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Often, interest in forecast evaluation focuses on certain regions of the
whole potential range of the outcome, and forecasts should mainly be ranked
according to their performance within these regions. A prime example is risk
management, which relies on forecasts of risk measures such as the value-at-
risk or the expected shortfall, and hence requires appropriate loss distribution
forecasts in the tails. Further examples include weather forecasts with a focus
on extreme conditions, or forecasts of environmental variables such as ozone
with a focus on concentration levels with adverse health effects.

In this paper, we show how weighted scoring rules can be used to this
end, and in particular that they allow to rank several potentially misspeci-
fied forecasts objectively with the region of interest in mind. This is demon-
strated in various simulation scenarios. We introduce desirable properties of
weighted scoring rules and present general construction principles based on
conditional densities or distributions and on scoring rules for probability fore-
casts. In our empirical application to log-return time series, all forecasts seem
to be slightly misspecified, as is often unavoidable in practice, and no method
performs best overall. However, using weighted scoring functions the best
method for predicting losses can be identified, which is hence the method of
choice for the purpose of risk management.

1. Introduction. Generating and evaluating forecasts is a central task in many
scientific disciplines such as macroeconomics and finance [Elliott and Timmer-
mann (2016)] or climate and weather research [Casati et al. (2008)]. While point
forecasts for parameters such as the mean or a quantile are more frequently issued
[Gneiting (2011)], probabilistic forecasts in the form of predictive distributions
are most informative and generally preferable [Dawid (1984)]. Comparisons of
distinct forecasts should be based on proper scoring rules [Gneiting and Raftery
(2007)], which encourage the forecaster to be honest and make careful assessments
according to her true beliefs.

Often, interest focuses on certain regions of the whole potential range of the
outcome. As a consequence, forecasts should mainly or even exclusively be ranked
according to their performance within these regions, while outside they are only of
minor or no interest.
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A prime example is short-term risk management, which relies on forecasts in the
form of risk measures such as value-at-risk or expected shortfall [McNeil, Frey and
Embrechts (2005), Nolde and Ziegel (2017)] that summarize tail properties of the
loss distribution. Hence forecasts of risk measures typically are preceded by fore-
casts of the profit-and-loss distribution, the quality of which should therefore be
assessed in its lower tail. For regulatory purposes, and in particular the evaluation
of capital requirements, it is finally the value of the risk measure itself that matters.
However, the overall quality of the forecast of the profit-and-loss distribution, in
particular in its lower tail, is also of interest, and rankings of distinct forecasting
schemes that rely directly on the loss distribution thus do not depend on the choice
of the risk measure, be it VaR, expected shortfall or expectile [Holzmann and Klar
(2017b)].

Examples for the use of weighted scoring rules in a risk-management context
are De Nicolò and Lucchetta (2017), who evaluate the performance of multi-period
forecasts of indicators of real and financial risks over the left tail, as well as
Opschoor, van Dijk and van der Wel (2017), who use focused scoring rules in
the context of measuring downside risk in equity markets.

In our empirical application, we consider daily log-returns of the S&P 500 index
as well as the Deutsche Bank stock over the period from January 1, 2009, until De-
cember 31, 2016. During this time span, for the Deutsche Bank series about 10%
of the log-returns are below −3%. Figure 1 shows the series from 2009–2011,
which includes the volatile period after the financial crisis with large negative, but
also large positive returns. For the purpose of risk management and the computa-
tion of risk measures, accurate forecasts of the lower tail of the distribution below
say −3% are paramount. Choosing the forecasting method directly based on the
loss distribution with emphasis on the lower tail allows flexibility concerning the
subsequent specification of the risk measure.

FIG. 1. Log returns of Deutsche Bank shares, January 1, 2009–December 31, 2010
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Another economic example is the evaluation of inflation forecasts [Gneiting and
Ranjan (2011)] when taking into account inflation targets. For example, the Bank
of England sets the inflation target at 2%, in case of inflation rates below 1% as
well as above 3% it must write an open letter to the Chancellor of the Exchequer
[Bank of England (2017)]. Thus, if emphasis in inflation forecast evaluation is on
missing the target by more than 1%, it is natural to focus on the two-sided range
outside the interval from 1% to 3%.

As for GDP growth, China sets a minimum of 6.5% in its 13th five-year plan
from 2015 [Giesbergen (2017)], whereas most developed countries do not fix for-
mal targets for GDP growth rates. However, nominal GDP targeting is discussed as
a potential policy rule in the popular press, where sometimes rates between 2% and
4% are considered ideal for sustained growth in developed countries. Markedly,
lower growth rates indicate recessions, while much higher rates may indicate some
kind of bubble. Moreover, nominal GDP targeting has recently gained attention
among academics, as can be seen in Garín, Lester and Sims (2016) or Billi (2017).
Thus there may be reasons for evaluating GDP forecasts with focus on specific
regions.

There is also an interest in evaluating weather forecasts with a focus on se-
vere weather conditions like extreme winds, temperatures or rainfall. For example,
Haiden, Magnussen and Richardson (2014) consider 10-metre wind speeds above
the 98% quantile of the climatology corresponding to a threshold of 16 m/s.

Further, in environmental science, Pisoni et al. (2011) state that “over-threshold
event forecasting is of paramount importance in the monitoring of environmental
variables, such as those related to air pollution”. For example, for Ozone gas con-
centrations at ground level the threshold is set as the maximum daily eight-hour
average, with a target value of 120 μg/m3 by EU Directive 2008/50. Formally, the
target value should not be exceeded on more than 25 days a year, but evidently the
magnitude of exceedance should also be taken into account to judge the effects on
human health.

To accommodate forecast comparisons with scoring rules by including regions
of interest, Amisano and Giacomini (2007) introduced a weighted version of the
logarithmic score S(p, x) = −w(x) logp(x), where w(x) is the weight function
such as w(x) = 1{x ∈ A} for some set A, and p(x) is the forecast density. How-
ever, as observed in Diks, Panchenko and van Dijk (2011) and Gneiting and Ranjan
(2011), this is not a proper scoring rule. Indeed, it favors forecasts which put more
mass into the region of interest than does the true conditional distribution. As a
remedy, Diks, Panchenko and van Dijk (2011) proposed the conditional and the
censored likelihood rules, which depend on weight functions but are proper scor-
ing rules, while Gneiting and Ranjan (2011) developed weighted versions of the
continuous ranked probability score (CRPS). Pelenis (2014) defined and discussed
relevant theoretical properties of weighted scoring rules.

In this paper, we propose a general construction principle for strictly locally
proper weighted scoring rules based on conditional densities or distributions and
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on scoring rules for probability forecasts. We show how the likelihood-based
weighted scoring rules from Diks, Panchenko and van Dijk (2011) and Pelenis
(2014) fit this framework and how they are related. Further, our method gives rise
to strictly locally proper weighted versions of the continuous ranked probability
score and more general potentially multivariate energy scores [for the latter, see
the Supplementary Material, Holzmann and Klar (2017a)].

We further argue that weighted scoring rules are mainly useful for comparing
distinct misspecified forecasts. If interest focuses on a region A, a weighted scor-
ing rule allows to ignore possible problems or advantages of the density forecast
outside of A. Thus, even if a density forecast performs poorly outside of A but
well on A, it is useful to us if we only focus on the region A indeed as useful as
another density forecast which performs well overall. Slightly misspecified fore-
casts are certainly the rule rather than the exception [Patton (2017)]. For example,
in our empirical study we use GARCH(1,1)-models for the log-return series with
normal, t and skew-t innovation distributions, all of which seem to be slightly
misspecified. In this simple situation, it might be possible to achieve better fits and
predictions with more sophisticated models, but in more complex settings one is
typically confined to a small set of benchmark models. When focusing on regions
of interest, such misspecified models can still be ranked in a reasonable way for
the application at hand.

On a more formal level, for hypothesis testing based on score differences
[Diebold and Mariano (2015)], we argue that using a weighted scoring rule in-
troduces a censoring mechanism, in which the form of the density is irrelevant
outside the region of interest. For the resulting testing problem with composite
null and alternative hypotheses based on i.i.d. observations, the optimal test uses
score differences based on the censored likelihood rule of Diks, Panchenko and
van Dijk (2011); see Holzmann and Klar (2016).

The paper is organised as follows. After a motivating illustration, in Section 2
we present our theoretical results on the construction of weighted scoring rules,
and briefly discuss the relation to censoring and hypothesis testing. Section 3 illus-
trates the findings in a simulation study, while Section 4 gives an empirical appli-
cation to financial time series data. Section 5 concludes. Some proofs are given in
the Appendix, while further technical details, examples and simulation results are
deferred to the Supplementary Material [Holzmann and Klar (2017a)].

2. Weighted scoring rules.

2.1. Motivation. Let us first illustrate the use of weighted scoring rules in
Diebold–Mariano tests for equal forecast performance (for details, see Sec-
tion 2.4), and how they allow to focus interest on subregions {x ≥ r}, r > 0 some
fixed threshold, of the whole potential domain of the outcome variable x. For ex-
ample, observations could correspond to losses, and an investment bank or finan-
cial corporation wants to predict losses or extreme losses in their portfolio for
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regulatory purposes. Consider the following stylized scenario, where the aim is to
distinguish between two competing forecasts.

Scenario A: Forecast 1: Fhlt versus Forecast 2: Fhrt.
Here, Fhlt denotes a piecewise defined distribution with continuous density and

heavy left tail, consisting of a scaled t4-distribution on (−∞,0] and a standard
normal distribution on (0,∞). Conversely, Fhrt denotes a piecewise defined dis-
tribution with continuous density and heavy right tail, consisting of a standard
normal distribution on (−∞,0] and a scaled t4-distribution on (0,∞). The data-
generating process is given by independent standard normally distributed observa-
tions with sample size n. We apply the two-sided Diebold–Mariano test of equal
predictive performance, nominal level α = 0.05, based on the following scoring
rules. If p denotes the predictive density, we employ first the standard logarithmic
score Sl(p, x) = − logp(x), which of course does not depend on any threshold.
Second, we use the censored likelihood rule from Diks, Panchenko and van Dijk
(2011) at threshold r , that is, with weight function w(x) = 1{x ≥ r}, so that

SCSL(p, x; r) =
⎧⎪⎨
⎪⎩

− logp(x) if x ≥ r,

− log
(

1 −
∫ r

−∞
p(z)dz

)
if x < r.

Note that SCSL(p, x; r) takes into account the form of the density p only for ob-
servations x ≥ r above the threshold, below it relies on the total mass

∫ r
−∞ p(z)dz.

Figure 2 shows the proportion of rejections of the null hypothesis of equal pre-
dictive performance in favor of Fhlt as a function of the threshold value r . Without

FIG. 2. Scenario A. The null hypothesis of equal predictive performance of Fhlt and Fhrt is
tested under a standard normal population. The plot shows the frequency of rejections in two-sided
Diebold–Mariano test in favor of Fhlt for the likelihood and the censored likelihood scoring rule for
sample size n = 100.
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restricting attention to a subregion of interest, that is, for r = −∞, by symmetry
both forecasts equally strongly deviate from the (true) standard normal distribu-
tion, and neither of them should be rejected in favor of the other. However, for
r > 0, Forecast 1 coincides with the standard normal distribution, and Forecast
2 should be rejected. The rejection frequencies in favor of Fhlt of the logarithmic
scoring rule is around 0.025, as this is the proportion of tests that reject the null hy-
pothesis at the 5% level and that additionally have a test statistic that indicates that
Fhlt is better. Clearly, the rejection frequency of 0.025 for the logarithmic scoring
rule does not depend on r .

In contrast, the rejection frequencies of the censored likelihood rule increase
for threshold values larger than −2.5, and reach a plateau for values larger than
−0.5 at a rejection level of about 0.6. The censored likelihood rule thus allows to
focus on the region of interest {x ≥ r}, where for r close to or greater than zero
the forecast Fhlt is evidently preferable over Fhrt. We will take a closer look at this
example in Section 3.

2.2. Weighted scoring rules for density forecasts. In economic applications,
point forecasts such as mean or quantiles are most prominent, but if the target is a
complete forecast distribution, it is issued in the form of a density forecast [Elliott
and Timmermann (2016)].

Thus, in this section we investigate weighted scoring rules for density forecasts,
and consider the general case in the next subsection. We shall work over an ab-
stract measurable space (X ,F), endowed with a σ -finite measure μ and consider
a family P of probability densities w.r.t. μ on (X ,F). Continuous observations
are the main example, where X corresponds to the real numbers or to R

d , and
where μ is the Lebesgue measure. However, an at most countable set X formally
endowed with counting measure also fits this framework.

In terms of density forecasts, a scoring rule is a map S : P ×X → R, where we
denote R = R ∪ {∞}, for which for every p ∈ P the map x �→ S(p, x) is quasi-
integrable for every q ∈ P , and for which

S(p, q) =
∫
X

S(p, x)q(x)dμ(x) > −∞ and S(q, q) ∈ R

for every p,q ∈P . A scoring rule is called proper if

(1) S(p, q) ≥ S(q, q), q,p ∈ P,

and it is called strictly proper if it is proper and if there is equality in (1) if and
only if p = q μ-almost everywhere. Note the normalization: S(p, x) denotes the
loss, and we aim to minimize the expected loss.

We shall consider scoring rules which depend on weight functions, that is,
measurable functions w : X → [0,1], and use notation and terminology which
is closely related to that of Pelenis (2014). Write S(p, x;w), so that a weighted
scoring rule is a map S : P ×X ×W → R such that S(·, ·;w) is a scoring rule for
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each w ∈ W , where W is a set of weight functions. The weighted scoring rule is
called localizing if

S(h, x;w) = S(p, x;w)
(2)

for μ-a.e. x ∈X if p = hμ-a.e. on {w > 0},p,h ∈ P,

where we use the notation {w > 0} = {x ∈ X : w(x) > 0}. Thus a localizing
weighted scoring rule only depends on the values of the forecast densities on the
set {w > 0} for each w ∈W . Integrating (2), we find that

S(h, q;w) = S(p, q;w) if p = hμ-a.e. on {w > 0},p, q,h ∈ P .

In particular, if the localizing weighted scoring rule S is also proper, that is,
S(·, ·;w) is proper for each w ∈ W , it is called a localizing proper weighted scor-
ing rule, implying

S(h, q;w) ≥ S(q, q;w) = S(p, q;w)

if p = qμ-a.e. on {w > 0},p, q,h ∈ P .
(3)

Further, a localizing proper weighted scoring rule is called strictly locally proper if
S(p, q;w) = S(q, q;w) implies p = q on {w > 0} μ-a.e., p,q ∈ P , and it is called
proportionally locally proper if S(p, q;w) = S(q, q;w) if and only if p = cq

on {w > 0} μ-a.e., for some constant c > 0 which depends on p,q ∈ P . Let us
stress that strictly locally proper is not a special case of proportionally locally
proper; these properties for a localizing proper weighted scoring rule are mutually
exclusive.

Note that Pelenis (2014) does not use the pointwise concept of a localizing
weighted scoring rule as in (2), but rather takes (3) as starting point. Our require-
ment (2) is natural, however, and is indeed satisfied for the rules discussed below.

Next, we shall construct weighted scoring rules which satisfy the properties
defined above. To this end, assume that the class of densities P and the class of
weight functions w ∈W are such that∫

X
p(x)w(x)dμ(x) =:

∫
pw > 0.

For p ∈ P , w ∈W we let

pw(x) = w(x)p(x)∫
wp

denote the renormalized density of p w.r.t. w. For formulating the next result, let P̃
be another class of densities such that pw ∈ P̃ for every w ∈ W , p ∈ P . We show
how to construct proportionally locally proper weighted scoring rules from strictly
proper scoring rules. Gneiting (2011), Theorem 5, has a version of this result for
scoring functions for evaluating forecasts of certain functionals. This connection
is further discussed in Example 2.
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THEOREM 1. Let S̃ : P̃ ×X → R be a proper scoring rule. Then

S :P ×X ×W → R, S(p, x;w) = w(x)S̃(pw, x)

is a localizing proper weighted scoring rule. Further, if S̃ is strictly proper, then S

is proportionally locally proper.

The reason why the scoring rule S can be at most proportionally locally proper
is that the weighted density pw depends on p only up to proportionality on the set
{w > 0}.

EXAMPLE 1. If applied to the logarithmic score Sl(p, x) = − logp(x), The-
orem 1 yields

Sl(p, x;w) = −w(x) logpw(x)

= −w(x) logp(x) + w(x) log
(∫

pw

)
− w(x) logw(x)

= SCL(p, x;w) − w(x) logw(x),

(4)

the conditional likelihood rule suggested by Diks, Panchenko and van Dijk (2011)
up to a normalizing term which does not depend on the forecast density p. Here,
we set 0 log(0) = 0 log(∞) = 0. It is remarkable that even though evaluation of
the conditional likelihood rule SCL requires evaluation of the integral

∫
pw, which

in case of w(x) = 1{x ∈ A} amounts to the probability P(A) under p, this scoring
rule is only proportionally locally proper and thus insensitive to this probability.
Theorem 1 can also be applied to the Hyvärinen score from Hyvärinen (2005); see
the Supplementary Material [Holzmann and Klar (2017a)] for details.

In the following example, we relate Theorem 1 to the evaluation of point fore-
casts.

EXAMPLE 2. Suppose that the aim is to predict a functional T : P →R, such
as the mean. A scoring function S(t, x) is consistent for T if

S
(
T (p),p

) ≤ S(t,p) for all t ∈ T (P),p ∈ P,

and it is strictly consistent if it is consistent and there is equality only if t =
T (p). Gneiting (2011), Theorem 3, points out that if S is consistent for T , then
ST (p, x) = S(T (p), x) is a proper scoring rule for the density forecast p. In this
fashion, Theorem 1 can also be applied to scoring functions, the formal result be-
ing Theorem 5 in Gneiting (2011).

This construction amounts to applying the original functional T not to p but
to the weighted density pw . For example, if T is the mean and w(x) = 1{x ≥ r},
we would focus interest still on the mean, but of the conditional distribution above
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the threshold r . Apparently, for point forecasts, this does not properly resolve the
issue of focusing on a region of interest in the evaluation, since it is unclear whether
the forecaster was required to report T (p) or rather T (pw) and in contrast to the
situation with probabilistic forecasts, T (pw) cannot be determined from T (p) (as
can pw from p).

Proportionally locally proper weighted scoring rules do not evaluate the nor-
malization constant

∫
pw. However, they can be turned into strictly locally proper

weighted scoring rules by adding a weighted scoring rule based on probability
forecasts, as shown in the following theorem.

THEOREM 2. Let s(α, z) be a strictly proper scoring rule for the success prob-
ability α ∈ (0,1) of a binary outcome variable z ∈ {0,1}. Then

(5) Ss(p, x;w) = w(x)s
(∫

pw,1
)

+ (
1 − w(x)

)
s
(∫

pw,0
)

is a localizing proper weighted scoring rule for the density forecast p. Further, if
S(p, x;w) is a proportionally locally proper weighted scoring rule, then

Ŝ(p, x;w) = Ss(p, x;w) + S(p, x;w)

is strictly locally proper.

Selecting different scoring rules s(α, z) in Theorem 2 yields various ways to
turn a proportionally locally proper weighted scoring rule such as the conditional
likelihood rule SCL into a strictly locally proper weighted scoring rule. Let us
illustrate the choices used in the literature to modify SCL.

EXAMPLE 3. The scoring rule for a binary outcome defined by

(6) s̄(α, z) = −z(logα + 1) + α, α ∈ (0,1),

is strictly proper. To see this, let

s̄(α,β) = β s̄(α,1) + (1 − β)s̄(α,0), β ∈ (0,1).

Then we have that

s̄(α,β) − s̄(β,β) = β

(
α

β
− 1 − log(α/β)

)
≥ 0,

since logx ≤ x − 1, with equality if and only if x = 1, that is α = β . Moreover,

Ss̄(p, x;w) = −w(x)

(
log

∫
wp

)
− w(x) +

∫
wp,

and a simple computation shows that

Ss̄(p, x;w) + SCL(p, x;w) = SPWL(p, x;w),
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where

SPWL(p, x;w) = −w(x) logp(x) − w(x) +
∫

pw,

the penalized weighted likelihood rule by Pelenis (2014). It has the attractive prop-
erty of being linear in the weight function. Hence, if density forecasts p, q are
compared and p is preferred over q in terms of the PWL score for both weight
functions w1 and w2, then it is also preferred for the weight function w1 + w2.
This is coined preference preserving by Pelenis (2014).

EXAMPLE 4. For the logarithmic scoring rule sl(α, z) = −z logα − (1 −
z) log(1 − α) for a binary outcome, we have that

sl(α, z) = s̄(α, z) + s̄(1 − α,1 − z),

where s̄(α, z) is defined in (6), and one obtains the censored likelihood rule of
Diks, Panchenko and van Dijk (2011),

SCL(p, x;w) + Ssl (p, x;w)

= SPWL(p, x;w) + Ss̄(p, x;1 − w)
(7)

= −w(x) logp(x) − (
1 − w(x)

)
log

(
1 −

∫
wp

)

= SCSL(p, x;w).

The penalized likelihood rule by Pelenis (2014) is “between” the conditional and
the censored likelihood rules in terms of average score differences, as follows. Let
p,q,h ∈ P , and assume that p = qμ a.e. on {w > 0}. Then

SCSL(h, q;w) − SCSL(p, q;w) ≥ SPWL(h, q;w) − SPWL(p, q;w)

≥ SCL(h, q;w) − SCL(p, q;w),

where both inequalities are strict if and only if
∫

pw 	= ∫
hw. We shall further

compare their behaviour in the simulation section.

2.3. Weighted scoring rules: The general case and applications to the contin-
uous ranked probability score. The continuous ranked probability score (CRPS)
is a strictly proper scoring rule which uses distribution function forecasts rather
then density forecasts. It has become a widely used tool in climatological and
weather forecasting, for example, for statistical postprocessing of forecast ensem-
bles [Gneiting and Raftery (2005), Thorarinsdottir and Gneiting (2010)]. See also
Casati et al. (2008) for an overview.

In order to develop and discuss weighted versions of the CRPS and more general
energy scores [Gneiting and Raftery (2007)], we introduce a framework which
considers forecast distributions rather than just density forecasts.
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To this end, let M be a family of distributions, for example, probabilities on the
observational space (X ,F). Call a scoring rule a map S :M×X → R, for which
for every P ∈ M the map x �→ S(P,x) is quasi-integrable for every Q ∈ M, and
for which

S(P,Q) =
∫
X

S(P,x)dQ(x) > −∞ and S(Q,Q) ∈ R

for every P,Q ∈ M. It is proper if S(P,Q) ≥ S(Q,Q), P,Q ∈ M, and strictly
proper if there is equality if and only if P = Q. Once again, for a family of weight
functions W , a weighted scoring rule is a map S : M × X × W → R such that
S(·, ·;w) is a scoring rule for each w ∈ W . In this context, and slightly deviating
from (2), we call S localizing if for any P,Q ∈ M,

∀F ∈ F : P ({w > 0} ∩ F
) = Q

({w > 0} ∩ F
)

=⇒ S(P,x;w) = S(Q,x;w) for all x ∈ X ,
(8)

the condition meaning that the restrictions of P and Q to {w > 0} coincide.
A localizing proper weighted scoring rule is called strictly locally proper if

S(P,Q;w) = S(Q,Q;w) already implies that the restrictions of P and Q to
{w > 0} coincide, P,Q ∈ M, and it is called proportionally locally proper if
S(P,Q;w) = S(Q,Q;w) if and only if for all F ∈ F , P({w > 0} ∩ F) =
cQ({w > 0} ∩ F) for some constant c > 0 which depends on P,Q ∈ M.

In this more general framework, the statements of Theorem 1 and its application
to functionals as in Example 2, as well as the second part of Theorem 2 remain
valid. To formulate the result, assume that for all w ∈ W and P ∈ M we have that∫

w dP > 0, and set

dPw(x) = w(x)dP(x)∫
w dP

,

the probability distribution with density proportional to w w.r.t. P , which is as-
sumed to belong to the family M̃.

THEOREM 3. (i) Let S̃ : M̃×X → R be a proper scoring rule. Then

S : M×X ×W → R, S(P, x;w) = w(x)S̃(Pw, x)

is a localizing proper weighted scoring rule. Further, if S̃ is strictly proper, then S

is proportionally locally proper.
(ii) Let s(α, z) be a strictly proper scoring rule for the success probability α ∈

(0,1) of a binary outcome variable z ∈ {0,1}. Then

(9) Ss(P, x;w) = w(x)s
(∫

w dP,1
)

+ (
1 − w(x)

)
s
(∫

w dP,0
)

is a localizing proper weighted scoring rule for the probability forecast P .
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(iii) If Ss(P, x;w) is as in (9) and if S(P,x;w) is a proportionally locally
proper weighted scoring rule, then

Ŝ(P , x;w) = Ss(P, x;w) + S(P,x;w)

is strictly locally proper.

The proof of this theorem is deferred to the Supplementary Material [Holzmann
and Klar (2017a)].

EXAMPLE 5. On the real line, we identify probability distributions P with the
associated distribution functions F(x) = P((−∞, x]), x ∈R. Now, for a family of
distribution functions P on the real line with finite first moment, the continuous
ranked probability score (CRPS) is given by

(10) CRPS(F, x) =
∫ ∞
−∞

(
F(z) − 1{x ≤ z})2 dz, F ∈ P,

[see Matheson and Winkler (1976)], and it can be evaluated as

(11) CRPS(F, x) = EF |x − X| − 1

2
EF

∣∣X′ − X
∣∣,

where X, X′ are independent copies distributed according to F [Gneiting and
Raftery (2007)]. There is an obvious interest in evaluating weather forecasts with a
focus on severe weather conditions like extreme winds or temperatures. For exam-
ple, the weighted version of the CRPS as introduced in Gneiting and Ranjan (2011)
is mentioned as a possible means to do so by Haiden, Magnussen and Richardson
(2014) in the newsletter of the European Centre for Medium Range Weather Fore-
casts.

Thus, let us discuss weighted versions of the CRPS. Given r ∈ R, for the weight
function w(x) = 1{x > r} the weighted CRPS from Theorem 3, (i), is

wCRPS(F, x; r) = 1{x > r}
∫ ∞
r

(
F(z) − F(r)

1 − F(r)
− 1{x ≤ z}

)2
dz

= 1{x > r}
1 − F(r)

(
EF

(|x − X|1{X > r})(12)

− 1

2(1 − F(r))
EF

(∣∣X′ − X
∣∣1{

min
(
X′,X

)
> r

}))
.

If we complement it as described in Theorem 3, (ii), with the Brier score, then we
obtain the strictly locally proper version

wsCRPS(F, x; r)

= 1{x > r}
[
F(r)2 +

∫ ∞
r

(
F(z) − F(r)

1 − F(r)
− 1{x ≤ z}

)2
dz

]
(13)

+ 1{x ≤ r}(1 − F(r)
)2

.
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Explicit forms in terms of the original distribution function are also possible when
taking other indicators of intervals as weight functions.

Theorem 3 also allows to obtain weighted versions of general, possibly multi-
variate energy scores, which are defined in analogy to (11), but for which a repre-
sentation in terms of Brier scores (10) does not exist. Details can be found in the
Supplementary Material [Holzmann and Klar (2017a)].

For the CRPS, Gneiting and Ranjan (2011) introduced different weighted ver-
sions than those proposed in (13). Motivated by its representation in (10) as an
integral over Brier scores, they proposed

(14) twCRPS(F, x;w) =
∫ ∞
−∞

(
F(z) − 1{x ≤ z})2

w(z)dz

for a measurable weight function 0 ≤ w(z) ≤ 1. This scoring rule remains proper
for every w. Pelenis (2014) shows that it is not a localizing weighted scoring rule
if the class of weight functions contains indicators of compact intervals w(x) =
1{a ≤ x ≤ b}, a < b.

However, we have the following result, which is hinted at in Pelenis (2014), p.
16.

THEOREM 4. For the class of one-sided weight functions,

Wos = {
w(x) = 1{x > r}, r ∈ R

} ∪ {
w(x) = 1{x < r}, r ∈ R

}
,

the weighted CRPS in (14) is a localizing and strictly locally proper scoring rule.

Note that the weight functions w(x) = 1{x ≥ r} and w(x) = 1{x > r} yield the
same weighted scoring rule in (14), but not necessarily in (13) (e.g., Theorem 3).
Let us also point out that Pelenis (2014) proposes a variant of the weighted CRPS
in (14) called incremental CRPS. When well defined, it is localizing and actually
strictly locally proper, but the defining integral is infinite for one-sided weight
functions w(x) = 1{x ≥ r}.

Finally, let us mention that for continuous distribution functions F , the CRPS
can also be written in terms of quantile forecasts as

CRPS(F, x) =
∫ 1

0
QSα

(
F−1(α), x

)
dα,

QSα(q, x) = 2(1x<q − α)(q − x),

and where F−1 is the quantile function of F . For a weight function v : (0,1) →
[0,1], Gneiting and Ranjan (2011) define the quantile-weighted version of the
CRPS as

QCRPS(F, x;v) =
∫ 1

0
QSα

(
F−1(α), x

)
v(α)dα.
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This is not a weighted scoring rule, and hence cannot be localizing in the sense
of this paper, since the weight function is not defined on the sample space R but
rather on (0,1). However, it satisfies another interesting property. Assume that
the distribution functions are strictly increasing on their support, so that quantiles
are unique and the quantile curve is continuous. If we choose v(α) = 1[r,1)(α), r ∈
(0,1), then QCRPS(G,F ;v) = QCRPS(F,F ;v) if and only if F−1(α) = G−1(α)

for all α ∈ [r,1). Equivalently, F−1(r) = G−1(r), and the probability distributions
associated with F and G coincide on [F−1(r),∞). Thus the quantile-weighted
CRPS evaluates the forecast F on a forecast-dependent region of interest.

2.4. Weighted scoring rules and tests of equal forecast performance. Statisti-
cal testing of forecast equality with the so-called Diebold–Mariano test [Diebold
and Mariano (2015), Giacomini and White (2006), Diebold (2015)], is based on
normalized score differences as test statistic. In a serially dependent setting with
h-step ahead forecasts, one has time-dependent probabilistic forecasts Ft and Gt

for the observation xt+h. The Diebold–Mariano test statistic based on the scoring
rule S is then given by

T =
√

n(S̄F − S̄G)

σ̂
,(15)

where S̄F = 1/n
∑n

t=1 S(Ft , xt+h), S̄G = 1/n
∑n

t=1 S(Gt , xt+h) and σ̂ 2 is an esti-
mator of the long-run asymptotic variance of the score differences. One possible
choice for σ̂ 2 is

σ̂ 2 =

⎧⎪⎪⎨
⎪⎪⎩

γ̂0 if h = 1,

γ̂0 + 2
h−1∑
j=1

γ̂j if h ≥ 2,
(16)

where γ̂j denotes the lag j sample autocovariance of the sequence of score differ-
ences [Gneiting and Ranjan (2011), Lerch et al. (2017)]. Under the null hypothesis
of a vanishing expected score difference and some further regularity conditions,
the test statistic T in (15) is asymptotically standard normally distributed. When
the null hypothesis is rejected in a two-sided test, F is preferred if the test statistic
T is negative, and G is preferred if T is positive.

Following Lerch et al. (2017), we interpret the Diebold–Mariano test when
using weighted scoring rules, and cast it into a framework in which two distri-
butions (i.e., constant forecasts) are compared for the special case of indepen-
dent observations. Lerch et al. (2017) argue that if one density is the true data-
generating distribution, the optimal test is given by the Neyman–Pearson test.
In terms of score differences, this corresponds to the ordinary logarithmic score,
which therefore is optimal in this sense. Improvement by using weighted scor-
ing rules can hence only be expected when comparing two misspecified densities.



2418 H. HOLZMANN AND B. KLAR

However, in their simulations Lerch et al. (2017) find no such systematic improve-
ment.

Here, we argue that for weight functions w(x) = 1{x ∈ A}, the aim is to ignore
possible problems or advantages of the forecast outside the region of interest A.
Thus, even if a forecast distribution P performs poorly outside of A but well on A,
it is useful to us, indeed as useful as another forecast which performs well overall.
Further, if the focus is on the region A, such a forecast P is to be preferred to a
forecast Q which performs well outside of A but poorly on A. This intended use
of weighted scoring rules is not brought to light in the simulations of Lerch et al.
(2017): In their setting, interest focuses on the right tail but all density forecasts
compared are correctly specified in the left tail, and ignoring that region does not
result in an increased power.

Let P0, P1 be two competing forecast distributions with densities p0, p1 w.r.t.
μ, and assume that 0 < P0(A),P1(A) < 1. The property (8) of localizing weighted
scoring rules implies that the forecasts are only relevant through their values
on A. Thus testing using score differences with weight function w(x) = 1{x ∈ A}
amounts to testing

(17) H0 : p = p0 μ-a.e. on A vs. H1 : p = p1μ-a.e. on A

for the unknown true density p. Hence, we have composite null and alternative
hypotheses arising from a censoring of the forecasting distributions. The density
forecast p is only relevant for the hypotheses through observations x ∈ A, for
x /∈ A only the total probability 1 − P(A) matters.

Such hypotheses can be tested by score differences based on a localizing
weighted scoring rule with weight function w(x) = 1{x ∈ A}, and it can be shown
that the weighted scoring rule leading to optimal power properties in this frame-
work is the censored likelihood rule of Diks, Panchenko and van Dijk (2011); see
Holzmann and Klar (2016) for formal statements and proofs. The testing perfor-
mance will be further investigated in the subsequent section.

3. Simulations. In this section, we consider simulation settings similar to
those in Diks, Panchenko and van Dijk (2011) and Lerch et al. (2017). Suppose
that at time t = 1, . . . , n, the observations xt are independent standard normally
distributed. We apply the two-sided Diebold–Mariano test of equal predictive per-
formance, nominal level α = 0.05, using the variance estimate in (16) with h = 1.
As nonparametric alternative, we also apply the two-sided Wilcoxon signed-rank
test, nominal level α = 0.05, but defer those results to the Supplementary Material
Holzmann and Klar (2017a), to save space and also since the Wilcoxon test is not
easily transferred to dependent data. All results in this section are based on 10,000
replications.

We use the logarithmic score (LogS) and the continuous ranked probabil-
ity score (CRPS) as typical examples of unweighted scoring rules. As weighted
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TABLE 1
Summary of properties of unweighted and weighted scoring rules. The entry no (yes) for twCRPS
indicates that it is localizing and strictly locally proper for the one-sided weight functions used in

the simulations, but not in general

Strictly Strictly Proportionally
Scoring rule Proper proper Localizing locally proper locally proper

Unweighted CRPS yes yes no – –
LogS yes yes no – –

Weighted CSL yes – yes yes no
PWL yes – yes yes no
CL yes – yes no yes

twCRPS yes – no (yes) no (yes) no
wCRPS yes – yes no yes
wsCRPS yes – yes yes no

scoring rules, we apply three likelihood based scoring rules, namely, the cen-
sored likelihood rule (CSL), the penalized weighted likelihood rule (PWL), and
the conditional likelihood rule (CL). Further, we use the following CRPS based
weighted scoring rules: the threshold weighted continuous ranked probability
score (twCRPS) defined in (14), wCRPS defined in (12) and wsCRPS defined in
(13). Table 1 gives a summary of the properties of these scoring rules.

Suppose that we are only interested in the forecast quality on a subset of the
support of the underlying distribution. For example, interest may center on the pos-
itive real numbers or on the right tail of the distribution. Hence, the tests under the
weighted scoring rules are based on the indicator weight function w(x) = 1{x ≥ r}
in all simulations. Furthermore, we use sample size n = 100 throughout all simu-
lations.

Scenario A: As first example, we reconsider the scenario introduced in Sec-
tion 2.1. In this scenario, Forecast 1 is a piecewise defined distribution Fhlt with
heavy left tail, whereas Forecast 2 is a piecewise defined distribution Fhrt with
heavy right tail.

Figure 3 shows the proportion of rejections of the null hypothesis of equal
predictive performance in two-sided Diebold–Mariano tests as a function of the
threshold value r in the weight function. The upper (lower) panels show rejections
in favor of Fhlt (in favor of Fhrt). In these and the following plots, the left panels
show rejections for likelihood based scoring rules, whereas the right panels show
rejections for CRPS based rules.

For r = −∞, both forecasts have the same distance from the (true) standard
normal distribution, and neither of them should be rejected in favor of the other.
However, for r > 0, Forecast 1 coincides with �, and Forecast 2 should be re-
jected.
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FIG. 3. Scenario A. The null hypothesis of equal predictive performance of Fhlt and Fhrt is tested
under a standard normal population. The panels show the frequency of rejections in two-sided
Diebold–Mariano tests for likelihood based (left) and CRPS based (right) scoring rules. The up-
per (lower) panels show rejections in favor of Fhlt (in favor of Fhrt).

As one would expect, the rejection frequencies in favor of Fhlt and in favor
of Fhrt for the two nonweighted scoring rules are around 0.025 (be aware of the
different scaling of the lower panels). Under the likelihood based weighted scoring
rules, CL and PWL have a very similar behaviour for negative values of r . They
show a faster increase of the rejection frequencies in favor of Fhlt compared to
CSL. However, CL decreases to zero for large positive values of r . This is due to
the fact that the effective sample size, that is, the number of observations exceeding
r becomes very small with increasing threshold.

Concerning the CRPS based weighted rules, wCRPS and wsCRPS behave quite
similarly for negative and moderately positive values of r . Their rejection frequen-
cies in favor of Fhlt have a first modal value around r = −3, decrease until −2,
and increase again. However, like CL, wCRPS decreases to zero for large positive
values of r .

In this scenario, generally speaking the likelihood-based rules have higher
power than the CRPS-based rules. At least for r ≥ 0, this is certainly a desirable
property.

Scenario B: A potential objection against Scenario A may be that Forecast 1 co-
incides exactly with the data generating distribution for positive values of r which
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is rather unrealistic in applications. Hence, we also consider the following modifi-
cation, a smoothed version of Scenario A: denote the c.d.f. of a normal distribution
with mean μ and standard deviation σ by �μ,σ . Let

G(x) = �0,1/2(x)�(x) + (
1 − �0,1/2(x)

)
F4(x),

H(x) = (
1 − �0,1/2(x)

)
�(x) + �0,1/2(x)F4(x),

where F4 denotes the distribution function of the t-distribution with 4 degrees of
freedom.

In Scenario B, we consider Forecast 1: G versus Forecast 2: H .
In this scenario, both forecasts are different from the (true) standard normal

distribution on each observation window [r,∞). As in Scenario A, both forecasts
have the same overall distance from the standard normal for r = −∞, and neither
of them should be rejected in favor of the other. However, if one is only interested
in the region [r,∞) for larger positive values of r , forecast G is close to �; hence,
H should be rejected.

Qualitatively, the results of all simulations for this scenario parallel the find-
ings for Scenario A. Hence, details are deferred to the Supplementary Material
[Holzmann and Klar (2017a)].

Scenario C: Forecast 1: � versus Forecast 2: Fhlt.
Here, � denotes the cumulative distribution function (c.d.f.) of the standard nor-

mal distribution, and Fhlt is defined as in Scenario A. Clearly, for positive values
of r , � and Fhlt coincide.

Figure 4 shows the proportion of rejections of the null hypothesis of equal
predictive performance in two-sided Diebold–Mariano tests as a function of the
threshold value r in the weight function. The upper (lower) panels show rejections
in favor of � (in favor of Fhlt).

For r < 0, rejections in favor of the standard normal distribution represent true
power, but if one is interested in the region [r,∞) for positive r , both forecasts are
identical, and neither of them should be rejected.

Let us first look at the nonweighted scoring rules. They have rather different
rejection frequencies in favor of � when using the Diebold–Mariano test, with
LogS well above CRPS.

Clearly, for large negative values of r , the rejection frequencies in favor of �

of CSL, PWL and CL coincide with those of LogS, but those of CL and PWL,
which are nearly identical, decrease faster to zero than for CSL. Similarly, for large
negative values of r , the rejection frequencies in favor of � of twCRPS, wCRPS
and wsCRPS coincide with those of CRPS, but those of wCRPS and wsCRPS
decrease faster to zero than for twCRPS.

The rejection frequencies in favor of Fhlt have a peculiar and undesirable peak
to the left of zero for all likelihood based weighted scoring rules This is not the
case for the CRPS based weighted rules.
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FIG. 4. Scenario C. The null hypothesis of equal predictive performance of � and Fhlt is tested
under a standard normal population. The panels show the frequency of rejections in two-sided
Diebold–Mariano tests for likelihood based (left) and CRPS based (right) scoring rules. The up-
per (lower) panels show rejections in favor of � (in favor of Fhlt).

Scenario D: Forecast 1: � versus Forecast 2: G.
This scenario is a smoothed version of Scenario C. Here, G, defined in Sce-

nario B, nowhere equals � exactly, but is more similar to � for positive values of
the threshold r than for negative ones.

Figure 5 shows the proportion of rejections of the null hypothesis of equal
predictive performance in two-sided Diebold–Mariano tests as a function of the
threshold value r in the weight function. The upper (lower) panels show rejections
in favor of � (in favor of G).

Formally, rejections in favor of the standard normal distribution represent true
power, but if one is interested in the region [r,∞) for positive r , both forecasts are
quite similar. Qualitatively, most results for this scenario parallel the findings for
Scenario C, but the likelihood-based rules do no longer have a much higher unde-
sirable peak in the rejection frequency in favour of G for small, negative values of
r than the CRPS-based rules.

As general conclusion, we can state that the overall power of the likelihood
based rules is higher than that of the CRPS based rules in all scenarios. The faster
increase in power of PWL and CL compared to CSL in Scenarios A and B oc-
curs for values of r for which nearly no observation is below the threshold. Hence,
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FIG. 5. Scenario D. The null hypothesis of equal predictive performance of � and Fhlt is tested
under a standard normal population. The panels show the frequency of rejections in two-sided
Diebold–Mariano tests for likelihood based (left) and CRPS based (right) scoring rules. The up-
per (lower) panels show rejections in favor of � (in favor of G).

this increase seems to be rather an artefact due to differences of the distribution
functions at the threshold. Furthermore, the undesirable behaviour of the CSL in
Scenario C concerning the rejections in favour of Fhlt vanishes under the more re-
alistic Scenario D. Hence, the CSL is the overall preferable scoring rule under the
Diebold–Mariano test. Using the Wilcoxon signed-rank test, the results are overall
comparable, but differ in some details. Except for the twCRPS, the CRPS-based
rules show some erratic behaviour in Scenarios A and B. The twCRPS has the
undesirable spike for small negative values of r in Scenario C, but not in D. In
terms of power, the twCRPS is now competitive with the likelihood-based rules,
and has best overall performance under the Wilcoxon signed-rank test. However,
the Wilcoxon signed-rank test does not seem to be generally recommendable for
testing for equal forecast quality based on score differences. First, it may severely
fail under temporal dependence [Diebold and Mariano (2015)], second it some-
times reacts strongly to certain effects. For example, there are sometimes large
spikes around zero due to the fact that F and G coincide in zero.

4. Empirical application. We apply the proposed forecasting rules to two
time series of daily log returns xt = ln(Pt/Pt−1), where Pt is the closing price on
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day t , adjusted for dividends and splits. We consider S&P 500 and Deutsche Bank
AG log-returns for a sample period running from January 1, 2009, until Decem-
ber 31, 2016, giving a total of 2013 and 2033 observations. The data is publicly
available and has been downloaded from http://finance.yahoo.com. Since Yahoo
finance data for Deutsche Bank partially includes holidays, we removed all days
with zero trading volume.

We define three forecast methods based on the following GARCH(1,1) model:

(18) xt = m + σtzt , σ 2
t = ω + α1(xt−1 − m)2 + β1σ

2
t−1,

using normal, t and skew-t distributions for the innovations to account for lep-
tokurtosis and/or skewness. Since a typical finding in empirical applications of
GARCH models is that a normal distribution for zt does not fully account for
the kurtosis observed in stock returns, we may expect that the forecast with t-
distributed innovations gives better density forecasts.

To illustrate that all three methods are slightly misspecified, we start with a
goodness-of-fit type residual analysis on the full time series of Deutsche Bank
log-returns. The GARCH residuals are given by et = (xt − μ̂)/σ̂t , where μ̂ is the
estimated mean, and σ̂t denotes the fitted volatility process. Since the estimates
for μ, ω, α1 and β1 are very similar for the three models, the resulting empirical
distributions of the residuals are visually nearly indistinguishable.

Hence, Figure 6 only shows the kernel density estimate (created by the R func-
tion density) of the residuals, when the GARCH parameters, and hence the
conditional standard deviations σ̂t are estimated under normality assumption. Ad-
ditionally, Figure 6 shows the densities of a standard normal distribution, the t-
distribution with shape parameter 8.4 as obtained in the estimation process, and
the fitted skew-t-distribution with shape and skewness parameter 8.5 and 0.94,
respectively.

FIG. 6. Empirical and theoretical density functions of the residuals of a GARCH(1,1)-model fit-
ted to the Deutsche Bank return series. For better visibility, left tail, center and right tail of the
distribution are displayed in separate panels.

http://finance.yahoo.com
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At first sight, the empirical density looks fairly symmetric, and all three distribu-
tions seem to fit the tails quite well, whereas the normal density is not sufficiently
peaked in the center. Looking more closely, one actually finds regions in the right
tail where the normal distribution fits better than t and skew-t ; thus the advantage
of the latter diminishes. In the center, the skew-t seems to yield a better fit than the
t distribution for values smaller than zero, and vice versa for positive values.

To evaluate the forecasting performance of the three methods, we use one-
step-ahead density forecasts with a rolling window scheme for parameter estima-
tion done by maximum likelihood method using R and the R package rugarch
[Ghalanos (2014), R Core Team (2016)]. The length of the estimation window is
set to be 500 observations, so that the number of out-of-sample observations equals
1513 and 1533. The histograms of the probability integral transforms [Diebold,
Gunther and Tay (1998)] for the Deutsche Bank returns shown in Figure 7 also
indicate that all three forecasting mechanisms are somewhat misspecified.

For comparing the density forecasts’ accuracy, we apply the Diebold–Mariano
test based on several weighted and unweighted scoring rules. Localizing weighted
scoring rules are particularly suitable for comparing forecasts which are misspeci-
fied to a varying degree in distinct regions of interest. We use the threshold weight
function w(x) = 1{x ≤ r}, r = −1,0, and w(x) = 1{x ≥ r}, r = 0,1, and addition-
ally r = 3 and r = −3 for the Deutsche Bank returns. Hence, we concentrate either
on losses or on gains when using the weighted scoring rules. The score difference
is computed by subtracting the score of the normal GARCH density forecast from
the score of the t-GARCH density forecast, so that positive values indicate better
predictive ability of the forecast method based on Student-t innovations, and simi-
larly for normal versus skew-t and t versus skew-t innovations. The results for the
S&P 500 and Deutsche Bank AG can be found in Tables 2 and 3, respectively.

On the whole, forecasts for the S&P 500 returns using a t or skew-t GARCH
model are superior to a normal GARCH model; using weighted scoring rules, we
see that this holds especially for losses, but only to a lesser extent for gains. In

FIG. 7. Histograms of the probability integral transforms for the three models applied to the
Deutsche Bank returns.



2426 H. HOLZMANN AND B. KLAR

TABLE 2
t-statistics for Diebold–Mariano test for equal predictive accuracy for S&P 500. Positive values

indicate superiority of forecasts from the second method, while negative values indicate superiority
of forecasts from the first method

w(x) 1{x ≤ −1} 1{x ≤ 0} 1{x ≥ 0} 1{x ≥ 1}
Proportion 0.12 0.46 0.54 0.14

Normal GARCH LogS 3.06 3.06 3.06 3.06
Versus t-GARCH CRPS 1.07 1.07 1.07 1.07

CSL 2.13 2.72 0.51 −1.55
PWL 2.15 2.85 1.00 −1.82

twCRPS −0.08 0.02 2.52 0.06
wsCRPS 2.12 −0.62 1.58 −1.26

Normal GARCH LogS 3.25 3.25 3.25 3.25
Versus skew-t-GARCH CRPS 1.60 1.60 1.60 1.60

CSL 2.58 2.99 0.30 0.52
PWL 2.57 3.15 0.85 0.42

twCRPS 1.26 0.88 1.67 0.42
wsCRPS 2.19 −0.05 0.84 0.31

t-GARCH LogS 1.06 1.06 1.06 1.06
Versus skew-t-GARCH CRPS 0.87 0.87 0.87 0.87

CSL 1.82 1.27 −0.22 2.65
PWL 1.84 1.40 0.04 2.79

twCRPS 1.59 1.39 −0.62 0.78
wsCRPS 1.32 0.69 −0.99 1.53

particular, the t GARCH model seems to be inferior to the normal GARCH for the
threshold weight function 1{x ≥ 1}. As can be seen in the lower panel of Table 2,
results are less clear cut between t and skew-t GARCH density forecasts depend-
ing on the weight function, with an overall advantage for the skew-t GARCH
model.

For the Deutsche Bank returns, t and skew-t GARCH density forecasts are
generally superior to a normal GARCH model for all (weighted and unweighted)
scoring functions, but again this holds to a lesser extent for gains, as can be seen
in Table 3. The lower panel shows that there is no significant overall difference
between t and skew-t GARCH density forecasts; however, the skew-t GARCH
model is significantly better for predicting losses whereas the t GARCH model is
clearly superior for predicting gains. As discussed in the Introduction, the skew-t
model is the model of choice for risk management applications, independent of the
specific risk measure.

In Holzmann and Klar (2017b), we further illustrate benefits of a semiparamet-
ric, extreme-value based modelling of the distribution of the GARCH innovations,
and also include rankings based on the QCRPS from Section 2.3 as well as on
quantile scores for various levels.
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TABLE 3
t-statistics for Diebold–Mariano test for equal predictive accuracy for Deutsche Bank AG. Positive

values indicate superiority of forecasts from the second method, while negative values indicate
superiority of forecasts from the first method

w(x) = 1{x ≤ r} w(x) = 1{x ≥ r}
r = −3 r = −1 r = 0 r = 0 r = 1 r = 3

Proportion 0.096 0.30 0.50 0.50 0.32 0.092

Normal GARCH LogS 2.43 2.43 2.43 2.43 2.43 2.43
Versus t-GARCH CRPS 1.51 1.51 1.51 1.51 1.51 1.51

CSL 1.89 1.71 1.96 1.63 1.73 0.95
PWL 1.85 1.69 1.99 1.66 1.78 0.94

twCRPS 1.34 0.89 0.65 1.08 1.21 0.83
wsCRPS 1.91 0.38 0.51 1.32 1.89 0.70

Normal GARCH LogS 2.18 2.18 2.18 2.18 2.18 2.18
Versus skew-t-GARCH CRPS 1.22 1.22 1.22 1.22 1.22 1.22

CSL 2.01 1.97 2.06 0.74 1.12 0.23
PWL 1.96 1.94 2.13 0.83 1.18 0.24

twCRPS 1.55 1.25 0.84 0.48 0.66 0.25
wsCRPS 1.67 1.26 0.63 0.44 0.80 −0.25

t-GARCH LogS −0.61 −0.61 −0.61 −0.61 −0.61 −0.61
Versus skew-t-GARCH CRPS −0.70 −0.70 −0.70 −0.70 −0.70 −0.70

CSL 1.65 2.30 1.31 −2.10 −1.49 −1.76
PWL 1.66 2.20 1.60 −2.03 −1.46 −1.72

twCRPS 0.25 1.22 1.11 −1.88 −1.49 −1.11
wsCRPS 0.53 1.45 0.07 −1.79 −0.96 −0.91

5. Discussion and conclusions. Lerch et al. (2017) discuss the so-called fore-
casters dilemma, in that forecasts are often only evaluated in case that extreme
events actually occur. They point out that such a restriction of forecast evaluation
to subsets of the available observations has highly unwanted effects, and it discred-
its even the best possible forecast, that is, the true conditional distribution.

Weighted scoring rules which remain proper are a valid decision-theoretic tool
for emphasizing regions of interest. We give a general construction method for
such rules, and apply it in particular to the continuous-ranked probability score,
thus obtaining a novel weighted version of this popular scoring rule.

Weighted scoring rules are particularly useful for ranking misspecified fore-
casts. Indeed, if a forecast, although misspecified, works well on the region of
interest A (but potentially very poorly outside of A), it will be found superior
to another forecast with poor performance on A (but potentially very good per-
formance outside of A). These considerations are confirmed for basically all the
proper weighted scoring rules that we use in our simulations.

Concerning the specific choice of the weighted scoring rule, the censored like-
lihood rule from Diks, Panchenko and van Dijk (2011) is preferable in terms of
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power properties. If stability is also an issue, or if forecast distributions are given
in terms of Monte Carlo output [Krüger et al. (2017)], the twCRPS from Gneiting
and Ranjan (2011) as well as the wsCRPS proposed in this paper can also be rec-
ommended.

In our empirical illustration, all forecasts are slightly misspecified, as is often
unavoidable in practice. While it is inferior to normal and t distributions for gains,
the skew-t distribution works best for predicting losses, and hence is the method
of choice for the purpose of risk management.

APPENDIX: PROOFS

PROOF OF THEOREM 1. By Definition, S(p, x;w) depends on p only
through pw , and hence on p only on {w > 0}, thus, S(p, x;w) is localizing. Fur-
ther, we have

S(p, q;w) =
∫

qw(x)S̃(pw, x)dμ(x)

∫
qw

= S̃(pw, qw)

∫
qw.

Since S̃ is proper, S(p, q;w) is minimal in p for given q if pw = qw , which is
implied by p = q . Hence, S(p, x;w) is proper. Further, S(p, q;w) = S(q, q;w)

implies that S̃(pw, qw) = S̃(qw, qw). Hence, if S̃ is strictly proper, this implies that
pw = qw μ-a.e. But this holds if and only if the densities p and q are proportional
on {w > 0} μ-a.e. This concludes the proof. �

PROOF OF THEOREM 2. The rule Ss is localizing w.r.t. p since it depends
only on

∫
pw. Further, it is proper since

(19) Ss(p, q;w) − Ss(q, q;w) = s
(∫

pw,

∫
qw

)
− s

(∫
qw,

∫
qw

)
≥ 0,

where we used the notation

s(α,β) = βs(α,1) + (1 − β)s(α,0).

Now, as a sum of two locally proper scoring rules the rule Ŝ is also a locally proper
scoring rule. Further, if

Ŝ(q, q;w) = Ŝ(p, q;w),

then necessarily S(q, q;w) = S(p, q;w) and Ss(q, q;w) = Ss(p, q;w) since both
rules S(·, ·;w) and Ss(·, ·;w) are proper. By assumption on S(·, ·;w), S(q, q;w) =
S(p, q;w) implies that p = cq on w > 0. From Ss(q, q;w) = Ss(p, q;w), (19)
and the fact that s is strictly proper we get that

∫
pw = ∫

qw. Since we assume∫
qw 	= 0 and

∫
pw 	= 0, we get for the proportionality constant that c = 1, and

hence p = q μ-a.e. on w > 0, so that Ŝ is strictly locally proper. �
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PROOF OF THEOREM 4. Consider a weight function w(x) = 1{x > r}, the
other case is similar. Given two distribution functions F,G ∈ M we denote by
μF and μG the corresponding probability measures. The restriction μ̃F of μF

to (r,∞), a sub-probability measure, has the sub-distribution function F̃ (x) =
F(x) − F(r), x ≥ r , and F̃ (x) = 0 otherwise, which uniquely determines this
restriction. As x → ∞, we recover F(r), and hence F(x), x ≥ r from μ̃F . On the
other hand, F̃ , and hence F(x) for x ≥ r uniquely determine μ̃F .

Thus if the restrictions of μF and μG to (r,∞) are equal, F(x) = G(x) for all
x ≥ r , so that for all x,

twCRPS(F, x;w) =
∫ ∞
r

(
F(z) − 1{x ≤ z})2 dz

=
∫ ∞
r

(
G(z) − 1{x ≤ z})2 dz

= twCRPS(G,x;w),

and the weighted CRPS is localizing.
A computation shows that

twCRPS(F,G;w) − twCRPS(F,F ;w) =
∫ ∞
r

(
F(z) − G(z)

)2 dz.

Thus if twCRPS(F,G;w) = twCRPS(F,F ;w), F(x) = G(x) for Lebesgue-
almost all x ≥ r , and by right continuity of F and G, the equality holds for all
x ≥ r . From the discussion above, this implies that the restrictions of μF and μG

to (r,∞) are equal. �
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SUPPLEMENTARY MATERIAL

Supplement to “Focusing on regions of interest in forecast evaluation”
(DOI: 10.1214/17-AOAS1088SUPP; .pdf). We discuss weighted versions of the
multivariate Hyvärinen score and of multivariate energy scores and provide the
proof of Theorem 3. Further, we present the remaining simulation results for sce-
nario B as well as additional simulation results for the Wilcoxon signed-rank test
in all scenarios.

REFERENCES

AMISANO, G. and GIACOMINI, R. (2007). Comparing density forecasts via weighted likelihood
ratio tests. J. Bus. Econom. Statist. 25 177–190. MR2367773

BANK OF ENGLAND (2017). Monetary Policy Framework. Retrieved from. http://www.
bankofengland.co.uk/monetarypolicy/Pages/framework/framework.aspx.

https://doi.org/10.1214/17-AOAS1088SUPP
http://www.ams.org/mathscinet-getitem?mr=2367773
http://www.bankofengland.co.uk/monetarypolicy/Pages/framework/framework.aspx
http://www.bankofengland.co.uk/monetarypolicy/Pages/framework/framework.aspx


2430 H. HOLZMANN AND B. KLAR

BILLI, R. M. (2017). A note on nominal GDP targeting and the zero lower bound. Macroecon. Dyn.
11 2138–2157.

CASATI, B., WILSON, L. J., STEPHENSON, D. B., NURMI, P., GHELLI, A., POCERNICH, M.,
DAMRATH, U., EBERT, E. E., BROWN, B. G. and MASON, S. (2008). Forecast verification:
Current status and future directions. Meteorol. Appl. 15 3–18.

DAWID, A. P. (1984). Statistical theory: The prequential approach. J. Roy. Statist. Soc. Ser. A 147
278–292. MR0763811

DE NICOLÒ, G. and LUCCHETTA, M. (2017). Forecasting tail risks. J. Appl. Econometrics 32 159–
170. MR3611065

DIEBOLD, F. X. (2015). Comparing predictive accuracy, twenty years later: A personal perspective
on the use and abuse of Diebold-Mariano tests. J. Bus. Econom. Statist. 33 1–24.

DIEBOLD, F. X., GUNTHER, T. A. and TAY, A. (1998). Evaluating density forecasts: With applica-
tions to financial risk management. Internat. Econom. Rev. 39 863–883.

DIEBOLD, F. X. and MARIANO, R. S. (2015). Comparing predictive accuracy. J. Bus. Econom.
Statist. 13 253–263.

DIKS, C., PANCHENKO, V. and VAN DIJK, D. (2011). Likelihood-based scoring rules for comparing
density forecasts in tails. J. Econometrics 163 215–230. MR2812867

ELLIOTT, G. and TIMMERMANN, A. (2016). Forecasting in economics and finance. Ann. Rev. Econ.
8 81–110.

GARÍN, J., LESTER, R. and SIMS, E. (2016). On the desirability of nominal GDP targeting. J.
Econom. Dynam. Control 69 21–44. MR3521425

GHALANOS, A. (2014). rugarch: Univariate GARCH models. R package version 1.3-5.
GIACOMINI, R. and WHITE, H. (2006). Tests of conditional predictive ability. Econometrica 74

1545–1578. MR2268409
GIESBERGEN, B. (2017). China: How realistic is the government’s growth target? Eco-

nomic Report. Rabobank. Retrieved at. https://economics.rabobank.com/publications/2017/
march/china-how-realistic-is-the-governments-growth-target.

GNEITING, T. (2011). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746–762.
MR2847988

GNEITING, T. and RAFTERY, A. E. (2005). Calibrated probabilistic forecasting using ensemble
model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133 1098–1118.

GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
J. Amer. Statist. Assoc. 102 359–378. MR2345548

GNEITING, T. and RANJAN, R. (2011). Comparing density forecasts using threshold- and quantile-
weighted scoring rules. J. Bus. Econom. Statist. 29 411–422. MR2848512

HAIDEN, T., MAGNUSSEN, L. and RICHARDSON, D. (2014). Statistical evaluation of ECMWF
extreme wind forecasts. In European Centre for Medium—Range Weather Forecasts Newsletter,
Spring 2014.

HOLZMANN, H. and KLAR, B. (2016). Weighted scoring rules and hypothesis testing. Available at
arXiv:1611.07345v2.

HOLZMANN, H. and KLAR, B. (2017a). Supplement to “Focusing on regions of interest in forecast
evaluation.” DOI:10.1214/17-AOAS1088SUPP.

HOLZMANN, H. and KLAR, B. (2017b). Discussion of “Elicitability and backtesting: Perspectives
for banking regulation.” Ann. Appl. Stat. 11 1875–1882.

HYVÄRINEN, A. (2005). Estimation of non-normalized statistical models by score matching. J.
Mach. Learn. Res. 6 695–709. MR2249836

KRÜGER, F., LERCH, S., THORARINSDOTTIR, T. L. and GNEITING, T. (2017). Probabilistic fore-
casting and comparative model assessment based on Markov chain Monte Carlo output. Preprint.
Available at arXiv:1608.06802.

LERCH, S., THORARINSDOTTIR, T. L., RAVAZZOLO, F. and GNEITING, T. (2017). Forecaster’s
dilemma: Extreme events and forecast evaluation. Statist. Sci. 32 106–127. MR3634309

http://www.ams.org/mathscinet-getitem?mr=0763811
http://www.ams.org/mathscinet-getitem?mr=3611065
http://www.ams.org/mathscinet-getitem?mr=2812867
http://www.ams.org/mathscinet-getitem?mr=3521425
http://www.ams.org/mathscinet-getitem?mr=2268409
https://economics.rabobank.com/publications/2017/march/china-how-realistic-is-the-governments-growth-target
http://www.ams.org/mathscinet-getitem?mr=2847988
http://www.ams.org/mathscinet-getitem?mr=2345548
http://www.ams.org/mathscinet-getitem?mr=2848512
http://arxiv.org/abs/arXiv:1611.07345v2
https://doi.org/10.1214/17-AOAS1088SUPP
http://www.ams.org/mathscinet-getitem?mr=2249836
http://arxiv.org/abs/arXiv:1608.06802
http://www.ams.org/mathscinet-getitem?mr=3634309
https://economics.rabobank.com/publications/2017/march/china-how-realistic-is-the-governments-growth-target


FORECAST EVALUATION WITH REGIONS OF INTEREST 2431

MATHESON, J. E. and WINKLER, R. L. (1976). Scoring rules for continuous probability distribu-
tions. Manage. Sci. 22 1087–1096.

MCNEIL, A. J., FREY, R. and EMBRECHTS, P. (2005). Quantitative Risk Management: Concepts,
Techniques and Tools. Princeton Univ. Press, Princeton, NJ. MR2175089

NOLDE, N. and ZIEGEL, J. F. (2017). Elicitability and backtesting: Perspectives for banking regu-
lation. Ann. Appl. Statist. To appear.

OPSCHOOR, A., VAN DIJK, D. and VAN DER WEL, M. (2017). Combining density forecasts using
focused scoring rules. J. Appl. Econometrics 2017 1–16. DOI:10.1002/jae.2575.

PATTON, A. (2017). Evaluating and comparing possibly misspecified forecasts. Working paper.
PELENIS, J. (2014). Weighted scoring rules for comparison of density forecasts on subsets of interest.

Preprint. Available at https://sites.google.com/site/jpelenis/.
PISONI, E., FARINA, M., PAGANI, G. and PIRODDI, L. (2011). Environmental over-Threshold

Event Forecasting Using NARX Models. Preprints of the 18th IFAC World Congress, Milano
(Italy).

R CORE TEAM (2016). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

THORARINSDOTTIR, T. L. and GNEITING, T. (2010). Probabilistic forecasts of wind speed: Ensem-
ble model ouput statistics by using heteroscedastic censored regression. J. Roy. Statist. Soc. Ser.
A 173 371–388. MR2751882

FACHBEREICH MATHEMATIK UND INFORMATIK

PHILIPPS-UNIVERSITÄT MARBURG

HANS-MEERWEINSTR. 6
D-35032 MARBURG

GERMANY

E-MAIL: holzmann@mathematik.uni-marburg.de

INSTITUT FÜR STOCHASTIK

KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT)
ENGLERSTR. 2
D-76131 KARLSRUHE

GERMANY

E-MAIL: bernhard.klar@kit.edu

http://www.ams.org/mathscinet-getitem?mr=2175089
https://doi.org/10.1002/jae.2575
https://sites.google.com/site/jpelenis/
http://www.ams.org/mathscinet-getitem?mr=2751882
mailto:holzmann@mathematik.uni-marburg.de
mailto:bernhard.klar@kit.edu

	Introduction
	Weighted scoring rules
	Motivation
	Weighted scoring rules for density forecasts
	Weighted scoring rules: The general case and applications to the continuous ranked probability score
	Weighted scoring rules and tests of equal forecast performance

	Simulations
	Empirical application
	Discussion and conclusions
	Appendix: Proofs
	Acknowledgements
	Supplementary Material
	References
	Author's Addresses

