior draws for each of 100

simulations. The average of the posterior draws, ρ̄f and ρ̄c , respectively, for each simulation is
shown as a short black line.

edges fixed by the model (ρ(l)
f ) is plotted against five simulation parameters: the

proportion of incorrect edges in the observed network (ρy), the false negative rate
(p), the false positive rate (q), the network size (n), and the density of the latent
network (δ). The � = Y simulation is not included since it has no erroneous ties.
The black horizontal lines show the mean of ρ

(l)
f , denoted ρ̄f for each simulation.

The smallest ρ̄f is 0.3014, indicating that on average at least 30% of erroneous
edges in the observed network were fixed by the model. Most values of ρ̄f are
between 0.5 and 0.7, demonstrating the strength of the model. Interestingly, values
of ρ̄f do not show strong associations with ρy , p, n, or δ. There may be a slight
positive association between ρ̄f and q , although it is less pronounced for q > 0.1.
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To make sure that the model is not doing more harm than good, we also examine
the proportion of edges that were correct in the observed network but incorrect
after the model was applied. Let this proportion be

ρ(l)
c =

∑n
i=1

∑n
j=1((1 − (Yij − �ij )

2)(θ
(l)
ij − �ij )

2)∑n
i=1

∑n
j=1(Yij − �ij )2 .

The proportion of correct edges changed by the model is shown in Figure 2(b)
against the same simulation parameters as in (a). We see that as the proportion of
correct edges increases to 1, the proportion of correct edges changed decreases.
Note that the proportion of correct edges changed is also generally lower than the
proportion of incorrect edges fixed.

We further examine this by calculating the ratio of the number of incorrect edges
fixed to the number of correct edges changed for each posterior draw of each sim-
ulation. This ratio is

φ(l) =
∑n

i=1
∑n

j=1((Yij − �ij )
2(1 − (θ

(l)
ij − �ij )

2))∑n
i=1

∑n
j=1((1 − (Yij − �ij )2)(θ

(l)
ij − �ij )2)

,

where values greater than 1 indicate that the model is fixing more incorrect edges
than changing correct ones. φ(l) are shown in Figure 3, compared with the propor-

FIG. 3. Comparison of the ratio of the number of incorrect edges fixed to the number of correct
edges changed, φ(l) for 1000 posterior draws for each of 100 simulations. Points above the horizontal
line y = 1 indicate that more incorrect edges are being fixed than correct edges changed for a given
modeled network. The average of the posterior draws, φ̄, for each simulation is shown as a short
black line.
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tion of incorrect ties in the observed network. The horizontal line y = 1 is added
for reference. 85.34% of the 10,000 φ(l) values are above 1, indicating that the
model tends to fix more incorrect ties than it changes correct ones. Additionally,
φ(l) tends to increase as the proportion of incorrect edges in the observed network
increases.

These simulations demonstrate that the proposed model is a useful tool when
there is reason to believe the observed network contains errors. When the observed
network is nearly error-free, the model does not provide much benefit and may
even increase error. However, the model can substantially reduce error in observed
networks with a larger proportion of incorrect edges. Even though the latent net-
work is not observed in practice, it is still possible to identify observed networks
that likely have many incorrect edges. For example, the latent San Marcos collab-
oration network, which we turn to in the next section, is undirected but we observe
many asymmetric ties. We therefore have reason to believe the observed network
contains many incorrect edges as either Yij �= �ij or Yji �= �ji for each asymmet-
ric tie.

5. Analysis of modeled San Marcos networks. We apply the latent network
model to the networks of collaboration on education-related projects among pro-
fessors. We used the following hyperparameters to specify respondent accuracy:
αp,k = αq,k = 2, βp,k = βq,k = 8, and dk = 0.15 for all k. We chose these values
as parameters for the prior false negative and false positive rates because they are
centered at a reasonable value (0.2) and have enough variance to allow for extreme
cases to occur. Plots for the beta distributions formed with these priors can be seen
in Figure 4. Similarly, the prior used for the density is a reasonable value of the
network density based on these and similar observed networks. Similar results are
achieved by using other plausible values for the priors.

For the sampler, we used a burn-in of 1000 iterations and a thinning interval of
25. In total, we made 10,000 draws from the posterior distribution. Some model-fit
diagnostics for these draws are provided below, followed by results.

FIG. 4. Prior distributions of pi,k and qi,k . The mean for each distribution is at 0.2.
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TABLE 2
Average percent of ties by dyad type in 10,000 posterior draws, by
year. For example, in Year 1, on average 2960 of 10,000 posterior
draws among dyads with an observed asymmetric tie had a mutual
tie in that simulated latent network. The latent draws only contain

mutual ties by design

Mutual Asymmetric Null

1 0.913 0.296 0.006
2 0.908 0.274 0.006
3 0.903 0.263 0.006
4 0.901 0.263 0.006
5 0.903 0.282 0.007
6 0.870 0.235 0.008
7 0.853 0.205 0.007
8 0.826 0.185 0.008
9 0.785 0.177 0.009

10 0.786 0.171 0.009

5.1. Dyad census for latent collaboration. To examine the model parameters,
we consult draws from the posterior distribution provided by the sampler. First
we investigate the ties present in each sample. Recall that by design all ties in the
latent network models are mutual, while many dyads in the observed networks
were asymmetric. We can classify the observed dyads at each time point into the
mutually exclusive categories: mutual, asymmetric, and null. Then, again at each
time point, we can aggregate over L = 10,000 draws from the posterior distribution
for the latent network and all dyads of each type to find the proportion of those
dyads that have a mutual tie (are realized) in the latent network. These proportions
are shown in Table 2. Thus, at Year 1, among all dyads that were asymmetric in
the observed network, we observe a mutual tie in the latent network 29.6% of the
time. We classify these as weaker ties, and thus they are not picked up as frequently
in the posterior draws. By comparison, for the same year among mutual ties, we
observe a mutual tie in the latent network 91.3% of the time, indicating we have
a stronger tie. The proportion of null ties that are modeled as mutual ties in the
latent network is very low (0.6% for that year), a satisfying result.

5.2. Visual comparisons of observed and latent networks. This same phe-
nomenon, where we observe mutual ties more strongly than asymmetric ties, is
illustrated in Figures 5 and 6. Figure 5 shows the observed and latent networks
during Year 5, the last year before the inception of the Q&C grant, while Fig-
ure 6 depicts Year 10, the most recent year on record. In each figure, the left panel
shows the observed collaboration network at that time, with the nodes colored by
department. Thicker lines represent mutual ties, while thinner lines show asym-
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FIG. 5. Observed network at time k = 5 (2007/2008), the year prior to the Q&C grant. The left
panel shows the observed network with nodes colored by department, and thicker ties representing
mutual collaborative relationships. The right panel shows the aggregated results of 10,000 posterior
draws, with the shade of the tie representing the proportion of times it was present in a posterior
draw. Darker shades represent more common ties. All ties were mutual by design.

metric ties.5 The right panel shows the aggregated results of 10,000 draws from
the posterior distribution of the Bayesian hierarchical latent network model. The
tie strength in this graph is indicated by the grayscale shade, with lines closer to
black representing ties that are realized close to 100% of the time, while lines that
are closer to white are hardly realized. We set a threshold of 0.1 for this graph, that
is, only ties that are realized in at least 1000 of the 10,000 posterior draws are de-
picted. The ties that are darker in the latent graph tend to coincide with those that

FIG. 6. Observed network at time k = 10 (2012/2013), the year the survey was conducted. The left
panel shows the observed network with nodes colored by department, and thicker ties representing
mutual collaborative relationships. The right panel shows the aggregated results of 10,000 posterior
draws, with the shade of the tie representing the proportion of times it was present in a posterior
draw. Darker shades represent more common ties. All ties were mutual by design.

5Note that the direction of the tie is not indicated in this figure.
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are thicker (mutual) in the observed graph. The nodes are given the same coordi-
nates in both panels to make differences between the two graphs more apparent.

Note also in Figure 5, the earlier set of graphs, the relative clustering within de-
partment. Not only are there comparatively higher rates of ties within departments
than between departments, many of the observed mutual ties exist between mem-
bers of the same department. By the latter time point, shown in Figure 6, we see a
more equal distribution of ties within and between departments.

Also note the increase in density from Year 5 to Year 10 as well as the incor-
poration of all nodes into the network. This change is also picked up in the latent
network.

Using these metrics we can state that the latent networks we modeled seem
to be good representations of the observed networks. We found similar counts
and locations of strong and weak ties, and did not observe artifacts that could be
induced by too many null ties. Visually, the networks have similarly placed tie
locations and exhibit similar departmental clustering.

5.3. Analysis of reporting accuracy. We can also examine the values of pi,k

and qi,k , respectively the false negative and false positive rates for each individual
at each time. These are summarized in Appendix B, in Tables 4 and 5, where the
rows are the nodes and the columns are the year intervals. The value given is the
average value of pi,k or qi,k over 10,000 posterior draws from the Bayesian hier-
archical latent network model, with the standard deviation shown parenthetically.

Let pi,k = 1
L

∑L
l=1 p

(l)
i,k and qi,k = 1

L

∑L
l=1 q

(l)
i,k , where L = 10,000. Observe that

in general the values for the qi,k are lower than those for the pi,k , that is, the false
positive rate is generally lower than the false negative rate. This is understand-
able given that recall inaccuracy tends toward omission, that is, people are more
likely to forget a tie than they are to cite one that never existed. The latter situa-
tion we would consider an “error” in the truer sense of the word, while the former
could be the result of differences in cognition, perception, or memory, which are
not necessarily a mistake. (Perhaps, if someone cannot remember a collaborative
relationship, it should not be termed as such.)

These values of pi,k and qi,k can also be seen graphically in Figures 7 and 8.
Each connected line represents a single person, with the color designating depart-
ment. Therefore, there are 37 lines on each plot. Use of the same axes allows us to
compare the false negative and false positive rates. Most of the lines for most of
the years show a lower error rate for q than for p.

Recall that we used the same priors for pk and qk , so the fact that we observe a
lower false positive than false negative rate is indicative of the truth captured by the
data. In this case, our model has picked up a subtlety in data collection that would
not be captured by descriptive methods or existing models used for intervention
assessment.
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FIG. 7. Plot of average values of p (false negative rate) per person over time, colored by depart-
ment. Averages are from 10,000 posterior draws. Standard deviations provided in Table 4.

5.4. Assessment of the Q&C grant. Now that we have a model which accounts
for error-prone responses, we can examine the effect of the intervention (in this
case, the Q&C grant) on the network to check for evidence of increased collabora-
tion during the period of the grant.

FIG. 8. Plot of average values of q (false positive rate) per person over time, colored by department.
Averages are from 10,000 posterior draws. Standard deviations provided in Table 5.
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We compare the five years before the beginning of the grant to the five years
during it. A strict measure of network density (i.e., a count of the number of
ties that exist divided by the total number of possible ties that could be formed
at a given time) is naïve for several reasons. First, it does not allow for com-
parisons across time as different numbers of people were in the network at
each time. Second, it does not account for the differential exposure to the so-
cial space. We would naturally expect professors who were hired one year ago
to have fewer ties than those who were hired 20 years ago. Density alone as a
metric for longitudinal changes in collaboration simply cannot capture this phe-
nomenon.

Instead of density, we use hire-adjusted out-degree.6 Adjustments are made as
follows: for each of the posterior draws at each time, we calculate the proportion
of possible out-ties each person forms as

(17) ρ
(l)
i,k =

∑37
j=1 �

(l)
ij,k

hk − 1
,

where hk is the number of people who have been hired at time k. Let τi,k be the
tenure-year of each person during each year, that is, the number of years they have
been employed at the university during time k. Thus, if a professor was hired in
2000, their tenure-year in 2002 is 2. By definition, τi,k+1 = τi,k + 1 for each i.
Using tenure-year adjusts for the fact that people naturally form ties over time.
Without adjustment, we would obviously expect more ties to be present at k = 10
than k = 5, independent of the Q&C grant. Table 3 shows the average proportion
of possible out-ties (ρ̄) formed for each hire year τ , split by whether the year
occurred in the five years preceding the grant or the 5 years during it. In the 5
years preceding the grant, n = 5 people were in their first hire year, and on average
over l = 10,000 posterior draws for �(l) these people formed 0.2% of possible
relationships. In the five years during the grant, n = 4 people were in their first
hire year, and formed 0.24% of possible relationships. The larger ρ̄ for each τ is
shown in bold, with most occurring during the Q&C grant.

In another comparison, for each l ∈ {1, . . . ,L}, L = 10,000, we fit two linear
models. For each, use the tenure-year τi,k as the predictor and the proportion of
possible out-ties ρ

(l)
i,k as the response. For the first model, aggregate over years 1–5

(before the grant) and for the second model, aggregate over years 6–10 (during
the grant). For both models, we constrain the line to pass through the origin since
an individual’s proportion of possible out-ties is zero when they have not yet been

6Note that for the posterior draws out-degree, in-degree, and degree are interchangeable up to a
constant since all ties are mutual.
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TABLE 3
Average proportion of possible out-ties (ρ̄) by hire year (τ ), with
larger value in bold. In the five years preceding the grant, n = 5

people were in their first hire year, and on average over l = 10,000
posterior draws for �(l) these people formed 0.2% of possible

relationships. In the five years during the grant, n = 4 people were in
their first hire year, and formed 0.24% of possible relationships

Before Grant During Grant

Hire Year (τ ) n ρ̄ n ρ̄

1 5 0.0020 4 0.0024
2 7 0.0556 6 0.0484
3 9 0.0629 6 0.0691
4 12 0.0660 3 0.0632
5 11 0.0669 5 0.0717
6 11 0.0661 5 0.0998
7 9 0.0508 7 0.0926
8 8 0.0392 9 0.0922
9 6 0.0346 12 0.1067

10 6 0.0385 11 0.1157
11 9 0.0500 11 0.1280
12 9 0.0542 9 0.1028
13 13 0.0832 8 0.0994
14 12 0.0846 6 0.0649
15 11 0.0897 6 0.0999
16 8 0.0911 9 0.1086
17 6 0.0966 9 0.1227
18 0 – 13 0.1295
19 0 – 12 0.1295
20 0 – 11 0.1295
21 0 – 8 0.1022
22 0 – 6 0.1083

hired by the university. Denote the slope of the first model by m
(l)
B and the slope of

the second by m
(l)
A .

For each l, we take the ratio of the slopes

(18) ξ (l) = m
(l)
A

m
(l)
B

.

For the purpose of visualization, we fit a density curve through these values using a
local likelihood method [Loader (2013)]. The plot of this density, along with basic
summary statistics, is found in Figure 9. The ratios should be compared with the
value 1, the case in which the slopes before and during the grant were identical, that
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FIG. 9. Density of 10,000 ratios of the slope during the grant divided by the slope before the grant.
Each slope is calculated from a regression of proportion of possible out-ties formed on tenure-year.
Summary statistics are given.

is, there was no change in tie formation between these two time periods. Values
less than one represent a greater propensity to form ties before the grant, while
values greater than one represent a greater propensity to form ties during the grant.
If the grant is having a positive effect on collaboration, we would expect to see
many more values greater than one than less than it. Indeed this is the case, with
only 114 of 10,000 cases (or 1.14%) less than one.7

Even after accounting for error-prone responses in the survey data and differen-
tial rates of tie-formation depending on tenure-year, we observe a clear increase in
collaboration on education-related projects during the Q&C grant implemented at
CSU, San Marcos. This appears to be a validation of the methods implemented by
the Steering Committee.

Several limitations of this study and these analyses should be noted. First,
our model focuses on adjusting for error-prone responses, but is not a true dy-
namic model. Each time point is modeled separately, and the collection of mod-
eled networks is then analyzed. This was necessitated by the retroactive data
collection, which also did not allow us to observe “active” collaborations. We
could only collect data on whether individuals had ever collaborated, not if

7Note that although the use of a z-test in this case would violate standard assumptions, the density
appears approximately normal and we can reject the null hypothesis that the true mean of the ratio is
one at the α = 0.05 significance level.
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they were currently collaborating at a particular point in time. This means we
were not able to study tie dissolution, and networks grow naturally over time
as more ties form. Ideally, data would have been collected throughout the time
period of interest and dynamic models could be used. The metrics ρ̄ and ξ (l)

used to compare collaboration rates during the Q&C grant to those before it
are ad hoc. Both attempt to account for naturally increasing network size over
time as more people are hired and differential rates of tie formation based on
how long someone had been at the university, but are in no way definitive mea-
sures.

6. Conclusion. Social network surveys are prone to many types of errors,
especially when retroactively collecting longitudinal data. Subjects exhibit dif-
ferential recall accuracy as well as varying thresholds for the perception of ties.
To address these issues, we constructed a latent network model and developed
inference for it within a Bayesian framework. We applied this method to a net-
work of collaboration on education-related activities among professors from five
science departments at a small teaching university. We found that while draws
from the simulated posterior distribution of the false positive rate (reporting a
collaborative tie that does not exist in reality) remain low, the false negative
rate (omitting a collaborative tie that does in reality exist) can be larger. Ad-
ditionally, we find a conclusive increase in educational collaboration over time
after adjusting for the length of time each professor had to form ties at the
university. While we do not advocate a retroactive survey over a truly longi-
tudinal one, we provide a framework for the assessment of an intervention on
collaboration networks when the latter is unavailable. The algorithm was im-
plemented in the R programming language, using some tools in the statnet
package [Handcock et al. (2016)]. The code is available from the first author’s
GitHub in the CollabAssess R package at https://github.com/krmclaughlin/
CollabAssess.

APPENDIX A: DERIVATIONS

The derivation of the posterior distribution in Section 3.3. Note that the subscript
k is omitted from each term for brevity.

P(�,p,q | Y) ∝ P(Y | �,p,q)P (�,p,q | δ,αp,βp,αq,βq)

∝ P(Y | �,p,q)P (p | αp,βp)P (q | αq,βq)P (� | δ)

∝
n∏

i=1

[
(1 − pi)

∑n
j=1 yij θij p

∑n
j=1(1−yij )θij

i

× q

∑n
j=1 yij (1−θij )

i (1 − qi)
∑n

j=1(1−yij )(1−θij )
]

https://github.com/krmclaughlin/CollabAssess
https://github.com/krmclaughlin/CollabAssess
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×
n∏

i=1

[
p

αp−1
i (1 − pi)

βp−1] n∏
i=1

[
q

αq−1
i (1 − qi)

βq−1]

×
n∏

i=1

n∏
j=1

[
δ
θij

ij (1 − δij )
(1−θij )]

=
n∏

i=1

[
(pi)

αp+∑n
j=1(1−yij )θij−1

(1 − pi)
βp+∑n

j=1 yij θij−1]

×
n∏

i=1

[
(qi)

αq+∑n
j=1 yij (1−θij )−1

(1 − qi)
βq+∑n

j=1(1−yij )(1−θij )−1]

×
n∏

i=1

n∏
j=1

[
(δij )

θij (1 − δij )
(1−θij )].

Using this posterior distribution, we can derive the full conditional distributions
for p, q , and �. For p, collecting only the terms that contain p, we have the form
of a beta distribution.

P(p | �,q,Y ) ∝ P(Y | �,p,q)P (p | αp,βp)

∝
n∏

i=1

[
(1 − pi)

∑n
j=1 yij θij p

∑n
j=1(1−yij )θij

i

× q

∑n
j=1 yij (1−θij )

i (1 − qi)
∑n

j=1(1−yij )(1−θij )]
×

n∏
i=1

[
p

αp−1
i (1 − pi)

βp−1]

∝
n∏

i=1

(pi)
αp+∑n

j=1(1−yij )θij−1
(1 − pi)

βp+∑n
j=1 yij θij−1

,

[pi | �,Y ] ∼ Beta

(
αp +

n∑
j=1

(1 − yij )θij , βp +
n∑

j=1

yij θij

)
.

Similarly for q ,

P(q | �,p,Y ) ∝ P(Y | �,p,q)P (q | αq,βq)

∝
n∏

i=1

(qi)
αq+∑n

j=1 yij (1−θij )−1
(1 − qi)

βq+∑n
j=1(1−yij )(1−θij )−1

,

[qi | �,Y ] ∼ Beta

(
αq +

n∑
j=1

yij (1 − θij ), βq +
n∑

j=1

(1 − yij )(1 − θij )

)
.
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For � we impose undirected ties,

P(� | p,q,Y )

∝ P(Y | �,p,q)P (� | δ)

=
n∏

i=1

n∏
j=1

p
(1−yij )θij

i (1 − pi)
yij θij q

yij (1−θij )

i (1 − qi)
(1−yij )(1−θij )

× δ
θij

ij (1 − δij )
(1−θij )

=
n∏

i=1

n∏
j=1

[
δijp

(1−yij )

i (1 − pi)
yij

]θij
[
(1 − δij )q

(1−yij )

i (1 − qi)
(1−yij )]1−θij

∝
j−1∏
i=1

n∏
j=2

[
δijp

(1−yij )

i (1 − pi)
yij p

(1−yji )

j (1 − pj )
yji

]θij

× [
(1 − δij )q

(1−yij )

i (1 − qi)
(1−yij )q

(1−yji )

j (1 − qj )
(1−yji )

]1−θij .

This is a Bernoulli mixture with

P(�ij = 1 | Y,p, q) = δijp
(1−yij )

i (1 − pi)
yij p

(1−yji )

j (1 − pj )
yji

and

P(�ij = 0 | Y,p, q) = (1 − δij )q
(1−yij )

i (1 − qi)
(1−yij )q

(1−yji )

j (1 − qj )
(1−yji ).

APPENDIX B: TABLES

The mean of the 10,000 posterior draws for each pi,k is provided in Table 4, with
the standard deviations shown parenthetically. The mean of the 10,000 posterior
draws for each qi,k is provided in Table 5, with the standard deviations shown
parenthetically.



680 K. R. MCLAUGHLIN AND J. D. EMBREE

TABLE 4
Mean of 10,000 posterior draws for p (false negative) for each person with standard deviations at

each time, where pi, k ∼ Beta(αp = 2, βp = 8). A plot of these values is provided in Figure 7

1 2 3 4 5 6 7 8 9 10

1 0.42 (0.14) 0.41 (0.15) 0.41 (0.15) 0.43 (0.15) 0.46 (0.14) 0.29 (0.12) 0.16 (0.09) 0.10 (0.07) 0.10 (0.07) 0.10 (0.07)
2 0.17 (0.11) 0.17 (0.11) 0.17 (0.11) 0.17 (0.10) 0.17 (0.11) 0.18 (0.11) 0.18 (0.11) 0.18 (0.11) 0.14 (0.09) 0.14 (0.09)
3 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.23 (0.13) 0.22 (0.13) 0.20 (0.12) 0.20 (0.12) 0.28 (0.14)
4 0.17 (0.11) 0.16 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.11) 0.17 (0.11) 0.18 (0.11) 0.18 (0.11)
5 0.21 (0.12) 0.22 (0.13) 0.22 (0.13) 0.21 (0.12) 0.20 (0.12) 0.19 (0.11) 0.16 (0.10) 0.14 (0.09) 0.13 (0.08) 0.10 (0.06)
6 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.22 (0.13) 0.22 (0.13) 0.21 (0.12)
7 0.20 (0.12) 0.22 (0.13) 0.25 (0.14) 0.24 (0.14) 0.27 (0.14) 0.28 (0.14) 0.30 (0.14) 0.26 (0.13) 0.29 (0.14) 0.25 (0.13)
8 0.29 (0.14) 0.29 (0.14) 0.29 (0.14) 0.29 (0.14) 0.29 (0.14) 0.28 (0.14) 0.18 (0.10) 0.22 (0.11) 0.14 (0.09) 0.13 (0.08)
9 0.21 (0.12) 0.21 (0.12) 0.21 (0.13) 0.21 (0.12) 0.21 (0.13) 0.22 (0.13) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10)

10 0.20 (0.12) 0.18 (0.11) 0.19 (0.11) 0.18 (0.11) 0.19 (0.11) 0.19 (0.11) 0.20 (0.12) 0.20 (0.12) 0.19 (0.11) 0.19 (0.11)
11 0.24 (0.13) 0.24 (0.13) 0.23 (0.13) 0.23 (0.13) 0.23 (0.13) 0.23 (0.13) 0.27 (0.14) 0.26 (0.14) 0.22 (0.12) 0.22 (0.12)
12 0.16 (0.10) 0.16 (0.10) 0.16 (0.10) 0.16 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10) 0.18 (0.11) 0.18 (0.11) 0.16 (0.10)
13 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.21 (0.12)
14 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.22 (0.13) 0.22 (0.13)
15 0.20 (0.11) 0.21 (0.12) 0.21 (0.12) 0.21 (0.12) 0.20 (0.12) 0.18 (0.11) 0.19 (0.11) 0.19 (0.11) 0.18 (0.11) 0.18 (0.11)
16 0.17 (0.10) 0.17 (0.11) 0.17 (0.11) 0.17 (0.11) 0.17 (0.11) 0.16 (0.10) 0.16 (0.10) 0.17 (0.10) 0.16 (0.10) 0.17 (0.10)
17 0.16 (0.10) 0.19 (0.11) 0.18 (0.10) 0.18 (0.10) 0.18 (0.11) 0.17 (0.10) 0.17 (0.10) 0.14 (0.09) 0.12 (0.08) 0.12 (0.08)
18 0.21 (0.12) 0.21 (0.12) 0.21 (0.12) 0.20 (0.12) 0.20 (0.12) 0.21 (0.12) 0.19 (0.11) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10)
19 0.27 (0.14) 0.27 (0.14) 0.27 (0.14) 0.27 (0.14) 0.25 (0.13) 0.26 (0.14) 0.26 (0.14) 0.24 (0.13) 0.17 (0.11) 0.17 (0.10)
20 0.24 (0.13) 0.22 (0.12) 0.22 (0.12) 0.22 (0.12) 0.22 (0.12) 0.22 (0.12) 0.22 (0.12) 0.21 (0.12) 0.20 (0.11) 0.16 (0.10)
21 0.27 (0.14) 0.27 (0.14) 0.27 (0.14) 0.27 (0.14) 0.27 (0.14) 0.28 (0.14) 0.26 (0.13) 0.27 (0.14) 0.27 (0.14) 0.26 (0.14)
22 0.24 (0.13) 0.24 (0.13) 0.24 (0.14) 0.25 (0.14) 0.25 (0.14) 0.26 (0.14) 0.19 (0.11) 0.19 (0.12) 0.21 (0.12) 0.19 (0.11)
23 0.24 (0.13) 0.24 (0.13) 0.24 (0.13) 0.24 (0.13) 0.24 (0.13) 0.24 (0.13) 0.24 (0.14) 0.23 (0.13) 0.18 (0.11) 0.17 (0.10)
24 0.22 (0.13) 0.22 (0.13) 0.22 (0.13) 0.22 (0.13) 0.21 (0.12) 0.21 (0.12) 0.20 (0.12) 0.20 (0.12) 0.17 (0.11) 0.17 (0.11)
25 0.20 (0.12) 0.20 (0.12) 0.23 (0.13) 0.25 (0.14) 0.26 (0.14) 0.24 (0.13) 0.23 (0.13) 0.25 (0.13) 0.23 (0.12) 0.16 (0.10)
26 0.26 (0.14) 0.17 (0.11) 0.17 (0.11) 0.17 (0.10) 0.17 (0.11) 0.17 (0.10) 0.17 (0.11) 0.21 (0.12) 0.23 (0.12) 0.21 (0.12)
27 0.16 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.10) 0.17 (0.11) 0.17 (0.11) 0.17 (0.10) 0.17 (0.11) 0.17 (0.11)
28 0.20 (0.12) 0.20 (0.12) 0.19 (0.12) 0.19 (0.12) 0.19 (0.12) 0.20 (0.12) 0.15 (0.09) 0.15 (0.09) 0.15 (0.09) 0.15 (0.09)
29 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.27 (0.14) 0.19 (0.11)
30 0.23 (0.13) 0.23 (0.13) 0.23 (0.13) 0.24 (0.14) 0.25 (0.14) 0.25 (0.14) 0.25 (0.14) 0.25 (0.14) 0.25 (0.14) 0.25 (0.14)
31 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.19 (0.12) 0.19 (0.12) 0.18 (0.11) 0.19 (0.11) 0.15 (0.09)
32 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.20 (0.12) 0.27 (0.14) 0.23 (0.13) 0.24 (0.13) 0.21 (0.12) 0.19 (0.11)
33 0.25 (0.14) 0.25 (0.14) 0.22 (0.12) 0.22 (0.13) 0.22 (0.12) 0.22 (0.12) 0.21 (0.12) 0.21 (0.12) 0.27 (0.14) 0.26 (0.14)
34 0.21 (0.12) 0.22 (0.12) 0.22 (0.12) 0.22 (0.12) 0.24 (0.13) 0.23 (0.12) 0.24 (0.13) 0.23 (0.13) 0.23 (0.12) 0.23 (0.13)
35 0.27 (0.14) 0.27 (0.14) 0.27 (0.14) 0.27 (0.14) 0.26 (0.14) 0.26 (0.14) 0.27 (0.14) 0.27 (0.14) 0.26 (0.14) 0.27 (0.14)
36 0.26 (0.14) 0.27 (0.14) 0.27 (0.14) 0.26 (0.14) 0.27 (0.14) 0.27 (0.14) 0.29 (0.14) 0.29 (0.14) 0.30 (0.14) 0.30 (0.15)
37 0.25 (0.14) 0.29 (0.15) 0.28 (0.14) 0.28 (0.14) 0.32 (0.15) 0.32 (0.15) 0.33 (0.15) 0.26 (0.13) 0.24 (0.13) 0.24 (0.13)
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TABLE 5
Mean of 10,000 posterior draws for q (false positive) for each person with standard deviations at

each time, where qi , k ∼ Beta(αq = 2, βq = 8). A plot of these values is provided in Figure 8

1 2 3 4 5 6 7 8 9 10

1 0.05 (0.14) 0.05 (0.15) 0.05 (0.15) 0.05 (0.15) 0.05 (0.14) 0.24 (0.12) 0.35 (0.09) 0.41 (0.07) 0.44 (0.07) 0.43 (0.07)
2 0.10 (0.11) 0.10 (0.11) 0.10 (0.11) 0.10 (0.10) 0.10 (0.11) 0.10 (0.11) 0.15 (0.11) 0.16 (0.11) 0.19 (0.09) 0.20 (0.09)
3 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.05 (0.13) 0.05 (0.13) 0.08 (0.12) 0.08 (0.12) 0.09 (0.14)
4 0.24 (0.11) 0.23 (0.10) 0.26 (0.10) 0.26 (0.10) 0.26 (0.10) 0.28 (0.10) 0.28 (0.11) 0.28 (0.11) 0.31 (0.11) 0.31 (0.11)
5 0.07 (0.12) 0.07 (0.13) 0.07 (0.13) 0.09 (0.12) 0.09 (0.12) 0.13 (0.11) 0.25 (0.10) 0.34 (0.09) 0.41 (0.08) 0.47 (0.06)
6 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.13) 0.05 (0.13) 0.07 (0.12)
7 0.04 (0.12) 0.04 (0.13) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.07 (0.14) 0.05 (0.13) 0.06 (0.14) 0.06 (0.13)
8 0.06 (0.14) 0.06 (0.14) 0.06 (0.14) 0.06 (0.14) 0.06 (0.14) 0.05 (0.14) 0.08 (0.10) 0.17 (0.11) 0.29 (0.09) 0.30 (0.08)
9 0.06 (0.12) 0.06 (0.12) 0.06 (0.13) 0.06 (0.12) 0.06 (0.13) 0.06 (0.13) 0.07 (0.10) 0.07 (0.10) 0.07 (0.10) 0.07 (0.10)

10 0.09 (0.12) 0.07 (0.11) 0.07 (0.11) 0.07 (0.11) 0.07 (0.11) 0.07 (0.11) 0.08 (0.12) 0.08 (0.12) 0.07 (0.11) 0.07 (0.11)
11 0.04 (0.13) 0.06 (0.13) 0.06 (0.13) 0.06 (0.13) 0.06 (0.13) 0.06 (0.13) 0.06 (0.14) 0.05 (0.14) 0.07 (0.12) 0.07 (0.12)
12 0.07 (0.10) 0.07 (0.10) 0.07 (0.10) 0.07 (0.10) 0.07 (0.10) 0.07 (0.10) 0.07 (0.10) 0.07 (0.11) 0.07 (0.11) 0.08 (0.10)
13 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.06 (0.12)
14 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.08 (0.13) 0.10 (0.13)
15 0.06 (0.11) 0.06 (0.12) 0.06 (0.12) 0.06 (0.12) 0.06 (0.12) 0.06 (0.11) 0.07 (0.11) 0.07 (0.11) 0.05 (0.11) 0.06 (0.11)
16 0.08 (0.10) 0.08 (0.11) 0.08 (0.11) 0.08 (0.11) 0.08 (0.11) 0.08 (0.10) 0.07 (0.10) 0.08 (0.10) 0.12 (0.10) 0.15 (0.10)
17 0.16 (0.10) 0.26 (0.11) 0.27 (0.10) 0.27 (0.10) 0.27 (0.11) 0.36 (0.10) 0.35 (0.10) 0.36 (0.09) 0.43 (0.08) 0.45 (0.08)
18 0.06 (0.12) 0.06 (0.12) 0.06 (0.12) 0.07 (0.12) 0.07 (0.12) 0.06 (0.12) 0.07 (0.11) 0.07 (0.10) 0.10 (0.10) 0.08 (0.10)
19 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.05 (0.13) 0.06 (0.14) 0.06 (0.14) 0.05 (0.13) 0.13 (0.11) 0.14 (0.10)
20 0.07 (0.13) 0.06 (0.12) 0.06 (0.12) 0.06 (0.12) 0.08 (0.12) 0.08 (0.12) 0.08 (0.12) 0.12 (0.12) 0.13 (0.11) 0.19 (0.10)
21 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.06 (0.14) 0.05 (0.13) 0.05 (0.14) 0.05 (0.14) 0.05 (0.14)
22 0.04 (0.13) 0.04 (0.13) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.05 (0.11) 0.05 (0.12) 0.05 (0.12) 0.05 (0.11)
23 0.05 (0.13) 0.06 (0.13) 0.06 (0.13) 0.05 (0.13) 0.05 (0.13) 0.06 (0.13) 0.06 (0.14) 0.05 (0.13) 0.10 (0.11) 0.08 (0.10)
24 0.04 (0.13) 0.04 (0.13) 0.04 (0.13) 0.04 (0.13) 0.06 (0.12) 0.06 (0.12) 0.09 (0.12) 0.09 (0.12) 0.10 (0.11) 0.12 (0.11)
25 0.04 (0.12) 0.04 (0.12) 0.04 (0.13) 0.04 (0.14) 0.04 (0.14) 0.07 (0.13) 0.10 (0.13) 0.17 (0.13) 0.17 (0.12) 0.15 (0.10)
26 0.07 (0.14) 0.09 (0.11) 0.11 (0.11) 0.14 (0.10) 0.13 (0.11) 0.14 (0.10) 0.13 (0.11) 0.13 (0.12) 0.16 (0.12) 0.17 (0.12)
27 0.16 (0.10) 0.16 (0.10) 0.16 (0.10) 0.16 (0.10) 0.16 (0.10) 0.17 (0.11) 0.16 (0.11) 0.17 (0.10) 0.19 (0.11) 0.19 (0.11)
28 0.08 (0.12) 0.08 (0.12) 0.08 (0.12) 0.08 (0.12) 0.08 (0.12) 0.08 (0.12) 0.07 (0.09) 0.10 (0.09) 0.10 (0.09) 0.10 (0.09)
29 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.06 (0.14) 0.09 (0.11)
30 0.04 (0.13) 0.04 (0.13) 0.04 (0.13) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14)
31 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.06 (0.12) 0.14 (0.12) 0.12 (0.11) 0.10 (0.11) 0.11 (0.09)
32 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.14) 0.05 (0.13) 0.05 (0.13) 0.07 (0.12) 0.07 (0.11)
33 0.04 (0.14) 0.04 (0.14) 0.05 (0.12) 0.05 (0.13) 0.05 (0.12) 0.06 (0.12) 0.06 (0.12) 0.07 (0.12) 0.09 (0.14) 0.09 (0.14)
34 0.06 (0.12) 0.06 (0.12) 0.06 (0.12) 0.06 (0.12) 0.06 (0.13) 0.05 (0.12) 0.05 (0.13) 0.05 (0.13) 0.05 (0.12) 0.05 (0.13)
35 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.06 (0.14) 0.06 (0.14) 0.06 (0.14) 0.06 (0.14) 0.06 (0.14) 0.06 (0.14)
36 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.04 (0.14) 0.05 (0.14) 0.04 (0.15)
37 0.04 (0.14) 0.05 (0.15) 0.04 (0.14) 0.04 (0.14) 0.05 (0.15) 0.04 (0.15) 0.05 (0.15) 0.06 (0.13) 0.05 (0.13) 0.05 (0.13)
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