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This paper examines a bivariate count time series with some curious sta-
tistical features: Saffir—Simpson Category 3 and stronger annual hurricane
counts in the North Atlantic and eastern Pacific Ocean Basins. As land and
ocean temperatures on our planet warm, an intense climatological debate has
arisen over whether hurricanes are becoming more numerous, or whether the
strengths of the individual storms are increasing. Recent literature concludes
that an increase in hurricane counts occurred in the Atlantic Basin circa 1994.
This increase persisted through 2012; moreover, the 1994-2012 period was
one of relative inactivity in the eastern Pacific Basin. When Atlantic activity
eased in 2013, heavy activity in the eastern Pacific Basin commenced. When
examined statistically, a Poisson white noise model for the annual severe hur-
ricane counts is difficult to resoundingly reject. Yet, decadal cycles (longer
term dependence) in the hurricane counts is plausible. This paper takes a sta-
tistical look at the issue, developing a stationary multivariate count time se-
ries model with Poisson marginal distributions and a flexible autocovariance
structure. Our auto- and cross-correlations can be negative and have long-
range dependence; features that most previous count models cannot achieve
in tandem. Our model is new in the literature and is based on categorizing
and super-positioning multivariate Gaussian time series. We derive the auto-
covariance function of the model and propose a method to estimate model
parameters. In the end, we conclude that severe hurricane counts are indeed
negatively correlated across the two ocean basins. Some evidence for long-
range dependence is also presented; however, with only a 49-year record, this
issue cannot be definitively judged without additional data.

1. Introduction. Hurricanes participate in equalizing global heat imbalances.
In the Northern Hemisphere, hurricanes form in the tropics and move northward
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to the Arctic, carrying equatorial heat to the pole in an attempt to equalize global
surface temperatures. Geophysicists often view hurricanes, which require warm
waters to form and thrive, as an Earth sweating mechanism. As surface and ocean
temperatures of the Earth warm, more equatorial heat will seemingly need to be
dissipated. Accordingly, many scientists believe that a warming Earth should expe-
rience increased hurricane activity, expressed by a higher frequency of hurricanes
and/or stronger individual storms. Note that stronger individual storms do not nec-
essarily mean a larger number of strong storms.

Scientific debate over increasing hurricane activity has been intense. The pop-
ular science book by Mooney (2007) narrates the scientific mudslinging and the
stances taken by different “camps” on various issues, including linking hurricane
changes to global warming. The debate was exacerbated by an increase in North
Atlantic Basin hurricane activity circa the mid-1990s. At this time, Atlantic ac-
tivity was concluded to have increased by many authors [Elsner, Jagger and Niu
(2000), Elsner, Kossin and Jagger (2008), Goldenberg, Landsea and Mestas-Nunez
(2001), Robbins et al. (2011)]. Some physicists [Goldenberg, Landsea and Mestas-
Nunez (2001)] explained this increase as part of a natural multi-decadal cycle,
whereby hurricane counts oscillate on decadal cycles. Their claim that Atlantic
activity would return to normal levels was based largely on physical models; past
data were not considered. Another camp, the empiricists, claimed that an era of
increased hurricane activity is here to stay, is largely attributed to climate change,
and is supported by the data record.

Around 2012, North Atlantic hurricane activity markedly decreased. However,
at this time, activity in the eastern Pacific Basin dramatically increased. This was
reflected, in particular, in the frequency of hurricanes. In 2015, the eastern Pacific
Basin experienced ten severe hurricanes while the Atlantic Basin had just two.
Henceforth, the term Pacific, North Pacific or Pacific Basin will be referencing the
eastern North Pacific Basin. This on/off negative correlation pattern has been per-
sistent since the mid-1960s, when reliable Atlantic and Pacific hurricane records
commenced (this is the time at which satellite surveillance began). One objective
of this paper is to investigate this negative dependence between the two annual
basin counts. A long-range dependence cycle in the basin counts is also statisti-
cally investigated.

Forecasting annual hurricane counts is difficult. Most forecasts of the North
Atlantic Basin’s activity a year in advance have little predictive power. In fact,
Atlantic Basin storm counts often pass Poisson white noise statistical tests, es-
pecially when only the strong storms are considered. This said, some forecasting
power can be achieved with covariates such as El-Nifio, North Atlantic oscillation
(NAO), Northwest African rainfall, etc. at a few months lead time [Elsner and Jag-
ger (2006), Gray (1984)]. Previous work has also used these covariates to show
the different behavior of storms in basins across the globe. For example, Elsner
and Kocher (2000) note a negative correlation between tropical cyclones over the
North Atlantic and four other basins (western North Pacific, eastern North Pacific,
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northern Indian Ocean, and Southern Hemisphere). The authors then link this phe-
nomenon to NAO, showing that there is a significant positive correlation between
NAO and the global tropical cyclone activity index used in their analysis. Con-
firmation of negative correlation between basins or longer memory cycles in the
individual basins should aid annual storm count forecasting.

Poisson distributions are natural models for the annual severe hurricane counts
due to their event-based interpretation. Indeed, many authors have used Poisson or
Poisson-based models [McDonnell and Holbrook (2004), Mooley (1981), Parisi
and Lund (2000), Solow (1989), Thompson and Guttorp (1986), Xiao, Kottas and
Sans6 (2015)] to describe hurricane counts. This said, Poisson dynamics are not
perfect: some slight over-dispersion in the Pacific counts will be encountered.
While Chu and Zhao (2004) and Villarini, Vecchi and Smith (2010) and others
propose negative binomial marginals, which are over-dispersed, the amount of
over-dispersion in our data is minimal, as Section 3 shows. As such, our work
entails developing a bivariate stationary time series model with marginal Poisson
distributions for the annual storm counts. Extensions to over-dispersed marginal
count distributions will be addressed in our concluding discussion.

Count time series modeling is an active current area of statistical research [Davis
et al. (2016)]. To describe the severe hurricane counts in both basins simultane-
ously, a bivariate count time series model with Poisson marginal distributions is
needed—one that permits possible negative cross-correlations at lag zero between
the series and nonzero correlations at decadal lags in each marginal series. Sta-
tionarity, the natural status quo model, should be posited until it can be reliably
discounted—essentially, our null hypothesis is a non-changing hurricane climate.
However, such a count time series model has proven difficult to devise so far. Sec-
tion 4 remedies this issue.

The rest of the paper proceeds as follows. Section 2 presents a brief background
on count time series models. Section 3 explores properties of the bivariate hur-
ricane count series. The construction of the bivariate Poisson count model that
allows for negative cross-correlations and long-range dependence is undertaken in
Section 4. Section 5 introduces a quasi-maximum likelihood parameter estimation
method for this model; its performance is investigated in a short simulation study
in Section 6. Section 7 fits the proposed model to the hurricane data. Conclusions
and future work are summarized in Section 8.

2. Time series background.

2.1. Count time series. Count time series arise in the investigation of natural
phenomena such as rare disease occurrences, animal sightings, and severe weather
events. This subsection reviews several stationary discrete-time models for multi-
variate count series.

In contrast to continuous multivariate observations, where vector autoregressive
moving-average (VARMA) processes take a dominant role, no single class of count
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time series models has emerged as the most flexible, parsimonious, and widely
used [Davis et al. (2016), Fokianos and Kedem (2003)]. Many existing models
cannot produce an arbitrary count marginal distribution with negative auto- and
cross-correlations, a feature present in our hurricane counts. To handle this, a novel
count time series model with positive or negative auto- and cross-correlations will
be constructed in the next section. Our model also allows for long-range depen-
dence (LRD): the slow autocorrelation decay in time exhibited in many real data
sets.*

The most popular stationary count time series models are arguably the inte-
ger autoregressive moving-average (INARMA) models introduced in Steutel and
Van Harn (1979) [see also Alzaid and Al-Osh (1990), Enciso-Mora, Neal and
Subba Rao (2009), McKenzie (2003), Neal and Subba Rao (2007)]. INARMA
models replace the scalar multiplication in continuous ARMA models with thin-
ning to keep the series integer-valued. The L-dimensional first-order integer au-
toregressive [INAR(1)] series {Y,}, for example, obeys the recursion

2.1 Y =aoY,_1+7Z.

Here, & is an L x L dimensional matrix whose entries ¢; ; all liein [0, 1], @0 Y,
is an L-dimensional vector whose ith component is defined as (o o Y;_1); =
Z]L'=1 a; joYj, 1 and {Z,} is L-dimensional independent and identically dis-
tributed (IID) count-valued noise. The symbol o denotes thinning and operates on
a nonnegative univariate integer-valued random variable Y via po Y := ZIYZO Bi,
where B; are IID Bernoulli(p) variables. INAR series of general order and
INARMA series are defined in some of the above references.

Many properties of ordinary ARMA models hold for INARMA models. For ex-
ample, a unique (in mean square) causal stationary solution to (2.1) exists if and
only if det(Iy — az) has no roots inside the complex unit circle |z| < 1 (equiv-
alently, the largest eigenvalue of « has an absolute magnitude less than unity),
where I is the k x k identity matrix. This said, since all thinning probabilities o; ;
must lie in [0, 1], one can show that an INARMA model cannot have any negative
correlations [Lund and Livsey (2016)]. In this way, INARMA models are not as
flexible as ARMA models.

Recently, negatively correlated count series have been investigated in the litera-
ture. Kachour and Yao (2009) achieve negative autocorrelation by rounding solu-
tions to continuous Gaussian ARMA equations. For example, the univariate (mul-
tivariate extensions are straightforward) rounded integer autoregressive model of
order p obeys

p
Y =<,U«+ Z¢th—j>+8t,

j=1

4Many authors use the term “long memory” when referring to LRD.
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where (x) rounds x to its nearest integer (round down should there be two nearest
integers), i is a location parameter, ¢y, ..., ¢, are autoregressive coefficients, and
{e;} is count-valued IID noise. While such series can have negative autocorrela-
tions, this method, due to the rounding, makes it difficult to produce a pre-specified
marginal distribution. The ability for a user to select the marginal distribution can
be important; for example, Poisson marginal distributions for the hurricane counts
will be sought.

Cui and Lund (2009) use a renewal/point process based approach to devise uni-
variate count time series models with negative autocorrelations. There, a renewal
sequence is used to generate a correlated but stationary sequence of zeros and
ones. [ID copies of these correlated binary processes are then superpositioned akin
to Blight (1989) to produce the marginal distribution sought. While renewal meth-
ods produce very flexible autocovariance structures in one dimension, they fail in
two or more dimensions: in bivariate renewal processes, the item number in use
at a large time ¢ is unlikely to be the same for each component. Since different
components are typically assumed independent in renewal processes, such meth-
ods will produce independent components. While Lund and Livsey (2016) discuss
this issue and show how to bypass it, the fixes are unwieldy.

Other count time series methods have been devised; for example, GLARMA
series [Dunsmuir (2016)], state-space approaches [Davis and Dunsmuir (2016)],
finite mixtures of multivariate Poisson distributions [Karlis and Meligkotsidou
(2007)], and hidden Markov techniques [MacDonald and Zucchini (2016)]. See
also Barndorff-Nielsen et al. (2014) and Kerss, Leonenko and Sikorskii (2014).
A recent and more detailed review of multivariate count time series models can be
found in Karlis (2016). These models all have a drawback that precludes them for
our use—either a fixed marginal distribution is difficult to achieve or the model
cannot produce negative correlations or LRD.

2.2. Long-range dependent models. Univariate LRD models have attracted
attention across a broad spectrum of scientific disciplines such as finance, eco-
nomics, computer networks, physics, etc. In the climate sciences, the existence of
long-range dependence and scaling phenomena has been intensely debated. In a
celebrated work, Hasselmann (1976) advocates that climatic dynamics can often
be adequately described by AR(1) processes. This view was challenged in a series
of articles reviewed in Mudelsee (2013) that claim that temperatures follow a uni-
versal power law, and hence should have LRD features. Varotsos and Efstathiou
(2013) examine long memory in tropical cyclone counts (not severe hurricanes);
Yuan, Fu and Liu (2014) assert satisfactory performance of a fractionally inte-
grated LRD model in describing Northern Hemisphere temperature anomalies and
Pacific decadal oscillations.

Although multivariate LRD has been studied less than its scalar counterpart, it
has attracted considerable attention recently. An intuitive definition of multivari-
ate LRD extends the univariate nonsummability characterization: a multivariate
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stationary series {Y,} is said to be LRD if
o.¢]

(2.2) D ICov(Yr, Yiqn) | = o0,

h=-—00

where ||A| denotes the Frobenius norm of a matrix A. Other definitions of mul-
tivariate LRD are possible [see Kechagias and Pipiras (2015) for a detailed treat-
ment on the subject]. The series is short-range dependent (SRD) if the autocovari-
ances are absolutely summable in (2.2). Little has been done on LRD count series;
Quoreshi (2014) and Lund, Holan and Livsey (2016) are two recent exceptions,
although these are univariate works.

Vector autoregressive fractionally integrated moving average (VARFIMA) se-
ries will be used to construct our count time series model; these are bivariate
extensions of the celebrated ARFIMA model class, which have been extensively
studied and used in applications [Beran et al. (2013), Doukhan, Oppenheim and
Taqqu (2003), Giraitis, Koul and Surgailis (2012), Palma (2007), Park and Will-
inger (2000), Pipiras and Taqqu (2017), Robinson (2003)]. VARFIMA models can
capture both LRD and SRD. Moreover, their autocovariance function can often be
expressed in a closed form that facilitates computations and statistical inference.

3. The severe hurricane data. Figure 1 depicts the annual number of major
hurricanes (Saffir—Simpson Category 3 and above) recorded in the North Atlantic
and North Pacific Basins since 1967. Our data commences in 1967 as problems ex-
ist in the Pacific record before this time (in pre-satellite years, storms could form
over open ocean waters and not be detected). We omit 1966, the first year of satel-
lite era, from our analysis due to the decommission of satellite ESSA-1 amidst the
Pacific hurricane season. Saffir—Simpson Category 3+ storms have wind speeds
of 111 mph or more at some time during the storm’s lifetime. Our focus here is
on counts of storms reaching this threshold but do not investigate individual storm
intensity. The peak wind speed for each storm is used as a measure of the storm’s
severity.

Marginally, the two component series are roughly Poisson distributed (there
is a slight amount of over-dispersion). Elaborating, from 1967-2015, the sample

= T T T T T

§ 10 —— Atlantic N 7
g 8H — — Pacific I\ 2 1
6 i
g 4

=

w2

3

20

]

=

1967 1975 1983 1991 1999 2007 2015
Year

FI1G. 1. Annual number of Saffir-Simpson category 3 and stronger hurricanes in the North Pacific
and North Atlantic Oceans.
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means and standard deviations of the annual counts are
YAtlantic = 2.31, YPacific = 3.10,
2 2
S Atlantic — 2'97’ SPacific — 5.76.

The Atlantic major hurricane counts handily pass all Poisson diagnostic checks: a
chi-squared goodness-of-fit test with separate bins for the counts 0, 1, 2, ..., 7 and
a bin for counts >8 produced a critical value of 13.00 with 7 degrees of freedom—a
p-value of 0.232. For the Pacific series, the same test gives a p-value between 0.05
and 0.1, regardless of the binning choices. Most of the Pacific’s Poisson departures
is attributed to large counts. While other distributions allowing for over-dispersion
and heavier tails are worth consideration (e.g., negative binomial, generalized Pois-
son), we proceed with a Poisson marginal distribution as roughly reasonable and
illustrative.

Figure 2 shows the sample auto- and cross-correlation functions of the Atlantic
and Pacific series (blue dashed lines). Pointwise 95% confidence bands for white

1 1
—pu(h) = (0,D,0) ——p22(h) — (0, D,0)
"""" pu(h) = (1,D,0) | = po(h) = (1,0, 0)
== pu(h) — = pa2(h)
= =
& &
= =
S < 02fy T
b // \\ Z I < [ 1\ .
\ N /N \ ’ I v \ =
1\ / \\ // \—\// \\ J \\// \,//
02f v ) WA SO S
04 | | | | | 04 | | | | |
0 5 10 15 20 25 30 0 5 10 15 20 25 30
h h

'Plz(}l)/f)u(h)
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FI1G. 2. Sample (dashed lines) and theoretical (solid lines) auto-correlation functions (top plots)
and cross-correlation function (bottom plot) of major hurricane counts in the Atlantic and Pacific
Basins. The theoretical auto- and cross-correlation functions are computed using (4.8)—(4.9) with
parameter values from Table 2. See Section 7 for more details.
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noise are included. The Atlantic counts are close to white noise; the Pacific counts
less so, but still are not heavily correlated. The sample correlation between com-
ponents (this is a lag zero cross-correlation) is —0.295, hinting that active North
Atlantic seasons are typically accompanied by inactive North Pacific seasons (and
vice versa). This value is very close to the boundary of £1.96/+/T, the asymp-
totic 95% confidence interval for an IID series. Hence, final judgement of the issue
is unclear without additional analysis. In what follows, we determine this corre-
lation to be decisively negative. In short, our model will help establish negative
correlation inference by utilizing the correlated count structure of the data.

4. A multivariate Poisson count time series model. This section constructs
a multivariate count time series model with Poisson marginal distributions that
allows for negative correlations and LRD. For presentation ease, we focus on the
bivariate case and construct the model in four steps. We begin with a stationary
bivariate Gaussian series.

Step 1: Start with a bivariate Gaussian series.
Let {X/}rez = {(X1.+, X2.1)'}1ez be a bivariate, second-order stationary time se-
ries with E[X¢] = 0 and lag-A autocovariance matrix

v1,1(h) V1,2(h)>
v2,1(h)  v22(h) )"

We suppose that X; follows a bivariate Gaussian distribution for each fixed ¢, that
is,

() 9)

where p = y1,2(0) = y2,1(0). The unit marginal variances imply that the autocor-
relation function of {X;} satisfies

(4.3) COI‘I‘(X,'J,XJ"Z_HZ) = ,Oivj(h):y,"j(h), i,j: 1,2,/’! .

.1 Tx(h) =E[X/X,,,] = <

At this point, no further assumptions are placed on I'x(4) as i — oo; however,
later in this section, a bivariate parametric model for {X;} is posited that can cap-
ture both short- and long-range dependent dynamics.

Step 2: Place the components of the Gaussian series into categories.
Let {S;};cz be a bivariate series, whose individual components bookkeep the
positive/negative signs of the components in {X;}:

» 5= (311) = (1100
$2.t Lix,, >0}
where 1,4 is the indicator of the event A. Lemma 4.1 below shows that {S;};c7

is stationary and identifies its mean and autocovariance function I's(h) =
E[StS;_H,] - E[St]E[St—i-h],'
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LEMMA 4.1. The series {S;},ez is stationary with mean E[S;] = (1/2,1/2)
and lag-h autocovariance matrix

1 rarcsin(py,1(h)) arcsin(p;2(h))
“.5) Ts(h) = 27 (arcsin(,ozyl(h)) arcsin(pz,z(h))> ’

where p; j(h),i,j=1,2,h € Z, are as in (4.3).

Lemma 4.1 is an immediate consequence of the univariate result given in Sec-
tion III of Van Vleck and Middleton (1966). Note that arcsin(x) < 0O if and only if
—1 < x < 0. Hence, the sign of the auto/cross-correlations of the component series
{S1.:} and {S>,} is determined by the sign of the auto/cross-correlation functions
of {X;,} and {X»>,}, respectively. Therefore, {S;} can have negative auto- and
cross-correlations. Also, long memory features of {X;} are passed on to {S;}.

COROLLARY 4.1. IfI'x(-) satisfies (2.2), then so will T's(-).

Corollary 4.1 follows directly from the fact | arcsin(x)| > |x| for x € [—1, 1],
implying that |arcsin(p;,j ()] = |pi,; (h)].

Step 3: Superimpose IID copies of {S;}:ez.

Let {S,(k) o = {(Silft), Sékt) )17, be a sequence of IID replicates of the bivariate
binary process {S;};c7z. To obtain Poisson marginal distributions, we will superim-
pose these binary processes as in Blight (1989) and Cui and Lund (2009). More

specifically, consider the bivariate count series
N1

(k)
Yi, kgl Sl,z
(4.6) Y = (Yz’r) = | ) teZ,
R D3R
k=1
where foreachi =1,2,and r € Z,
“4.7) N;,; ~ Poisson(A;),

for some A; > 0. We also assume that the processes {/N; ;} and { N2} consist of in-
dependent variables, are mutually independent, and are also independent of the se-

ries {S;k)}, k=0,1,2,.... The components Y7 ; and Y> ; are Poisson random sums
of Bernoulli(1/2) variables; hence, they have Poisson distributions with means
A1/2 and A3 /2, respectively.

In Proposition 4.1 below, {Y;} is shown to be stationary and its mean and auto-
covariance function are derived. The autocovariance function involves the cumula-
tive distribution function (CDF) of the random variable W = M| — M>, where M,
and M» are independent Poisson random variables with means A1 and Aj, respec-
tively. The random variable W follows the so-called Skellam(X1, A,) distribution
[Skellam (1946)], whose CDF Fyw (-; A1, A2) can be computed accurately and ef-
ficiently.
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PROPOSITION 4.1. The series {Y:};ez is stationary with mean E[Y;] =
(AM/2, 22/2)" and lag-h autocovariance matrix

1 (¢ 1arcsin(py,1(h)) c1,2arcsin(p; 2(h)))
4.8 I'y(h) = — ’ ) ’ ’ ) ' ,
(4.8) (1) 27 (02,1arcsm(,02,1(h)) c2,2 arcsin(pz,2(h))

where p; j(h), h € Z,i, j = 1,2, are as in (4.3) and

2A, i=j,h=0,
Li Fw (=15 A1, A2) + Aj[1 = Fw(1; A1, A2)], otherwise,
where Fy (-; A1, M) is the CDF of the Skellam(\1, \>) distribution.

(4.9) Ci,j = !

Corollary 4.1 applies here and shows that LRD in {X;};cz will be inherited in
{Y:}:cz. Relation (4.8) will aid statistical inference, our Section 5 objective.

Step 4: Select a parametric model for {X;};c7.
Given dy,dy € (—1/2,1/2), set D = diag(di, d>) and let ®(z) and ®(z) be the
usual autoregressive and moving-average polynomials of orders p and g; namely,
o)=L - Pz - —®,7", O)=hLh+01z+ - +0,77,

where ®;,i =1,...,p, ©;,j =1,...,q, are 2 x 2 matrices. Let {n;};cz =
{(n1.+,n2.1) }1ez be a bivariate Gaussian white noise series with mean E[,] =0
and covariance matrix E[y,n,] = X = (0;,j)i, j=1,2. Recall that the univariate frac-
tional differencing/integration operator (I — B)¢, where I = B® and B denote the
identity and backshift operator, respectively, is defined through the Taylor series

= I(k+1
(I-B)=> bB*  with = LEHD
= I'(d)I(k +d)

for any d € (—1/2,1/2) [see, e.g., Beran et al. (2013), Pipiras and Taqqu (2017)].
Now suppose that {X;} of Step 1 is a VARFIMA(p, D, g) series satisfying

(4.10) (I — B)P’®(B)X, = O(B)y,,

where the operator (I — B)P is understood to be

(I_B)D:<(I—B)d1 0 )

k=0,1,...,

0 (I — B)%

The parameters d; and dy govern the decay rate of the autocovariances of {X;} to
ZEer10.

REMARK 4.1. When p = g =0, the components of the lag-/ autocovariance
matrix I'x (h) of a VARFIMA(O, D, 0) series are
(=D'r 1 —d; —d))

Yi,j(h) Ut,JF(l_diq_h)F(l—dj—h)

“4.11)
NK,-?jhdﬁd-/*l as h — oo,
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fori, j =1, 2, and for some constants «;_ ; 3 Equation (4.11) illuminates the role of
the parameters di, d: if d1, d> € (0, 1/2), the power-law decay in (4.11) implies
that {X;} has LRD. When d, d; € (—1/2, 0), the left-hand side of (2.2) is finite
and the series exhibits a special type of SRD called anti-persistence. When d; =0
fori =1or2, y;;(h) =0 for h > 0, implying that the corresponding component
series {X; ;} is white noise. Finally, the asymptotic relation in (4.11) holds for any
P, q for suitable constants «; ;.

REMARK 4.2. When p =0 and g > 1, I'x(h) can still be efficiently calcu-
lated [see Proposition 3.1 in Kechagias and Pipiras (2017) with ¢ = 0]. When
p = 1, explicit expressions for I'x(h) are not known, but autocovariances can be
numerically computed up to any desired accuracy; however, an additional assump-
tion on the AR polynomial ®(B) is needed [all of its eigenvalues need to be pos-
itive; Sela (2010)]. Finally, computing I'x(#) when p > 2 is not straightforward.
As such, we focus on models with p =0, 1.

REMARK 4.3. The white noise series {,} must meet certain criteria for {X,}
in (4.10) to satisfy (4.2). The zero mean and Gaussian distribution of {X;} follow
directly from the zero mean and Gaussian distribution of {#,}. However, the struc-
ture of the variance matrix in (4.2) implies that only the nondiagonal entries of X
are free parameters. When p = g = 0, the variance structure is achieved by setting
¥1.1(0) =y2.2(0) =1, and y; 2(0) = p in the first equality of (4.11), and then solv-
ing for 01,1, 02,2 and o1 2. The same technique can be used when p =1 or g = 1;
unfortunately, in these cases, the solution of the linear system is not necessarily
unique, and in fact may not even be a positive definite matrix. This issue is revis-
ited at the end of Section 5. In particular, the cross-correlation p will be used as a
free parameter in the estimation procedure below.

5. Inference. This section puts forth a quasi-maximum likelihood estima-
tion (QMLE) method for the model in Section 4. We consider the underlying
VARFIMA(p, D, q) series {X;} satisfying (4.2) and the orders (p,q) = (0,0),
(p,q) =(0,1), and (p, q) = (1,0). Let & contain all model parameters; these in-
clude the long memory parameters d; and d», the Poisson means A; and Aj, the
cross-correlation p (instead of the parameters in X—see Remark 4.3) and all pa-
rameters in ® and ©.

The exact likelihood structure of the count series data {Y;};=1,... 7, where T is
the sample size, has proven to be intractable [Davis et al. (2016), Fokianos and
Kedem (2003)]. Nonetheless, analogous to ordinary time series theory, a quasi
log-likelihood can be devised from the model’s autocovariance function. Using

SFor two sequences, {an},en and {by},eN, an ~ by stands for a,, /by, — 1 as n — oo.
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the multivariate Durbin-Levinson (DL) algorithm [Brockwell and Davis (2006)],
this quasi log-likelihood has the form

1L 1L -~ -
(5.1) L&) ox—3 > log|Vi—i| — 5 SY =YV (Y - Y,
=1

t=1

where ?, =E[Y/1,Yq,...,Y;_1] is the be/s\t linear one-step-ahead predictor of
X, from a_constant and a process history (Y; = E[Y1]) and V,_; := E[(Y; —
Y;)(Y; — Y;)'] is the corresponding mean squared error. These quantities can be
recursively obtained from the multivariate DL algorithm that has computational
complexity O(T?); however, the form in (5.1) conveniently bypasses inversion of a
2T x 2T covariance matrix. Such an inversion is needed in a brute force evaluation
of the Gaussian likelihood, an approach that should only be chosen over (5.1) for
small sample sizes.
The QMLE parameter estimates are

o~

(5.2) & = argmaxL(§),
EeS

where the k-dimensional (k =5 + 4p + 4q) parameter space S is defined as
S=lteRr:—1/2<d|,dy<1/2,A1,02>0, -1 <p <1}

The estimates E do not have a closed form, but can be computed numerically from
a quasi-Newton algorithm. This algorithm is available in the NLPQN function of
SAS/IML, which is the software used in Sections 6 and 7. Moreover, using the
NLPFDD function, we computed the inverse Hessian of the likelihood function
which we used to obtain confidence intervals.

We conclude this section with some observations about S. First, in view of Re-
mark 4.1, it is important to allow the parameters di, d» to take negative values;
optimization with d1, d> € (0, 1/2) may yield artificial LRD in the sense that pos-
itive d; or d» are obtained due to parameter constraints and not because of the
underlying LRD. Second, no constraints are imposed on the entries of ®; or @
except the following: in numerical implementation of (5.2), we set L(§) = —oo if
®; or ®; have any eigenvalues whose absolute modulus exceeds unity. This con-
dition is equivalent to requiring that all roots of ®(z) and ®(z) lie outside of the
complex unit circle and is a standard assumption guaranteeing that a causal and
invertible solution to the VARMA difference equation exists [Liitkepohl (2005)].
Candidate maximizers of &€ that violate this constraint are assigned an infinitesi-
mally small likelihood to ensure that estimators are causal and invertible. Finally,
the restrictions on X discussed in Remark 4.3 cause issues for VARFIMA (0, D, 1)
and VARFIMA (1, D, 0) models, where autocovariance functions are more com-
plex than those in the simpler VARFIMA (0, D, 0) model. In these cases, one can
still compute the parameters o7 1, 01,2, and 07 > that ensure marginal unit variances
and a prescribed correlation p for {Y;} by solving a linear system whose coeffi-
cients are nonlinear functions of dj, d2, p, ®, and ©. After experimenting with
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several parameter schemes for dy, d», p, ®, and O, these systems were found to
always have unique solutions. However, these solutions did not always lead to a
positive definite estimate of X. We dealt with such candidate maximizers of L(§)
by again assigning them a log-likelihood of —oo0.

6. Simulation study. This section fits the model of Section 4 to the simulated
bivariate count data via the QMLE method of the last section. The VARFIMA
orders (0, D, 0), (0,D, 1), and (1, D, 0) are considered. For each model, 100 series
were simulated with 7 = 200, 400 and several VARFIMA parameter values. To
generate the underlying Gaussian series, the fast and exact synthesis algorithm of
Helgason, Pipiras and Abry (2011) is used. The steps in Section 4 are followed to
generate the count series.

Table 1 shows the median bias (MB) and median absolute deviation (MAD) for
the obtained estimates. The true parameter values were d; = 0.3, d» = 0.2, A1 =3,
Ao =2 for all columns and p = 0.45, —0.9, 0.5, —0.9 for columns (0, 0)1, (0, 0)7,

TABLE 1
Median bias (top entries of each case) and median absolute deviation (bottom entries of each case)
of estimated parameters for the three models. The true parameter values are
d1=0.3,dy) =0.2, A1 =3, Ap =2 for all columns, p = 0.45, —0.9 for columns (0, 0)1 and (0, 0),,
respectively, ®1 1 =0.4, @1 5, =0.1, & | =0.3, Py » = 0.6 for column (1,0) and ®1 1 =0.1,
®1,2,=-0.6,071=0.2,0; » =0.8 for column (0, 1)

(P> q) 0,0)¢ 0,0); 1,0) 0, 1)
T 200 400 200 400 200 400 200 400
d —0.011 —0.010 —0.013 —0.024 —0.029 —0.039  0.059  0.069
0.082 0059 0075 0061 0138 0107 0057  0.038
dy —0.026  0.009 —0.003  0.010 —0.019 —0.190 0071  0.085
0.093  0.065 0093 0074 018  0.179 0070  0.047
A —0.046 —0.021  0.018 —0.028 —0.049 —0.065 —0.024 —0.013
0273 0229 0320 0214 0309 0338 0231  0.199
A 0.029  0.023 -0019 0017 —0077 —0.035 —0.023  0.010
0.157  0.125 0210  0.171 0228  0.165  0.156  0.149
o 0072  0.045 0001 —0.024 —0.002  0.042 0060 —0.011
0218  0.155 0.077 0050 0.196 0163  0.110  0.050
®.1/0 0.069  0.248 —0.004 —0.017
0243 0267 0021  0.023
®12/01, 0017 —0.090  0.165  0.145
0241  0.178  0.085  0.086
@51/ —0.023 —0.071  0.130  0.133
0.158  0.168  0.069  0.047
®22/025 0.052  0.088  0.029  0.032

0.148 0.140 0.020 0.022
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FI1G. 3. Boxplots of the estimates from columns (0,0); (left box), (1,0) (middle box) and (0, 1)
(right box) of Table 1 for T = 400. The dashed blue lines correspond to the true parameter values,
while the solid red lines are the medians.

(1,0), and (0, 1), respectively. Finally, for columns (1, 0) and (0, 1) the AR and
MA coefficient matrices were

04 0.1 0.1 —0.6
‘I’:<0.3 0.6) and G’:(o.z 0.8)

respectively. Overall, the QMLE method performs very well in terms of MBs in
most cases, even though the sample sizes used here are considered small/medium
in the LRD literature.

Most MBs and MADs decrease with increasing sample size. An exception is the
MBs for some parameters in models with SRD components, especially those in the
(1, 0) column. This is attributed to the negative definiteness issue discussed at the
end of Section 5. Nevertheless, all MBs and MADs did decrease when the sample
size T = 1000 was considered. Other parameter schemes were experimented with
and produced similarly good results, but are not shown here for brevity’s sake.

The boxplots in Figure 3 provide a distributional view of the parameter esti-
mates from columns (0, 0)y, (0, 1), and (1, 0) of Table 1 for T = 400. The dashed
blue lines demarcate the true parameter values, while red lines show medians.
The boxplots for estimates of A; and A, are centered at zero by subtracting the
true parameter value, providing a uniform presentation scale. Finally, when ex-
perimenting with larger sample sizes, the symmetry/outliers in these boxplots in-
creased/decreased significantly.

7. Hurricane data. Table 2 displays parameter estimates and the correspond-
ing AIC and BIC scores obtained by fitting the bivariate count model of Section 4
to the hurricane count series. We considered here three underlying Gaussian pro-
cesses: a VARFIMA(0, D, 0), a VARFIMAC(1, D, 0), and an IID series. Subscripts
of unity refer to the Atlantic Basin, subscripts of two refer to the Pacific Basin, and
®; j,i, j =1, 2 are the entries of the 2 x 2 AR matrix ®. The IID model produced
the smallest information criteria, however, for the univariate Atlantic series, where
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TABLE 2

Parameter estimates and corresponding AIC and BIC scores for the hurricane series for VARFIMA
(0,D,0), (1,D,0), and (0, 0,0) models

Model dy dy A A P ®11 P12 P21 P2 AIC BIC
0,D,0) 024 023 57 115 —0.96 239 249
(1,p,00 —-04 012 56 103 -0.70 0.88 026 —0.01 001 242 259
0,0,0) 0 0 58 113 —-0.97 237 242

a longer reliable record is available, LRD models are decisively preferred over the
IID one by AIC. We investigate this phenomena further in Section 7.1.

The quasi-Newton algorithm converged for all models, but termination crite-
ria differed. In the VARFIMA(1, D, 0) case, the maxima occurred at the bound-
ary of the feasible region (|X| < 0 for p < —0.7), while for the IID and
VARFIMA (0, D, 0) models, all gradient values were < 1073 at the maxima indi-
cating that the maxima occurred at an interior point of S. The VARFIMA (0, D, 1)
and VARFIMA (0, D, 0) models produced almost identical estimates, but the
VARFIMA (0, D, 1) model had a negligible increase in log-likelihood; hence, we
omit listing VARFIMA (0, D, 1) results in the table. For all models investigated,
multiple starting points of the parameters were investigated to ensure globally op-
timal estimators were found in the step and search optimization algorithm. All
estimated LRD parameters are between 0 and 1/2, except for the Atlantic series
under the VARFIMA (1, D, 0) model, which is —0.4. In this case, the dependence
in the series is captured by the AR coefficients 51,1 and 5151,2 [this is a common
phenomenon in estimation of Gaussian VARFIMA(1, D, 0) series with a small
sample size, especially when one of the AR parameters is significantly greater
than zero].

As the AIC and BIC scores are smaller for the IID and VARFIMA (0, D, 0)
fit compared to the VARFIMA(1, D, 0) case, confidence intervals (CIs) for the
parameters of these models will be reported. Standard errors were obtained from
the usual second derivative of the quasi log-likelihood function. First, the 90% Cls
for p are [—1.00, —0.75] and [—1.00, —0.59] for the IID and VARIFMA (0, D, 0)
models, respectively. Hence, p is decisively negative and the negative correlation
between basin counts appears real. Substituting the VARFIMA (0, D, 0) estimates
into (4.8)—(4.9) yields a lag zero cross-correlation of —0.28, which closely matches
the sample cross-correlation of —0.295. Second, 90% CIs for the LRD parameters
are [—0.095, 0.50] for the Atlantic Basin and [—0.235, 0.50] for the Pacific Basin.
As both intervals contain zero, long memory cannot be definitively declared in
either basin, despite the positive estimates of the LRD parameters. Of course, wide
intervals are expected with only 49 years of data; a few years of additional data
may change this conclusion, especially for the Atlantic Basin, which was a close
call. Finally, the 90% Poisson parameter confidence intervals from the IID and
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VARFIMA (0, D, 0) models are [3.90, 7.72] and [3.81, 7.60] (Atlantic Basin) and
[7.78,14.78] and [7.21, 15.82] (Pacific Basin), respectively.

Recall that the mean of the ith component series is A; /2 for i = 1, 2. For feel,
the auto- and cross-correlations of the fitted VARFIMA (0, D, 0) (green solid lines)
and VARFIMA(1, D, 0) models (red dotted lines) are plotted together with the
sample auto- and cross-correlations (blue dashed lines) in Figure 2—no radical
disagreements are seen.

7.1. Further investigation into LRD. While long memory cannot be declared
to any reasonable degree of statistical confidence, it cannot be discounted with only
49 years of observations. In this vein, we investigate here how long the observation
record must be to conclude long memory with our model and we look further into
long-memory dynamics of the Atlantic Basin where a longer reliable sample is
available.

First, we generated bivariate LRD count series for various parameter values
and checked whether confidence intervals for LRD parameters contain zero (cor-
responding to the SRD case and, more specifically, IID counts). The empirical
proportions of confidence intervals containing zero are presented in Figure 4, for
parameter values indicated in the figure titles. Note that the smallest sample sizes
needed to distinguish between the IID and LRD counts are relatively small. In fact,
at level 50% and for larger values of d, they are around the sample size of the data
considered in this paper. But for higher certainty, larger sample sizes (than that in
this paper) are required. We note that we also investigated the sample size issue
through the portmanteau tests as in Percival, Overland and Mofjeld (2001), but
found the needed sizes for concluding long memory to be considerably larger than
those deduced from confidence intervals.

To further investigate the Atlantic Basin major hurricane counts, we fitted uni-
variate [ID and Poisson(1)-ARFIMA (0, d, 0) models to data starting in 1900. The

Poisson-Arfima(0,D,0), p=-0.5, A = 5, A = 10 Poisson-Arfima(0,D,0), p=0, \; = 5, A\» = 10
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FI1G. 5. Empirical proportions over 100 replications where information criteria pick the IID model
over the LRD model, where the latter is used in the data generating process.

Poisson(1)-ARFIMA(O, d, 0) had smaller information criteria and produced 95%
confidence intervals [0.224, 0.497] and [4.851, 6.989] for d and A, respectively.
Note that although aircraft surveillance in the Atlantic Basin commenced in 1944,
data with good reliability on tropical cyclones striking the east coast extends back
to 1900 (according to the web archive of the Atlantic Oceanographic and Me-
teorological Laboratory of the National Oceanic and Atmospheric Administra-
tion). For more closure on this issue, we ran a simulation study to see how of-
ten LRD is rejected by AIC/BIC when the true data generating process is in fact
LRD. More specifically, we generated synthetic data using the Poisson(A1, A>)-
VARFIMA (0, D, 0) model and then fitted two models, a misspecified IID model
and the true one. Figure 5 shows empirical proportions (over 100 replications)
where AIC and BIC selected the misspecified IID model over the true one for sev-
eral sample sizes and parameter schemes. AIC performed well in most cases we
considered, selecting the true model more than 50% of the time for sample sizes
as small as 60 (red solid lines).

7.2. Model diagnostics. We comment here on some procedures for model di-
agnostics for count time series as they relate to our model and its fit to the hurricane
data. More specifically, we focus on the probability integral transform (PIT) and
related diagnostics plots as introduced in Czado, Gneiting and Held (2009) and
further analyzed in Kolassa (2016).

These diagnostics tools are based on the one-step-ahead predictive distributions,
and have been considered in the case of univariate data. Applying them here raises
at least two difficulties. One is transitioning from the univariate to the bivariate
case, which should be examined apart from our model. For this reason, we con-
sider here only the univariate analogue of our model and the univariate component
series, say the counts of the Atlantic hurricanes. Another issue is that our count



FLEXIBLE COUNT TIME SERIES 425

F1G. 6. PIT histograms for 11D (left) and Poisson-ARFIMA (0, d, 0) (right) models fit to the Atlantic
hurricane counts.

time series model does not lend itself to analytic calculations of predictive distri-
butions. But we have an efficient numerical algorithm to compute these predictive
distributions through Monte-Carlo simulations. Describing the method here would
go beyond the scope and the main theme of the paper—the details will appear
elsewhere. We hence limit our discussion to several illustrative plots and some
observations.

Figure 6 presents nonrandomized PIT histograms for the Atlantic hurricane
counts. The left plot corresponds to the Poisson IID model and the right plot cor-
responds to the Poisson(A)-ARFIMA (O, d, 0) model, with the parameter values
taken as those estimated from the data. A uniform PIT histogram suggests an ad-
equate fit. The U-shapes of the histograms point to an overdispersed fitted model,
though the PIT histogram for the Poisson-ARFIMA (0, d, 0) model seems to sug-
gest a slightly improved fit (especially focusing on the last few bins). In fact, in
the IID case, we examined the PIT histograms for several other common overdis-
persed distributions (e.g., negative binomial), but the disagreement over the last
few bins in the PIT histograms remained present.

8. Conclusions. This paper introduced a novel stationary bivariate count time
series model with Poisson marginal distributions and possible negative correlations
and long-range dependence. Most count models developed to date do not allow
combination of these three features. The model was used to analyze annual severe
hurricane counts in the North Atlantic and Pacific Basins, series with important cli-
matic ramifications that have been intensely scrutinized by climatologists [Mooney
(2007)]. We find a definite negative correlation between the two basins. Although
we are not able to decisively prove existence of long-memory dynamics, a convinc-
ing argument is presented for the Atlantic Basin and a foundation for discussion in
the Pacific.

Modifications to our model are worth exploring. For example, negative bino-
mial marginal distributions on the support set {0, 1, ...} can be produced with our
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tactics—one need only take {1 ;} and {N2,} in (4.6) to be independent processes,
each themselves composed of IID negative binomial draws. Negative binomial
marginal distributions are over-dispersed and have been suggested as marginal
distributions for hurricane counts in Chu and Zhao (2004) and Villarini, Vecchi
and Smith (2010). However, complexities arise. Even eschewing time-correlation
aspects, there is no guarantee that a bivariate random pair whose marginals are
negative binomial and have a negative correlation as high as —0.3 exists. We have
yet to be able to construct a case, using the above paradigm, where the correlation
between the pair is anything lower than —1/4 (for any negative binomial parame-
ters and background Gaussian correlation parameter, much less for parameters that
give us roughly the means of our counts). Some methods of Joe (1996) will pro-
duce series with higher positive correlations than 1/4, but negatively correlated se-
ries cannot be achieved with those methods. When we fitted this negative binomial
version of the model to the count data, the estimated parameters migrated toward a
degenerate bivariate Gaussian with correlation between components of —1: the fit
pushed up against “model class boundaries” and was numerically unstable. Other
marginal distributions are possible; these are currently being probabilistically for-
malized in Jia and Lund (2016).

It may be desirable to include covariates in the analysis. One simple way to do
this is to allow the parameters A; to depend on the covariates via a log link. While
the resulting series will not be technically stationary, they are natural variants of
stationary series.

APPENDIX

The results stated in Section 4 are proven here.

Niy

PROOF OF PROPOSITION 4.1.  For the mean claim, E[}_,~ S(E) INi.: = k] =

k/2 implies that

N,
i 1 Ai
(Al)  E[Yi,]=E [ZSW} [(ZS“NN”)}:EE[NLJ:?

Next, let p; j(h) = P(N;; =n;, Nj;yn =nj) and condition on N; ; and N; ;1 to
get

Ni s ji+h i
m=1

Nit Njt+n
(A2) =E[E<Z >SS NG N, ,Hﬂ

m=1 k=1

S [Z ZS<m)s§kz+h}pi,j<h>.

ni,n;j=0 m=1 k=1
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Using Lemma 4.1 and the independence of {Si(T)} and {S;{? 4} when m # k, we
get
1
(m) (&) 4’ m# k.
(A.3) ]E[Sivt Sj,l+h] 11 arcsin(p;j (h)) I
-4 — m=k.

4 2

Let I1; j = n;nj, M; j; = min(n;,n;), and observe that the last row of (A.2) has
M; ; different cross products of the form Sl.(T)Sﬁ-k,)Jrh, where m =k and I1; ; — M; ;

cross products of the same form when m # k. Using (A.3) in (A.2) provides

E[Yi,lyj,t+h] — Z |:Mi,j (_ + aI’CSln(,O ,]( ))) + ( i ,])i|pi7j(h)

2 4 2 4
ninj=

s arcsin(p; i (h))  I;;
N L AL
ni,n;j=0 T

(A.4) 1
= o aresin(pi,j () E[min(N; r. Nj.r+1)]

1
+ ZE[Ni,th,t+h]-

The expectation in the second term in the last row of (A.4) is readily calculated
using the independence assumption under (4.7):
Ak, i # 7,
A5 E[N;;N; = /
( ) [ it J,t+h] !)\i + )\‘1.2’ h=0,i= ]

On the other hand, as shown in Lemma A.1 below, the expectation of the first term
in the last row of (A.4) is
(A.6) E[min(N; s, Njivn)] =2 Fw(=1) + 1;[1 = Fw (D],

where Fy is the CDF of a Skellam random variable with parameters A1 and A.
The autocovariance in (4.8) now follows from (A.1), (A.5), (A.6), and the last
row in (A.3). O

LEMMA A.l1. Suppose that My and M> are independent Poisson variables
with mean E[M;] = A; fori =1, 2. Define W = M| — M, and Y = min(M1, M53).
Then

(A7) E[Y]= A Fw(=1) + 221 — Fw ()],
where Fy is the CDF of W.



428 LIVSEY, LUND, KECHAGIAS AND PIPIRAS

PROOF. Let P, = P(m;; X j),m; =0,1,2..., A; > 0, be the probability mass
functions of M; fori = 1, 2. Independence of M| and M gives

)
E[Y]= ) min(mi,m)P(my; )P (my; )
mi,my=0
(A.8)
Z ZmlP1P2+Z Z myo P P;.
my=0m =0 my=0mi=my+1

Denote the first and second sums in the last row of (A.8) by «1 and k>, respectively,
and note that

K1 = Z P Z m Py

mo=0 m1=0

m2 m3 m1

= Ze_)‘z 2 Zmle 1—

mp=0 ! m1=0 mi!

mo mp—1 mi

_)\1 Z e—kz)LZ Z e_)"li

|
mp=0 m1=0 mi:

a3 et (1_ 3 e 1_')

mp=0 my=my

(A9)

o mq
(- B 5 o)

mp=0 mo! my=my

o
= (1 - 2 l{mlzmz}PIPZ)

my,my=0
:A1[1 — P(M; > Mg)]
=M Fw(-1).
Similar arguments give kp = A2[1 — Fw(1)], thus proving (A.7). [
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