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Scientists routinely compare gene expression levels in cases versus con-
trols in part to determine genes associated with a disease. Similarly, detect-
ing case-control differences in co-expression among genes can be critical to
understanding complex human diseases; however, statistical methods have
been limited by the high-dimensional nature of this problem. In this paper,
we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for compar-
ing two high-dimensional covariance matrices. By focusing on the spectrum
of the differential matrix, sLED provides a novel perspective that accommo-
dates what we assume to be common, namely sparse and weak signals in
gene expression data, and it is closely related with sparse principal compo-
nent analysis. We prove that sLED achieves full power asymptotically un-
der mild assumptions, and simulation studies verify that it outperforms other
existing procedures under many biologically plausible scenarios. Applying
sLED to the largest gene-expression dataset obtained from post-mortem brain
tissue from Schizophrenia patients and controls, we provide a novel list of
genes implicated in Schizophrenia and reveal intriguing patterns in gene co-
expression change for Schizophrenia subjects. We also illustrate that sLED
can be generalized to compare other gene-gene “relationship” matrices that
are of practical interest, such as the weighted adjacency matrices.

1. Introduction. High throughput technologies provide the capacity for mea-
suring potentially interesting genetic features on the scale of tens of thousands.
With the goal of understanding various complex human diseases, a widely used
technique is gene differential expression analysis, which focuses on the marginal
effect of each gene. Converging evidence has also revealed the importance of co-
expression among genes, but analytical techniques are still underdeveloped. Im-
proved methods in this domain will enhance our understanding of how complex
disease affects the patterns of gene expression, shedding light on both the devel-
opment of disease and its pathological consequences.

Schizophrenia (SCZ), a severe mental disorder with 0.7% lifetime risk
[McGrath et al. (2008)], is one of the complex human traits that has been known
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for decades to be highly heritable but whose genetic etiology and pathological
consequences remain unclear. What has been repeatedly confirmed is that a large
proportion of SCZ liability traces to polygenetic variation affecting many hun-
dreds of genes together, with each variant exerting a small impact [Purcell et al.
(2014), International Schizophrenia Consortium et al. (2009)]. Despite the large
expected number, only a small fraction of risk loci have been conclusively iden-
tified [Schizophrenia Working Group of the Psychiatric Genomics Consortium
(2014)]. This failure is due mainly to the limited signal strength of individual vari-
ants and under-powered mean-based association studies. Still, several biological
processes, including synaptic mechanisms and glutamatergic neurotransmission,
have been reported to be implicated in the risk for SCZ [Fromer et al. (2016)]. The
observation that each genetic variant contributes only moderately to risk, and that
each affected individual carries many risk variants, suggests that SCZ develops
as a consequence of subtle alterations of both gene expression and co-expression,
which requires development of statistical methods to describe the subtle, wide-
spread co-expression differences.

Pioneering efforts have started in this direction. Very recently, the Common-
Mind Consortium (CMC) completed a large-scale RNA sequencing on dorsolateral
prefrontal cortex from 279 control and 258 SCZ subjects, forming the largest brain
gene expression data set on SCZ [Fromer et al. (2016)]. Analyses of these data by
the CommonMind Consortium suggest that many genes show altered expression
between case and control subjects, although the mean differences are small. By
combining gene expression and co-expression patterns with results from genetic
association studies, it appears that genetic association signals tend to cluster in
certain sets of tightly co-expressed genes, so called co-expression modules [Zhang
and Horvath (2005)]. Still, the study of how gene co-expression patterns change
from controls to SCZ subjects remains incomplete. Here, we address this problem
using a hypothesis test that compares the gene-gene covariance matrices between
control and SCZ samples, with integrated variable selection.

The problem of two-sample test for covariance matrices has been thoroughly
studied in traditional multivariate analysis [Anderson (1958)], but becomes non-
trivial once we enter the high-dimensional regime. Most of the previous high-
dimensional covariance testing methods are motivated by either the L2-type dis-
tance between matrices where all entries are considered [Li and Chen (2012),
Schott (2007)], or the L∞-type distance where only the largest deviation is uti-
lized [Cai, Liu and Xia (2013), Chang et al. (2016)]. These two strategies are
designed for two extreme situations, respectively: when almost all genes exhibit
some difference in co-expression patterns, or when there is one “leading” pair of
genes whose co-expression pattern has an extraordinary deviation in two popu-
lations. However, the mechanism of SCZ is most likely to lie somewhere in be-
tween, where the difference may occur among hundreds of genes (compared to
a total of ≈20,000 human genes), yet each deviation remains small. Some other
existing approaches include using the trace of the covariance matrices [Srivastava
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and Yanagihara (2010)], using random matrix projections [Wu and Li (2015)], and
using energy statistics to measure the distance between two populations [Székely
and Rizzo (2013)]. But none of these methods is designed for the scenario in which
the signals are both sparse and weak.

In this paper, we propose a sparse-Leading-Eigenvalue-Driven (sLED) test. It
provides a novel perspective for matrix comparisons by evaluating the spectrum of
the differential matrix, defined as the difference between two covariance matrices.
This provides greater power and insight for many biologically plausible models,
including the situation where only a small cluster of genes has abnormalities in
SCZ subjects, so that the differential matrix is supported on a small sub-block.
The test statistic of sLED links naturally to the fruitful results in Sparse Principal
Component Analysis (SPCA), which is widely used for unsupervised dimension
reduction in the high-dimensional regime. Both theoretical and simulation results
verify that sLED has superior power under sparse and weak signals. In addition,
sLED can be generalized to compare other gene-gene “relationship” matrices, in-
cluding the weighted adjacency matrices that are commonly used in gene cluster-
ing studies [Zhang and Horvath (2005)]. Applying sLED to the CMC data sheds
light on novel SCZ risk genes, and reveals intriguing patterns that are previously
missed by the mean-based differential expression analysis.

For the rest of this paper, we motivate and propose sLED for testing two-sample
covariance matrices in Section 2. We provide two algorithms to compute the test
statistic, and establish theoretical guarantees on the asymptotic consistency. In Sec-
tion 3, we conduct simulation studies and show that sLED has superior power to
other existing two-sample covariance tests under many scenarios. In Section 4, we
apply sLED to the CMC data. We detect a list of genes implicated in SCZ and
reveal interesting patterns of gene co-expression changes. We also illustrate that
sLED can be generalized to comparing weighted adjacency matrices. Section 5
concludes the paper and discusses the potential of applying sLED to other datasets.
All proofs are included in the Supplement [Zhu et al. (2017)]. An implementation
of sLED is provided at https://github.com/lingxuez/sLED.

2. Methods.

2.1. Background. Suppose X1, . . . ,Xn
i.i.d.∼ (0p,�1) and Y1, . . . , Ym

i.i.d.∼
(0p,�2) are independent p-dimensional random variables coming from two popu-
lations with potentially different covariance structures. Without loss of generality,
both expectations are assumed to be zero, and let D = �2 − �1 be the differential
matrix. The goal is to test

(2.1) H0 : D = 0 versus H1 : D �= 0.

This two-sample covariance testing problem has been well studied in the tradi-
tional “large n, small p” setting, where the likelihood ratio test (LRT) is com-
monly used. However, testing covariance matrices under the high-dimensional

https://github.com/lingxuez/sLED
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regime is a nontrivial problem. In particular, LRT is no longer well defined when
p > min{n,m}. Even if p ≤ min{n,m}, LRT has been shown to perform poorly
when p/min{n,m} → c ∈ (0,1) [Bai et al. (2009)].

Researchers have approached this problem in different ways. Here, we review
two of the main strategies to motivate our test. The first one starts from rewriting
(2.1) as

(2.2) H0 : ‖D‖2
F = 0 versus H1 : ‖D‖2

F �= 0,

where ‖D‖F is the Frobenius norm of D. This strategy includes a test statistic
based on an estimator of ‖D‖2

F under normality assumptions [Schott (2007)], as
well as a test under more general settings using a linear combination of three U-
statistics, which is also motivated by ‖D‖2

F [Li and Chen (2012)]. These L2-based
tests target a dense alternative, but usually suffer from loss of power when D has
only a small number of nonzero entries.

On the other hand, Cai, Liu and Xia (2013) consider the sparse alternative, and
rewrite (2.1) as

(2.3) H0 : ‖D‖∞ = 0 versus H1 : ‖D‖∞ �= 0,

where ‖D‖∞ = maxi,j |Dij |. Then the test statistic is constructed using a normal-
ized estimator of ‖D‖∞. Later, Chang et al. (2016) proposed a bootstrap procedure
using the same test statistic but under weaker assumptions, and Cai and Zhang
(2016) extended the idea to comparing two-sample correlation matrices. These
L∞-norm based tests have been shown to enjoy superior power when the single-
entry signal is strong, in the sense that maxi,j |Dij | is of order

√
logp/min{n,m}

or larger.
In this paper, we focus on the unexplored but practically interesting regime

where the signal is both sparse and weak, meaning that the difference may occur
at only a small set of entries, while the magnitude tends to be small. We propose
another perspective to construct the test statistic by looking at the singular value
of D, which is especially suitable for this purpose. To illustrate the idea, consider
a toy example where

(2.4) Dij =
{
ρ, 1 ≤ i, j ≤ s,

0, otherwise.

for some ρ > 0 and integer s � p. In other words, �2 and �1 differ by ρ in only
an s × s sub-block. In this case, the L2-type tests are sub-optimal because they
include errors from all entries; so are the L∞-type tests because they utilize only
one single entry ρ. On the other hand, the largest singular value of D is sρ, which
extracts stronger signals with much less noise and therefore has the potential to
gain more power.

More formally, we rewrite the testing problem (2.1) to be

(2.5) H0 : σ1(D) = 0 versus H1 : σ1(D) �= 0,
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where σ1(·) denotes the largest singular value. Compared to (2.2) and (2.3), (2.5)
provides a novel perspective to study the two-sample covariance testing problem
based on the spectrum of the differential matrix D, and will be the starting point
of constructing our test statistic.

Notation. For a vector v ∈ R
p , let ‖v‖q = (

∑p
i=1 |vi |q)1/q be the Lq norm for

q > 0, and ‖v‖0 be the number of nonzero elements. For a symmetric matrix A ∈
R

p×p , let Aij be the (i, j)th element, ‖A‖q be the Lq norm of vectorized A,
and tr(A) be the trace. In addition, we use λ1(A) ≥ · · · ≥ λp(A) to denote the
eigenvalues of A. For two symmetric matrices A,B ∈ R

p×p , we write A � B

when A − B is positive semidefinite. Finally, for two sequences of real numbers
{xn} and {yn}, we write xn = O(yn) if |xn/yn| ≤ C for all n and some positive
constant C, and xn = o(yn) if limn xn/yn = 0.

2.2. A two-sample covariance test: sLED. Starting from (2.5), note that

σ1(D) = max
{∣∣λ1(D)

∣∣, ∣∣λ1(−D)
∣∣}.

Therefore, a naive test statistic would be T naive = max{|λ1(D̂)|, |λ1(−D̂)|} for
some estimator D̂. A simple estimator is the difference between the sample co-
variance matrices:

(2.6) D̂ = �̂2 − �̂1 where �̂1 = 1

n

n∑
k=1

XkX
T
k , �̂2 = 1

m

m∑
l=1

YlY
T
l .

However, in the high-dimensional setting, λ1(D̂) is not necessarily a consistent
estimator of λ1(D), and without extra assumptions, there is almost no hope of re-
liable recovery of the eigenvectors [Johnstone and Lu (2009)]. A popular remedy
for this curse of dimensionality in many high-dimensional methods is to add spar-
sity assumptions, such as imposing an L0 constraint on an optimization procedure.
Note that for any symmetric matrix A ∈R

p×p ,

λ1(A) = max‖v‖2=1
vT Av = max‖v‖2=1

tr
(
A

(
vvT ))

.

Following the common strategy, we consider the constrained problem:

(2.7) λR
1 (A) = max‖v‖2=1,‖v‖0≤R

tr
(
A

(
vvT ))

,

where R > 0 is some constant that controls the sparsity of the solution, and λR
1 (A)

is usually referred to as the R-sparse leading eigenvalue of A. Then, naturally, we
construct the following test statistic:

(2.8) TR = max
{∣∣λR

1 (D̂)
∣∣, ∣∣λR

1 (−D̂)
∣∣},

and the sparse-Leading-Eigenvalue-Driven (sLED) test is obtained by thresholding
TR at the proper level.
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Problem (2.7) is closely related with Sparse Principal Component Analysis
(SPCA). The only difference is that in SPCA, the input matrix A is usually the
sample covariance matrix, but here we use the differential matrix D̂. Solving (2.7)
directly is computationally intractable, but we will show in Section 2.3 that ap-
proximate solutions can be obtained.

Finally, because it is difficult to obtain the limiting distribution of TR , we use
a permutation procedure. Specifically, for any α ∈ (0,1), the α-level sLED test,
denoted by �

(α)
sLED, is conducted as follows:

1. Given samples Z = (X1, . . . ,Xn,Y1, . . . , Ym), calculate the test statistic TR

as in (2.8).
2. Sample uniformly from Z without replacement to get Z∗ = (Z∗

1 , . . . ,Z∗
N),

where N = n + m. Calculate the permutation differential matrix D̂∗:

(2.9) D̂∗ = �̂∗
2 − �̂∗

1 ,

where �̂∗
1 = 1

n

∑n
k=1 Z∗

k (Z∗
k )T , �̂∗

2 = 1

m

∑N
l=n+1 Z∗

l (Z∗
l )T . That is, randomly per-

mute the indices {1, . . . ,N}, treat the first n indices as from the first population
and the last m indices as from the second population.

3. Compute the permutation test statistic

(2.10) T ∗
R = max

{∣∣λR
1

(
D̂∗)∣∣, ∣∣λR

1
(−D̂∗)∣∣}.

4. Repeat steps 2–3 for B times to get T
∗(1)
R , . . . , T

∗(B)
R , then

p̂ = 1

B

B∑
b=1

I{T ∗(b)
R >TR},

and sLED rejects H0 if p̂ < α, i.e., �
(α)
slED = I{p̂<α}.

REMARK 1. We can also estimate the support of the R-sparse leading eigen-
vector of D, which provides a list of genes that are potentially involved in the
disease. Without loss of generality, suppose λR

1 (D̂) > λR
1 (−D̂), we define

(2.11) Leverage := diag
(
v̂v̂T ) = (

v̂2
1, . . . , v̂2

p

)T
,

where v̂ is the R-sparse leading eigenvector of D̂ in (2.7). Then the elements with
large leverage will be the candidate genes that have altered covariance structure
between the two populations.

2.3. Sparse principal component analysis. Many studies on Sparse Principal
Component Analysis (SPCA) have provided various algorithms to approximate
(2.7) when A is the sample covariance matrix. Most techniques utilize an L1
constraint to achieve both sparsity and computational efficiency. To name a few,
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Jolliffe, Trendafilov and Uddin (2003) form the SCoTLASS problem by directly
replacing the L0 constraint by L1 constraint; Zou, Hastie and Tibshirani (2006)
analyze the problem from a penalized regression perspective; Witten, Tibshirani
and Hastie (2009) and Shen and Huang (2008) use the framework of low rank ma-
trix completion and approximation; d’Aspremont et al. (2007) and Vu et al. (2013)
consider the convex relaxation of (2.7). Recent development of atomic norms also
provides an alternative approach to deal with the L0 constrained problems [e.g.,
see Oymak et al. (2015)]. For the purpose of this paper, we give details of only the
following two SPCA algorithms that can be directly generalized to approximate
(2.7) with input matrix D̂, the differential matrix.

Fantope projection and selection (FPS). For a symmetric matrix A ∈ R
p×p ,

FPS [Vu et al. (2013)] considers a convex optimization problem:

(2.12) λR
fps(A) = max

H∈F1,‖H‖1≤R
tr(AH),

where F1 = {H ∈ R
p×p : symmetric, 0 � H � I, tr(H) = 1} is the 1-dimensional

Fantope, which is the convex hull of all 1-dimensional projection matrices {vvT :
‖v‖2 = 1}. In addition, by the Cauchy–Schwarz inequality, if ‖v‖2 = 1, then
‖vvT ‖1 ≤ ‖v‖0. Therefore, (2.12) is a convex relaxation of (2.7). Moreover, when
the input matrix is D̂, the problem is still convex, and the ADMM algorithm pro-
posed in Vu et al. (2013) can be directly applied. This algorithm has guaranteed
convergence, but requires iteratively performing SVD on a p × p matrix. More-
over, the calculation needs to be repeated B times in the permutation procedure,
and becomes computationally demanding when p is on the order of a few thou-
sands. Therefore, we present an alternative heuristic algorithm below, which is
much more efficient and typically works well in practice.

Penalized matrix decomposition (PMD). For a general matrix A ∈ R
p×p , PMD

[Witten, Tibshirani and Hastie (2009)] solves a rank-one matrix completion prob-
lem:

λR
pmd(A) = max

u,v
tr

(
A

(
uvT ))

,

(2.13)
subject to ‖u‖2 ≤ 1,‖v‖2 ≤ 1,‖u‖1 ≤ √

R,‖v‖1 ≤ √
R.

The solution for each one of u and v has a simple closed form after fixing the
other one. This leads to a straightforward iterative algorithm, which has been im-
plemented in the R package PMA. Moreover, if the solutions satisfy û = v̂, then
they are also the solutions to the following nonconvex constrained-PMD problem:

(2.14) λR
c-pmd(A) = max

‖v‖2≤1,‖v‖1≤
√

R

tr
(
A

(
vvT ))

.

Note that the solutions of (2.14) always have ‖v‖2 = 1, which implies ‖v‖2
1 =

‖vvT ‖1 ≤ ‖v‖0, so (2.14) is also an approximation to (2.7). Now observe that
when A � 0, as in the usual SPCA setting, the solutions of (2.13) automatically
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have û = v̂ by the Cauchy–Schwarz inequality. However, this is no longer true
when A is not positive semidefinite, as when we deal with the differential matrix
D̂. To overcome this issue, we choose some constant d > 0 that is large enough
such that A + dI � 0. Then the solutions of λR

pmd(A + dI) will satisfy û = v̂, and

it is easy to obtain λR
c-pmd(A) by

(2.15) λR
c-pmd(A) = λR

pmd(A + dI) − d.

2.4. Consistency. Finally, we show that sLED is asymptotically consistent.
The validity of its size is guaranteed by the permutation procedure. Here, we prove
that sLED also achieves full power asymptotically, under the following assump-
tions:

(A1) (Balanced sample sizes). cn ≤ m ≤ c̄n for some constants 0 < c ≤ 1 ≤
c̄ < ∞.

(A2) (Sub-Gaussian tail). Let (Z1, . . . ,ZN) = (X1, . . . ,Xn,Y1, . . . , Ym), then
every Zk is sub-Gaussian with parameter ν2, that is,

E
[
et(ZT

k u)] ≤ e
t2ν2

2 ∀t > 0,∀u ∈R
p such that ‖u‖2 = 1.

(A3) (Dimensionality). (logp)3 = O(n).
(A4) (Signal strength). Under H1, for some constant C to be specified later,

max
{
λR

1 (D),λR
1 (−D)

} ≥ CR

√
logp

n
.

THEOREM 1 (Power of sLED). Let TR be the test statistic as defined in (2.8),
and T ∗

R be the permutation test statistic as defined in (2.10), where λR
1 (·) is approx-

imated by the L1 constrained algorithms (2.12) or (2.14). Then under assumptions
(A1)–(A3), for ∀δ > 0, there exists a constant C depending on (c, c̄, ν2, δ), such
that if assumption (A4) holds, and n,p are sufficiently large,

PH1

(
TR

(
D̂∗)

> TR(D̂)
) ≤ δ.

As a consequence, for any pre-specified level α ∈ (0,1), pick δ = α/2, then

PH1

(
�

(α)
sLED = 1

) → 1 as B → +∞.

The proof of Theorem 1 contains two steps. First, Theorem 2 provides an upper
bound of the entries in D̂∗. Then Theorem 3 ensures that the permutation test
statistic T ∗

R is controlled by ‖D̂∗‖∞, and the test statistic TR is lower-bounded in
terms of the signal strength. We state Theorem 2 and Theorem 3 below, and the
proof details are included in the Supplement [Zhu et al. (2017)].
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THEOREM 2 (Permutation differential matrix). Under assumptions (A1)–
(A3), let D̂∗ be the permutation differential matrix as defined in (2.9), then ∀δ > 0,
there exist constants C, C1 depending on (ν2, c, c̄), such that if n,p are sufficiently
large,

P

(∥∥D̂∗∥∥∞ > C

√
log(C1p2/δ)

n

)
≤ δ.

THEOREM 3 (Test statistic). For any symmetric matrix D̂, let λ̃R
1 (D̂) be a so-

lution of the L1 constrained algorithms (2.12) or (2.14), then the following state-
ments hold:

(i) If ‖D̂‖∞ ≤ ε for some ε > 0, then λ̃R
1 (D̂) ≤ Rε.

(ii) If there is a matrix D such that ‖D̂ − D‖∞ ≤ ε for some ε > 0, then

λ̃R
1 (D̂) ≥ λR

1 (D) − Rε.

REMARK 2. Assumption (A4) does not require the leading eigenvector of D

(or −D) to be sparse, only that the sparse signal be strong enough, which is a very
mild requirement.

REMARK 3. Theorems 1–3 suggest that sLED is as powerful as the maximum
entry test by Cai, Liu and Xia (2013). Consider the toy example in (2.4) and L1
radius R = s. Assumption (A4) for the L1 constrained problem implies that sLED
is powerful if ρ ≥ C

√
logp/n, which is the same rate required for the maximal

entry test. When the signal strength ρ is below the rate of
√

logp/n, the maximal
entry test has no power. A related result in sparse PCA due to Berthet and Rigollet
(2013) implies that sLED is unlikely to be powerful in this case either.

2.5. Choosing sparsity parameter R. The tuning parameter R in (2.12) and
(2.14) plays an important role in sLED test. If R is too large, the method uses little
regularization and assumption (A4) is unlikely to hold. If R is too small, then the
constraint is too strong to cover the signal in the differential matrix. The practical
success of sLED requires an appropriate choice of R. We know that R provides
a natural, but possibly loose, lower bound on the support size of the estimated
sparse eigenvector. In general, one can use cross-validation to choose R, so that
the estimated leading sparse singular vector maximizes its inner product with a
differential matrix computed from a testing subsample.

In applications, one can often choose R with the aid of subject background
knowledge and the context of subsequent analysis. For example, in the detection
of Schizophrenia risk genes, we typically expect to report a certain proportion in
a collection of genes for further investigation. Thus one can choose from a set
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of candidate values of R to match the desired number of discoveries. In this pa-
per, following Witten, Tibshirani and Hastie (2009), we use algorithm (2.14) and
choose the sparsity parameter R to be

(2.16)
√

R = c
√

p for some c ∈ (0,1),

then c2 provides a loose lower bound on the proportion of selected genes. We will
illustrate in simulation studies (Section 3) and the CMC data application (Sec-
tion 4) that sLED is stable with a reasonable range of c.

3. Simulations. In this section, we conduct simulation studies to compare the
power of sLED with other existing methods: Schott (2007) use an estimator of the
Frobenius norm ‖D‖2

F (Sfrob); Li and Chen (2012) use a linear combination of
three U-statistics which is also motivated by ‖D‖2

F (Ustat); Cai, Liu and Xia
(2013) use the maximal absolute entry of D (Max); Chang et al. (2016) use a
multiplier bootstrap on the same test statistic (MBoot), and Wu and Li (2015)
use random matrix projections (RProj). To obtain a fair comparison of empirical
power, we use permutation to compute the p-values for all methods, except for
MBoot, which already uses a bootstrap procedure. Here, we focus on comparing
the empirical power in the rest of this section. The empirical sizes are reported in
the Supplement [Zhu et al. (2017)]. The simulation results in this section can be
reproduced using the code provided at https://github.com/lingxuez/sLED.

We consider four different covariance structures of �1 and �2 = �1 + D under
the alternative hypothesis. Under each scenario i = 1, . . . ,4, we first generate a
base matrix �∗(i), and we enforce positive definiteness using �1 = �∗(i) + δIp

and �2 = �∗(i) + D + δIp , where δ = |min{λmin(�
∗(i)), λmin(�

∗(i) + D)}| +
0.05. Now we specify the structures of {�∗(i)}i=1,...,4. Under each scenario, we
let � ∈ R

p×p to be a diagonal matrix with diagonal elements being sampled from
Unif(0.5,2.5) independently. We denote �x� to be the largest integer that is smaller
than or equal to x:

1. Noisy diagonal. Let �
(1)
ii = 1, �

(1)
ij ∼ Bernoulli(0.05) when i < j , and

�
(1)
ij = �

(1)
j i when i > j for symmetry, and we define �∗(1) = �1/2�(1)�1/2. This

model is also considered in Cai, Liu and Xia (2013).
2. Block diagonal. Let K = �p/10� be the number of blocks, �

(2)
ii = 1, �

(2)
ij =

0.55 when 10(k − 1) + 1 ≤ i �= j ≤ 10k for k = 1, . . . ,K , and zero otherwise. We
define �∗(2) = �1/2�(2)�1/2. This model is also considered in Cai, Liu and Xia
(2013) and Chang et al. (2016).

3. Exponential decay. Let �
(3)
ij = 0.5|i−j |, and �∗(3) = �1/2�(3)�1/2. This

model is also considered in Cai, Liu and Xia (2013) and Chang et al. (2016).
4. WGCNA. Finally, �∗(4) is computed based on the CMC data [Fromer et al.

(2016)] using the simulation tool provided by WGCNA [Zhang and Horvath

https://github.com/lingxuez/sLED
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(2005)]. Specifically, we first compute the eigengene (i.e., the first principal com-
ponent) of the M2c module for the 279 control samples. The M2c module will be
the focus of Section 4, and more detailed discussion is provided there. We use the
simulateDatExpr command in the WGCNA R package to simulate new expres-
sions for p genes of the 279 samples. We set modProportions=(0.8,0.2),
such that 80% of the p genes are simulated to be correlated with the M2c eigen-
gene, and the other 20% genes are randomly generated. Default values are used
for all other parameters. Finally, �∗(4) is set to be the sample covariance matrix.

We consider the following two types of differential matrix D:

1. Sparse block difference. Suppose D is supported on an s × s sub-block with
s = �0.1p�, and the nonzero entries are generated from Unif(d/2,2d) indepen-
dently. The signal level d is chosen to be d = 1

2

√
(max1≤j≤p �∗

jj ) log(p) where

�∗ is the base matrix defined above.
2. Soft-sparse spiked difference. Let D be a rank-one matrix with D = dvvT ,

where v is a soft-sparse unit vector with ‖v‖2 = 1 and ‖v‖0 = �0.2p�. The sup-
port of v is uniformly sampled from {1, . . . , p} without replacement. Among
the nonzero elements, �0.1p� are sampled from N(1,0.01), and the remaining
�0.2p� − �0.1p� are sampled from N(0.1,0.01). Finally, v is normalized to have
unit L2 norm. The signal level d is set to be d = 4

√
(max1≤j≤p �∗

jj ) log(p), where

�∗ is the base matrix defined above. The differential matrix D under this scenario
is moderately sparse, with �0.1p� features exerting larger signals.

Finally, the samples are generated by Xi = �
1/2
1 Zi for i = 1, . . . , n, and Yl =

�
1/2
2 Zn+l for l = 1, . . . ,m, where {Zi}i=1,n+m are independent p-dimensional

random variables with i.i.d . coordinates Zij , j = 1, . . . , p. We consider the fol-
lowing four distributions for Zij :

1. Standard Normal N(0,1).
2. Centralized Gamma distribution with α = 4, β = 0.5 [i.e., the theoretical

expectation αβ = 2 is subtracted from �(4,0.5) samples]. This distribution is also
considered in Li and Chen (2012) and Cai, Liu and Xia (2013).

3. t-distribution with degrees of freedom 12. This distribution is also consid-
ered in Cai, Liu and Xia (2013) and Chang et al. (2016).

4. Centralized negative binomial distribution with mean μ = 2 and disper-
sion parameter φ = 2 [i.e., the theoretical expectation μ = 2 is subtracted from
NB(2,2) samples].

Note that when Zij ∼ N(0,1), X and Y are multinomial Gaussian random vari-
ables with covariance matrices �1 and �2. We also consider three non-Gaussian
distributions to account for the heavy-tail scenario observed in many genetic data
sets.

Here, the smoothing parameter for sLED is set to be
√

R = 0.3
√

p, and 100
random projections are used for Rproj. For sLED, Max, Ustat, Sfrob, and
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TABLE 1
Empirical power in 100 repetitions, where n = m = 100, nominal level α = 0.05 and Zij ’s are

sampled from standard normal (top) and centralized Gamma (4,0.5) (bottom). Under each
scenario, the largest power is highlighted

�1 Noisy diagonal Block diagonal Exp. decay WGCNAD
p 100 200 500 100 200 500 100 200 500 100 200 500

Gaussian
Block Max 0.38 0.14 0.11 0.94 0.54 0.25 0.98 0.86 0.31 0.92 0.64 0.16

MBoot 0.39 0.18 0.13 0.94 0.54 0.31 0.98 0.88 0.30 0.89 0.63 0.20
Ustat 0.71 0.66 0.74 0.98 0.96 0.95 1.00 1.00 0.99 0.76 0.78 0.85
Sfrob 0.72 0.64 0.73 0.97 0.95 0.95 1.00 1.00 0.99 0.72 0.79 0.86
RProj 0.09 0.13 0.09 0.13 0.16 0.14 0.24 0.16 0.09 0.20 0.17 0.06
sLED 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.98 0.96 0.95

Spiked Max 0.12 0.08 0.05 0.49 0.26 0.09 0.96 0.90 0.15 0.86 0.32 0.04
MBoot 0.12 0.08 0.05 0.51 0.29 0.11 0.98 0.90 0.17 0.79 0.31 0.07
Ustat 0.20 0.11 0.13 0.76 0.44 0.06 1.00 0.95 0.60 0.30 0.10 0.04
Sfrob 0.18 0.12 0.11 0.73 0.41 0.07 1.00 0.93 0.62 0.34 0.14 0.03
RProj 0.10 0.08 0.02 0.32 0.08 0.12 0.30 0.20 0.09 0.61 0.24 0.13
sLED 0.51 0.11 0.03 0.97 0.70 0.12 1.00 1.00 1.00 0.97 0.57 0.05

Centralized Gamma

Block Max 0.42 0.20 0.14 0.89 0.71 0.28 0.96 0.82 0.42 0.77 0.67 0.27
MBoot 0.42 0.14 0.10 0.86 0.58 0.20 0.95 0.77 0.33 0.72 0.63 0.25
Ustat 0.57 0.59 0.70 0.92 0.94 0.97 0.99 0.98 0.98 0.53 0.82 0.86
Sfrob 0.58 0.55 0.71 0.92 0.92 0.98 0.99 0.99 0.98 0.50 0.76 0.81
RProj 0.11 0.10 0.09 0.24 0.17 0.16 0.41 0.15 0.14 0.21 0.07 0.14
sLED 0.96 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.94 0.88 0.94

Spiked Max 0.08 0.09 0.03 0.72 0.39 0.05 0.99 0.71 0.22 0.91 0.35 0.04
MBoot 0.10 0.07 0.02 0.74 0.36 0.09 0.99 0.71 0.16 0.88 0.35 0.04
Ustat 0.32 0.08 0.11 0.78 0.41 0.07 1.00 0.94 0.70 0.33 0.08 0.05
Sfrob 0.34 0.07 0.10 0.80 0.37 0.07 1.00 0.96 0.74 0.28 0.04 0.04
RProj 0.12 0.06 0.07 0.32 0.12 0.06 0.36 0.14 0.10 0.63 0.22 0.10
sLED 0.56 0.14 0.05 0.97 0.71 0.14 1.00 1.00 1.00 0.93 0.51 0.08

Rproj, 100 permutations are used to obtain each p-value; for MBoot, 100 boot-
strap repetitions are used. Table 1 summarizes the empirical power under differ-
ent covariance structures and differential matrices when Zij ’s are sampled from
standard Normal and centralized Gamma distribution. We see that sLED is more
powerful than many existing methods under most scenarios. The results using the
other two distributions of Z have similar patterns, and due to space limitation we
include them in the Supplement [Zhu et al. (2017)].

Finally, we examine the sensitivity of sLED to the smoothing parameter. Recall
that the smoothing parameter is set to be

√
R = c

√
p as explained in Section 2.5.

Figure 1 visualizes the empirical power of sLED using c ∈ {0.10,0.12, . . . ,0.30}
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FIG. 1. Empirical power of sLED in 100 repetitions using different smoothing parameters√
R = c

√
p for c ∈ {0.10, . . . ,0.30}, where D has sparse block difference and Zij ’s are sampled

from N(0,1).

when D has sparse block difference and Zij ’s are sampled from N(0,1). It is clear
that sLED remains powerful for a wide range of c. Similar patterns are observed
under other scenarios, and we include these results in the Supplement [Zhu et al.
(2017)].

4. Application to schizophrenia data. In this section, we apply sLED to the
CommonMind Consortium (CMC) data, containing RNA-sequencing on 16,423
genes from 258 Schizophrenia (SCZ) subjects and 279 control samples [Fromer
et al. (2016)]. The RNA-seq data has been carefully processed, including log-
transformation and adjustment of various covariates using a weighted linear re-
gression. The CMC group further cluster the genes into 35 genetic modules using
the WGCNA tool [Zhang and Horvath (2005)], such that genes within each module
tend to be closely connected and have related biological functionalities. Among
these, the M2c module, containing 1411 genes, is the only one that is enriched
with genes exhibiting differential expression and with prior genetic associations
with schizophrenia (SCZ). We direct readers to the original paper [Fromer et al.
(2016)] for a more detailed description of the data processing and genetic module
analysis. In the rest of this section, we apply sLED to investigate the co-expression
differences between cases and controls in the M2c module, which is of the greatest
scientific interest. We center and standardize the expression data, such that each
gene has mean 0 and standard deviation 1 across samples. Therefore, the covari-
ance test is applied to correlation matrices.

4.1. Testing co-expression differences. In this section, we use sLED to com-
pare the correlation matrices among the 1411 M2c-module genes between SCZ
and control samples. The sparsity parameter in (2.14) is chosen to be

√
R = c

√
p,

and as explained in Section 2.5, c2 provides a loose lower bound on the proportion
of selected genes. Here, because the number of risk genes that carry the genetic
signals is expected to be roughly in the range of 1%–10%, we choose c = 0.1.
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FIG. 2. Visualization of 200 genes in the M2c module, including 25 primary genes that account
for a total leverage of 0.999, 88 secondary genes that account for the remaining 0.001 leverage,
and 87 randomly selected other genes that have zero leverage. (a) Scree plot of cumulative leverage.
(b) Heat-map of |D̂| where genes are ordered by leverage and a block structure is revealed. The two
partitioning lines indicate the 25 primary genes and the 88 secondary genes. (c) Heat-map of |D̂|
where genes are ordered by p-values in differential expression analysis. Now the block structure is
diluted.

Applying sLED with 1000 permutation repetitions, we obtain a p-value of 0.014,
indicating a significant difference between SCZ and control samples.

We then identify the key genes that drive this difference according to their lever-
age, as defined in (2.11). Specifically, we order the leverage of all genes, such that
v̂2
(1) ≥ v̂2

(2) ≥ · · · ≥ v̂2
(p), where larger leverage usually indicates stronger signals.

Note that by construction,
∑p

i=1 v̂2
(i) = 1. Among the 1411 genes, 113 genes have

nonzero leverage, and we call them top genes. Moreover, we notice that the first 25
genes have already achieved a cumulative leverage of 0.999, so we refer to them
as primary genes. The remaining 88 top genes account for the remaining 0.001
leverage and are referred to as secondary genes [see Figure 2(a) for the visual-
ization of this cut-off in a scree plot]. We show in Figure 2(b) how these 113 top
genes form a clear block structure in the differential matrix D̂ = �̂control − �̂SCZ.
Notably, such a block structure cannot be revealed if ordered by the differentially
expressed p-values [Figure 2(c)].

Figure 2(b) reveals a significant decrease of gene co-expression (interactions)
in cortical samples from SCZ subjects between the 25 primary genes and the 88
secondary genes. This pattern is more clearly illustrated in Figure 3, where two
gene networks are constructed for these 113 top genes in control samples and SCZ
samples separately (see Table 2 for gene names).

To shed light on the nature of the genes identified in the M2c module, we
conduct a Gene Ontology (GO) enrichment analysis [Chen et al. (2013)]. The
secondary gene list is most easily interpreted. It is highly enriched for genes di-
rectly involved in synaptic processes, both for GO Biological Process and Molec-
ular Function. Two key molecular functions involve calcium channels/calcium ion
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FIG. 3. Gene networks constructed from control and SCZ samples, using top genes in the M2c
module that have nonzero leverage. We exclude 6 genes that do not have annotated gene names, and
show the remaining 22 primary genes (colored in white) and 85 secondary genes (colored in grey).
The adjacency matrix is constructed by thresholding the absolute Pearson correlation |Rij | at 0.5.
Larger node sizes represent larger leverage.

TABLE 2
Annotated names of 22 primary genes and 85 secondary genes in the M2c module, listed in the

descending order of leverage. The 6 underlined genes are also significant in the differential
expression analysis

Gene names

Primary genes ABHD2 SLC23A2 LRRC55 CRKL ZBTB24 TUBGCP3 KCTD10
USP13 MORC2-AS1 REXO2 HEXIM1 TOX3 FNIP2 WBP11 SYT11
SMAD3 SLC36A4 SNX30 PCDHB12 PURB TGOLN2 OSBP

Secondary genes SH3RF1 IMPAD1 SYNM HECW2 ANO1 DNM3 STOX2 C1orf173
PPM1L DNAJC6 DLG2 LRRTM4 ANK3 EIF4G3 ANK2 ITSN1
SLIT2 LRRTM3 ATP8A2 CNTNAP2 CKAP5 GNPTAB USP32
USP9X ADAM23 SYNPO2 AKAP11 MAP1B KIAA1244 PPP1R12B
SLC24A2 PTPRK SATB1 CAMTA1 MFSD6 KIAA1279 NTNG1
RYR2 RASAL2 PUM1 STAM ST8SIA3 ZKSCAN2 PBX1 ARHGAP24
RASA1 ANKRD17 MYCBP2 SLITRK1 BTRC MYH10 AKAP6 NR-
CAM MYO5A TRPC5 NRXN3 CACNA2D1 DNAJC16 GRIN2A
KCNQ5 NETO1 FTO THRB NLGN1 HSPA12A BRAF OPRM1
KIAA1549L NOVA1 OPCML CEP170 DLGAP1 JPH1 LMO7 PCNX
SYNJ1 RAPGEF2 NIPAL2 SYT1 UNC80 ATP8A1 SHROOM2 KCNJ6
SNAP91 WDR7
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transport and glutamate receptor activity. Under Biological Process, these themes
are emphasized and synaptic organization emerges too. Synaptic function is a
key feature that emerges from genetic findings for SCZ, including calcium chan-
nels/calcium ion transport and glutamate receptor activity [see Owen, Sawa and
Mortensen (2016) for review].

For the primary genes, under GO Biological Process, “regulation of transform-
ing growth factor beta2 (TGF-β2) production” is highly enriched. The top GO
Molecular Function term is SMAD binding. The protein product of SMAD3 (one
of the primary genes) modulates the impact of transcription factor TGF-β re-
garding its regulation of expression of a wide set of genes. TGF-β is important
for many developmental processes, including the development and function of
synapses [Diniz et al. (2012)]. Moreover, and notably, it has recently been shown
that SMAD3 plays a crucial role in synaptogenesis and synaptic function via its
modulation of how TGF-β regulates gene expression [Yu et al. (2014)]. It is pos-
sible that disturbed TGF-β signaling could explain co-expression patterns we ob-
serve in Figure 3, because this transcription factor will impact multiple genes. An-
other primary gene of interest is OSBP. Its protein product has recently been shown
to regulate neural outgrowth and thus synaptic development [Gu et al. (2015)].
Thus perturbation of a set of genes could explain the pattern seen in Figure 3.

4.2. Robustness of the results. In this section, we illustrate that sLED remains
powerful under perturbation of smoothing parameters and the boundaries of the
M2c module. We first apply sLED with 1000 permutations on the M2c module
using c ∈ {0.10,0.12, . . . ,0.30} (recall that

√
R = c

√
p). Each experiment is re-

peated 10 times, and the average p-value and the standard deviation for each ex-
periment are shown in Figure 4(a). All of the average p-values are smaller than
0.02. Note that larger values of c typically lead to denser solutions, which may
hinder interpretability in practice. We also examine the stability of the list of 25
primary genes. For each value of c, we record the ranks of these 25 primary genes
when ordered by leverage, and their average ranks with the standard deviations are
visualized in Figure 4(b). It is clear that these 25 primary genes are consistently
the leading ones in all experiments.

Now we examine the robustness of sLED to perturbation of the module bound-
aries. Specifically, we perturb the M2c module by removing some genes that are
less connected within the module, or including extra genes that are well connected
to the module. As suggested in Zhang and Horvath (2005), the selection of genes is
based on their correlation with the eigengene (i.e., the first principal component) of
the M2c module, calculated using the 279 control samples. By excluding the M2c
genes with correlation smaller than {0.2,0.3,0.4}, we obtain three sub-modules
with sizes {1397,1357,1248}, respectively. By including extra genes outside the
M2c module with correlation larger than {0.75,0.7,0.65}, we obtain three sup-
modules with sizes {1452,1537,1708}, respectively. We apply sLED with c = 0.1
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FIG. 4. (a) sLED applied on the M2c module with c ∈ {0.10, . . . ,0.30}. For each c, we visualize the
number of genes with nonzero leverage, as well as the average and standard deviation of p-values
in 10 repetitions, each using 1000 permutations. (b) The average and standard deviation of ranks
of the 25 primary genes when c ∈ {0.10, . . . ,0.30}, where ranks are based on the descending order
of leverage. (c) sLED applied on 7 modules using c = 0.1, including the original M2c module as
well as 6 differently perturbed modules with sizes {1248,1357,1397,1452,1537,1708}. For each
(perturbed) module, we visualize the number of genes with nonzero leverage, as well as the average
and standard deviation of p-values in 10 repetitions, each using 1000 permutations. (d) The average
and standard deviation of ranks of the 25 primary genes when sLED is applied on the 7 (perturbed)
modules using c = 0.1, where ranks are based on the descending order of leverage.

and 1000 permutations to these 6 perturbed modules. For each perturbed mod-
ule, we examine the permutation p-values in 10 repetitions, as well as the ranks
of the 25 primary genes when ordered by leverage. As shown in Figure 4(c) and
Figure 4(d), the results from sLED remain stable to such module perturbation.

4.3. Generalization to weighted adjacency matrices. Finally, we illustrate that
sLED is not only applicable to testing differences in covariance matrices, but can
also be applied to comparing general gene-gene “relationship” matrices. As an
example, we consider the weighted adjacency matrix A ∈ R

p×p , defined as

(4.1) Aij = |Rij |Rij |β for 1 ≤ i, j ≤ p and some constant β > 0,

where Rij is the Pearson correlation between gene i and gene j , and the con-
stant β > 0 controls the density of the corresponding weighted gene network. The
weighted adjacency matrix is widely used as a similarity measurement for gene
clustering, and has been shown to yield genetic modules that are biologically more
meaningful than using regular correlation matrices [Zhang and Horvath (2005)].
Now the testing problem becomes

H0 : D̃ = 0 versus H1 : D̃ �= 0,

where D̃ = E(Acontrol) −E(ASCZ). While classical two-sample covariance testing
procedures are inapplicable under this setting, sLED can be easily generalized to
incorporate this scenario. Let D̂ = Acontrol − ASCZ, then the same permutation
procedure as described in Section 2.2 can be applied.
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FIG. 5. Connectivity in the M2c module for control and SCZ samples using weighted adjacency
matrices with different β’s. The top genes detected by sLED with nonzero leverage are highlighted
in black, and the auxiliary line y = x is shown in each plot.

We explore the results of sLED for β ∈ {1,3,6.5,9}, corresponding to four
different choices of weighted adjacency matrices. We choose the same sparsity
parameter c = 0.1 for sLED as in Section 4.1, and with 1000 permutations, the
p-values are 0.020, 0.001, 0.002 and 0.006 for the 4 choices of β’s respectively.
The latter three are significant at level 0.05 after a Bonferroni correction.

Interestingly, we find our results to be closely related to the connectivity of
genes in the M2c module, where the connectivity of gene i is defined as

ki = ∑
j �=i

Aij .

Figure 5 compares the gene connectivities between control and SCZ samples,
where the top genes with nonzero leverage detected by sLED are highlighted. It
is clear that the connectivity of genes is typically higher in control samples. Fur-
thermore, as β increases, the differences on highly connected genes are enlarged,
and consistently, the top genes detected by sLED also concentrate more and more
on these “hub” genes that are densely connected. These genes would have been
missed by the covariance matrix test, but are now revealed using weighted adja-
cency matrices. A Gene Ontology (GO) enrichment analysis [Chen et al. (2013)]
highlights a different, although related, set of biological processes when β = 9
versus β = 1 (Table 3).

5. Conclusion and discussion. In this paper, we propose sLED, a permuta-
tion test for two-sample covariance matrices under the high-dimensional regime,
which meets the need to understand the changes of gene interactions in complex
human diseases. We prove that sLED achieves full power asymptotically; and in
many biologically plausible settings, we verify by simulation studies that sLED
outperforms many other existing methods. We apply sLED to a recently produced
gene expression data set on Schizophrenia, and provide a list of 113 genes that
show altered co-expression when brain samples from cases are compared to that
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TABLE 3
Top 5 terms in Gene Ontology (GO) enrichment analysis on the top genes using weighted adjacency

matrices with β ∈ {1,9}. The adjusted p-values are reported in parentheses

β = 1 β = 9

1 Positive regulation of cell development
(4.4e-05)

Synaptic transmission (5.6e-06)

2 Axon extension (4.6e-04) Energy reserve metabolic process (6.5e-06)
3 Regulation of cell morphogenesis involved

in differentiation (1.7e-04)
Divalent metal ion transport (4.1e-05)

4 Neuron projection extension (7.0e-04) Divalent inorganic cation transport (4.5e-05)
5 Positive regulation of nervous system devel-

opment (6.5e-04)
Calcium ion transport (2.8e-05)

from controls. We also reveal an interesting pattern of gene correlation change that
has not been previously detected. The biological basis for this pattern is unclear.
As more gene expression data become available, it will be interesting to validate
these findings in an independent data set.

sLED can be applied to many other data sets for which signals are both sparse
and weak. The performance is theoretically guaranteed for sub-Gaussian distribu-
tions, but we observe in simulation studies that sLED remains powerful when data
have heavier tails. In terms of running time, on the 1411 genes considered in this
paper, sLED with 1000 permutations takes 40 minutes using a single core on a
computer equipped with an AMD Opteron(tm) Processor 6320 @ 2.8 GHz. When
dealing with larger datasets, it is straightforward to parallelize the permutation
procedure and further reduce the computation time.

Finally, we illustrate that sLED can be applied to a more general class of differ-
ential matrices between other gene-gene relationship matrices that are of practical
interest. We show an example of comparing two weighted adjacency matrices and
how this reveals novel insight on Schizophrenia. Although we have only stated the
consistency results for testing covariance matrices, similar theoretical guarantee
may be established for other relationship matrices as long as similar error bounds
as in Theorem 2 hold. This is a first step towards testing general high-dimensional
matrices, and we leave a more thorough exploration in this direction to future work.
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