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Mark-recapture distance sampling is a promising method for surveying
bird populations from aircraft in open landscapes. However, commonly avail-
able distance sampling estimators require that distances to target animals are
made without error and that animals are stationary while sampling is being
conducted. Motivated by a recent bird survey where these requirements were
routinely violated, we describe a marginal likelihood framework for estimat-
ing abundance from double-observer data that can accommodate movement
and measurement error when observations are made consecutively (as with
front and rear observers), when animals are uniformly distributed during de-
tection by the first observer, and when detections consist of both moving
and stationary animals. Assuming that all animals are subject to measure-
ment error and that some animals can move between detections, we integrate
over unknown animal locations to construct a marginal likelihood for de-
tection, movement, and measurement error parameters. Estimates of animal
abundance are then obtained using a modified Horvitz–Thompson-like esti-
mator. In addition, unmodelled heterogeneity in detection probability can be
accommodated through observer dependence parameters. Using simulation,
we show that our approach yields low bias compared to approaches that ig-
nore movement and/or measurement error, including in cases where there is
considerable detection heterogeneity. Applying our approach to data from a
double-observer waterfowl helicopter survey in northern Canada, we are able
to estimate bird density accounting for movement and measurement error
and corrected for observer heterogeneity. Our approach appears promising
for generating unbiased estimates of bird abundance necessary for reliable
conservation and management.

1. Introduction. Distance sampling surveys [Burnham, Anderson and Laake
(1980), Buckland et al. (2001)] are often used to estimate the abundance of wildlife
populations. Such surveys were historically conducted by a single observer who
followed a transect line and recorded the perpendicular distance to each detected
animal group. Assuming 100% detection on the transect line, investigators can fit
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models to estimate abundance over the surveyed area while accounting for detec-
tion probabilities that decline with distance from the transect line.

When surveys are conducted from the air, double-observer surveys have major
advantages over single-observer surveys. For instance, one can use records of de-
tection/nondetection to relax the assumption of perfect detection on the transect
line [Borchers, Zucchini and Fewster (1998)]. Analysis of double-observer dis-
tance data is now canonically referred to as “mark-recapture distance sampling”
[MRDS; Laake and Borchers (2004)] because there is a detection history (i.e.,
binary detection/nondetection records for each observer) in addition to recorded
distances.

Despite the potential usefulness of MRDS methods for estimating abundance,
published methods often assume that animals do not move between detections of
observers, and that distances are recorded without error. These assumptions are
problematic for some species and sampling situations, such as aerial surveys of
birds where individuals may exhibit responsive movement away from aircraft.
Several authors have investigated consequences and corrections for movement
in distance sampling applications. For instance, Glennie, Buckland and Thomas
(2015) showed that movement could cause considerable bias (typically positive)
in distance-based abundance estimators, but did not attempt to develop methods to
adjust for such bias. Hiby and Lovell (1998) developed a likelihood framework to
estimate abundance when movement is random (i.e., nonresponsive to the survey
platform) and occurs between successive observations; however, their approach
does not account for responsive movement away from the survey platform.

Likewise, Borchers et al. (2010) showed that measurement errors could cause
substantial (usually positive) bias in distance sampling abundance estimators.
A number of authors have proposed models that account for measurement error in
specific distance sampling applications [see, e.g., Schweder et al. (1999), Borchers
et al. (2010), and references therein].

Several observer configurations are possible within an MRDS estimation frame-
work [Burt et al. (2014)] and have important implications for bias control when an-
imals move in response to a survey platform (i.e., “responsive” movement). In an
“independent” configuration, observers detect animals independently of one an-
other. Under this configuration, it is possible to try to account for heterogeneity
in detection probabilities (e.g., visual distinctiveness of different animal groups)
by modelling lack of fit between the distribution of observed distances and esti-
mated detection probabilities as a function of distance [Laake and Borchers (2004),
Borchers et al. (2006), Buckland, Laake and Borchers (2010)]. The ability to ac-
count for such heterogeneity is important because abundance estimators are neg-
atively biased otherwise. Alternatively, in a “trial” configuration [Buckland and
Turnock (1992)], one observer searches ahead, while another searches closer to
the survey platform. Under this configuration, detections by the first observer are
used as trials for the second observer. The trial configuration is useful for reduc-
ing bias associated with responsive movement of animals (which often positively
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biases abundance estimators), but one can no longer model heterogeneity in detec-
tion probability [Burt et al. (2014)].

In this paper, we develop an integrated likelihood framework to account for
movement and measurement error using an independent observer MRDS config-
uration. Our development is motivated by aerial surveys of birds, where the goal
is to unbiasedly estimate the species densities needed for effective monitoring and
conservation decisions. As such, we address movement between the time that two
observers (e.g., front and rear seat observers on the same side of the aircraft) are
able to make detections. Our objective is to account for the biasing effects of mea-
surement error and responsive movement while also being able to model individ-
ual heterogeneity through an observer dependence specification. The remainder
of this article is structured as follows. First, we describe a motivating data set,
in which distances, detection histories, and individual covariates are summarized
from a double-observer aerial survey in northern Canada. Second, we describe a
maximum marginal likelihood (MML) framework for analyzing these data. Un-
der this framework, true animal locations are treated as latent variables. Next, we
illustrate our method by analyzing the waterfowl data set and examine estimator
performance with two simulation studies. We conclude with a short discussion on
our proposed modeling framework, future research needs, and some specific sug-
gestions related to bird survey applications.

2. Waterfowl data. In June of 2014, biologists conducted a pilot double-
observer helicopter (BELL 206L on floats) survey of Arctic bird species in the
Queen Maud Gulf Migratory Bird Sanctuary (Nunavut, Canada; Figure 1). The
total length of survey tracks was 947.8 km. Birds surveyed were predominantly
waterfowl, but also included cranes and ptarmigan; we refer to them collectively
as waterfowl for the remainder of the paper. The original intent of the survey was
to investigate the potential of MRDS methods for surveying Arctic waterfowl,
and to compare them to other commonly used waterfowl survey methods such
as those that use double observers but do not record distance [e.g., Koneff et al.
(2008)]. It was thus conducted opportunistically, lacking a sampling frame needed
for extrapolation to larger areas. The survey is described in greater detail elsewhere
[Alisauskas and Conn (2018)], but we briefly provide information relevant to the
analysis conducted later in this paper.

During the survey, two observers, one behind the other, on the same (left) side
of the helicopter independently detected and recorded the perpendicular distance
from the transect line to each bird group they observed. Distances were binned
into 6 classes: 0–40 m, 40–80 m, 80–120 m, 120–160 m, 160–200 m, and 200 m+
(note that observations in the final bin are not used in subsequent analysis). They
also recorded species, the number of waterfowl in each detected group (“group”),
and a binary indicator for whether the waterfowl group was flapping their wings
(“moving”). These data were previously analyzed by Alisauskas and Conn (2018),
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FIG. 1. Aerial survey transects (solid lines) and 13,461 km2 minimum convex polygon (dark grey)
for estimating density and detection probability of 7 bird species in a portion of the Queen Maud
Gulf Migratory Bird Sanctuary, Nunavut, Canada.

who used standard MRDS methods that ignored movement and measurement er-
ror in their analysis. Their analysis suggested that moving birds were more de-
tectable than stationary ones, that detection probability increased with group size,
and that the front seat observer had higher detection probability than the rear seat
observer. They also estimated similar species effects on detection for 7 of the 9
species analyzed; here, we analyze detections of these 7 species (Canada goose,
king eider, long-tailed duck, northern pintail, rock ptarmigan, sandhill crane, and
white-fronted goose), within the same model to illustrate modeling concepts. This
protocol led to a total of 964 unique waterfowl group detections; 359 were detected
by both observers, 348 by the front observer only, and 257 by the back observer
only. Note that the back seat observer’s view of the first distance bin nearest the
transect line was partially obstructed by the left helicopter float. A plot of observed
distance deviations suggested asymmetrical responsive movement (away) from the
aircraft for nonstationary animal groups. There were also some minor distance dis-
crepancies for animal groups that were not moving, suggesting measurement error
(Figure 2).
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FIG. 2. Distribution of observed distance bin discrepancies for bird groups detected by both ob-
servers in helicopter surveys. Negative values imply movement (or measurement error) towards the
helicopter, while positive values imply movement away from the helicopter. For moving birds, the
distance bin observed by the rear observer tended to be farther away than the bin observed by the
front observer. Since the second observer always detected birds later than the front observer, this
suggests responsive movement away from the aircraft. For stationary birds, a nonzero distance bin
discrepancy represents measurement error.

The observed distribution of distances is problematic in the sense that it explic-
itly contradicts the standard MRDS modeling assumption that animals do not move
between successive observations. Further, they make individual heterogeneity dif-
ficult to diagnose because the patterns in distance data that are indicative of hetero-
geneity can be obscured by movement between distance bins. This leads to some
natural questions: first, what degree of bias might we expect in estimates of animal
abundance when classical MRDS models are applied to data like ours? Second, is
it possible to mitigate bias in estimates of abundance by explicitly modelling the
movement and measurement error processes? We now attempt to develop such a
framework before conducting some small simulation studies to investigate bias of
our proposed procedure relative to classical approaches that ignore movement and
measurement error.

3. Model development. Distance sampling surveys seek to estimate the abun-
dance, N , of an animal population in a given survey region. However, only a
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fraction pc of the survey region is covered by transects, so it is customary to fo-
cus on estimation of animal abundance in the “covered region,” Nc, and then to
use design-based procedures to expand this estimate to the full study area (e.g.,
N̂ = Nc/pc). In the present paper, we focus on estimation of Nc, with the under-
standing that such estimates can easily be expanded to a larger study area if desired
[e.g., Buckland et al. (2004)]. For notational ease, we shall use N to represent Nc

for the remainder of the paper.
Consider a double-observer MRDS survey where each observer records binned

distances to detected animal groups, independently of the other observer, and a
total of n animal groups are encountered by at least one observer (see Table 1 for a
complete list of notation). We develop a two-stage approach for estimating abun-
dance in the surveyed area from such data. In the first step, a MML framework is
used to simultaneously estimate parameters of detection, movement, and measure-
ment error processes. In the second, a Horvitz–Thompson-like estimator is used to
estimate abundance conditioned on parameter estimates from step 1.

In MRDS surveys with binned distances, observers record animals as occurring
in one of nS perpendicular distance bins, S = S1,S2, . . . ,SnS . Detection proba-
bility typically decreases with distance from the transect line, and the maximum
distance bin is often set such that animals farther away can be ignored without
greatly affecting precision of abundance estimates. Movement and measurement
error introduce complications: in addition to such errors among elements of S ,
animals can potentially move into or out of S , and animals outside of S can be de-
tected in S . For these reasons, the models we develop rely on augmenting S with
additional distance bins to allow for movement and measurement error (Figure 3).
Call this augmented set Z .

Let yio be a binary indicator for whether or not the ith animal group was de-
tected by observer o. Similarly, let dio denote the distance bin recorded by observer
o for animal group i (note dio is only defined when yio = 1). We assume that dis-
tances are only recorded within the truncation range of the transect, so yio = 0
whenever an animal group is perceived as having dio /∈ S . Letting bold upper case
symbols denote matrices [e.g., Y is a (2×n) matrix of all detection/nondetections],
we seek to define a joint density function [Y,D|θ,X], where θ = {β,φ,ϕ} are pa-
rameters describing probabilities of detection, movement, and measurement error,
respectively, and X includes individual covariates collected for each animal group
that can be used to explain variation in detection probabilities. Note that here and
throughout the paper, we use the bracket notation (e.g., [Y|X]) to denote the condi-
tional distribution of Y given X; we treat responses (e.g., Y, D) as random variables
under this construction even though it is not explicitly written.

3.1. Likelihood. To construct an appropriate likelihood for statistical infer-
ence, we start with the general framework proposed by Borchers et al. (2015) for
spatial mark-recapture and distance sampling surveys. Conditioning on detection,
Borchers et al. (2015) suggested that the joint distribution of animal locations and
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TABLE 1
Definitions of fixed and estimated quantities for the double-observer mark-recapture distance

sampling (MRDS) model incorporating movement and measurement error

Quantity Definition

A. Fixed quantities
n Number of animals detected by at least one observer
yio Binary indicator for whether animal group i was detected by observer o

dio Distance bin recorded by observer o for animal group i (if recorded)
hi Detection history for animal i, obtained by concatenating yi1 and yi2 (possibilities

are “11,” “10,” and “01”)
mi A binary indicator for whether animal group i was moving when observed (a single

determination is made)
xi A vector of covariates used to explain variation in detection probability for group i

gi Number of animals in group i (a single determination is made)
S The set of distance bins for which data are recorded, S = S1,S2, . . . ,SnS . i.e. those

bins within the truncation range of the transect.
Z The set of latent distance bins used for modelling true animal locations,

Z =Z1,Z2, . . . ,ZnZ
πj Proportion of Z covered by latent distance bin j

B. Parameters and functions of parameters
zio True (latent) distance bin of group i when encountered by observer o

ξio An indicator for whether or not observer 3 − o detected group i

δio Perpendicular distance from the transect line to the midpoint of bin zio

β A vector of parameters governing logit-linear variation in detection probability
φ Parameters governing animal movement
ϕ Parameters governing distance measurement error
θ The set of detection, movement, and measurement error parameters (θ = {β,φ,ϕ})
pio(zio) Probability that observer o detects group i given that the group is truly in distance

bin zio

p∗
i (zi1, zi2) Probability that at least one observer detects group i given the group is in distance

bin zi1 at time 1 and zi1 at time 2
ψ(zi1, zi2) Probability that an animal that is in latent distance bin zi1 when it passes observer 1

will be in latent distance bin zi2 when it passes observer 2
ω(z, d) Probability that an animal group in distance bin z is recorded as being in distance bin

d

ω(z,S) Probability that an animal group in distance bin z will have a recorded distance bin
falling within S. Note ω(z,S) = ∑

d∈S ω(z, d)

X A design matrix used to impart logit-linear structure on detection probabilities; note
this will often include latent distance values, zio

N True abundance of animals in the surveyed area

detections could be written as a product of (1) a joint probability density function
(pdf) for the latent locations of animals, and (2) a joint probability mass function
(pmf) for the encounter histories conditional on location. We expand upon this
framework to allow movement to affect the distribution of animal locations and to
incorporate a measurement error mechanism.



DISTANCE SAMPLING WITH MOVEMENT 103

FIG. 3. A depiction of observed (S) and latent (Z) distance bins that could potentially be used in
analysis of a hypothetical mark-recapture distance sampling (MRDS) survey. In this example, only
animals encountered in one of the three shaded distance bins to the right of the transect line (dashed
line) are recorded; however, the state space is augmented with an additional three bins to account for
possible animal movement and measurement error. In practice, the number of augmented distance
bins that are needed will be a function of the magnitude of the movement and measurement error
processes.

Letting zio denote the true location (latent distance bin) of animal group i when
it enters the field of view of observer o, we write the joint probability mass function
of observed data as a product of:

1. [Z|θ], a bivariate probability mass function for the distribution of true animal
locations, given detection by at least one observer; and

2. [Y,D|Z, θ,X], a model for binary detections and observed distances given
true unobserved locations and individual detection covariates.

If we knew the true locations of observed animals, we could simply base inference
on the likelihood L(θ;Z,D,Y,X) with corresponding joint density function

[Z,D,Y|θ,X] = [Y,D|Z, θ,X][Z|θ].
However, we do not know the true animal locations so instead integrate (sum) over
an augmented set of distance bins Z that could plausibly have resulted in a de-
tection (see Distribution of animal locations for more discussion of bin augmen-
tation). As such, we write the marginal likelihood of detection, movement, and
measurement error parameters as L(θ;D,Y,X), which corresponds to the joint
density

(3.1) [Y,D|θ,X] = ∏
i

( ∑
zi1∈Z

∑
zi2∈Z

[yi1, yi2, di1, di2|zi1, zi2, θ,xi][zi1, zi2|θ ]
)
.

Recall that zio is the true distance bin associated with animal group i when it passes
observer o. Similarly, yio gives detection/nondetection, and dio gives observed dis-
tance values (which are missing whenever yio = 0), and xi is a vector of covariates
for individual i. We now describe each of the likelihood components in further
detail. We shall make an attempt to redefine various quantities when needed; we
also provide parameter definitions in Table 1.
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3.1.1. Distribution of animal group locations. The first component of the joint
density [equation (3.1)] is the joint mass function for the locations of group i,
[zi1, zi2|θ ], given detection by at least one observer. We write this distribution as a
function of (i) an initial state distribution, [zi1]; (ii) a movement kernel, [zi2|zi1,φ];
and (iii) detection probability by at least one observer, p∗

i (zi1, zi2). Specifically, we
set

(3.2) [zi1, zi2|θ ] ∝ [zi1][zi2|zi1,φ]p∗
i (zi1, zi2),

where the ‘∝’ sign indicates normalization such that [zi1, zi2|θ ] sums to 1.0. We
explicitly include the thinning probability p∗

i (zi1, zi2) in this component since ob-
servations in the data set are conditional on detection, and thus the position of
observed animals are more likely to be close to the transect line than far away
from it.

We make the common distance sampling assumption [cf. Buckland et al.
(2001)] that perpendicular distances of animal groups from the transect line are
uniformly distributed when entering the field of view of the first observer. This
seems reasonable in applications where the first observer has a field of view facing
forward, and when the survey platform moves fast relative to the speed of focal
taxa (as in our waterfowl example; see Discussion for further consideration of this
assumption). Letting πj denote the proportional diameter of distance bin j (i.e.,
πj = aj/

∑
k ak where aj is the diameter of of distance bin j ), the (continuous)

uniform distance assumption translates into the following model for the latent dis-
tance bin of animal group i when encountered by the first observer:

zi1 ∼ Categorical(π1, π2, . . . , πnZ ),

where it is understood that “Categorical” denotes a multinomial distribution with
index 1, and nZ is the number of latent distance bins.

Next, the bivariate movement pmf [zi2|zi1,φ] describes the location of animal
group i when it enters the field of view of observer 2 as a function of the location
when it was in the field of view of observer 1. We model this as another categorical
distribution:

(3.3) [zi2|zi1,φ] = Categorical
(
ψ(zi1,1),ψ(zi1,2), . . . ,ψ(zi1, nZ)

)
.

For applications in this paper, we parameterize the movement transition probabil-
ities ψ using asymmetric kernels k (e.g., Figure 4). Using an asymmetric kernel
can allow movement rates to vary based on the direction of animal movement. In
particular, responsive movement away from the transect line may be more likely
than movement towards the transect line. In particular, we set

(3.4) ψ(zi1, zi2) ∝ k(zi1, zi2|φ),



DISTANCE SAMPLING WITH MOVEMENT 105

FIG. 4. Estimated movement and measurement error kernels for waterfowl mark-recapture dis-
tance sampling (MRDS) data from the highest ranked maximum marginal likelihood model. Mea-
surement error used a (discretized) symmetric Laplace kernel, while movement had an asymmetric
Laplace kernel.

where

(3.5) k(zi1, zi2|φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (δi2|μ = δi1, σ = φ1), zi2 < zi1,mi = 1,

f (δi2|μ = δi1, σ = φ2), zi2 ≥ zi1,mi = 1,

1.0, zi2 = zi1,mi = 0,

0.0, zi2 �= zi1,mi = 0.

Here, f () gives a probability density function; in our examples, we consider
Laplace (double exponential) and Gaussian distributions as choices for f (). Note
that δio gives the perpendicular distance from the transect line to the midpoint of
distance bin zio, and that φ1 and φ2 are unknown scale parameters of the move-
ment kernels. Also note that we assume that stationary animals (i.e., with mi = 0)
do not change distance bins.

Finally, the thinning probability p∗
i (zi1, zi2) is the probability of being detected

by at least one observer for an animal that is in distance bin zi1 at time 1 and
zi2 at time 2. It is a function of both detection probability and measurement error
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parameters:

p∗
i (zi1, zi2) = 1 − [

1 − pi1(zi1)ω(zi1,S)
][

1 − pi2(zi2)ω(zi2,S)
]
,

where pio(zio) is the probability of observer o detecting group i when it is at
distance zio, and ω(zio,S) is the probability that the observer perceives the group
to be within the truncation range (S) of the transect. This expression is slightly
different than typically encountered in MRDS models, as one must account for
two ways of getting a 0 in a capture history: an observer can either miss the animal
group or detect the group but determine it to be outside the truncation range of
the transect (i.e., /∈ S). To account for the latter possibility, we make use of the
measurement error probabilities ω(z, d), which can be parameterized in terms of
a measurement error kernel similarly to ψ [see equations (3.4)–(3.5)]. Given a
true distance bin z, we then compute ω(z,S) = ∑

d∈S ω(z, d). In applications in
the paper, we consider use of symmetric measurement error kernels (Gaussian or
Laplace) with a single scale parameter, ϕ.

In order to impart meaningful variation in detection probability, it is useful to
express pio(zio) in a regression framework on a logit-linear scale, such that

(3.6) logit(p) = Xβ,

where X is a design matrix and β is a vector of regression parameters. Note that
we shall often include zio (a latent quantity) within X; thus the design matrix X
will not be fixed as is customary in regression applications. For example, suppose
we desire a model where detection probability is a function of distance, squared
distance, observer, and group size (gi). We could then formulate equation (3.6)
such that

(3.7)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

logit(p11)

logit(p12)

logit(p21)

logit(p22)
...

logit(pn1)

logit(pn2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 z11 z2
11 0 g1

1 z12 z2
12 1 g1

1 z21 z2
21 0 g2

1 z22 z2
22 1 g2

...
...

...
...

...

1 zn1 z2
n1 0 gn

1 zn2 z2
n2 1 gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

β0
β1
β2
β3
β4

⎤
⎥⎥⎥⎥⎥⎦

.

Note that in the case of irregularly shaped bins, we would likely want to replace
zio in equation (3.7) with distance bin midpoints.

3.1.2. Likelihood of observed detections. The next component of the joint
density function is [yi1, yi2, di1, di2|zi1, zi2, θ,xi], the probability of realizing dif-
ferent random variables for detection (yi1 and yi2) and associated distance bin
values (di1 and di2) for animal group i conditional on true location. Conditional
on detection by at least one observer, there are three possible types of encounter
histories: hi = “11” (encountered by both observers), hi = “10” (encountered by
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the first observer and not the second), and hi = “01” (encountered by the second
observer but not the first). For “11” histories, there are n2

S combinations of possi-
ble recorded distance bins; for “10” histories, there are nS distance bins possible
for observer 1; for “01” histories, there are nS distance bins possible for observer
2. Thus, we can view [yi1, yi2, di1, di2|zi1zi2, θ,xi] as a multinomial distribution
with index 1 and n2

S + 2nS possible outcomes. The likelihood contribution, Li ,
for a particular animal group i can thus be written as Li = (p∗

i (zi1, zi2))
−1 Pr(hi),

where the probability of observing each type of history is:

Pr
(
hi = “11”

) = pi1(zi1)ω(zi1, di1)pi2(zi2)ω(zi2, di2),

Pr
(
hi = “10”

) = pi1(zi1)ω(zi1, di1)
[
pi2(zi2)

(
1 − ω(zi2,S)

) + (
1 − pi2(zi2)

)]
and

Pr
(
hi = “01”

) = pi2(zi2)ω(zi2, di2)
[
pi1(zi1)

(
1 − ω(zi1,S)

) + (
1 − pi1(zi1)

)]
.

For a review of notation, see Table 1.

3.2. Horvitz–Thompson-like abundance estimator. Minimizing the negative
log-likelihood associated with equation (3.1) provides marginal maximum like-
lihood estimates for detection, movement, and measurement error parameters,
but does not provide a direct estimate of animal abundance, N . We developed a
Horvitz–Thompson-like procedure for N , as is common in distance sampling lit-
erature [e.g., Buckland et al. (2004)]. This is especially useful when coping with
detection probabilities that vary as a function of individual detection covariates.
For instance, in standard MRDS applications, one might estimate abundance as

N̂ =
n∑

i=1

gi

p∗
i

,

where n is the number of animals detected, gi is the number of animals in group
i, and p∗

i is the probability of detection by at least one observer. However, direct
application of this estimator is clearly inappropriate under movement and mea-
surement error, as it can potentially include animals outside of the surveyed area,
or include animals that move into the surveyed area; thus, further development is
needed.

We construct a Horvitz–Thompson-like estimator for abundance in the surveyed
region S when animals enter the field of view of observer 1 (i.e., before any move-
ment is assumed to occur) as follows:

(3.8) N̂ |θ̂ = ∑
i

∑
zi1∈S

∑
zi2∈Z

gi × [zi1, zi2|θ̂ ]
p∗

i (zi1, zi2)
.

This formulation integrates over the latent position of animal groups as they pass
observers 1 and 2 (i.e., zi1 and zi2) with the restriction that they must be within the
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truncation range of the transect (i.e., ∈ S) when they pass observer 1. The quantity
[zi1, zi2|θ̂ ] gives the discrete probability mass function for the true locations of
detected animals evaluated at the MLEs.

As suggested by a reviewer, dependence on p∗
i in the denominator of equation

(3.8) may lead to instability of the estimator if p∗
i is low. In distance sampling

applications, it is thus common to replace p∗
i with an expectation over i, E(p∗)

[Laake and Borchers (2004), equation (6.11)]. We leave examination of such a
procedure to future research.

To compute variance, we adapt the approximation given independently by
Huggins (1989, 1990) and Alho (1990) and subsequently used by other authors
in distance sampling applications [e.g., Borchers et al. (2006)]. This approach uses
the law of total variance to write variance as a function of (i) the variance asso-
ciated with the number of animals encountered, and (ii) variance associated with
uncertainty in estimated parameters. Specifically, our approximation is

V̂ar(N̂) = ∑
i

(1 − p̃i)gi

p̃2 + D̂′�̂D̂,

where

p̃i = ∑
zi1∈S

∑
zi2∈Z

[zi1, zi2|θ̂ ]p∗
i (zi1, zi2|θ̂).

Here, D̂ is a vector of derivatives, dN̂/dθi |
θ̂i

, evaluated at the MLEs, and �̂ is
the estimated variance-covariance matrix of MRDS parameters. We use log-based
confidence intervals [Burnham et al. (1987), page 212] customary in distance sam-
pling applications [Buckland et al. (2001)], and examine precision and confidence
interval coverage of this approximation in all subsequent simulation analyses.

Another possible approach for variance estimation often used in distance sam-
pling applications is to employ a data-based bootstrap where data are resampled
with replacement, parameters re-estimated, and replicate estimates of N̂boot used
to determine a confidence interval (e.g., using the 2.5th and 97.5th quantiles for
a 95% interval). If transects are of equal area, it is customary to resample data at
the transect level (rather than the level of individual observations) to better capture
spatial variation associated with patchy animal distributions. We do not specifically
evaluate this procedure; nevertheless, it may be useful in some applications.

3.3. Extension to incorporate detection heterogeneity. So far, we have not at-
tempted to model detection heterogeneity outside of individual covariates [e.g.,
through equation (3.6)]. However, it is common knowledge that other factors (e.g.,
variation in plumage, lighting, topography, background, etc.) can affect the dis-
tinctiveness of different animal groups and impart additional heterogeneity lead-
ing to (often positive) dependence in observer detection and thus negative bias in
N̂ [Laake and Borchers (2004), Buckland, Laake and Borchers (2010), Burt et al.
(2014)].



DISTANCE SAMPLING WITH MOVEMENT 109

In traditional MRDS applications (i.e., without movement and measurement er-
ror), one approach is to correct for this bias by estimating observer dependence
parameters, typically by including an additional probability density function for
observed distances within a joint likelihood [cf. Buckland, Laake and Borchers
(2010)]. However, inclusion of such a pdf in our likelihood appears problematic,
as movement alters interpretation of distance distributions [Burt et al. (2014)]. For
instance, movement can induce patterns in observed distance distributions that ap-
pear similar to those caused by individual heterogeneity. Alternatively, MacKenzie
and Clement (2016) suggested that observer dependence could also be included by
modelling conditional detection probabilities; that is, including detection by one
observer as a covariate for detection of the other. For instance, detection proba-
bilities could potentially be written as a logit-linear function of an autocovariate
ξio = yi,3−o. We adapt this latter idea as a way to accommodate detection hetero-
geneity in data subject to movement and measurement error.

The major complication with using a detection autocovariate as a predictor in
our case is that we are no longer able to say that an animal group with yio = 0
was actually undetected by observer o. It could, for instance, have been detected
but determined to not be in S . As such, we view the autocovariate ξio as a latent
variable. If yio = 1, then ξi,3−o = 1 with certainty; however, if yio = 0 we do not
know whether ξi,3−o is 0 or 1.

An example may help make the preceding points clearer. For instance, suppose
two observers gather distance data in an MRDS survey. After the study, a trunca-
tion range of 5 distance bins is determined. For a particular animal group, the first
observer records a distance bin value of 5 (the distance bin farthest away from the
transect), but the second observer either does not detect the animal or perceives
the animal to be outside of the 5 distance bins used in the analysis (e.g., distance
bin 6). In either case, a nondetection is entered for the second observer when for-
matting detection histories. Now, suppose that the true distance bin was 5 for both
observers (i.e., zi1 = zi2 = 5). When modelling this detection probability, we must
therefore account for both possibilities for observer 2 when writing the probability
of the encounter history and in conditioning on ξi,3−o.

To implement this idea, we rewrite the observation model as

[yi1, yi2, di1, di2|zi1, zi2, θ,xi] = [
p∗

i (zi1, zi2)
]−1 Pr(hi),

where Pr(hi) depends on the type of history observed, such that

Pr
(
hi = “11”

) = pi1(zi1|ξi1 = 1)ω(zi1, di1)pi2(zi2|ξi1 = 1)ω(zi2, di2),

Pr
(
hi = “10”

) = pi1(zi1|ξi1 = 1)ω(zi1, di1)pi2(zi2|ξi2 = 1)
(
1 − ω(zi2,S)

)
+ pi1(zi1|ξi1 = 0)ω(zi1, di1)

(
1 − pi2(zi2|ξi2 = 1)

)
and

Pr
(
hi = “01”

) = pi2(zi2|ξi2 = 1)ω(zi2, di2)pi1(zi1|ξi1 = 1)
(
1 − ω(zi1,S)

)
+ pi2(zi2|ξi2 = 0)ω(zi2, di2)

(
1 − pi1(zi1|ξi1 = 1)

)
.
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Note that pio(zio|ξio) gives detection probability for observer o for animal group
i, conditional on the animal group being located in distance bin zio and whether or
not it is detected by the other observer. Similarly, recall that ω(zio, dio) gives the
probability that animal group i that is truly in distance bin zio will be assigned to
distance bin dio given it is detected by observer o.

The probability of being detected by at least one observer can be recalculated in
a similar fashion. However, it is no longer possible to succinctly write p∗

i (zi1, zi2)

as the complement of the probability of being undetected. Instead, we sum the
probability of obtaining each encounter history type (hi = “11”, “01”,or “10”)
(subject to uncertainty about ξio):

p∗
i (zi1, zi2) = pi1(zi1|ξi1 = 1)ω(zi1,S)pi2(zi2|ξi2 = 1)ω(zi2,S)

+ pi1(zi1|ξi1 = 0)ω(zi1,S)
(
1 − pi2(zi2|ξi2 = 1)

)
+ pi1(zi1|ξi1 = 1)ω(zi1,S)pi2(zi2|ξi2 = 1)

(
1 − ω(zi2,S)

)
+ pi2(zi2|ξi2 = 0)ω(zi2,S)

(
1 − pi1(zi1|ξi1 = 1)

)
+ pi2(zi2|ξi2 = 1)ω(zi2,S)pi1(zi1|ξi1 = 1)

(
1 − ω(zi1,S)

)
.

Following these adjustments, we use the “symmetric” parameterization [Mac-
Kenzie and Clement (2016)] of observer dependence to include ξio in the logit-
linear model for pio. For instance, point independence [Laake and Borchers
(2004), Buckland, Laake and Borchers (2010)], where observers are assumed to
detect animal groups independently near the transect line but to have increasing de-
pendence with distance, can be implemented by including an interaction between
distance and ξio with no main effect for ξio. For example, in a model including
linear and quadratic effects of distance bin (zio) on detection probability, a full
independence (“fi”) model might be written as

logit(pio) = β0 + β1zio + β2z
2
io,

where a point independence (“pi”) model could be written as

logit(pio) = β0 + β1zio + β2z
2
io + β3zioξio.

Alternatively, limiting dependence [‘li’, Buckland, Laake and Borchers (2010)],
where there is a base level of dependence on or near the transect line, can be imple-
mented by including a main effect for ξio in addition to the interaction [MacKenzie
and Clement (2016)]. This could be accomplished with the formulation

logit(pio) = β0 + β1zio + β2z
2
io + β3ξio + β4zioξio.

3.4. Goodness-of-fit. Goodness-of-fit is often summarized with χ2 tests when
distance data are binned [Burnham et al. (2004)]. However, this depends on having
adequate sample sizes and homogeneous probabilities of detection within classes
of animals. This latter requirement is problematic when detection probability is
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written in terms of individual covariates. Instead, we developed a simulation-based
goodness-of-fit procedure similar in spirit to posterior predictive checks used in
Bayesian analysis [e.g., Gelman et al. (2014)]. Our procedure consists of:

1. Sampling θk ∼ Multivariate Normal(θ̂ , Ĥ−1), where θ̂ are maximum likeli-
hood estimates (MLEs), and Ĥ is a matrix of second derivatives of the likelihood
evaluated at the MLEs.

2. Simulating new data (dk,yk) from [dk,yk|X, θk].
3. Calculating a discrepancy measure T (y,d, θ) to compare the observed data

to data simulated under the model.

For instance, we might compute the proportion of observations that occur in each
distance bin when subset by various explanatory variables for our observed data
and compare these to the distribution of proportions that we obtain by simulating
data from our model when all assumptions are met. For some specific examples,
see Section 4.

3.5. Computing. We conducted MML inference in the R programming envi-
ronment [R Development Core Team (2016)]. We have collated all code and data
needed to recreate our analyses into an R package, MRDSmove. The package is
currently available at https://github.com/pconn/MRDSmove/releases and has been
archived on Zenodo (DOI: 10.5281/zenodo.8475).

4. Analysis of waterfowl data. We fitted 8 MML models to our water-
fowl data, varying by (1) movement and measurement kernel type (Gaussian
vs. Laplace), (2) observer dependence type (none or point independence), and
(3) whether or not moving individuals had a different distance function than indi-
viduals that were not moving (Table 2). We did not attempt to fit models with limit-
ing independence, owing to poor simulation performance (see Simulation study 2,
below). We calculated marginal AIC to select among these models.

All models included the following predictors within the logit-linear model for
detection probability: group size, moving/not moving, observer (front vs. back),
distance, squared distance, and an interaction between the distance effects and the
observer effects. The latter interaction was included because the view of the first
distance bin was partially obstructed for observer 2 whose distance distribution ap-
peared to peak farther away from the helicopter [see Alisauskas and Conn (2018)].
We applied the same detection, movement, and measurement error parameters to
all species as distance distributions appeared similar for all species and previous
analysis suggested similar detection profiles [Alisauskas and Conn (2018)].

AIC strongly favored models with Laplace movement and measurement error
kernels (Figure 4) over Gaussian kernels, although the impact of the functional
form of the kernel on resultant abundance estimates was quite small (Table 2). The
highest ranked model had an interaction between distance and moving/not mov-
ing, suggesting different detection function shapes for moving versus stationary

https://github.com/pconn/MRDSmove/releases
https://doi.org/10.5281/zenodo.8475
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TABLE 2
A comparison of models fit to waterfowl data. Models are ranked by AIC; we also provide the

number of parameters in each model (k), log likelihood (LogL) at the MLEs, and the total number
of focal waterfowl (N̂c) in the area covered by transects (a sum of species-specific estimates). MML

models varied by the functional form of movement and measurement error kernels (Gaussian vs.
Laplace), the form of observer dependence (fi: full independence, pi: point independence), as well

as whether the detection function included a distance:movement interaction. For reference, the total
number of detected birds was 2666

Model �AIC k LogL N̂(ŜE)

MML.Laplace.pi.move 0.0 14 −2725.4 3844 (299)
MML.Laplace.pi 3.2 12 −2729.0 3591 (221)
MML.Laplace.fi 6.1 11 −2731.5 3265 (93)
MML.Laplace.fi.move 6.7 13 −2729.8 3288 (96)
MML.Gaussian.pi.move 55.5 14 −2753.2 3827 (310)
MML.Gaussian.pi 58.3 12 −2756.6 3575 (223)
MML.Gaussian.fi 62.9 11 −2760.0 3272 (95)
MML.Gaussian.fi.move 63.6 13 −2758.2 3294 (98)

animals. However, pairwise model comparisons with and without such an effect
had similar AIC scores, so this effect was likely small. Point independence (“pi”)
was favored over full independence (“fi”) models, suggesting some level of detec-
tion heterogeneity that was not captured via gathered covariates. As expected, “pi”
models resulted in higher abundance estimates and higher CVs than “fi” models.
In our case, estimates were an average of 13% higher for “pi” models than “fi”
models (Table 2) and CV increased from 3% to 7%. Plots of movement and mea-
surement error kernels (Figure 4) for the highest ranked model resembled raw data
histograms (Figure 2). Using the highest-ranked AIC model, densities of water-
fowl in the surveyed area ranged from 0.4 individuals/km2 for rock ptarmigan to
7.5 individuals/km2 for Canada geese (Figure 5).

To examine fit of our model to the data, we compared the properties of our
MRDS dataset to 1000 data sets simulated from the highest ranked AIC model. In
general, data sets simulated under our model had similar proportions of animals
observed in the five distance bin classes as we observed in the field (Figure 6).
A notable exception was a tendency to overpredict the proportion of moving ani-
mals in distance bin 3. We are unsure why there may have been a dip in detections
in the third distance bin, but have resisted the urge to consider more highly param-
eterized structures since a smooth decrease in the number of animals encountered
as a function of distance is often expected a priori [Buckland et al. (2001)], and
it would be difficult to fit this particular “dip” in our distance data without mak-
ing the detection model multimodal. Our model did a reasonable job in replicating
the proportions of animals with each detection history type observed in the field.
For instance, the number of “11”, “10”, and “01” histories compiled for moving
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FIG. 5. Estimates of bird densities and 95% log-based confidence intervals for the surveyed region
in the northern Canada from the highest ranked AIC model. Species included Canada goose (CAGO),
king eider (KIED), long-tailed duck (LTDU), northern pintail (NOPI), rock ptarmigan (ROPT), sand-
hill crane (SACR), and white-fronted goose (WFGO).

animals was 289, 261, and 179, respectively; these compared to 95% simulation
intervals of (257,307), (227,276), and (173,219). For stationary animals, we ob-
served 64 “11”, 92 “10”, and 79 “01” histories compared to simulation intervals of
(53,80), (74,103), and (68,95).

5. Simulation studies. We conducted two simulation studies to investigate
bias, precision, and confidence interval coverage of our MML models and com-
pared these to other MRDS analyses that do not account for movement and mea-
surement error. The first simulation study assumed independence between observer
detections (i.e., no residual detection heterogeneity). The second experiment fo-
cused on performance of different approaches to estimation when heterogeneous
detection probabilities were simulated using random effects.

5.1. Simulation study I: Basic model performance. Our first simulation study
was designed to investigate estimator performance over different movement and
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FIG. 6. A plot of the number of observed and predicted waterfowl groups by observer and move-
ment status. Observed data are given by the thick solid line, while the thick dashed line represents
mean predictions and the thin, dashed lines represent 2.5th and 97.5th quantiles of model-based
simulations (including variance due to uncertainty of MML estimates).

measurement error rates, and only considering variation imparted by measurable
covariates. For this study, we simulated three different Gaussian movement ker-
nel [equation (3.5)] scenarios, corresponding to (i) no movement (φ1 = φ2 = 0),
(ii) symmetric movement (φ1 = φ2 = 0.7), and (iii) asymmetric movement with
much higher rates of movement away from the transect line than towards the tran-
sect line (φ1 = 0.5, φ2 = 1.5). We considered two levels of measurement error
for each movement scenario: no measurement error, or minor measurement error
(ϕ = 0.5). The latter value of measurement error was chosen to approximate the
level of error we observed in our waterfowl data.

In each of 500 simulations for the 6 movement and measurement error scenar-
ios, we conducted the following steps:

1. For each of i ∈ 1,2, . . . ,1000 animals, we simulated an initial, latent posi-
tion zi1 in 8 equally sized distance bins using a uniform distribution.

2. After generating mi ∼ Bernoulli(0.75) (so that approximately 75% of an-
imals were moving), we simulated zi2 using equation (3.3). For animals with
mi = 0, we simply set zi2 = zi1.
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3. We simulated yio and dio using detection and measurement error mod-
els, where the first five distance bins were subject to observation (i.e., S =
{Z1,Z2, . . . ,Z5}). Detection probabilities were configured as

logit(pio) = β0 + β1mi + β2zio + β3z
2
io,

where β0 = 1, β1 = 0.5, β2 = 0.07, and β3 = −0.09.
4. We fit a sequence of three models to each such data set. These included (i) the

movement and measurement error model proposed in this paper (configured with 8
latent distance bins), as well as two Huggins–Alho models [HA; Huggins (1989),
Alho (1990)]. We fit the HA models using program MARK [White and Burnham
(1999)] via an RMark [Laake (2013)] interface. The HA models suppose inde-
pendent detection of observers and do not account for movement or measurement
error; abundance estimates are generated with a Horvitz–Thompson-like proce-
dure. The two HA models differed in how distance mismatches were handled: in
the first (HA1), distance was set to di1 whenever di1 �= di2 (i.e., using the distance
value for observer 1 whenever there is a mismatch); in the second (HA2), conflict-
ing distance measurements were averaged. For all three estimation procedures, we
used the same structure when estimating pio as used to generate the data. For sim-
ulations where data were generated with movement or measurement errors equal
to 0.0, we fixed the corresponding parameter in the estimation model to zero to
prevent numerical errors.

5. For each model and data set, we tabulated bias, coefficient of variation (CV),
95% confidence interval coverage, and root mean square error (RMSE) of abun-
dance estimators.

Note that in initial simulation work, we also fit movement and measurement error
models with 10 latent distance bins, finding that results were almost identical to
those with 8 latent distance bins (parameter estimates were often within 0.0001 of
each other).

In general, bias from our new method was close to zero, while positive bias
from the HA models could be substantial when movement and/or measurement
error occurred (up to 8%; Table 3). Precision and mean squared error were always
better for the MML models than the HA models, with confidence interval coverage
closer to nominal. Coverage was slightly high for the MML models (0.97–0.98 for
a 95% interval), and could be poor (e.g., 75%) for HA models when sufficient
movement or measurement error occurred. Interestingly, HA1 estimates tended
to have slightly better properties (lower bias, better coverage, lower RMSE) than
HA2 estimates, suggesting that taking distance values from observer 1 may be a
better strategy than averaging distance values to resolve discrepancies if one cannot
model movement and measurement error directly.

When comparing results, note that the MML likelihood incorporates data on
the distribution of observed distances [via equation (3.2)] whereas HA models do
not; as such the estimators are not equivalent even in absence of movement and
measurement error.
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TABLE 3
Median proportion relative bias (RelBias), coefficient of variation (CV), 95% confidence interval

coverage (Cover), and root mean squared error (RMSE) for the two simulation studies. For the first
simulation scenario, “Configuration” gives values for movement (σ1 and σ2) and measurement

error (ϕ) parameters, e.g. (0,0,0), respectively; in simulation study 2, it indicates these parameters
as well as expected population size in the surveyed area N = 200 or N = 1000. Three estimation

models (Model) were fitted to each data set in simulation study 1: the maximum marginal likelihood
(MML) model accounting for movement and measurement error, and two Huggins-Alho models

which do not account for movement, measurement error, or observer dependence (HA1 and HA2;
described in the text). For simulation scenario 2, we fitted MML models that embodied full

independence (MML.fi), point indendence (MML.pi), and limiting independence (MML.li) in
addition to the HA models

Configuration Model RelBias CV Cover RMSE

A. Simulation study 1
(0,0,0) MML 0.01 0.04 0.98 231
(0,0,0) HA1 0.01 0.04 0.95 553
(0,0,0) HA2 0.01 0.04 0.95 554
(0.7,0.7,0) MML 0.01 0.03 0.97 282
(0.7,0.7,0) HA1 0.03 0.05 0.86 952
(0.7,0.7,0) HA2 0.05 0.05 0.82 1418
(0.5,1.5,0) MML −0.02 0.04 0.91 395
(0.5,1.5,0) HA1 0.06 0.07 0.80 2887
(0.5,1.5,0) HA2 0.06 0.07 0.83 2691
(0,0,0.5) MML 0.00 0.04 0.97 246
(0,0,0.5) HA1 0.01 0.05 0.93 813
(0,0,0.5) HA2 0.03 0.05 0.90 1182
(0.7,0.7,0.5) MML 0.00 0.04 0.98 353
(0.7,0.7,0.5) HA1 0.03 0.05 0.83 1120
(0.7,0.7,0.5) HA2 0.06 0.06 0.75 2482
(0.5,1.5,0.5) MML 0.00 0.04 0.97 379
(0.5,1.5,0.5) HA1 0.06 0.06 0.83 2607
(0.5,1.5,0.5) HA2 0.08 0.07 0.81 3831

5.2. Simulation study II: Heterogeneous detection. In our second simulation
study, we examined performance of our proposed approach when MRDS data are
simulated with highly heterogeneous detection probabilities. The main structure
of our simulations was largely similar to the preceding section. We considered
two different movement and measurement error scenarios corresponding to (i) no
movement or measurement error (i.e., φ1 = φ2 = ϕ = 0) and (ii) movement away
from the survey line (φ1 = 0, φ2 = 1.5) with moderate measurement error (ϕ =
0.5). For each of these scenarios, we considered two different expected sample
sizes in the sampled area: E(N) = 200 and E(N) = 1000. In each combination of
simulation replicates, we conducted 500 simulations via following steps:

1. For each of i ∈ 1,2, . . . ,E(N) animals, we simulated an initial, latent posi-
tion zi1 in 8 equally sized distance bins using a uniform distribution.
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TABLE 3
(Continued)

Configuration Model RelBias CV Cover RMSE

B. Simulation study 2
(0,0,0), N = 200 MML.pi 0.03 0.11 0.99 444
(0,0,0), N = 200 MML.li −0.11 0.35 0.89 1578
(0,0,0), N = 200 MML.fi −0.04 0.06 0.83 195
(0,0,0), N = 200 HA1 −0.07 0.06 0.83 300
(0,0,0), N = 200 HA2 −0.07 0.06 0.83 300
(0,1.5,0.5), N = 200 MML.pi −0.02 0.13 0.94 672
(0,1.5,0.5), N = 200 MML.li −0.10 0.39 0.87 2734
(0,1.5,0.5), N = 200 MML.fi −0.08 0.07 0.72 390
(0,1.5,0.5), N = 200 HA1 0.00 0.14 0.95 7996
(0,1.5,0.5), N = 200 HA2 −0.02 0.12 0.94 2201
(0,0,0), N = 1000 MML.pi 0.02 0.05 0.98 2098
(0,0,0), N = 1000 MML.li −0.11 0.23 0.78 36,197
(0,0,0), N = 1000 MML.fi −0.06 0.03 0.35 3769
(0,0,0), N = 1000 HA1 −0.08 0.02 0.19 6550
(0,0,0), N = 1000 HA2 −0.08 0.02 0.19 6550
(0,1.5,0.5), N = 1000 MML.pi −0.03 0.06 0.92 3468
(0,1.5,0.5), N = 1000 MML.li −0.17 0.22 0.69 47,853
(0,1.5,0.5), N = 1000 MML.fi −0.09 0.03 0.08 8917
(0,1.5,0.5), N = 1000 HA1 −0.02 0.05 0.93 2216
(0,1.5,0.5), N = 1000 HA2 −0.04 0.04 0.86 3067

2. We generated mi (a binary indicator for whether individual i is moving or
not) and zi2 (latent position of the animal when it passes observer 2) as in Simula-
tion study 1.

3. We simulated dio and yio (distance and detection, resp.) as in simulation
study 1, once again using 5 observable distance bins. However, we used a half-
normal model for detection probability,

pio = p0
io

f (zio|μ = 1, σio)

f (1|μ = 1, σio)
,

where p0
io gives detection probability in the first distance bin, and the half normal

model describes how detection probability declines in bins that are farther away.
These models were further parameterized as

logit
(
p0

io

) = β0 + β1mi and

log(σio) = α0 + α1mi + εi,

where β0 = α0 = 1, β1 = 0.5, α1 = 0.2, and εi ∼ Uniform(−0.7,0.7). The half-
normal model seemed a reasonable way to implement point independence [Laake
and Borchers (2004)] using random effects (Figure 7).
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FIG. 7. The simulated range of detection probabilities from Simulation study 2, where heterogene-
ity is incorporated via a random effect on the log of the standard deviation associated with a half-nor-
mal detection model. Solid and dashed lines represent the expected detection probability for moving
and stationary animals, while shaded regions represent 95% intervals.

4. We fit five models to each such data set. These included the same three mod-
els from Simulation study 1, as well as two marginal likelihood model that at-
tempted to estimate observer dependence parameters in addition to movement and
measurement error. In particular, we fitted models using point independence (pi)
and limiting independence models (li) as described in Section 3.3.

5. For each model and data set that resulted in a positive definite Hessian ma-
trix, we tabulated bias, coefficient of variation (CV), 95% confidence interval cov-
erage, and root mean square error (RMSE).

Simulations suggested that the MML model with point independence did a rea-
sonable job at estimating abundance under all scenarios (Table 3) even though the
estimation model differed from the data generating model (polynomial vs. half
normal detection model; observer dependence effect vs. random effects). In par-
ticular, bias was low (−0.03 to 0.03) and 95% confidence interval coverage was
close to nominal (0.92–0.99) for all scenarios examined. In contrast, bias of models
ignoring observer dependence could be considerable (up to −9%) with precision
that was too high, leading to confidence interval coverage that was too low (as low
as 8% in one scenario). Not surprisingly, bias was typically negative when ignor-
ing observer dependence. However, there was a mediating effect on bias whenever



DISTANCE SAMPLING WITH MOVEMENT 119

data were simulated subject to both movement, measurement error, and observer
dependence. Since movement and measurement error alone induce positive bias,
and observer dependence alone produces negative bias, the combination of both
processes attenuated bias. For instance, HA models performed better when both
sources of bias were present than when only one source of bias was present.

Models accounting for observer dependence with a limiting independence (“li”)
formulation performed poorly. These models only resulted in positive definite Hes-
sian matrices in 39% of simulations with low abundance (95% of simulations with
high abundance). Those simulations that did converge produced estimators with
considerable negative bias (up to 19%), low precision, and poor confidence inter-
val coverage. These models are known to border on nonidentifiability in applica-
tions without measurement and movement errors [Buckland, Laake and Borchers
(2010), MacKenzie and Clement (2016)]; evidently, their performance is even fur-
ther degraded when one must simultaneously account for movement and measure-
ment error. Given this poor performance, we suggest that investigators only employ
point independence (“pi”) formulations to address residual detection heterogeneity
when movement and/or measurement error models are employed.

6. Discussion. In this paper, we developed an approach to account for move-
ment and measurement error in MRDS analyses when observers independently
record distances to animals, and when there is a binary covariate for movement. In
simulation studies, our approach exhibited low bias and RMSE when compared to
a procedure that ignores movement and measurement error (the latter resulted in
positive biases of up to 8%). Importantly, we were able to conduct estimation even
in the face of residual detection heterogeneity using a point independence assump-
tion, which seems like a useful advance. Indeed, estimation of abundance in our
field study was much more sensitive to different functional forms for observer de-
pendence than it was to different functional forms for movement or measurement
error.

Our research was motivated by an applied problem: can one obtain reliable esti-
mates of bird abundance using aerial survey detections when animals responsively
move away from aircraft? Our results suggest that the answer to this question is
yes, provided that one employ a design where assumption violations are mini-
mized. This is an important finding for bird surveys in the Arctic and elsewhere, as
population managers and conservationists need unbiased estimates of abundance
to make responsible conservation and management decisions (e.g., for regulation
of waterfowl harvests).

Several avenues of future research are desirable. First, although our focus here
was on errors in distances, other errors may occur (e.g., errors in group size deter-
minations, individual covariates, species, etc.). Errors in species identification can
be particularly problematic [e.g., Conn et al. (2014)] and should ultimately be ad-
dressed in multi-species surveys. Second, we have assumed additive measurement
error in the present development; in some situations, multiplicative measurement
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error [whereby animals farther away are subject to greater measurement error;
Borchers et al. (2010)] may make more sense.

In this paper, we conditioned on binary variables mi for whether a detected
group was moving or not. This approach let us estimate movement separately from
measurement error by making the assumption that animals with mi = 0 are only
subject to measurement error. In other situations and study taxa (e.g., many marine
mammals), all animals may be moving in some fashion, and thus there may be
insufficient data to separate these processes. In these circumstances, auxiliary data
[e.g., animals with known location to estimate measurement error; cf. Borchers
et al. (2010)] will likely be needed to implement our methods.

We made several important assumptions in our modelling efforts that should
be considered by practitioners before using our methods. First, we assumed that
animals were uniformly distributed when detected by the first observer. That is,
responsive movement happens after detection by the first observer. This assump-
tion seemed reasonable in our application, but may not be a good assumption in
other studies. Second, we assumed that the true distance bin was fixed when in the
field of view of a given observer. As one reviewer noted, this may not always be
the case; when animals move between distance bins, the ultimate probability of
detection depends on the entire track of an animal while in the field of view. In
such a case, abundance estimators may be subject to some bias, the magnitude of
which would likely require additional continuous (or approximately continuous)
time simulations. Recent research suggests that the magnitude of such bias will
likely be worse when the speed of the survey platform is slow relative to the speed
of the animal [Glennie, Buckland and Thomas (2015)].

One exciting avenue for future research would be to expand our type of mod-
elling approach to allow movement within spatial capture-recapture [SCR; e.g.,
Borchers and Efford (2008), Royle et al. (2013)] models. The generalized likeli-
hood structure of MRDS and SCR is actually very similar [Borchers et al. (2015),
Borchers and Marques (2017)], so incorporating movement could likely be accom-
plished using the same construct in the paper (i.e., by viewing an animals’ loca-
tions as unobserved latent variables and integrating over all possible sequences of
locations). The challenge would likely be a numerical one, as space would need to
be increased from one to two dimensions and over a finer mesh, and the temporal
dimension would need to increase from two observers to a finite number of sam-
pling occasions. One approach to high dimensional integration would be to adopt a
Bayesian perspective within a data augmentation framework [Royle, Dorazio and
Link (2007), Conn, Laake and Johnson (2012)].
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