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CO-EVOLUTION OF SOCIAL NETWORKS AND
CONTINUOUS ACTOR ATTRIBUTES

BY NYNKE M. D. NIEZINK1 AND TOM A. B. SNIJDERS

University of Groningen

Social networks and the attributes of the actors in these networks are not
static; they may develop interdependently over time. The stochastic actor-
oriented model allows for statistical inference on the mechanisms driving
this co-evolution process. In earlier versions of this model, dynamic actor
attributes are assumed to be measured on an ordinal categorical scale. We
present an extension of the stochastic actor-oriented model that does away
with this restriction using a stochastic differential equation to model the evo-
lution of continuous actor attributes. We estimate the parameters by a proce-
dure based on the method of moments. The proposed method is applied to
study the dynamics of a friendship network among the students at an Aus-
tralian high school. In particular, we model the relationship between friend-
ship and obesity, focusing on body mass index as a continuous co-evolving
attribute.

1. Introduction. Social actors on all levels, whether they are individuals,
companies or countries, are embedded in social structures. Networks are a use-
ful tool to represent these structures. They are defined by a particular relation, for
example, friendship, collaboration or trade, on a set of actors who are both shaping
and shaped by the network they are embedded in. For example, people may change
their attitudes and behaviors based on those of their friends (social influence). Si-
multaneously, they may select their friends based on these same attitudes and be-
haviors (social selection). Christakis and Fowler (2007), based on the analysis of a
social network among 12,067 people, claimed that obesity spreads through social
ties. Their study and the many reactions it received illustrate the scientific and soci-
etal interest in social influence processes, and the intricate nature of the relation of
these processes with social selection. Empirical [Cohen-Cole and Fletcher (2008)]
and theoretical [Shalizi and Thomas (2011)] rebuttals emphasized that influence
and selection are generally confounded. Causal claims about these processes based
on observational data are to be made with care. Distinguishing selection and in-
fluence requires strong assumptions on the absence of latent causal factors and on
the parametrization of the underlying social process [Shalizi and Thomas (2011)].
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In this article, we consider statistical models for network-attribute co-evolution
processes that aim to deal with this complexity [Steglich, Snijders and Pearson
(2010)]. In particular, we develop a model for the case that the actors’ attributes
are expressed on a continuous scale.

Co-evolution of networks and actor attributes is a continuous-time process.
However, available longitudinal data are often only the discrete-time manifesta-
tions of this process at a few time points. To study the dynamics of networks
based on such data, Holland and Leinhardt (1977/1978) proposed the use of a
continuous-time Markov chain model, with all possible networks on a specific ac-
tor set as its state space. They illustrated this approach through dyad-based mod-
els, which assume that the relations between pairs of actors (dyads) in a network
evolve independently. The popularity model by Wasserman (1980) extends the ap-
proach. However, neither of these models takes into account the many complex de-
pendency structures that characterize social networks (e.g., triadic structures such
as “a friend of a friend is my friend”). The stochastic actor-oriented model is a
model in the tradition of Holland and Leinhardt (1977/1978) that can take into ac-
count these complex structural mechanisms [Snijders (2001), Snijders, Koskinen
and Schweinberger (2010)]. This model has been extended for the statistical anal-
ysis of the co-evolution of networks and actor attributes [Snijders, Steglich and
Schweinberger (2007), Steglich, Snijders and Pearson (2010)].

The stochastic actor-oriented model is used, for example, to study the spread of
behaviors and attitudes through social networks and to explain why related actors
often behave and think similarly. The latter phenomenon, called network autocor-
relation, can be caused by influence processes (actors becoming more similar to
those to whom they are related) or by homophilous selection (actors becoming
related to similar others). The stochastic actor-oriented model facilitates the dis-
entanglement of these processes. The model is widely applied, for example, to
study the role of peers in weapon-carrying and delinquency among adolescents
[Dijkstra et al. (2010), Weerman (2011)] or to explain the existence of clusters of
obese adolescents in friendship networks [de la Haye et al. (2011)]. Agneessens
and Wittek (2008) applied the model to study the job satisfaction and interpersonal
trust relationships in organizations.

In these applications the model by Snijders, Steglich and Schweinberger (2007)
is used, which assumes the attributes of network actors to be measured on an or-
dinal categorical scale, and models the evolution processes of the network rela-
tions and the actor attributes jointly as a continuous-time Markov chain. Although
ordinal discrete variables occur in many applications, this assumption has been
experienced as restrictive in several others. Researchers needed to discretize their
continuous actor variables before analyzing them in the stochastic actor-oriented
modeling framework. For example, Dijkstra et al. (2012) transformed scales for
self-reported aggression and victimization to a 4-point scale and de la Haye et al.
(2011) expressed body mass index (weight divided by height squared) on a 16-
point scale. When there are no substantive grounds for discretization, as in these
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examples, selecting a particular discretization is hard. Moreover, discretization
may lead to loss of information and substantive conclusions may differ between
discretizations.

This article presents an extension of the stochastic actor-oriented model for the
study of the co-evolution of networks and actor attributes that are measured on a
continuous scale. We model the evolution of the continous attributes by stochas-
tic differential equations. This is a standard approach in econometrics [Bergstrom
(1984, 1988)] and finance [Black and Scholes (1973), Merton (1990)], but has also
been proposed for panel data in the social sciences generally [Hamerle, Singer and
Nagl (1993), Oud and Jansen (2000)]. Although stochastic differential equation
models have clear advantages over discrete-time models [Voelkle et al. (2012)],
social science applications other than financial ones are rare. Moreover, in almost
all applications observation units are assumed to be independent: the idea that the
units might be interconnected has received little to no attention. An exception is
the work by Oud et al. (2012), who account for the spatial proximity of observa-
tion units. In their model interconnection is induced by geographic location and
treated as something that needs to be controlled for; it is assumed to be static and
is part of the model’s error process. In this article, interconnection is assumed to
be a dynamic phenomenon and is the object of study itself.

The article is organized as follows. In Section 2, we propose the model for con-
tinuous attribute evolution. Section 3 first discusses the stochastic actor-oriented
model for network evolution. Then the two models are integrated and a simulation
algorithm for the co-evolution process is outlined. It is by combining these two
model components that selection and influence processes can be studied. Section 4
describes a method of moments procedure for parameter estimation. The perfor-
mance of this method is evaluated in the simulation study in Section 6. The setup
of the simulation study is inspired by the application of the method in Section 5,
in which we study the effects of peer influence and social selection on body mass
index in adolescent friendship networks. In the dataset we analyze, we do not find
support for either of these effects. Section 7 concludes with a discussion.

1.1. Notation and data structure. A social network on a given set of ac-
tors I = {1, . . . , n} can be modeled as a directed graph in which the nodes cor-
respond to the actors and the set of directed ties to a specific social relation
between them. The directed graph can be represented by an adjacency matrix
x = (xij ) ∈ {0,1}n×n, where xij = 1 and xij = 0 respectively indicate the pres-
ence and absence of a tie from actor i to actor j . Ties are assumed to be directed,
and so xij and xji are not necessarily equal, and to be nonreflexive, and so xii = 0
for i ∈ I .

This article considers data structures consisting of repeated observations of re-
lations on a fixed set of actors and the attributes of these actors. These attributes
are assumed to be continuous and measured on an interval scale. We consider the
same p attributes for each actor. The attribute values of all actors are summarized
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in matrix z = (zih) ∈ R
n×p , where zih denotes the value of actor i on attribute h.

Vector zi = (zi1, . . . , zip) contains all attribute values of actor i (the ith row of z).
The network and actor attributes are observed at a finite number of time points

t1 < · · · < tM , resulting in observations x(tm) and z(tm), where m = 1, . . . ,M and
M ≥ 2. These observations are assumed to be realizations of stochastic networks
X(tm) and attributes Z(tm), embedded in a continuous-time stochastic process
(X(t),Z(t)), where t1 ≤ t ≤ tM . This process may also depend on nonstochastic
individual covariates v = (v1, . . . , vn) and dyadic covariates w = (wij ) ∈ R

n×n.
For notational simplicity, the covariates will mostly be treated implicitly. The en-
tire process, including the covariates, is denoted by Y(t).

2. Continuous attribute evolution. We model the evolution of the p at-
tributes Zi(t) of actor i by a linear stochastic differential equation [e.g., Steele
(2001)]. For the period between two observation moments tm and tm+1, the model
is given by

(1) dZi(t) = τm

[
AZi(t) + Bui(t)

]
dt + √

τmGdWi(t),

where we condition on the initial observation Zi(tm) = zi(tm) of that period. Note
that the only period-specific parameter in this model is τm. The meaning of this
parameter is elaborated in Section 2.1. The linearity of the differential equation
makes for easy simulation of the attribute evolution process: Section 2.2 describes
how the corresponding transition density can be expressed analytically. Here, we
will first take a closer look at model (1) and at how an actor’s embeddedness in a
social network may affect his attribute evolution.

The matrix A ∈ R
p×p in the stochastic differential equation is called the drift

and specifies the feedback relationships among the p attributes. The elements of
input vector ui(t) ∈ R

r are called effects. Effects are functions of the state Y(t)

of the co-evolution process. They can, for example, depend on time-constant actor
covariates or on network-related characteristics of actor i. Network-related effects
lead to a dependence of the attribute evolution on the network. They are what
turns the attribute evolution into a network-attribute co-evolution process. Some
examples of network-related effects are given in Table 1. All these effects specify
a differential drift based on a network-related characteristic of actor i. The isolate
effect, for example, reflects the effect of having no incoming relations (i.e., being
unpopular). The average alter effect can be used to model social influence. This
effect represents the dependence of the attributes Zi(t) of actor i on the attributes
of the actors to whom i has a relation at time t . For discrete attribute evolution
in the context of stochastic actor-oriented models, many effects have already been
defined [Ripley et al. (2017)]. Most of these can be generalized straightforwardly
for continuous attributes.

Matrix B ∈ R
p×r contains parameters indicating the strength of the effects in

ui(t) on the attribute dynamics. If unit variable 1 is an element of the input vec-
tor, the corresponding parameters in B serve as the intercept. The p-dimensional
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TABLE 1
Selection of effects for modeling attribute evolution

Effect name Effect formulaa Effective changesb

Outdegree effect
∑

j xij (= xi+)

Isolate effect 1 − maxj (xji )

Average alter effect of the kth attribute
(defined as 0 in case xi+ = 0)

∑
j xij (zjk − z̄k)/xi+

Maximum alter effect of the kth
attribute

maxj (xij zjk)

aTime-dependence is omitted for brevity. z̄k denotes the observed mean of attribute k.
bDarker colors represent higher values of the attribute. Dotted arrows represent absent relationships.
Illustrations are not exhaustive.

Wiener process Wi(t) is responsible for the stochastic nature of Zi(t). The Wiener
process {Wi(t), t ≥ t1} has the property that Wi(t) is normally distributed with
mean 0p and covariance (t − t1)Ip , where 0p is the p-dimensional all-zero vector
and Ip is the p × p identity matrix. Matrix G ∈ R

p×p transforms this process into
a Wiener process with an arbitrary covariance matrix; it indicates the strength of
the error process. The Wi(t) are independent for the actors i ∈ I .

2.1. Period dependence. The periods between consecutive observation mo-
ments tm and tm+1 can have any duration. The period-specific parameter τm is in-
cluded in model (1) to take this into account. In our network-attribute co-evolution
simulation scheme (Section 3.2), necessary for parameter estimation, we model
each period to have unit duration. The discrepancy between “model time” and
“real time” is captured by τm. This can be seen as follows.

Suppose for the moment that τm = 1 in model (1), removing it from the equa-
tion. Let t = τs, where s denotes the “model time,” running between 0 and 1, and
t denotes the “real time.” This results in the following model in terms of s:

(2) dZi(s) = τ
[
AZi(s) + Bui(s)

]
ds + GdWi(τs),

where the first factor τ stems from dt/ds = τ . The effect of time scaling in the
stochastic part of the differential equation differs from that in the determinis-
tic part. Wiener processes have the following scaling property: given a standard
Wiener process {W(t), t ≥ 0}, for each τ > 0, {1/

√
τW(τ t), t ≥ 0} is also a stan-

dard Wiener process [e.g., Steele (2001), page 40]. Consequently, changing the



SOCIAL NETWORKS AND CONTINUOUS ACTOR ATTRIBUTES 1953

time scale by t = τs transforms the standard Wiener process as W(t) = W(τs) =√
τWτ (s), where Wτ(s) is again a standard Wiener process. This explains the way

τm appears in model (1). The parameter absorbs the consequences of time scaling
and allows us to assume that in “model time” each period has unit duration.

2.2. Exact discrete model. Stochastic differential equation (1) is a convenient
way to express the integral equation

(3) Zi(t) − zi(tm) =
∫ t

tm

AZi(s) + Bui(s)ds +
∫ t

tm

GdWi(s),

in which the second integral is a stochastic integral in the sense of Itô [e.g., Steele
(2001)]. For many stochastic differential equations there is no analytic expres-
sion for their transition density (i.e., how an observation of the modeled variables
at a certain moment reflects the accumulation of their dynamics since an earlier
point in time). We will show that for our purpose such an expression does ex-
ist.

Let “vec” denote the operation of stacking all rows of a matrix into one col-
umn vector, “ivec” the inverse of this operation and ⊗ the Kronecker product. The
solution to equation (3) is given by

(4) Zi(t) = eA(t−tm)zi(tm) +
∫ t

tm

eA(t−s)Bui(s)ds +
∫ t

tm

eA(t−s)GdWi(s)

[Arnold (1974), pages 129–130], where the last term is (multivariate) normally
distributed with mean 0p and covariance

(5) ivec
[
(A ⊗ Ip + Ip ⊗ A)−1(

eA(t−tm) ⊗ eA(t−tm) − Ip ⊗ Ip

)
vec

(
GG�)]

.

This is true under the assumption that A has nonzero eigenvalues and nonzero
sums of eigenvalue pairs [e.g., Oud and Jansen (2000)].

Note that equation (4) still contains an integral that depends on input vector
ui(s). If this vector includes network-related effects, its value is highly variable,
given that the network is dynamic. However, if we consider a small time interval
[t, t + �t) in which the network is constant and assume ui(s) to be constant on
this interval (see also Section 3.2), observations at time points t and t + �t ex-
actly satisfy a system of stochastic difference equations. This system is referred
to as the exact discrete model [Bergstrom (1984), Singer (1996), Oud and Jansen
(2000)]. Let zi,t denote the value of the attribute variables and ui,t the input vec-
tor values of actor i at time t . The exact discrete model for model (1) is given
by

(6) zi,t+�t = A�tzi,t + B�tui,t + wi,�t ,

where wi,�t is (multivariate) normally distributed with mean 0p and covariance
matrix Q�t . The continuous-time parameters in (1) are linked to the discrete-time
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parameters in (6) by the identities

A�t = eτmA�t ,

B�t = A−1(A�t − Ip)B,(7)

Q�t = ivec
[
(A ⊗ Ip + Ip ⊗ A)−1(A�t ⊗ A�t − Ip ⊗ Ip)vec

(
GG�)]

.

These follow directly from expressions (4) and (5).

2.3. Identifiability. While we can use model (1) to simulate attribute trajec-
tories, the model is not identifiable. It contains several redundant parameters.
Since matrix G only enters the exact discrete model through GG� in Q�t ,
we can multiply G by an orthogonal matrix L without changing Q�t , that is,
(GL)(GL)� = GLL�G� = GG�. Moreover, we can multiply parameters τm by
a constant and divide the entries of A and B by the same constant and those of G

by its square root, without changing the stochastic differential equation. To enforce
identifiability, we therefore assume G to be a lower triangular matrix with positive
diagonal entries. In this way GG� is uniquely linked to G through Cholesky de-
composition. We also set the upper left entry of G equal to 1. As a consequence,
the scale of the first attribute variable will in practice greatly affect the τm values.
Note, however, that we could have fixed any other parameter instead.

3. Co-evolution model. In this section, we discuss how the evolution of a so-
cial network is represented by the stochastic actor-oriented model [Snijders (2001,
2005)]. The model for network evolution process X(t) can be decomposed into
two stochastic subprocesses. The first process models the speed by which the net-
work changes, that is, the rate by which each actor in the network gets the oppor-
tunity to change one of his outgoing tie variables. The second models the mecha-
nisms that determine which particular tie is changed when the opportunity arises.
Together with the attribute model, the network model forms a continuous-time
Markov process Y(t) = (X(t),Z(t)). Section 3.2 presents a simulation procedure
for this network-attribute co-evolution process.

3.1. Network evolution. In the stochastic actor-oriented model, network evo-
lution is modeled in a continuous-time Markov chain, defined on the space of
all possible network configurations [Snijders (2001)]. Changes in the network are
modeled as choices made by actors: at random moments actors may choose to cre-
ate or dissolve one of their outgoing ties. This happens under the constraints that
only one change may occur at a time and that actors act conditionally indepen-
dent of each other at any time t , given the current state of the process Y(t). The
latter implies that no enforced connection between two actors’ decisions is pos-
sible. These assumptions allow for the evolution process to be modeled in terms
of smallest possible steps, an approach first proposed by Holland and Leinhardt
(1977/1978).
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At stochastically determined moments actors receive the opportunity to change
one of their outgoing ties. Since the process is assumed to be Markovian, the wait-
ing times between these opportunities are exponentially distributed. In general, the
rate parameter for actor i is given by a so-called rate function λi(y,m), that may
depend on the time period m, given by {t | tm ≤ t < tm+1}, and the current state
of the process Y(t) = y [Snijders (2001)]. However, here we assume the rate pa-
rameters to be equal for all actors: λm in period m. This implies that in period
m the waiting time until the next network change by any actor is exponentially
distributed with rate nλm. The probability that it is actor i who will receive the
opportunity to make a change is 1/n. The rate parameters λm play the same role
as the scale parameters τm in model (1). They account for heterogeneity in period
length and allow us to model each period as having unit duration.

Suppose actor i has received the opportunity to make a network change and
the current state of the network is x. The actor may choose either to maintain the
status quo or to change a tie variable to one of the other actors. The set of network
configurations Ai (x) to which he may change therefore is given by Ai (x) = {x} ∪
A1

i (x), where

(8) A1
i (x) = ⋃

j :j 	=i

{
x̃ | x̃ij = 1 − xij and x̃hk = xhk for (h, k) 	= (i, j)

}
.

Other definitions of Ai (x) are possible; actors may be obliged to make a change if
they receive the opportunity to do so, or ties may not be allowed to dissolve once
they are created. The conditional probability that actor i changes the network x to
x̃ ∈ Ai(x) is given by

(9) pi(x̃ | x, z) =
⎧⎪⎨
⎪⎩

exp
(
fi(x̃, z)

)/ ∑
x′∈Ai (x)

exp
(
fi

(
x′, z

))
if x̃ ∈ Ai(x),

0 if x̃ /∈ Ai(x).

This multinomial logit model can be interpreted as representing an actor’s util-
ity maximizing behavior [McFadden (1974)].2 In this case, the utility actor i at-
taches to a specific new network configuration x̃ is the sum of an objective function
fi(x̃, z) and a random term with standard Gumbel distribution. Note that expres-
sion (9) may also depend on constant actor or dyadic covariates. For notational
simplicity, these are not mentioned explicitly. Function fi(x, z) is given by a lin-
ear combination of effects sik(x, z),

(10) fi(x, z) = ∑
k

βksik(x, z).

2Although expression (9) may be reminiscent of an exponential random graph model (ERGM),
note that it represents the choice probabilities over n possible network changes instead of a probabil-
ity distribution over the set of 2n×(n−1) directed graphs on n actors. In this respect, our model does
not suffer from the computational complexity involved in ERGM estimation.
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TABLE 2
Selection of effects for modeling network evolution

Effect name Effect formula Network representationa

Outdegree
∑

j xij
i j

Reciprocity
∑

j xij xji
i j

Transitivity
∑

j,h xij xihxjh
i j

h

Transitivity (gwesp)b ∑
k eα{1 − (1 − e−α)k}Tik

i

j

h1 h2 hk

Cyclicity (gwesp)b ∑
k eα{1 − (1 − e−α)k}Cik

i

j

h1 h2 hk

Indegree popularity
∑

j,h xij xhj
i j

Outdegree activity (
∑

j xij )2 i j

Covariate egoc ∑
j xij (vi − v)

Covariate alterc ∑
j xij (vj − v)

Covariate similarityc ∑
j xij sim(vi , vj )

aDotted arrows represent the effective network change.
bTik denotes the number of actors j ∈ I for whom i → j exists and there are exactly k actors h such
that i → h → j (replace this for Cik by i ← h ← j ).
cThe covariate effects can similarly be defined for the dynamic actor attributes.

These effects reflect the mechanisms that play a role in relationship formation.
They may depend purely on the network structure as experienced by actor i, as
is the case for all but the last three effects in Table 2. The transitivity effect, for
example, indicates network closure (“befriending friends of friends”). For large
networks, the extension of this effect that uses geometrically weighted triad statis-
tics as in Hunter (2007) leads to better convergence and better fitting models.

Effects may also depend on the actors’ attributes or on covariates. The covariate-
related effects in Table 2 can similarly be defined for the co-evolving attributes. In
this way, we can model homophilous selection, that is, the propensity for actors to
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initiate relations to similar others, by including an attribute similarity effect. Any
similarity measure sim(vi, vj ) can be used in this effect; see Ripley et al. (2017) for
an overview of all effects implemented to model network evolution in a stochastic
actor-oriented model and for some guidelines on the practice of selecting network
effects.

3.2. Network-attribute co-evolution scheme. Suppose that the network-
attribute state at a specific time t is y = (x, z) and we are modeling the process in
period m. Let T (t) = �t denote the waiting time until the next network change
after time t , given this state. This waiting time is exponentially distributed with
rate nλm.

The evolution of the attributes of each of the actors is governed by stochastic
differential equation (1). For simulating the model we make the approximation that
within the �t period the input vector ui(t) is constant, and so the exact discrete
model can be used to express the distribution of the actors’ attributes at time t +�t

analytically. This approximation is exact if ui(t) does not include functions that de-
pend on Zj(t) (j 	= i), such as the average alter effect defined in Section 2. If ui(t)

does include such functions, the attribute evolution trajectories of the actors are as
related as the actors themselves. In practice, however, the time �t ∼ O(1/(nλm))

is so short that the effects of the approximation are negligible (see Appendix A).
Under the assumption that ui(t) is constant between t and t + �t , the attributes

Zi(s) of different actors i ∈ I evolve independently during the �t period. The
exact discrete model (6) yields

(11)
(
Zi(t + s) | Y(t) = (x, z)

) ∼N (Aszi,t + Bsui,tQs),

for 0 < s ≤ �t , where the matrices As , Bs and Qs are specified as in (7). After
waiting time �t , a change in the network may occur. The probability that the next
network is x̃ is given by

(12) P
(
X(t +�t) = x̃ |T (t) = �t,X(t) = x,Z(t +�t) = z

) = 1

n

∑
i

pi(x̃ | x, z).

Algorithm 1 can be used to simulate the stochastic process Y(t) and is derived
directly from the above specification.

The expected number of tie changes in a single period m is nλm, and for each
tie change n options have to be considered and the attributes of n actors need to be
computed. Consequently, the time complexity of simulating a co-evolution process
for all M − 1 observed periods is O(n2 ∑M−1

m=1 λm).

4. Parameter estimation. Stochastic actor-oriented models are in general
too complicated for likelihood functions or estimators to be expressed in a com-
putable form. Nevertheless, they can be used as data simulation models, and the
expected values of functions of the data can be easily estimated for given param-
eter values. Therefore, parameters in these models are usually estimated by the
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Algorithm 1 Simulating the network-attribute co-evolution in period m

Input: x(tm), z(tm), covariates and parameter values.
Output: Simulated network x and attributes z.

1: Set t = 0, x = x(tm) and zi = zi(tm), ui = ui(x(tm), z(tm)) for all i ∈ I .
2: Sample �t from an exponential distribution with rate nλm.
3: while t + �t < 1 do
4: For all i ∈ I: sample ci from N (A�tzi + B�tui,Q�t) and set zi = ci .
5: Select i ∈ I with probability 1/n.
6: Select x̃ ∈ Ai (x) according to probabilities pi(x̃ | x, z).
7: Set t = t + �t and x = x̃.
8: For all i ∈ I: update ui = ui(x, z).
9: Sample �t from an exponential distribution with rate nλm.

10: end while
11: For all i ∈ I: sample ci from N (A(1−t)zi + B(1−t)ui,Q(1−t)) and set zi = ci .
12: Set t = 1.

method of moments [Snijders (2001)]. This method has recently been extended
to a generalized method of moments procedure [Amati, Schönenberger and Sni-
jders (2015)]. Bayesian [Koskinen and Snijders (2007)] and maximum likelihood
[Snijders, Koskinen and Schweinberger (2010)] estimation methods have also been
proposed for stochastic actor-oriented models, but are computationally much more
intensive than the method of moments procedures.

Here we extend the method of moments procedure described by Snijders (2001)
to simultaneously estimate the parameters in the stochastic differential equation
model (1) and the network evolution model. Let θ = (θk) denote the parameter
vector containing all parameters in the model. For each parameter θk , we specify
a statistic whose expected value is sensitive to changes in θk . The method of mo-
ments estimator θ̂ is given by those parameter values for which the expected values
of all selected statistics S(Y ) are equal to the observed values S(y),

(13) E
θ̂

{
S(Y )

} = S(y).

Equation (13) is referred to as the moment equation. Given the panel data structure
and the assumption of a Markov process, we use a conditional method of moments
procedure: the statistics are functions of the conditional distribution of Y(tm+1)

given Y(tm) = y(tm) for m = 1, . . . ,M − 1. For each parameter θk a real-valued
function Sk(Y (tm), Y (tm+1)) is selected that tends to become larger as θk increases.
The latter is motivated by the fact that the stochastic monotonicity property, stating
that, for given y(tm),

(14)
∂

∂θk

Eθ

{
Sk

(
Y(tm), Y (tm+1)

) | Y(tm) = y(tm)
}
> 0,

ensures good convergence properties for the estimation algorithm.
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The network change rate parameter λm and the parameter τm in the stochastic
differential equation (1) only influence the stochastic network-attribute evolution
process in a specific period, from tm to tm+1. For these parameters, the function
Sk(Y (tm), Y (tm+1)) itself is a suitable statistic for the moment equation:

(15) Eθ

{
Sk

(
Y(tm), Y (tm+1)

) | Y(tm) = y(tm)
} = Sk

(
y(tm), y(tm+1)

)
.

Parameters that are assumed to be constant over the entire evolution process are
estimated based on statistics of the form

(16) S+
k (Y ) =

M−1∑
m=1

Sk

(
Y(tm), Y (tm+1)

)
,

and for these parameters the moment equation is given by

(17)
M−1∑
m=1

Eθ

{
Sk

(
Y(tm), Y (tm+1)

) | Y(tm) = y(tm)
} = S+

k (y).

It follows from the delta method [e.g., Lehmann (1999), page 315] that we can
approximate the covariance matrix of θ̂ by

(18) cov(θ̂) ≈ D−1
θ covθ (S)

(
D−1

θ

)�
,

where Dθ is the matrix of partial derivatives of the statistics S(Y ) with respect
to the parameters θ and covθ (S) is the covariance matrix of S(Y ). The latter two
matrices are approximated based on simulated data [Schweinberger and Snijders
(2007)]; they are evaluated at the estimate θ̂ to obtain cov(θ̂) (see Appendix B).

The moment equations (15) and (17) cannot be solved analytically because ex-
cept for some trivial cases the expected values in these equations cannot be cal-
culated explicitly. Instead, we estimate θ using a multivariate Robbins–Monro
stochastic approximation algorithm [Robbins and Monro (1951), Kushner and Yin
(2003)]; see Snijders (2001) for a full description of the estimation procedure and
Ripley et al. (2017) for a discussion of the convergence criteria.

4.1. Statistics for network evolution parameters. A natural statistic for esti-
mating the period-dependent rate parameter λm is the amount of network change
between tm and tm+1,

(19)
∑
i,j

∣∣Xij (tm+1) − Xij (tm)
∣∣.

This statistic satisfies the stochastic monotonicity property. The motivation for the
statistics for the parameters βk , corresponding to the effects sik(Y (t)) in the objec-
tive function (10), is of a heuristic nature [Snijders (2001)]. These statistics are of
the form (16), where the function Sk(Y (tm), Y (tm+1)) is

(20)
∑
i

sik
(
X(tm+1),Z(tm)

)
.
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Here the combination of X(tm+1) and Z(tm) represents the relation of selection
that effect sik(Y (t)) may represent, that is, how the network relations are affected
by (an earlier state of) the actor attributes [Snijders, Steglich and Schweinberger
(2007)].

4.2. Statistics for attribute evolution parameters. Statistic (19) represents the
overall amount of network change within a period m. Similarly, we define the fol-
lowing statistic for estimating the period-dependent parameters τm in the stochastic
differential equation model (1):

(21)
∑
i,h

[
Zih(tm+1) − Zih(tm)

]2
.

We assume that the parameter matrices A, B and G are constant over all periods,
and so their statistics for the moment equations are of the form (16). In the follow-
ing, we specify the functions Sk(Y (tm), Y (tm+1)) for the case that the input ui(t)

is constant. We will use these function also for the general case because of their
intuitive appeal.

Consider model (1) for the first period, t1 to t2, and suppose that the input ui(t)

is constant over this period and that τ1 = 1. Then the exact discrete model yields

(22) Zi(t2) = Ãzi(t1) + B̃ui(t1) + wi,

where the wi are normally distributed with mean 0p and covariance Q̃, and
Ã = At2−t1 , B̃ = Bt2−t1 and Q̃ = Qt2−t1 as defined in (7). For an exponential fam-
ily distribution, such as model (22), maximum likelihood estimation and method
of moments estimation are equivalent when the sufficient statistics for the distri-
bution are used as statistics in the moment equation. The sufficient statistics for
model (22) are

(23)
∑
i

Zi(t2)zi(t1)
�,

∑
i

Zi(t2)ui(t1)
� and

∑
i

Zi(t2)Zi(t2)
�.

We can use these to estimate parameters Ã, B̃ and Q̃. Under certain conditions,
equations (7) uniquely link Ã, B̃ and Q̃ to the continuous-time parameters A, B

and G in model (1), as shown in Lemma 1. As a consequence, expressions (23)
can also be used in the estimation of A, B and G. Conditions 2 and 3 in the lemma
have been set earlier in this article.

LEMMA 1. Suppose that (1) matrix Ã has no zero or negative real eigenvalues,
(2) the eigenvalues of A are nonzero, and (3) G is a lower triangular matrix with
strictly positive diagonal elements. Then parameters A, B and G can be uniquely
expressed in terms of Ã, B̃ and Q̃.

PROOF. Consider the equations (7) with τ1 = 1. Assume without loss of gen-
erality that t2 − t1 = 1. Because of condition 1, the equation Ã = eA is uniquely
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identified by the principal logarithm ln Ã. If λ is an eigenvalue of A, eλ is an eigen-
value of eA. Therefore, condition 2 implies that none of the eigenvalues of eA are
equal to 1 and none of the eigenvalues of eA − Ip are zero, and so eA − Ip is in-
vertible. Finally, the eigenvalues of M1 ⊗ M2 are all the products of the pairs of
eigenvalues of M1 and M2. Therefore, eA ⊗ eA − Ip ⊗ Ip is also invertible, and

A = ln Ã,

B = (Ã − Ip)−1(ln Ã)B̃,

GG� = ivec
[
(Ã ⊗ Ã − Ip ⊗ Ip)−1(ln Ã ⊗ Ip + Ip ⊗ ln Ã)vec Q̃

]
forms a well-defined set of solutions to (7). As a consequence of condition 3,
matrix G can be retrieved from GG� through the Cholesky decomposition. �

Input ui(t) in model (1) is usually not constant, as many interesting re-
search questions require the attribute evolution of actor i to depend on the at-
tributes of actors j 	= i or on the network. However, as we do not observe the
change in ui(t) between measurement moments, we select the following functions
Sk(Y (tm), Y (tm+1)) for the statistic (16):

for ahk in A:
∑
i

Zih(tm+1)Zik(tm),(24)

for bhk in B:
∑
i

Zih(tm+1)uik(tm),(25)

for ghk in G:
∑
i

[
Zih(tm+1) − Zih(tm)

][
Zik

(
tm+1 − Zik(tm)

)]
.(26)

These functions are linear (bijective) transformations of expressions (23), and thus
yield maximum likelihood estimates in case ui(t) is constant. We only use the
functions (26) corresponding to the lower triangular (i.e., nonzero) and nonfixed
entries of G. The combination Zih(tm+1) and uik(tm) in function (25) shows the
relation that this function is sensitive to: the effect of uik(t) on the attributes of
actor i.

5. Application: Co-evolution of friendship and BMI. As an illustration of
the method proposed above, we reanalyze a dataset collected by de la Haye et al.
(2011) to study how the evolution of adolescent friendships is affected by their
body mass index, and vice versa. Body mass index, or BMI, is defined as the ratio
of weight (kg) to squared height (m2). Clusters of obese students have repeatedly
been observed in friendship networks [Christakis and Fowler (2007)], and using
these data we explore possible causes of this phenomenon. On the one hand, ado-
lescents might select their friends based on their BMI. On the other hand, friends
might get similar BMI values, for example, because they serve as each other’s
“weight referents” or engage in similar health-related behavior. We will test these



1962 N. M. D. NIEZINK AND T. A. B. SNIJDERS

TABLE 3
Descriptive statistics of the friendship network and BMI data

Wave 1 Wave 2 Wave 3

Average degree (number of friendship ties) 7.8 (459) 7.8 (483) 7.8 (487)
Proportion of friendship ties reciprocated 0.50 0.49 0.54
Clustering coefficient 0.37 0.37 0.38
BMI boys—median (MAD) 19.9 (2.5) 20.5 (3.4) 20.3 (3.8)
BMI girls—median (MAD) 18.9 (2.4) 19.0 (2.1) 19.1 (2.5)

Compared to the previous wave
Number of stable friendship ties – 236 260
Number of new friendship ties – 201 184
Number of dissolved friendship ties – 180 173
Change in BMI values—median (MAD) – 0.38 (0.58) 0.12 (0.59)

competing hypotheses of social selection and social influence using the stochastic
actor-oriented model, as was done by de la Haye et al. (2011). However, in this
study we analyze BMI as a continuous co-evolving attribute.

Four waves of data were collected among a cohort of students in their first two
years at an Australian high school. Students were asked to nominate their friends
and to provide information about attributes associated with friendship formation.
In addition, their BMI was measured. Here we consider only the data from the first
three waves of data collection, as for the last wave only rounded BMI scores were
available; see Table 3 for some descriptives. We center BMI scores by gender to
account for natural differences between boys and girls. Gender and home group
co-membership are included as covariates. Of the 156 participating students, 117,
121 and 123 were present at the first three waves.3

We study the data in two models. The first model was specified to closely re-
semble the model presented by de la Haye et al. (2011). In its objective function
(10), modeling the friendship dynamics, we include the effects of outdegree, reci-
procity, transitivity, the gender of the friendship nominator (“ego”), the gender of
the friendship nominee (“alter”) and gender similarity. We control for home group
co-membership. We include BMI ego, alter and similarity effects, the latter to test
our social selection hypothesis. Finally, as in de la Haye et al. (2011), we include
the interaction of reciprocity and BMI similarity.

Later in this section, we will see that the first model does not capture the net-
work structure well. The second model controls for more endogeneous network

3We impute missing network data by the approach discussed in Ripley et al. (2017). The missing
BMI data is imputed stochastically based on available BMI data and gender. The imputed values are
only used for simulation purposes. For the calculation of the statistics in the method of moments, any
terms in (19)–(21) and (24)–(26) that refer to missing variables are left out.
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effects, defined in Table 2. We include some interaction effects, which are de-
fined as the product of the summands of two effects summed over all actors [e.g.,∑

j xij xji sim(vi, vj ) for the interaction of reciprocity with covariate similarity].
In general, controlling for network evolution mechanisms, whether these are re-
lated to covariates or purely structural, is necessary to accurately assess the effects
of BMI.

We model the BMI dynamics by a simple stochastic differential equation, in-
cluding a BMI average alter effect to test our social influence hypothesis:

dZi(t) = τm

[
aZi(t) + b0 + b1

∑
j

Xij (t)
(
Zj(t) − z̄

)
/Xi+(t)

]
dt

+ √
τm dWi(t).

(27)

In case an actor has no friends to be influenced by [Xi+(t) = 0], the contribution
of the average alter effect is 0. Note that, as we consider friendship networks to
be nonreflexive [Xii(t) = 0], the value Zi(t) only affects its own change through
feedback proportional to parameter a.

Table 4 shows the results of the two models. The substantive conclusions that
we can draw from model 1 are very similar to the results of de la Haye et al. (2011).
We find that students tend to reciprocate friendships and to befriend the friends of
their friends. They prefer friendships with students of their own gender and in their
own home group. Female students initiate fewer friendships to male students than
vice versa. BMI does not significantly affect the tendency to nominate friends or to
be nominated as friend. Unlike de la Haye et al. (2011), we find that the effect of
BMI similarity on friendship formation is not significant, although the sign of the
effect is positive, reflecting homophilous choices, as expected. Our hypothesis of
social selection based on BMI is thus not supported. However, BMI similarity has
a significant effect on the reciprocation of this tie, implying that the more similar in
BMI the students are, the less likely the reciprocation of this tie. The nonsignificant
average alter effect indicates that there is no evidence that social influence plays a
role in the BMI dynamics. This is contrary to the findings by Christakis and Fowler
(2007). For substantive discussion of this result we refer to de la Haye et al. (2011)
who, in their original study, also did not find evidence of peer effects on BMI.

We assess the fit of model 1 by checking how well it represents features of the
observed network data that are not directly modeled. The left panel of Figure 1
shows how well the observed triad census (superimposed points connected by line
segments) is fit. The triad census is the count of all possible network configura-
tions on three actors and represents local network structure [Wasserman and Faust
(1994)]. The violin plots show the distributions of the different configurations in
the triad census based on 1000 simulations under the estimated model. Clearly, the
triadic configurations are not well represented. In model 2, we replace the transitiv-
ity effect by a more elaborate set of structural effects, which drastically improves
the fit (Figure 1, right).
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TABLE 4
Stochastic actor-oriented models for friendship and BMI dynamics: model 1 resembles de la Haye

et al. (2011), model 2 controls for more endogeneous network effects

Model 1 Model 2

Estimate (s.e.) Estimate (s.e.)

Friendship dynamics
Rate period 1 8.02 (0.76) 8.05 (0.76)

Rate period 2 6.55 (0.65) 6.67 (0.58)

Outdegree −3.28∗ (0.09) −3.39∗ (0.19)

Reciprocity 1.85∗ (0.15) 3.59∗ (0.24)

Transitivity 0.45∗ (0.03)

Cyclicity (gwesp) −0.39∗ (0.14)

Transitivity (gwesp) 2.68∗ (0.15)

Transitivity (gwesp) × Reciprocity −1.65∗ (0.23)

Indegree popularity −0.09∗ (0.02)

Outdegree activity −0.04∗ (0.01)

Same home group 0.31∗ (0.13) 0.52∗ (0.14)

Same home group × Reciprocity −0.73∗ (0.25)

Female ego −0.32∗ (0.13) −0.37∗ (0.14)

Female alter 0.29∗ (0.11) 0.24∗ (0.12)

Same gender 0.77∗ (0.10) 0.60∗ (0.10)

BMI ego −0.019 (0.055) −0.023 (0.046)

BMI alter −0.029 (0.049) −0.034 (0.042)

BMI similarity 0.99 (0.53) 0.80 (0.62)

BMI similarity × Reciprocity −3.78∗ (1.44) −2.17 (1.22)

BMI dynamics
Scale period 1 τ1 0.065 (0.007) 0.065 (0.009)

Scale period 2 τ2 0.063 (0.017) 0.063 (0.008)

Feedback a −0.09 (0.21) −0.10 (0.24)

Intercept b0 1.10∗ (0.35) 1.10∗ (0.34)

Average alter b1 −0.42 (0.94) −0.39 (0.60)

∗p-value < 0.05.

The substantive conclusions drawn from models 1 and 2 are similar, but not
the same. We find a stronger and significant effect of sharing a home group on
friendship formation. The shared home group context is not important when it
comes to the reciprocation of a friendship tie. Moreover, the interaction effect of
BMI similarity and reciprocity is reduced by 57% and not significant in model 2.
Accounting for a wider range of network effects makes the BMI-related effects
less prominent. Figure 2 shows that the combination of the network and BMI data
is well represented by model 2.

6. Simulation study. In this section we analyze simulated data similar to the
data studied in the application. We study two repeated observations on 156 actors.
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FIG. 1. Triad census goodness of fit for model 1 (left) and model 2 (right).

The first observed network and BMI values as well as the distribution of the covari-
ates are identical to their first observed values in the De la Haye data. We generated
1000 networks and BMI values for the second observation time. Based on these,
we re-estimated the parameters. The simulation model is a simplified version of
model 1 in the previous section. The data-generating parameter values are rounded
numbers close to the estimates obtained for model 1. They are given in Table 5,
together with the average estimates, the root mean square errors (standard errors of
estimation), the rejection rates for testing the data-generating value of the parame-
ter as the null hypothesis (estimating type-I error rates), and the rejection rates for
testing that the parameter equals 0 (estimating power). The tests were two-sided
tests based on the t-ratio for the estimated parameters (5% significance level).

Table 5 shows that the parameters are re-estimated well. The estimated type-I
error rates do not deviate much from the nominal value (0.05). It appeared that
the standard errors and the estimates of the scale parameter τ1 were correlated and
that the test based on the t-ratio was not valid here. A log-transformation reduced
the correlation (from r = 0.373 to −0.051) and the type-I error rate (from 0.096
to 0.077). The last column shows that especially the BMI similarity effect and the
average alter effect are hard to detect. This is in line with the general difficulty of
disentangling selection and influence effects. Also, in the simulation BMI has only
a weak effect on friendship formation and the sample is not large.

FIG. 2. Goodness of fit of the behavior distribution on pairs of related actors (model 2). For group
i → j the sender’s BMI value is in the ith 20% of the observed BMI distribution and the receiver’s
value is in the j th 20%.
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TABLE 5
Simulation results: average estimates (θ̂ ), root mean squared errors (rmse),

estimated type-I error rate (α), estimated power (β)

θ θ̂ rmse α β

Friendship dynamics
Rate period 1 7.0 6.93 0.55 0.057
Outdegree −3.3 −3.32 0.14 0.038 1.00
Reciprocity 1.5 1.50 0.15 0.035 1.00
Transitivity 0.4 0.39 0.045 0.029 1.00
Same home group 0.3 0.31 0.14 0.048 0.61
Female ego −0.3 −0.31 0.15 0.043 0.55
Female alter 0.3 0.31 0.14 0.041 0.57
Same gender 0.8 0.82 0.15 0.044 1.00
BMI similarity 0.3 0.32 0.30 0.035 0.15

BMI dynamics
Scale τ1 0.1 0.10 0.013 0.077
Feedback a −0.1 −0.11 0.08 0.037 0.24
Intercept b0 1.1 1.14 0.31 0.040 0.98
Average alter b1 −0.4 −0.43 0.25 0.044 0.37

7. Discussion. Selection and influence are two very different social processes
that may yield the same result: a network in which related actors are similar.
Network-attribute co-evolution models can help unravel this picture. In this arti-
cle, we present a model for the co-evolution of social networks and actor attributes
that are measured on a continuous scale. This extends the stochastic actor-oriented
model [Snijders, Steglich and Schweinberger (2007), Steglich, Snijders and Pear-
son (2010)], of which the earlier version assumed actor attributes to be ordinal
categorical variables. The model has many potential application areas. Examples
include health-related studies, such as the one discussed in Section 5, that explore
the effect of social interaction on health-related behaviors, studies on the effect
of positive (e.g., helping) or negative (e.g., bullying) relations on students’ perfor-
mance, and studies about the formation of partnerships between organizations and
their effect on organizational performance.

To model the evolution of continuous variables in continuous time, we use a
linear stochastic differential equation. Since linearity is assumed, there exists an
analytic expression for the corresponding discrete-time model: the exact discrete
model [Bergstrom (1984)]. The linear differential equation is conceptually very
similar to the regular linear regression model. An advantage of the availability
of a model for continuous rather than ordinal discrete actor attributes is that its
basis in models for multivariate normal distributions may allow further elaboration
exploiting the many known properties for normal distribution models. An example
of this is the fact that, in the boundary case of a constant network, the moment



SOCIAL NETWORKS AND CONTINUOUS ACTOR ATTRIBUTES 1967

estimator is the same as the maximum likelihood estimator. Another possibility
may be an extension to a random effects model to represent variability among
actors.

With respect to substantive conclusions of our example in Section 5 and the
low power obtained for testing the two main parameters in the simulation study of
Section 6, it should be noted that the social influence of friends on body weight,
and the effects of body weight on the selection of friends, if they exist, must be
expected to be rather weak. One cannot expect any statistical method to have a
reasonably high power for a sample of only 156 adolescents.

In this article, we estimate model parameters using a method of moments pro-
cedure. However, other methods of parameter estimation are possible. The other
estimation procedures mentioned in Section 4 could be extended to simultaneously
estimate the parameters in the continuous attribute evolution model. An exten-
sion of the maximum likelihood estimator [Snijders, Koskinen and Schweinberger
(2010)], for example, would increase statistical efficiency, and make the model
better applicable for datasets containing little information, for example, for small
networks.

We propose an alternative to the model introduced by Snijders, Steglich and
Schweinberger (2007) for the case that actor attributes are measured on a continu-
ous scale. Further investigation into the differences between analyzing continuous
and discretized actor attribute data is desirable, given that several studies have been
conducted with discretized attribute variables. We plan to assess the effects of the
loss of information for various discretization schemes in a simulation study.

APPENDIX A: JUSTIFYING THE APPROXIMATION IN SECTION 3.2

The co-evolution scheme of Section 3.2 assumes the effects ui,t to be con-
stant and the attributes of all actors to evolve independently on the time interval
[t, t +�t). These assumptions are violated if we include social influence in the at-
tribute evolution model. In this appendix, we justify the approximation occurring
in analyses with a social influence effect and discuss a practical issue we would
run into without the assumptions.

We can operationalize social influence as an effect of the attributes of the actors
to whom an actor is related (his/her alters) on the evolution of his/her own at-
tributes. An example of such an effect is the average alter effect

∑
j xij zjk/xi+ of

attribute k.4 We could include the average alter effects of all attributes k = 1, . . . , p

on the evolution of the attributes of actor i. If these are the only effects in the input
ui(t), τ = 1 and the differential equation is deterministic (G = 0), the stochastic
differential equation (1) reduces to

(28)
dZi(t)

dt
= AZi(t) + B

∑
j

Xij (t)Zj (t)/Xi+(t).

4For notational simplicity, this effect is not centered like the average alter effect proposed in Sec-
tion 2.
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EXAMPLE 1. Consider a constant network X on three actors. This network
and its corresponding adjacency matrix X and row-normalized adjacency matrix
Q are given by

X =
3 2

1

, X =
⎛
⎝0 1 0

0 0 1
1 1 0

⎞
⎠ and Q =

⎛
⎝ 0 1 0

0 0 1
1/2 1/2 0

⎞
⎠ .

Suppose we consider for the actors the evolution of two attributes Zi(t) =
(Zi1,Zi2)(t), defined by equation (28) with

A =
(
a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)
.

Parameter bij corresponds to the effect on an actor’s attribute i of the average value
on attribute j among the actor’s alters. If we assume the network to be constant
over time and let Z̃(t) = (Z11,Z12,Z21,Z22,Z31,Z32)(t), we can combine the
differential equations (28) for i = 1,2,3 into

(29)
dZ̃(t)

dt
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 b11 b12 0 0
a21 a22 b21 b22 0 0
0 0 a11 a12 b11 b12
0 0 a21 a22 b21 b22

b11/2 b12/2 b11/2 b12/2 a11 a12
b21/2 b22/2 b21/2 b22/2 a21 a22

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Z̃(t).

In general, if Q(t) denotes the row-normalized version of X(t) and Z̃(t) aggre-
gates the Zi(t) in one vector, equations (28) for i = 1, . . . , n reduce to

(30)
dZ̃(t)

dt
= [

In ⊗ A + Q(t) ⊗ B
]
Z̃(t).

Using this idea, we can model an influence effect in a stochastic differential equa-
tion without violating the assumptions discussed earlier. The drift matrix in the new
equation is given by the np × np matrix Ã = In ⊗ A + Q(t) ⊗ B . Using this for-
mulation, the exact discrete model can be applied exactly, without approximation.
However, if the number of actors in a study is large, then the repeated evaluation
of this exact discrete model is computationally very intensive, as it involves the
computation of, for example, eÃt and Ã−1. Fortunately, in practice, there turns out
to be little difference between modeling the attribute evolution using equation (30)
and its approximation. In the co-evolution scheme of Section 3.2, the time �t be-
tween consecutive network and attribute updates is exponentially distributed with
expected value E(�t) = 1/(nλm). If nλm is large, then the �t are small and so are
the changes occurring in this interval. Therefore, the approximation error will be
small. This is illustrated in the following example.
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FIG. 3. Comparison of the true model and the approximation for initial values Z(0) = (0,10,1)

and E(�t) = 0.05.

EXAMPLE 2. Consider again network X . We model the evolution of a (single)
attribute Zi(t) of actors i = 1,2,3 in this constant network by

(31) dZi(t) = [−2Zi(t) + 6 + XijZj (t)/Xi+
]
dt + dWi(t).

These equations can be reduced to one equation as in (30). We will refer to the
latter as the true model and to the scheme of Section 3.2 as applied to the former
as the approximation. We study the evolution processes on the time interval [0,1]
using common random numbers in the generation of sample paths. We let the
times between consecutive attribute updates �t be exponentially distributed with
specified E(�t). Figures 3(a) and 3(b) show two sample paths for each of the
actors for fixed initial values and E(�t) = 0.05. The average absolute difference
per actor between the values at t = 1 for the true model and the approximation is
0.06. This is small compared to the mean absolute deviation madZ(t1) of the true
values at t = 1, averaged over the two sets of sample paths, which is 0.51.

Figure 4 shows the average absolute difference per actor for different levels of
E(�t). For each level, 100 true and approximated evolution processes are simu-
lated with initial attribute values sampled uniformly on [0,10]. The figure shows
that the differences between the true and approximated processes at time t = 1 in-
crease with the E(�t) level, as expected. Given the variation between the actor’s
attributes values at t = 1, the level 10−2 already yields a low within-actor approx-
imation error. In practice, this value is often much smaller. For example, the value
of E(�t) in the application in this article is smaller than 10−3.

APPENDIX B: COVARIANCE ESTIMATION

Estimating cov(θ̂) by a bootstrap procedure is inconvenient, as each of the mul-
tiple estimation runs is time-consuming [Schweinberger and Snijders (2007)]. In-
stead, we use the approximation given in equation (18). Monte Carlo estimation
of 	θ = covθ S(Y ) is straightforward. The issuee is how to define an estimator of
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Average Average
E(�t) aad/a madZ(t1)

10−3 0.00088 0.35
10−2.5 0.0027 0.34
10−2 0.0089 0.34
10−1.5 0.024 0.37
10−1 0.075 0.35

FIG. 4. Comparison of the true model and the approximation: the average absolute difference per
actor (aad/a) for different levels of E(�t). The means per level are indicated by the squares in the
figure and are given in the table.

Dθ = ∂
∂θ

EθS(Y ). Let Jθ denote the scor function of Y , that is, Jθ = ∂
∂θ

logpθ(Y ).
It can be shown that

(32) Dθ = Eθ

(
S(Y )J�

θ

);
see Schweinberger and Snijders (2007) for more details, for example, the use of
control variates to reduce the variance in the estimation of Dθ . They derive the
score Jθ with respect to the network evolution parameters. Below we obtain ex-
pressions for the score Jθ with respect to the attribute evolution parameters. Give
these score functions, we can estimate Dθ from Monte Carlo simulations based
on (32).

We assume, as in our illustration in Section 5, that there is a single continuous
attribute, the evolution of which we model by

(33) dZi(t) = τm

[
aZi(t) + b�ui(t)

]
dt + √

τm dWi(t),

where a ∈ R and b ∈ R
p . The calculations below can be generalized for higher-

dimensional Zi(t), but each extra dimension brings along additional complexity.
The log-likelihood 
 = logpθ(zt+�t) of one step of the corresponding exact dis-
crete model for all n actors is

(34) −n

2

(
log 2π + logσ 2

�t

) − 1

2σ 2
�t

n∑
i=1

(εi,t,�t )
2,

where εi,t,�t = zi,t+�t − μi(�t, zi,t , ui,t ) is the random term with variance σ 2
�t

for actor i having evolved over a period �t after time t , and

μi(�t, zi,t , ui,t ) = eaτm�tzi,t + 1

a

(
eaτm�t − 1

)
b�ui,t ,

σ 2
�t = (e2aτm�t − 1)

2a
.
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We will determine the score functions for this single step. The total score can be
computed by adding the score components of the separate attribute evolution steps
taken during the simulation procedure specified in Section 3.2. The score function
with respect to bk is

∂


∂bk

= 1

σ 2
�tm

n∑
i=1

εi,t,�t × 1

a

(
eaτm�t − 1

)
(ui,t )k = 2

(eaτm�t + 1)

n∑
i=1

εi,t,�t (ui,t )k.

The score function with respect to a is

∂


∂a
= n

2a
− n

2

2τm�te2aτm�t

e2aτm�t − 1
− ∂

∂a

[
1

2σ 2
�t

n∑
i=1

(εi,t,�t )
2

]

= n

2a

(
1 − τm�te2aτm�t

σ 2
�t

)
−

n∑
i=1

(εi,t,�t )
2 ∂

∂a

1

2σ 2
�t

+ 1

σ 2
�t

n∑
i=1

εi,t,�t

∂μi

∂a
,

where

∂

∂a

1

2σ 2
�t

= (e2aτm�t − 1) − 2aτm�te2aτm�t

(e2aτm�t − 1)2 = 1

2aσ 2
�t

− τm�te2aτm�t

2aσ 4
�t

,

∂μi

∂a
= τm�teaτm�tzi,t + b�ui,t

aτm�teaτm�t − eaτm�t + 1

a2

= τm�tμi + b�ui,t

(
τm�t

a
− eaτm�t − 1

a2

)
.

The score function with respect to τm is

∂


∂τm

= −na�te2aτm�t

e2aτm�t − 1
− ∂

∂τm

[
1

2σ 2
�t

n∑
i=1

(εi,t,�t )
2

]

= −n�te2aτm�t

2σ 2
�tm

+ �te2aτm�t

2σ 4
�t

n∑
i=1

(εi,t,�t )
2 + 1

σ 2
�tm

n∑
i=1

εi,t,�t

∂μi

∂τm

,

where
∂μi

∂τ
= a�teaτm�tzi,t + �tb�ui,t e

aτm�t = �t
(
aμi + b�ui,t

)
.
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