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POWERFUL TEST BASED ON CONDITIONAL EFFECTS
FOR GENOME-WIDE SCREENING1
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Harvard University and Purdue University

This paper considers testing procedures for screening large genome-wide
data, where we examine hundreds of thousands of genetic variants, for exam-
ple, single nucleotide polymorphisms (SNP), on a quantitative phenotype.
We screen the whole genome by SNP sets and propose a new test that is
based on conditional effects from multiple SNPs. The test statistic is devel-
oped for weak genetic effects and incorporates correlations among genetic
variables, which may be very high due to linkage disequilibrium. The limit-
ing null distribution of the test statistic and the power of the test are derived.
Under appropriate conditions, the test is shown to be more powerful than the
minimum p-value method, which is based on marginal SNP effects and is the
most commonly used method in genome-wide screening. The proposed test
is also compared with other existing methods, including the Higher Criticism
(HC) test and the sequence kernel association test (SKAT), through simula-
tions and analysis of a real genome data set. For typical genome-wide data,
where effects of individual SNPs are weak and correlations among SNPs are
high, the proposed test is more advantageous and clearly outperforms the
other methods in the literature.

1. Introduction. Analysis of large scale genome-wide data introduces chal-
lenging statistical problems. In this paper, we study hypothesis testing in the con-
text of high-dimensional genome data, with sparse and correlated signals. Our sta-
tistical development is motivated by analysis of pharmacogenomics data, where
a whole genome with millions of genetic variants, for example, single nucleotide
polymorphisms (SNP), is examined, for possible relationships with a patient’s clin-
ical response to drug. The most commonly used statistical method in genome-wide
data analysis is the single-SNP method that analyzes individual SNPs’ effects on
the response, for example, using correlation of an individual SNP with the response
variable. However, individual SNP effects may not be strong enough to pass strin-
gent significance tests. SNP-set methods, as an alternative strategy, analyze a set
of SNPs grouped on the basis of functional genomic region. SNP-set methods
conduct an overall test of set effects and are expected to improve the single-SNP
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method by reducing the burden of multiple testing and aggregating individual SNP
effects.

In this paper, we consider the following model for a continuous phenotype and
a set of p SNPs:

(1.1) Y = β0 + X1β1 + · · · + Xpβp + ε, ε ∼ N
(
0, σ 2I

)
,

where Y = (Y1, . . . , Yn)
T is the drug response of n subjects, Xi = (Xi1, . . . ,Xin)

T

is the genotype of the ith SNP, 1 ≤ i ≤ p, which is coded as 0, 1, 2 represent-
ing the copy number of minor alleles, β0, β1, . . . , βp are the unknown regression
coefficients and ε is the error term. The linear model might be too simple to de-
scribe genotype and phenotype relationships exactly, but it is always a good start
and offers useful information. It is also easy to incorporate clinical covariates in
this model. Denoting β = (β1, . . . , βp)T , we are interested in an overall test to
determine whether the set of SNPs is associated with the response

(1.2) H0 : β = 0 versus H1 : β �= 0.

In our genome-wide data analysis, we will perform a large number of statistical
tests, as we screen the whole genome with SNP sets based on genes or intergenic
regions.

In many genome-wide data analyses, only a small number of genetic variants
might be associated with the phenotype. Testing for multiple regression in a sparse
model, where most predictors have little or no effect on the response, has been
extensively studied, for example, by Arias-Castro, Candès and Plan (2011) and
Ingster et al. (2010). The minimum p-value method [Chen et al. (2006), Ballard,
Cho and Zhao (2010)] tests for significance using the smallest p-value among a
set of multiple SNPs, where the p-values are calculated based on a test statistic of
individual SNP effect. Wu et al. (2014) adopted the higher criticism (HC) approach
to SNP-set analysis and derived a detection boundary. These methods have been
shown to be asymptotically powerful and are preferred over the classical F -test
under strong sparsity regimes [Arias-Castro, Candès and Plan (2011), Ingster et al.
(2010)]. However, these methods are based on marginal effects of single SNPs,
neglecting correlations among SNPs. In fact, statistical procedures on the basis of
marginal effects are common in the literature. Others include the sure independent
screening [Fan and Lv (2008)] and the covariance test for LASSO against a global
null hypothesis [Lockhart et al. (2014), Taylor, Loftus and Tibshirani (2013)]. In
situations where marginal effects are very weak, it is expected that testing proce-
dures based on marginal effects would have restricted power.

For example, in a pharmacogenomics study of patients’ response to anti-TNF
drugs in Rheumatoid Arthritis [Cui et al. (2013), Rheumatoid Arthritis Responder
Challenge, https://www.synapse.org/#!Synapse:syn1734172/], we examine whole
genome genotypes of about 2 million SNPs for 1869 Rheumatoid Arthritis (RA)
patients, who have been treated with three anti-TNF drugs. The goal is to identify

https://www.synapse.org/#!Synapse:syn1734172/
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FIG. 1. Manhattan plot of individual SNPs along the genome for the pharmacogenomics data of
anti-TNF drugs in Rheumatoid Arthritis. Marginal effects of the SNPs are too small to pass the
genome-wide significance threshold.

patient genetic information that may contribute to drug response, as indicated by
changes of disease activity scores from the baseline to the end of the study. Figure 1
shows a Manhattan plot of individual SNPs along the genome. The most significant
SNP has a p-value of 1.1×10−6. As we are testing about 2×106 SNPs, this result
implies that individual SNPs have no or very weak effects.

Motivated by exploratory analysis of the pharmacogenomics data, we develop
a new test to account for the following special situations. First, most SNPs have
little or no effect on the phenotype; see also Wu et al. (2010). Second, individual
SNP effects are generally too weak to be directly detected. Third, many SNPs are
highly correlated, for example, due to strong linkage disequilibrium. Moreover,
the magnitude of each SNP effect is likely to vary, with some SNPs being pro-
tective and others deleterious [Wu et al. (2010), Sham and Purcell (2014)]. We
will describe these situations by several statistical assumptions, including spar-
sity, weak marginal effect, correlations among predictors and varied effect sizes.
We use the following example to further demonstrate the phenomena. In the RA
pharmacogenomics data, a gene named NDUFAF5 on chromosome 20 contains 17
SNPs. Table 1 illustrates marginal effects of the SNPs, as indicated by the marginal
correlation between each SNP and the response, and conditional effects, which are
represented by the conditional p-values of the SNPs from a joint multiple regres-
sion model. We observe that SNP marginal effects are very small and some have
opposite directions, and that SNPs can be highly correlated. More importantly,
conditional effects based on joint regression provide enhanced information on the
response. In fact, with correlated SNP predictors in the multiple regression, co-
efficient estimators and their standard errors are changed from the corresponding
estimators based on each single SNP alone. The conditional effect of SNP6 be-
comes much stronger than its marginal effect, with a p-value of 1.19 × 10−6 for
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TABLE 1
An example of marginal and conditional effects of SNPs from the Rheumatoid Arthritis

pharmacogenomics data. The marginal correlations are the sample correlations between the
response and individual SNPs. The marginal and conditional p-values are calculated based on the
t-statistics in simple regression and multivariate regression (including all the SNPs), respectively.

The response is an adjusted one after controlling for several clinical covariates and potential
confounding effects due to population stratification among the samples (details in Section 4.2)

Marginal Marginal Conditional Correlation with
correlation p-value p-value SNP6

SNP1 0.005 0.827 0.552 −0.261
SNP2 0.033 0.157 0.642 −0.196
SNP3 0.033 0.158 0.862 −0.196
SNP4 0.040 0.081 0.871 0.455
SNP5 0.040 0.083 0.938 0.457
SNP6 −0.007 0.752 1.19 × 10−6 1.000
SNP7 0.017 0.463 0.405 0.976
SNP8 −0.055 0.017 0.575 −0.105
SNP9 −0.035 0.127 0.592 −0.126
SNP10 −0.058 0.012 0.124 −0.052
SNP11 0.032 0.160 0.879 −0.194
SNP12 0.012 0.619 0.509 −0.248
SNP13 −0.004 0.877 0.487 −0.106
SNP14 0.017 0.459 0.133 −0.246
SNP15 0.033 0.154 0.776 −0.196
SNP16 −0.043 0.061 0.368 −0.052
SNP17 −0.001 0.983 0.477 −0.108

the conditional effect, which indicates significance of this gene. Our new test will
be able to identify this type of signal and advance the analysis.

In general, there are cases when conditional effects from multiple regression
are larger than the marginal effects of individual predictors. We illustrate this by
a simplified example. Consider a 3-dimensional vector (Y,X1,X2)

T following a
multivariate normal distribution with mean 0 and covariance matrix

� =
⎛
⎝ 1 γ −γ

γ 1 ρ

−γ ρ 1

⎞
⎠ ,

where γ is the marginal correlation of X1 and Y , ρ is the correlation between X1

and X2, and −1 < γ,ρ < 1 and 1 − ρ > 2γ 2, so that � is positive-definite. The
conditional distribution of Y given X1 and X2 is

Y |X1,X2 ∼ N

(
γ

1 − ρ
(X1 − X2),1 − 2γ 2

1 − ρ

)
.
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Writing it in the form of the regression model (1.1), we have Y = γ
1−ρ

X1 −
γ

1−ρ
X2 + ε, with the error variance σ 2 = 1 − 2γ 2

1−ρ
. Note that each variable Xi

(i = 1,2) individually explains only γ 2 of the variation of Y but they jointly ac-

count for 2γ 2

1−ρ
of the variation, which could be much larger than 2γ 2. For example,

when γ = 0.1 and ρ = 0.9, we have γ 2 = 1% but 2γ 2

1−ρ
= 20%. Extending the idea

to genome-wide data analysis, we introduce a new test that takes advantage of
the dependency structure among SNPs and is based on the conditional effects of
SNPs. We aim at developing a test that not only performs well in general but is
also particularly powerful in the presence of weak and correlated SNP effects. It
will therefore improve existing genome screening methods.

In Section 2, we define the new test statistic for correlated multiple SNPs and es-
tablish its asymptotic null distribution. Section 3 investigates the power of the pro-
posed test, formulates statistical assumptions as aforementioned and shows that the
proposed test is asymptotically more powerful than the minimum p-value method
under these conditions. Section 4 compares the proposed test with other tests, in-
cluding the minimum p-value method, HC [Wu et al. (2014)], and SKAT [Wu
et al. (2011)], through simulations and analysis of a real pharmacogenomics data
set. The advantage of the proposed test is clearly demonstrated. A discussion is
given in Section 5. The proofs of the theorems and lemmas, and additional simu-
lations are provided in the online supplementary material [Liu and Xie (2018)].

2. A new test statistic with asymptotic null distribution. We rewrite the
regression model (1.1) as

Y = β01n + Xβ + ε,

where Y ∈ R
n, 1n = (1, . . . ,1)T ∈ R

n, the matrix of the predictor variables
X = (X1, . . .Xp) ∈ R

n×p , and ε ∼ N(0, σ 2I). Assume X1, . . . ,Xp are standard-
ized and rescaled by a factor 1/

√
n such that XT

i Xi = 1 for any 1 ≤ i ≤ p. This
assumption is merely for convenience, since it simplifies the exposition, but is
not essential. We denote the sample size np := n, which depends on p and is
larger than p, that is, np > p, as most genes or intergenic regions have SNPs less
than the sample size. We assume the design matrix X to have full rank hereafter.
Furthermore, denote � = (σij ) = XT X ∈ R

p×p and � = (ωij ) = �−1, and let

β̂ = (β̂1, . . . , β̂p)T be the ordinary least squares (OLS) estimator of the regres-

sion coefficients β , that is, β̂ = �XT Y, and σ̂ 2 is the OLS estimator of the error
variance σ 2.

Our new test statistic is defined as Tmax = max1≤i≤p |Ti |, where

(2.1) Ti = β̂i√
ωiiσ̂

.
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Ti is the usual t-statistic to test the significance of the ith predictor conditional on
all other predictors in multiple regression. When studying the asymptotic proper-
ties of the new test statistic, we follow Wu et al. (2014) to consider p growing with
np and p → ∞. In fact, in the RA pharmacogenomics data, we have SNP sets with
sizes ranging from 1 to 1445, so p can grow very large.

To provide an intuition of the proposed test statistic, let us first compare it with
the standard single-SNP test. For SNP i, we calculate

(2.2) ri = XT
i Y
sy

,

where XT
i Xi = 1 and sy is the sample standard deviation of the response Y . This

term is actually a rescale of the sample correlation coefficient according to our
notation (

√
n multipling the sample correlation coefficient). The absolute value

|ri | measures the magnitude of marginal effect of an individual SNP on Y . It is
equivalent to a t-statistic from simple regression of Y on Xi , denoted as ti . The
maximum test statistic, rmax = max1≤i≤p |ri | or tmax = max1≤i≤p |ti |, for a set of
p predictors, is commonly used in genome-wide screening and is also referred
to as the minimum p-value method [Chen et al. (2006), Ballard, Cho and Zhao
(2010), Goeman, Van De Geer and Van Houwelingen (2006)]. One would expect
that tmax is powerful when a small fraction of predictors has moderate or strong
marginal effects but does not work well if marginal effects are all weak, especially
when predictors are highly correlated.

The new test statistic Tmax is based on β̂ = �XT Y, which is a linear transfor-
mation of XT Y for the marginal effects. In comparison with |ti |, each |Ti | mea-
sures the magnitude of conditional effect, that is, the effect of the ith predictor
conditional on the others. Some conditional effects of predictors could be stronger
than their marginal effects when there is dependence among predictors. As demon-
strated by the example in the Introduction section, this situation could happen in
the presence of positively correlated predictors having opposite marginal effects.
This observation motivates us to study the situation, where power could be im-
proved by the test of Tmax.

We first establish the asymptotic null distributions for Tmax and rmax, and cor-
respondingly their α-level tests. We assume the following conditions:

C(1.1) ‖�‖2 ≥ a0 and |σij | ≤ M(1 + |i − j |)−λ for i �= j , where ‖ · ‖2 is the
matrix spectral norm and constants λ > 1, a0 > 0 and M > 0.

C(1.2) max1≤i<j≤p |σij | and max1≤i<j≤p |ωij/
√

ωiiωjj | are bounded by some
constant c0 < 1.

C(1.3) (np − p)−1 = o([logp]−2).

C(1.1) indicates that the off-diagonal of the correlation matrix � decays at a poly-
nomial rate. It attempts to describe the linkage disequilibrium structure of the SNP
data, as the extent of linkage disequilibrium decreases along the distance between
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SNPs. This condition has been used by Hall and Jin (2010) for the normal means
problem and by Wu et al. (2014) for multiple regression. On the other hand, the
polynomial decay assumption is not critical for the following Theorem 2.1 and
can be relaxed. C(1.2) is a weak and common condition. In fact, � would become
singular if max1≤i<j≤p |σij | = 1. C(1.3) indicates that the sample size np only
needs to be slightly larger than p and that it can grow at the same rate of p, that is,
limp→∞ np/p = 1.

THEOREM 2.1. Under C(1.1) and C(1.2) and the null hypothesis (1.2), for
any x ∈R, we have

P
(
r2

max − 2 logp + log logp ≤ x
) → exp

(
− 1√

π
e−x/2

)
as p → ∞.

Further assume C(1.3) holds, then for any x ∈ R,

P
(
T 2

max − 2 logp + log logp ≤ x
) → exp

(
− 1√

π
e−x/2

)
asp → ∞.

We define the asymptotic α-level tests based on rmax and Tmax as follows:

Rt(α) = I {rmax ≥
√

2 logp − log logp + qα},(2.3)

RT (α) = I {Tmax ≥
√

2 logp − log logp + qα},(2.4)

where qα = − logπ − 2 log log(1 − α)−1 is the (1 − α)−quantile of the limiting
null distribution. The null hypothesis in (1.2) is rejected if Rt(α) = 1, or RT (α) =
1, respectively.

3. Asymptotic power. In this section, we analyze the asymptotic power of
RT (α) and examine the situations where RT (α) is asymptotically more power-
ful than Rt(α). We first formulate the statistical assumptions, as motivated from
our exploratory data analysis. Let θ = E(XT Y) = XT Xβ , which represents the
marginal effects of the predictors. Given that XT X is full rank, hypothesis (1.2)
for β is equivalent to

H0 : θ = 0 versus H1 : θ �= 0.

Our assumptions of sparsity, weak signals and varied effect sizes will be described
in terms of the marginal effects θ . In fact, assumptions on θ is more appropri-
ate than assumptions based on β . Since the single-SNP analysis that ranks SNPs
according to their marginal effects is routinely done in genome screening, infor-
mation about the marginal effects of SNPs is easily available. On the other hand,
information of the joint effects β is usually not available, making it difficult to
verify assumptions on β .
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We begin with more notation. Denote S = {1 ≤ i ≤ p : θi �= 0}, as the set of
signals or nonzero effects. Suppose the signals are on the order of pγ , that is, the
size of nonzero effects |S| = pγ , 0 < γ < 1. We describe the situation of sparse
signals as 0 < γ < 1/2. The dependence among SNPs has been represented by
the correlation matrix � and Condition C(1.1). We further consider the subset of
signal SNPs in S and assume a blocked structure for the signals. More specifically,
we assume the SNPs that are associated with the response appear in m blocks, S =⋃m

k=1 Sk and Sk ∩Sl = ∅ for k �= l. Let |Sk| = sk . Each block contains consecutive
SNPs, Sk = {ik + 1, ik + 2, . . . , ik + sk}. For two sequences of real numbers {ap}
and {bp}, we introduce a notation ap � bp if there are positive constants C1 and
C2 such that C1 ≤ ap/bp ≤ C2 for all p ≥ 1. We assume each block of signals is
also on the order of pγ , that is, sk � pγ for 1 ≤ k ≤ m.

Most existing methods and theorems for sparse signals assume that signal lo-
cations are randomly drawn from {1,2, . . . , p} [Hall and Jin (2010), Arias-Castro,
Candès and Plan (2011), Wu et al. (2014), Cai, Liu and Xia (2014), Li and Zhong
(2017)]. This assumption implies that signals appear as singleton. It may not be
appropriate for SNP data, because SNPs in strong linkage disequilibrium would
be associated with the phenotype together. In our theorems, we assume signals oc-
curring in blocks. The situations of sparsity, correlations among signals and varied
effect sizes are characterized by the following conditions. The assumption of weak
effect is specified in the statement of Theorem 3.1. Let XSk

denote the columns of
X in Sk :

C(2.1) Signals are sparse, that is, on the order of pγ , 0 < γ < 1/2.
C(2.2) ‖XT

Sk
XSk

− Qk‖l∞ = O(n
−1/2
p lognp) for 1 ≤ k ≤ m, where Qk =

(ρ
|i−j |
k )sk×sk has a AR(1) covariance structure, or is a Kac–Murdock–Szegö

(KMS) matrix, with a constant 0 < ρk < 1 and ‖ · ‖l∞ is the element-wise l∞-
norm.

C(2.3) θiθi+1 < 0 for any i ∈ Sk and 1 ≤ k ≤ m.

C(2.2) indicates that the sample correlation matrix of each signal block is approx-
imately a KMS matrix, which has an exponential off-diagonal decay, and thus
also satisfies the general polynomial decay requirement in C(1.1). C(2.3) indicates
that the effect directions alternate within each signal block, describing the situa-
tion where some SNPs are protective and others are deleterious [Wu et al. (2010),
Sham and Purcell (2014)]. C(2.2) and C(2.3) together address the regression sit-
uation where conditional effects are stronger than marginal effects. In fact, these
are sufficient but not necessary conditions; see the “mixed effects” simulation sce-
nario in Section 4.1. The following theorem shows that the proposed test RT (α) is
asymptotically more powerful than Rt(α) given these conditions.

THEOREM 3.1. Suppose C(1.1), C(1.2), C(1.3) and C(2.1), C(2.2), C(2.3)
hold. Denote c0 < 1 as the bound in C(1.2) and a constant b > (1 + c0)/2. If
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max1≤i≤p |θi/σ | ≤ (1 − √
bγ )

√
2 logp, and the polynomial decay rate in C(1.1)

satisfies λ > max{ 1
b
,1}, then we have

lim
p→∞

P(RT (α) = 1)

P (Rt(α) = 1)
≥ 1.

REMARK 1. Theorem 3.1 specifies an upper bound on the maximum of signal
strength, to characterize weak effects and allow varied effect sizes. In contrast,
existing theories including Arias-Castro, Candès and Plan (2011), Hall and Jin
(2010), Wu et al. (2014) all assume that signals have a common magnitude, which
may not be appropriate for SNP data. Because c0 < 1 as assumed in C(1.2), b >

(1 + c0)/2 implies b could be smaller than 1. Therefore, the upper bound of the
signal strength (1 − √

bγ )
√

2 logp is larger than (1 − √
γ )

√
2 logp, which is the

threshold of signal strength for commonly used test statistics such as tmax and HC
[Arias-Castro, Candès and Plan (2011)].

REMARK 2. To provide insights as to how test RT (α) outperforms Rt(α),
recall that Tmax is based on the conditional test statistic (2.1) from a linear trans-
formation of the marginal correlation (2.2). The magnitudes of the signal strengths
of Tmax and tmax are represented by β and θ , respectively, and β = (XT X)−1θ .
When predictors X are correlated, this transformation can amplify the magnitude
of signals, that is, |βi | ≥ |θi | for the majority of the elements i ∈ {1, . . . , p}. This
is especially true under C(2.3), when correlated signals have opposite effect di-
rections. The transformation thus helps to separate the alternative hypothesis from
the null. The idea of applying proper transformation to magnify signal strength has
been studied, for example, by Hall and Jin (2010), Cai, Liu and Xia (2014), Li and
Zhong (2017). On the other hand, these existing methods require that the signal lo-
cations are randomly drawn from {1,2, . . . , p}, and thus the signals are essentially
asymptotically uncorrelated. The improvement of signal strength of these meth-
ods merely results from correlation between signals and noises (but not correlation
among signals). In contrast, we assume correlated signals via C(2.2) to take the
linkage disequilibrium structure into account. The proposed test RT (α) benefits
from correlation among signals, which therefore distinguishes it from the existing
literature.

REMARK 3. Matrix Qk can be viewed as the true correlation matrix of the
kth signal block. The specific form of Qk serves as an approximation but by no
means would be the exact case in real applications. We empirically observe that test
RT (α) still outperforms Rt(α) under a wide variety of Qk , such as matrices with
polynomial off-diagonal decay, which will be shown by simulations in Section 4.

The following theorem considers the special case when signals have common
magnitude, as assumed in Arias-Castro, Candès and Plan (2011), Hall and Jin
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(2010), Wu et al. (2014), Cai, Liu and Xia (2014). It shows that RT (α) can be
strictly more powerful than Rt(α).

THEOREM 3.2. Assume C(2.1) and |θi/σ | = a(1−√
γ )

√
2 logp for all i ∈ S.

Suppose C(1.1) and C(1.2) hold. Then when a < 1, we have

lim sup
p→∞

P
(
Rt(α) = 1

) ≤ α.

Further assume C(1.3), C(2.2) and C(2.3) hold, and a >

√
(1+ρ2

k0
)(1−ρ2

k0
)

(1+ρk0 )2 , where

k0 = argmax1≤k≤m ρk and ρk is the exponential decay rate as in C(2.2). Then we
have

lim
p→∞P

(
RT (α) = 1

) = 1.

4. Applications. We apply the proposed test in simulations and a pharma-
cogenomics data set and compare it with the minimum p-value method (tmax) and
a few other SNP-set methods, including HC [Wu et al. (2014)] and SKAT [Wu
et al. (2010)]. We use the linear kernel in SKAT, as recommended by the authors,
for regression with a continuous response [Wu et al. (2010)].

4.1. Simulation studies. We simulate data sets with a variety of SNP correla-
tion structures. In all simulations, our sample size is n = 500 but there are three
different dimension sizes for a SNP set, p = 50,100,200. We generate an indi-
vidual SNP from Binomial(2,0.3), where 0.3 is the minor allele frequency. We
simulate the SNP correlation matrices according to different types of off-diagonal
decays: (1) exponentially off-diagonal decay, with the (i, j)th entry equal to ρ|i−j |,
where ρ takes values ρ = 0.2,0.3, . . . ,0.7; (2) polynomially off-diagonal de-
cay, with the (i, j)th entry equal to M

(1+|i−j |)1.5 for i �= j , where M takes values
M = 0.2,0.4, . . . ,1.4; (3) banded correlation matrix, with the (i, j)th entry equal
to 1 if i = j , (1 − 0.4

√|i − j |) × L if 1 ≤ |i − j | ≤ 6, and 0 otherwise, where
L takes values L = 0.2,0.4, . . . ,1.2. We use the R package bindata [Leisch,
Weingessel and Hornik (1998)] to simulate the correlated SNP data X.

We first demonstrate the asymptotic α-level tests from Theorem 2.1, as ex-
pressed in (2.3) and (2.4). For a given correlation matrix as described above, we
generate 50 SNP data sets, as replications from the same distribution with a com-
mon correlation matrix. Then for each SNP set, we simulate a sample of 500 phe-
notype responses Y under the null model, which is simply 500 independent and
standard normal random variables [the error variance in model (1.1) is assumed
as 1]. We repeat the simulation 10,000 times, for a total of 50 × 10,000 replicates
from the null model and with the corresponding SNP correlation structure. We then
examine the empirical Type I error, which is referred to as the proportion of the test
statistic larger than the asymptotic critical value defined in (2.3) and (2.4) out of
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TABLE 2
Empirical Type I error based on 50 × 10,000 replications with α = 0.05 and n = 500. Tmax and

tmax denote the proposed test and the minimum p-value method, respectively. The parameters
represent different levels of correlation among SNPs, as defined in the simulation setting

p = 50 p = 100 p = 200

Correlation matrix Parameter Tmax tmax Tmax tmax Tmax tmax

Exponential 0.2 0.042 0.038 0.045 0.039 0.048 0.039
0.5 0.041 0.036 0.044 0.037 0.048 0.038
0.7 0.04 0.032 0.043 0.034 0.047 0.035

Polynomial 0.4 0.042 0.037 0.045 0.039 0.048 0.039
1.0 0.041 0.037 0.044 0.038 0.048 0.039
1.4 0.041 0.036 0.044 0.037 0.048 0.038

Banded 0.2 0.042 0.038 0.044 0.038 0.048 0.039
0.8 0.042 0.036 0.044 0.037 0.048 0.038
1.2 0.041 0.034 0.044 0.035 0.048 0.036

50×10,000 simulations. The significance level is α = 0.05. Table 2 shows the em-
pirical Type I error under different correlation structures. A completed table with
all simulation scenarios described above is available in the supplementary material
[Liu and Xie (2018)]. It can be seen that the empirical Type I errors are reasonably
close to the significance level 0.05 for both tests based on Tmax and tmax, under
different correlation matrices. In addition, the Type I errors are closer to 0.05 with
larger values of p, supporting the asymptotic results from Theorem 2.1. In addi-
tion, the Type I error of the test based on Tmax is bigger than the test based on tmax,
due to the fact that Tmax is the maximum of t distributions with heavier tails than
the distribution of tmax.

We next simulate the phenotype response according to the alternative hypothesis
and compare powers of the four tests, that is, Tmax, tmax, HC and SKAT. Two
sparsity cases are considered, γ = 1/2 and 1/4. For the signal set S, that is, SNPs
with nonzero marginal effects, we assume there is one block with size |S| = pγ

starting from the first SNP. We study two scenarios for the magnitude of marginal
effects, corresponding to Theorem 3.1 and 3.2, respectively: (i) varied magnitude,
|θi | is uniformly drawn from the interval [1

2d0,
3
2d0] for each i ∈ S, where d0 =

(1−√
γ )

√
2 logp; (ii) constant magnitude, |θi | = d0 for all i ∈ S. For each of these

two scenarios, three types of effect directions are studied: (a) same effect direction,
θi > 0 for all i ∈ S; (b) alternating effect directions, θiθi+1 < 0 for any i ∈ S, as
specified in C(2.3); (c) mixed effect directions, that is, we randomly select half of
the nonzero θi ’s to be positive and the other half to be negative. The phenotype
data Y is simulated under Model (1.1) with β = (XT X)−1θ and the error variance
σ 2 = 1. For each simulation scheme, we repeat 50 × 10,000 times, with 50 SNP
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data sets generated according to a given correlation structure and 10,000 phenotype
responses generated for each SNP data set.

An empirical α-level critical value is used to calculate the power of HC. In fact,
the HC method does not have an asymptotic critical value accurate enough for
practical uses, so an empirical critical value based on simulations is recommended
[Donoho and Jin (2015), Hall and Jin (2010)]. More specifically, given each SNP
set, 10,000 phenotype responses from the null model are generated and the 95th
sample percentile of the 10,000 test statistics is used as the empirical critical value
for a Type I error of 0.05. To make a fair comparison, we analogously simulate the
empirical critical values for Tmax and tmax, respectively. The power is calculated
as the proportion of 50 × 10,000 simulations whose corresponding test statistics
exceed the empirical critical value. For SKAT, a R package developed by the au-
thors is available, which provides p-value. The power of SKAT is the proportion
of 50 × 10,000 simulations with p-values less than 0.05.

Figures 2–4 display the power of the four tests for the scenarios of varied effect
sizes with three types of off-diagonal decay of the correlation matrix, respectively.

FIG. 2. Power comparison of different tests when the SNP correlation matrix has exponentially
off-diagonal decay: the (i, j)th entry equals ρ|i−j |, where ρ takes values ρ = 0.2,0.3, . . . ,0.7. The
rows correspond to same, opposite and mixed effect directions, respectively. The columns from left to
right correspond to p = 50,100,200.
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FIG. 3. Power comparison of different tests when the SNP correlation matrix has polynomi-
ally off-diagonal decay: the (i, j)th entry equals M

(1+|i−j |)1.5 for i �= j , where M takes values

M = 0.2,0.4, . . . ,1.4. The rows correspond to same, opposite and mixed effect directions, respec-
tively. The columns from left to right correspond to p = 50,100,200.

The sparsity level is at γ = 1/2. The top, middle and lower panels of these figures
show the scenarios of same, opposite and mixed effect directions, respectively.
Note that the simulated signal strength is very small, as |θi | ∈ [1

2d0,
3
2d0], where

d0 = (1 − √
γ )

√
2 logp is the signal detection threshold for tmax and HC. It is

not surprising that tmax and HC only have limited power in these simulations of
weak marginal effect. In summary, the simulation results demonstrate that (i) under
weak marginal effects, tmax, HC and SKAT have very low power whatever the
effect directions are, while Tmax can be powerful in some situations; (ii) when
marginal effects are in opposite directions, the test of Tmax is substantially more
powerful than the other tests, especially in the presence of high correlations among
SNPs; (iii) when marginal effects are in the same direction, the other tests could
outperform Tmax, but essentially all tests only have limited power; (iv) even in the
situations where marginal effects have mixed directions and the condition C(2.3)
is violated, Tmax can still be more powerful than the other tests. These comparison
results are similar with different types of correlation structures among SNPs. More
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FIG. 4. Power comparison of different tests when SNPs have a banded correlation matrix: the
(i, j)th entry equals 1 if i = j , (1−0.4

√|i − j |)×L if 1 ≤ |i−j | ≤ 6 and 0 otherwise, where L takes
values L = 0.2,0.4, . . . ,1.2. The rows correspond to same, opposite and mixed effect directions,
respectively. The columns from left to right correspond to p = 50,100,200.

results for γ = 1/4 and the constant effect magnitude are given in Figures 1–9 in
the supplementary material [Liu and Xie (2018)].

In addition, to mimic correlation structures of SNP sets in real applications,
we carry out simulations using SNP sets from the Rheumatoid Arthritis pharma-
cogenomics study. More specifically, we randomly select 50 SNP sets that (ap-
proximately) have p = 50,100,150 SNPs. The phenotype response is simulated
according to one of the previous scenarios with varied marginal effects. We also
consider three types of effect directions, that is, same, opposite and mixed. The
power comparison of the four tests are shown in Figure 10 in the supplementary
material [Liu and Xie (2018)]. The performances of the different tests demonstrate
similar phenomena.

To conclude, in situations of sparse and weak effects, the test of Tmax is gener-
ally comparable to other tests and is particularly more powerful than the other tests
when SNPs are correlated and their effect directions vary. In analysis of genome-
wide data, where a test is applied to tens of thousands of SNP groups, we may
have either varied or common effect directions for a SNP group. However, if we
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had known that the majority of individual SNP effects were very weak, for ex-
ample, from the standard single-SNP analyses, we would expect that Tmax could
identify more significant SNP groups than the other tests.

4.2. The pharmacogenomics data example. We apply the new test statistic
Tmax in the pharmacogenomics data set of patients’ response to anti-TNF drugs
in Rheumatoid Arthritis (RA). The data are from an open contest of Rheumatoid
Arthritis Responder Challenge organized by DREAM and Sage Bionetworks [Cui
et al. (2013), https://www.synapse.org/#!Synapse:syn1734172/], with permission
to use. The data contain whole genome genotypes, with about 2 million SNPs (im-
puted to a common genome reference), and clinical features collected from over
two thousand RA patients who have been treated with three anti-TNF drugs. We
examine whether patient genetic information contributes to the drug response by
screening the whole genome for significant SNP sets.

The phenotype of this data is the change of disease activity score (a composite
score for 28 joints, DAS28), which is the baseline DAS28 minus DAS28 at 3–12
months after initiating the anti-TNF therapy, denoted as DAS28. The clinical
covariates include:

Batch: Genotyping batch
Cohort: Name of cohort from which the individual was ascertained
Drug: Drug received (adalimumab, etanercept, infliximab)
baselineDAS28: baseline Disease Activity Score
Gender: = 0 Male, = 1 Female
Mtx: Methotrexate cotherapy, = 0 no cotherapy, = 1 cotherapy

We do not include the clinical covariate, that is, age, with a large number of
missing values. Samples with at least one missing value for the above six clinical
covariates are deleted, resulting in a sample size of 1869 in our analysis. A prelim-
inary analysis shows that all clinical covariates, as listed above, are significant to
the treatment response with p-values < 0.05. Specifically, the treatment response
strongly depends on the baseline DAS28 (p-value < 10−16). Batch is also very
significant, indicating substantially variable measurements from different experi-
ments. Besides the clinical covariates, we also calculate principal components of
the correlation matrix among subjects [Price et al. (2006)], which can represent
population stratification in the sample. We adjust for the six clinical covariates and
four principal components in the following SNP-set tests. More specifically, we
first regress DAS28 on the clinical covariates and the principal components and
use the residuals as the adjusted responses for SNP-set tests.

We use the human genome reference hg19 (Human Genome version 19, https://
genome.ucsc.edu/cgi-bin/hgGateway?db=hg19) to group SNPs into genes or in-
tergenic regions. For data quality control, we exclude SNPs with Hardy–Weinberg
equilibrium p-values less than 10−5 and minor allele frequency less than 0.01.
We also remove SNPs that have collinearity with the clinical covariates and other

https://www.synapse.org/#!Synapse:syn1734172/
https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19
https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19
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FIG. 5. The smallest 30 p-values from each of the four tests on the RA treatment response phar-
macogenomics data. The p-values are shown on − log10 scale.

SNPs in a set, that is, those as deemed not estimable in multiple regression with the
clinical covariates and the set of SNP variables. There are 74 SNP groups whose
sizes (number of SNPs) are larger than the sample size 1869. For each of these
SNP sets, we split it equally into two or three subsets, so that the sizes of the sub-
sets are less than 1869. The final data contains 1,695,915 SNPs into 35,156 SNP
groups. The group size ranges from 1 to 1445 and is highly skewed to the right.

After adjusting the clinical covariates and the principal components, we find no
SNP with a marginal effect big enough to be significant, as illustrated by the Man-
hattan plot in Figure 1. In contrast, Tmax identifies several significant SNP sets,
with four SNP sets having p-values less than 10−5. Figure 5 shows the smallest
30 p-values among 35,156 SNP sets for each of the four tests, Tmax, tmax, HC and
SKAT. Instead of using the asymptotic null distributions, we calculate empirical
p-values for Tmax, tmax, and HC by adaptive permutations, which are supposed to
be more accurate (comparisons between the asymptotic p-values and the permu-
tation p-values for Tmax and tmax are provided in Figure 13 in the supplementary
material [Liu and Xie (2018)]). Figure 5 clearly demonstrates that Tmax provides
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more significant SNP sets than the other tests. There is a substantial improvement
of significance for all top 30 SNP sets by Tmax. In fact, tmax, HC, and SKAT are
all based on marginal test statistics (SKAT is essentially a weighted sum of the
squares of the marginal test statistics [Lee et al. (2014)]). Therefore, it is expected
that they have lower power than Tmax when marginal effects are very weak.

Applying the Benjamini–Hochberg multiple testing procedure [Benjamini and
Hochberg (1995)], Tmax selects the top four SNP sets as significance at a false
discovery rate of 10%, whereas the other three methods identify none. The most
significant SNP set identified by Tmax has a p-value 10−5.6. It is a gene named
ACP5, the acid phosphatase 5. Interestingly, the gene has biological information
on the RA disease, as a marker of the osteoclast proteolytic activity and is known
to be involved in inflammatory arthritis [Dolcino et al. (2015)].

We also investigate the stability of the data analysis result shown in Figure 5,
through perturbing the data by subsampling. We randomly select two subsamples
with 1402 subjects (i.e., 3/4 of the 1869 subjects) and repeat our analysis on each
of the subsamples. The results are reported in Figures 11–12 in the supplementary
material [Liu and Xie (2018)] and illustrate that our proposed test still outper-
forms the other tests on the subsamples. In summary, given very weak marginal
SNP effects in this pharmacogenomics data set and supported by our theorems
and simulations, we believe the top significant SNP sets identified by Tmax offer
promising genetic information for the anti-TNF drug response.

5. Discussion. We have proposed a new test for multiple regression and
specifically applied the proposed test in screening large scale genome-wide data
for significant SNP sets. The new test is based on joint effects of multiple pre-
dictors, with an asymptotic null distribution of the test statistic derived from the
extreme value distribution. We demonstrate that the new test is more powerful than
other existing tests under certain alternatives through theories and simulations. In
genome-wide studies, the new test is particularly useful if we observe that marginal
SNP effects are very weak, for example, from routine single-SNP screening. In
practice, if single-SNP analysis identifies a number of significant SNPs, we can
always apply the proposed method to search for additional signals after removing
the significant SNPs.

The existing theories in the literature for the competing tests, for example, tmax
and HC, rely on two main assumptions: (A1) signal locations are randomly gen-
erated; (A2) signals have the same magnitude. A1 along with assumptions on the
covariance matrix, such as C(1.1), implies nearly uncorrelated signals. On the con-
trary, in our theory, signals are not independent but instead follow certain correla-
tion structures. The key conditions of our theories are weak marginal effects and
high correlations among signals, both of which reflect situations of real genome
data. The condition of alternating effect directions is a sufficient condition but not
a necessary one. With high correlations, the new test based on conditional effects
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is likely to improve those based on marginal effects, even if the condition of alter-
nating directions is invalid.

One of our future works is to extend the proposed test to logistic regression
when the response is a binary variable. It is easy to define a maximum test statistic,
similar to Tmax, using conditional SNP effects in a logistic regression model. We
have empirically observed good performances for this type of test in simulations.
It remains to make theoretical derivation of an asymptotically powerful property.

Acknowledgments. The authors thank the editors and the two anonymous ref-
erees for their comments and suggestions that have helped greatly improve the
paper. The Datasets used for the analyses described in this manuscript were ob-
tained as part of the RA Responder DREAM8 Challenge through Synapse ID
[syn1734172].

SUPPLEMENTARY MATERIAL

Supplement to “Powerful test based on conditional effects for genome-wide
screening” (DOI: 10.1214/17-AOAS1103SUPP; .pdf). The supplementary mate-
rial contains (1) technical lemmas and their proofs; (2) the proofs of all theorems;
(3) additional table and figures regarding simulation results under constant effect
magnitude and sparsity parameter γ = 1/4, simulations using real genotype data,
the stability of the real data analysis result and the conservativeness of p-value
calculation based on asymptotic null distribution.
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