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In many clinical trials studying neurodegenerative diseases such as
Parkinson’s disease (PD), multiple longitudinal outcomes are collected to
fully explore the multidimensional impairment caused by this disease. If the
outcomes deteriorate rapidly, patients may reach a level of functional disabil-
ity sufficient to initiate levodopa therapy for ameliorating disease symptoms.
An accurate prediction of the time to functional disability is helpful for clini-
cians to monitor patients’ disease progression and make informative medical
decisions. In this article, we first propose a joint model that consists of a
semiparametric multilevel latent trait model (MLLTM) for the multiple lon-
gitudinal outcomes, and a survival model for event time. The two submodels
are linked together by an underlying latent variable. We develop a Bayesian
approach for parameter estimation and a dynamic prediction framework for
predicting target patients’ future outcome trajectories and risk of a survival
event, based on their multivariate longitudinal measurements. Our proposed
model is evaluated by simulation studies and is applied to the DATATOP
study, a motivating clinical trial assessing the effect of deprenyl among pa-
tients with early PD.

1. Introduction. Joint models of longitudinal outcomes and survival data
have been an increasingly productive research area in the last two decades [e.g.,
Tsiatis and Davidian (2004)]. The common formulation of joint models consists
of a mixed effects submodel for the longitudinal outcomes and a semiparametric
Cox submodel [Wulfsohn and Tsiatis (1997)] or accelerated failure time (AFT)
submodel for the event time [Tseng, Hsieh and Wang (2005)]. Subject-specific
shared random effects [Vonesh, Greene and Schluchter (2006)] or latent classes
[Proust-Lima et al. (2014)] are adopted to link these two submodels. Many ex-
tensions have been proposed, for example, relaxing the normality assumption of
random effects [Brown and Ibrahim (2003)], replacing random effects by a general
latent stochastic Gaussian process [Xu and Zeger (2001)], incorporating multivari-
ate longitudinal variables [Chi and Ibrahim (2006)], and extending single survival
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event to competing risks [Elashoff, Li and Li (2007)] or recurrent events [Liu and
Huang (2009), Sun et al. (2005)].

Joint models are commonly used to provide an efficient framework to model
correlated longitudinal and survival data and to understand their correlation.
A novel use of joint models, which gains increasing interest in recent years, is
to obtain dynamic personalized prediction of future longitudinal outcome trajec-
tories and risks of survival events at any time, given the subject-specific outcome
profiles up to the time of prediction. For example, Rizopoulos (2011) proposed
a Monte Carlo approach to estimate risk of a target event and illustrated how
it can be dynamically updated. Taylor et al. (2013) developed a Bayesian ap-
proach using a Markov chain Monte Carlo (MCMC) algorithm to dynamically
predict both the continuous longitudinal outcome and survival event probability.
Blanche et al. (2015) extended the survival submodel to account for competing
events. Rizopoulos et al. (2013) compared dynamic prediction using joint mod-
els versus landmark analysis [Van Houwelingen (2007)], an alternative approach
for dynamically updating survival probabilities. A key feature of these dynamic
prediction frameworks is that the predictive measures can be dynamically updated
as additional longitudinal measurements become available for the target subjects,
providing instantaneous risk assessment.

Most dynamic predictions via joint models developed in the literature have been
restricted to one or two longitudinal outcomes. However, impairment caused by the
neurodegenerative diseases such as Parkinson’s disease (PD) affects multiple do-
mains (e.g., motor, cognitive, and behavioral). The heterogeneous nature of the
disease makes it impossible to use a single outcome to reliably reflect disease
severity and progression. Consequently, many clinical trials of PD collect multiple
longitudinal outcomes of mixed types (categorical and continuous). To properly
analyze these longitudinal data, one has to account for three sources of correlation,
that is, intersource (different measures at the same visit), longitudinal (same mea-
sure at different visits), and cross correlation (different measures at different visits)
[O’Brien and Fitzmaurice (2004)]. Hence, a joint modeling framework for analyz-
ing all longitudinal outcomes simultaneously is essential. There is a large num-
ber of joint modeling approaches for mixed type outcomes. Multivariate marginal
models (e.g., likelihood-based [Molenberghs and Verbeke (2005)], copula-based
[Lambert and Vandenhende (2002)], and GEE-based [O’Brien and Fitzmaurice
(2004)]), provide direct inference for marginal treatment effects, but handling un-
balanced data and more than two response variables remain open problems. Mul-
tivariate random effects models [Verbeke et al. (2014)] have severe computational
difficulties when the number of random effects is large. In comparison, mixed ef-
fects models focused on dimensionality reduction (using latent variables) provide
an excellent and balanced approach to modeling multivariate longitudinal data. To
this end, He and Luo (2016) developed a joint model for multiple longitudinal out-
comes of mixed types, subject to an outcome-dependent terminal event. Luo and
Wang (2014) proposed a hierarchical joint model accounting for multiple levels of
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correlation among multivariate longitudinal outcomes and survival data. Proust-
Lima, Dartigues and Jacqmin-Gadda (2016) developed a joint model for multiple
longitudinal outcomes and multiple time-to-events using shared latent classes.

In this article, we propose a novel joint model that consists of: (1) a semi-
parametric multilevel latent trait model (MLLTM) for the multiple longitudinal
outcomes with a univariate latent variable representing the underlying disease
severity, and (2) a survival submodel for the event time data. We adopt penal-
ized splines using the truncated power series spline basis expansion in modeling
the effects of some covariates and the baseline hazard function. This spline basis
expansion results in tractable integration in the survival function, which signif-
icantly improves computational efficiency. We develop a Bayesian approach via
Markov chain Monte Carlo (MCMC) algorithm for statistical inference and a dy-
namic prediction framework for the predictions of target patients’ future outcome
trajectories and risks of survival event. These important predictive measures offer
unique insight into the dynamic nature of each patient’s disease progression and
they are highly relevant for patient targeting, management, prognosis, and treat-
ment selection. Moreover, accurate prediction can advance design of future stud-
ies, experimental trials, and clinical care through improved prognosis and earlier
intervention.

The rest of the article is organized as follows. In Section 2, we describe a moti-
vating clinical trial and the data structure. In Section 3, we discuss the joint model,
Bayesian inference, and subject-specific prediction. In Section 4, we apply the
proposed method to the motivating clinical trial dataset. In Section 5, we conduct
simulation studies to assess the prediction accuracy. Concluding remarks and dis-
cussions are given in Section 6.

2. A motivating clinical trial. The methodological development is motivated
by the DATATOP study, a double-blind, placebo-controlled multicenter random-
ized clinical trial with 800 patients to determine if deprenyl and/or tocopherol ad-
ministered to patients with early Parkinson’s disease (PD) will slow the progres-
sion of PD. We refer to as placebo group the patients who did not receive deprenyl
and refer to as treatment group the patients who received deprenyl. The detailed
description of the design of the DATATOP study can be found in Shoulson (1998).

In the DATATOP study, the multiple outcomes collected include Unified PD
Rating Scale (UPDRS) total score, modified Hoehn and Yahr (HY) scale, Schwab
and England activities of daily living (SEADL), measured at 10 visits (baseline,
month 1, and every 3 months starting from month 3 to month 24). UPDRS is the
sum of 44 questions each measured on a 5-point scale (0—4), and it is approximated
by a continuous variable with integer value from O (not affected) to 176 (most
severely affected). HY is a scale describing how the symptoms of PD progresses.
Itis an ordinal variable with possible values at 1, 1.5, 2, 2.5, 3, 4, and 5, with higher
values being clinically worse outcome. However, the DATATOP study consists of
only patients with early mild PD and the worst observed HY is 3. SEADL is a
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measurement of activities of daily living, and it is an ordinal variable with integer
values from O to 100 incrementing by 5, with larger values reflecting better clinical
outcomes. We have recoded SEADL variable so that higher values in all outcomes
correspond to worse clinical conditions and we have combined some categories
with zero or small counts so that SEADL has eight categories.

Among the 800 patients in the DATATOP study, 44 did not have disease duration
recorded and one had no UPDRS measurements. We exclude them (5.6%) from
our analysis and the data analysis is based on the remaining 755 patients. The mean
age of patients is 61.0 years (standard deviation, 9.5 years). 375 patients are in the
placebo group and 380 are in the treatment group. About 65.8% of patients are
male and the average disease duration is 1.1 years (standard deviation, 1.1 years).
Before the end of the study, some patients (207 in placebo and 146 in treatment)
reached a predefined level of functional disability, which is considered to be a
terminal event because these patients would then initiate symptomatic treatment of
levodopa, which can ameliorate the clinical outcomes. Figure 1 displays the mean
UPDRS measurements over time for DATATOP patients with follow-up time less
than 6 months (96 patients, solid line), 612 months (215 patients, dotted line), and
more than 12 months (444 patients, dashed line). Figure 1 suggests that patients
with shorter follow-up had higher UPDRS measurements, manifesting the strong
correlation between the PD symptoms and terminal event. Similar patterns are
observed in HY and SEADL measurements. Such a dependent terminal event time,
if not properly accounted for, may lead to biased estimates [Henderson, Diggle and
Dobson (2000)].

Because levodopa is associated with possible motor complications [Brooks
(2008)], clinicians tend to provide more targeted interventions to delay their initi-
ation of levodopa use. To this end, in the context of DATATOP study and similar

—— <6 months
-+ 6~12 months
—— >12months

UPDRS (higher is worse)

Follow up time (months)

FIG. 1. Mean UPDRS values over time for DATATOP patients with follow-up time less than 6
months (solid line), 6-12 months (dotted line), and more than 12 months (dashed line).
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PD studies, there is an important clinically relevant prediction question: for a new
patient (not included in the DATATOP study) with one or multiple visits, what are
his/her most likely future outcome trajectories (e.g., UPDRS, HY, and SEADL)
and risk of functional disability within the next year, given the outcome histories
and the covariate information? These important predictive measures are highly rel-
evant for PD patient targeting, management, prognosis, and treatment selection. In
this article, we propose to develop a Bayesian personalized prediction approach
based on a joint modeling framework consisting of a semiparametric multilevel
latent trait model (MLLTM) for multivariate longitudinal outcomes and a survival
model for the event time data (time to functional disability).

3. Methods.

3.1. Joint modeling framework. In the context of clinical trials with multiple
outcomes, the data structure is often of the type {yix(#;;), i, 8;}, where y;r(t;;)
is the kth (k =1, ..., K) outcome, which can be binary, ordinal, or continuous,
for patienti (i =1,..., 1) atvisit j (j =1,...,J;) recorded at time #;; from the
study onset, #; = min(7}*, C;) is the observed event time to functional disability, as
the minimum between the true event time 7;* and the censoring time C; which are
assumed to be independent of 7;*, and §; is the censoring indicator (1 if the event is
observed, and O otherwise). We propose to use a semiparametric multilevel latent
trait model (MLLTM) for the multiple longitudinal outcomes and a survival model
for the event time.

To start building the semiparametric MLLTM framework, we assume that there
is a latent variable representing the underlying disease severity score and denote
it as 6;(¢) for patient i at time ¢ with a higher value for more severe status. We
introduce the first level model for continuous outcomes,

(D Vik(t) = ax + brb; (1) + &ix (1),

where a; and by (positive) are the outcome-specific parameters, and the random
errors g;;(t) ~ N (O, ogk). Note that a; = E[y;x(?)|6; () = 0] is the mean of the kth
outcome if the disease severity score is 0 and by is the expected increase in the
kth outcome for one unit increase in the disease severity score. The parameter by
also plays the role of bringing up the disease severity score to the scale of the kth
outcome. The models for outcomes that are binary (e.g., the presence of adverse
events) and ordinal (e.g., HY and SEADL) are as follows [Fox (2005)]:

logit{ p(yix (t) = 116; (1))} = ax + bi6; (1),
logit{ p(yix (1) <116;(t))} = ar — brb; (1),

wherel = 1,2, ..., n; — 11is the /th level of the kth ordinal variable with n; levels.
Note that the negative sign for by in the ordinal outcome model is to ensure that
worse disease severity [higher 6;(¢)] is associated with a more severe outcome

2
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[higher y;x(¢)]. Interpretation of parameters is similar for continuous outcomes,
except that modeling is on the log-odds, not the native scale, of the data. We have
selected logit link function in model (2), while other link functions (e.g., probit and
complementary log-log) can be adopted. A major feature of models (1) and (2) is
that they all incorporate 6; (¢) and explicitly combine longitudinal information from
all outcomes.

To model the dependence of severity score 6; (¢) on covariates, we propose the
second level semiparametric model

3) i (1) = Xi(O)B + Zi(Du; + Ve (1)E,

where vectors X;(¢) and Z;(¢) are p and ¢ dimensional covariates corresponding
to fixed and random effects, respectively. They can include covariates of inter-
est such as treatment and time. To allow additional flexibility and smoothness
in modeling the effects of some covariates, we adopt a smooth time function
Ve = Zle ¢r(t — k)4 using the truncated power series spline basis expan-
sion Ve(t) ={(t —k1)+,...,({t — kg)+}, where k = {x1, ..., kg} are the knots,
and (t — k)4 =t —k, if t > k, and O otherwise. Following Ruppert (2002), we
consider a large number of knots (typically 5 to 20) that can ensure the desired
flexibility and we select the knot location to have sufficient subjects between ad-
jacent knots. To avoid overfitting, we explicitly introduce smoothing by assum-
ing that ¢ = (¢1,...,¢r) ~ N(O, 051) [Crainiceanu, Ruppert and Wand (2005),
Ruppert, Wand and Carroll (2003)]. The choice of knots is important to obtain a
well-fitted model and should be selected with caution to avoid overfitting. Sev-
eral approaches of automatic knot selection based on stepwise model selection
have been proposed [Denison, Mallick and Smith (1998), DiMatteo, Genovese
and Kass (2001), Friedman and Silverman (1989), Stone et al. (1997)]. Wand
(2000) gives a good review and comparison of some of these approaches. Penal-
izing the spline coefficients to constrain their influence also helps to avoid over-
fitting [Ruppert, Wand and Carroll (2003)], as in our model. Moreover, in clin-
ical studies with same scheduled follow-up visits, the frequency of study visits
needs to be accounted for in the selection of knots. For the ease of illustration,
we include the nonparametric smooth function for the time variable, although our
model can be extended to accommodate more nonparametric smooth functions.
The vector u; = (u;1, ..., uiq)’ contains the random effects for patient i’s latent
disease severity score and it is distributed as N (0, X). Equations (1), (2) and (3)
consist of the semiparametric MLLTM model, which provides a nature frame-
work for defining the overall effects of treatment and other covariates. Indeed, if
0:(t) = o + Bixi + Pat + Baxit + XK &t — k)4 + wio + uint, where x; is
treatment indicator (1 if treatment and O otherwise), then 8 is the main treatment
effect and B3 is the time-dependent treatment effect. In this context, the null hy-
pothesis of no overall treatment effect is Hy : f1 = 3 = 0. Because the number
of outcomes (K) has been reduced to one latent disease severity score, models are
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quite parsimonious in terms of number of random effects, which improves compu-
tational feasibility and model interpretability.

Because the semiparametric MLLTM model is over-parameterized, additional
constraints are required to make it identifiable. Specifically, we set ax; = 0
and by = 1 for one ordinal outcome. For the ordinal outcome k with n; cat-
egories, the order constraint ayxy < -+ < ay < --- < agp—1 Must be satis-
fied, and the probability of being in a particular category is p(Yjr(t) = 1) =
p(Yir(t) <116;(t)) — p(Yix(t) <1 — 116;(t)). With these assumptions, the con-
ditional log-likelihood of observing the patient i data {y;x(#;;)} given u; and

¢ is [,(®y; y;,ui,8) = Z}.’izl Zlelogp(yik(t,-j)lu,-, ¢). For notational conve-
nience, we let @ = (a), ..., aj,...,a%)’, with a; being numeric for binary and
continuous outcomes and @y = (ai1, ..., akn,—1)" for ordinal outcomes. We let
b= (b1,....bx) and y;(t) = {yix(t),k =1, ..., K} be the vector of measure-
ments for patient i at time ¢ and let y; = {y;(#;;),j =1,..., J;} be the outcome
vector across J; visit times. The parameter vector for the longitudinal process is
©,=(@. b,p X 0., 00).
To model the survival process, we use the proportional hazard model

4) hi(t) = ho(t) exp{W;y +v6; (1)},

where p is the coefficient for time-independent covariates W; and ho(-) is the
baseline hazard function. Some covariates in W; can overlap with vector X;(t)
in model (3). Ibrahim, Chu and Chen (2010) gave an excellent explanation of the
coefficients for those overlapped covariates. In the current context, if we denote
B, and y, as the coefficients for the overlapped covariates in vectors X;(¢) and
W,, respectively, we have: (1) B, is the covariate effect on the longitudinal latent
variable; (2) yp,, is the direct covariate effect on the time to event; (3) vB, + ¥y,
is the overall covariate effect on the time to event. The association parameter v
quantifies the strength of correlation between the latent variable 6; (¢) and the haz-
ard for a terminal event at the same time point (refer to as “Model 1: shared latent
variable model”). Specifically, a value of v = 0 indicates that there is no asso-
ciation between the latent variable and the event time while a positive associa-
tion parameter v implies that patients with worse disease severity tend to have
a terminal event earlier, for example, a value of v = (.5 indicates that the haz-
ard rate of having the terminal event increases by 65% [i.e., exp(0.5) — 1] for
every unit increase in the latent variable. For prediction of subject-specific sur-
vival probabilities, a specified and smooth baseline hazard function is desired. To
this end, we again adopt a truncated power series spline basis expansion hy(t) =
exp{no +mt + XK, & — k) 4} and assume & = (&1,...,£g) ~ N(0,071) to
introduce smoothing. The knot locations can be the same or different from those
in equation (3).

In equation (4), different formulations can be used to postulate how the risk for
a terminal event depends on the unobserved disease severity score at time ¢. For
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example, one can add to equation (4) a time-dependent slope 6;(¢), so that the risk
depends on both the current severity score and the slope of the severity trajectory
at time ¢ (refer to as “Model 2: time-dependent slope model”):

5) hi(t) = ho(t) exp{W;y +v16; () + 26 (1) }.

Alternatively, one can consider the standard formulations of joint models that in-
clude only the random effects in the Cox model (refer to as “Model 3: shared
random effects model”):

(6) hi(t) = ho(t) exp{W;y + v'u;}.

A good summary of these various formulations in the joint modeling framework
can be found in Rizopoulos et al. (2014) and Yang, Yu and Gao (2016).

The log-likelihood of observing event outcome f#; and §; for patient i is
I;(Og; 1,6, u;,8,8) = log{h,-(t,-)‘si S;(t;)}, where the survival function S;(#;) =
exp{— f(;i hi(s)ds} and the parameter vector for the survival process is @; =
»', v, no, N1, o*g)’ . Note that the truncated power series spline basis expansion in
modeling the smooth time function in equation (3) and in modeling the baseline
hazard function is linear function of time, which results in tractable integration
in the survival function S;(#;), and consequently, significant gain in computing
efficiency. Conditional on the random effect vector u;, y; is assumed to be inde-
pendent of ¢#;. The penalized log-likelihood of the joint model for patient i given
random effects u; and smoothing parameters o, oz is

1 1
(7) I(G)’CaS,)=ly(®y;ylvulﬁc)—i_ls(@S?tl7817u17;5§)_ ZC/C_ zs/gv
O’; Gf

where the unknown parameter vector @ = (0, @)’

3.2. Bayesian inference. To infer the unknown parameter vector @, we use
Bayesian inference based on Markov chain Monte Carlo (MCMC) posterior sim-
ulations. The fully Bayesian inference has many advantages. First, MCMC algo-
rithms can be used to estimate exact posterior distributions of the parameters, while
likelihood-based estimation only produces a point estimate of the parameters, with
asymptotic standard errors [Dunson (2007)]. Second, Bayesian inference provides
better performance in small samples compared to likelihood-based estimation [Lee
and Song (2004)]. In addition, it is more straightforward to deal with more com-
plicated models using Bayesian inference via MCMC. We use vague priors on
all elements in @. Specifically, the prior distributions of parameters v, 19, 11,
and all elements in vectors § and y are N (0, 100). We use the prior distribu-
tion by ~ Uniform(0, 10), k =2, ..., K, to ensure positivity. The prior distribu-
tion for the difficulty parameter a; of the continuous outcomes is a; ~ N (0, 100).
To obtain the prior distributions for the threshold parameters of ordinal outcome
k, we let ax; ~ N(0,100), and ay; = ax -1 + Ay for [ =2,...,nr — 1, with
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A; ~ N(0,100)1(0,), that is, normal distribution left truncated at 0. We use the
prior distribution Uniform[—1, 1] for all the correlation coefficients p in the co-
variance matrix X, and Inverse-Gamma(0.01, 0.01) for all variance parameters.
We have investigated other selections of vague prior distributions with various
hyper-parameters and obtained very similar results.

The posterior samples are obtained from the full conditional of each unknown
parameter using Hamiltonian Monte Carlo (HMC) [Duane et al. (1987)] and No-
U-Turn Sampler (NUTS, a variant of HMC) [Hoffman and Gelman (2014)]. Com-
pared with the Metropolis—Hastings algorithm, HMC and NUTS reduce the cor-
relation between successive sampled states by using a Hamiltonian evolution be-
tween states and by targeting states with a higher acceptance criteria than the ob-
served probability distribution, leading to faster convergence to the target distribu-
tion. Both HMC and NUTS samplers are implemented in Stan, which is a prob-
abilistic programming language implementing statistical inference. The model fit-
ting is performed in Stan (version 2.14.0) [Stan Development Team (2016)] by
specifying the full likelihood function and the prior distributions of all unknown
parameters. For large dataset, Stan may be more efficient than BUGS language
[Lunn et al. (2000)] in achieving faster convergence and requiring smaller number
of samples [Hoffman and Gelman (2014)]. To monitor Markov chain convergence,
we use the history plots and view the absence of apparent trends in the plot as evi-
dence of convergence. In addition, we use the Gelman—Rubin diagnostic to ensure
the scale reduction R of all parameters are smaller than 1.1 as well as a suite of
convergence diagnosis criteria to ensure convergence [Gelman et al. (2014)]. Af-
ter fitting the model to the training dataset (the dataset used to build the model)
using Bayesian approaches via MCMC, we obtain M (e.g., M = 2000 after burn-
in) samples for the parameter vector @ = (@', ¢’, &)’. To facilitate easy reading
and implementation of the proposed joint model, a Stan code has been posted in
the Supplementary Material [Wang, Luo and Li (2017)]. Note that Stan requires
variable types to be declared prior to modeling. The declaration of matrix X as a
covariance matrix ensures it to be positive-definite by rejecting the samples that
cannot produce positive-definite matrix X. Please refer to the Stan code in the
Supplementary Material for details.

3.3. Dynamic prediction framework. We illustrate how to make prediction for
a new subject N, based on the available outcome histories y%} ={yny@n;):0 =<
tnj <t} and the covariate history XX,} = {Xn@nj), ZNn(tNj), WN; 0 <1n; <1}
up to time ¢, and 6y = 0 (no event). We want to obtain two personalized predic-
tive measures: the longitudinal trajectories yyx(¢'), for k =1,..., K, at a future
time point ¢’ > ¢ (e.g., ' =t + Ar), and the probability of functional disability
before time ¢/, denoted by 7y (¢'1) = p(T}; < ¢/|T5 > 1, &), X)), To do this, the
key step is to obtain samples for patient N’s random effects vector uy from its
posterior distribution p(uy|Ty > t, y%}, ®y). Specifically, conditional on the mth
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posterior sample @ém), we draw the mth sample of the random effects vector u

from its posterior distribution
p(un|Ty > 1, y 9(()m))

_ p(yN,T1$>t,uN|®ém))

{t} (m)
xp(yy . Ty >t un|®y")
PN Ty > 1107") ! ’

= p(ylun. ©F") p(T}; > tluy. ©F") p(un|©F"),

where the first equality is from Bayes theorem.

For each of G)(()m), m=1,..., M, we use adaptive rejection Metropolis sam-
pling [Gilks, Best and Tan (1995)] to draw 50 samples of random effects vector
uy and retain the final sample. This process is repeated for the M saved values of
®. Suppose that patient N does not develop functional disability by time ¢, then

the outcome histories are updated to y{t/} We can dynamically update the poste-

rior distribution to p(uy|Ty > t/ y N , G(m)) draw new samples, and obtain the
updated predictions.
With the M samples for patient N’s random effects vector u y, predictions can

be obtained by simply plugging in realizations of the parameter vector and ran-

dom effects vector {9(()'") ug\',”), m=1,..., M}. For example, the mth sample of

continuous outcome yy(t") is obtained from equations (1) and (3):
i (1) = af™ + b (X ()™ + Zy ()l + VR(()E™ ) + e (1),

where the random errors ¢ Nk)(t/ )~ N(Q,o; (m)) and each parameter is replaced

by the corresponding element in the mth sample {@f)m), uy )}.
Similarly, the mth sample of ordinal outcome yyx(t') =1 with [ =1,2, ..., 1y
is

logit{ p(yyi (1) <)} = a” — b (X n(t)B™ + Zy (¢ )uly” + V() ™).

The probability of being in category [ is p(ylm)(t/) =) = p(ylm)(t/) <) —
p(ylm)(t ) <1 —1). The mth sample of the hazard of patient i at time ¢’ is

h(m)(t |u(m)) — h(()m)(t/) exp{WNy(m)
0 [X ()8 + Zy (1 )uy” + VR()5™]).

Thus, the conditional probability of functional disability before time 7’ is

2 (t']r) =

p(TE <t 1T > 6, 8, XU un) plun| T > 1, %), XY duy

\;

M
> p(T5 <115 > 1,9y, X 6l

m=1

&

Sk
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Z{ p(T* >t/|y§\tl}y N’u;’]n))}
MU p(g > 1yl X3 )

= i i/[: {1 — exp(— /t/h(m)(slu(m)) ds>}
Mm:1 p N N ’

where the integration with respect to uy in the first equality is approximated us-
ing Monte Carlo method. Note that the truncated power series spline basis ex-
pansion in modeling the smooth time function in equation (3) and in modeling
the baseline hazard function results in tractable integration not only in the sur-
vival function Sy (¢y), but also in the integration of hazard function in the last
equality. All prediction results can then be obtained by calculating simple sum-
maries (e g., mean, variance, quantiles) of the posterior distributions of M sam-

ples {yNk (t),m =1, ..., M}. Note that although it may take a few hours to ob-
tain enough posterior samples for the parameter vector @y, it only takes a few
seconds to obtain the prediction results for a new subject. Hence, the dynamic pre-
diction framework and the web-based calculator (detailed in Section 4) can pro-
vide instantaneous supplemental information for PD clinicians to monitor disease
progression.

3.4. Assessing predictive performance. It is essential to assess the perfor-
mance of the proposed predictive measures. Here, we focus on the probability
7 (t'|r). Specifically, we assess the discrimination (how well the models discrim-
inate between patients who had the event from patients who did not) using the
receiver operating characteristic (ROC) curve and the area under the ROC curves
(AUC) and assess the validation (how well the models predict the observed data)
using the expected Brier score (BS).

3.4.1. Area under the ROC curves. Following the notation in Section 3.3,
for any given cut point ¢ € (0, 1), the time-dependent sensitivity and speci-
ficity are defined as sensitivity(c,,t") : P{m;(t'|t) > c|N;(t,t') = 1,T* > t}
and specificity(c, t,") : P{m;(¢'|t) < c|N;(t,t") =0, T;* > 1}, respectively, where
Ni(t,t)=1(t<T*< t'), indicating whether there is an event (case) or no event
(control) observed for subject i during the time interval (¢, ¢']. In the absence of
censoring, sensitivity and specificity can be simply estimated from the empirical
distribution of the predicted risk among either cases or controls. To handle cen-
sored event times, Li, Greene and Hu (2016) proposed an estimator for the sensi-
tivity and specificity based on the predictive distribution of the censored survival
time:

i Wi, R > c)
i Wi, 1)

il = Wi, OR (1) < )
i1 = Wi, )]

Plmi(t'1t) > c|Ni(t,1) = 1, T > t} =
(®)
Pl (') < cINi(t,1) =0,T* >t} =

El

’
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where W, (t, 1) is the weight to account for censoring and it is defined as
Wit,t)=1(t <t <t)8; +1(t <t; <t')(1 = 8)P{T} <1|T* = 1;, 7 (t'|1)}
P{T > f/|7?i(t/|t)}j|
P(T > 1|7 (t'[0)}
Note that the subjects W/h\O have the survival event before time ¢ (i.e., t; < t) have
their estimated weight W; (¢, ") = 0, and thus they play no role in equation (8).
The conditional survival distribution P{T;* > f|7; (¢'|t)}, where 7 can be either ¢’
or t;, can be estimated using kernel weighted Kaplan—Meier method with a band-

width d, which can be easily implemented in standard survival analysis software
accommodating weighted data:

Pl =imn)= T |

SEQ,s<f

=It<t;<t)8+1(t<t; <t')(1 —8,-)[1 —

i Kalww (10, 7 (¢ 1O (Tir = s)&-/}
i Kl (010, T (IO (T = 5) '

where 2 is the set of distinct #;’s with §; = 1 and K is the kernel function, for
example, uniform and Gaussian kernels. Specifically, we use uniform kernel in
this article.

With the estimation of sensitivity and specificity, the time-dependent ROC curve
can be constructed for all possible cut points ¢ € (0, 1) and the corresponding
time-dependent AUC(z, ¢') can be estimated using standard numerical integration
methods such as Simpson’s rule.

3.4.2. Dynamic Brier score. The Brier score (BS) developed in survival mod-
els can be extended to joint models for prediction validation [Proust-Lima et al.
(2014), Sene et al. (2016)]. The dynamic expected BS is defined as E[(D(¢'|t) —
7 (¢'|t))?], where the observed failure status D(¢'|t) equals to 1 if the subject ex-
periences the terminal event within the time interval (z, '] and O if the subject is
event free until #'. An estimator of BS is

_ R
BS(t. 1) = N > Git, ) (Di(t, 1) — mi(7'11))7,
i=1

where N; is the number of subjects at risk at time ¢, and the weight @i (t,t) =
1(t;>1)) I(t<t;<t")§;

Sot/So(t) St/ So(t)
Meier estimate [Sene et al. (2016)].

AUC and BS complement each other by assessing different aspects of the pre-
diction. AUC has a simple interpretation as a concordance index, while BS ac-
counts for the bias between the predicted and true risks. In general, AUC =1 in-
dicates perfect discrimination and AUC = 0.5 means no better than random guess,
while BS = 0 indicates perfect prediction and BS = 0.25 means no better than
random guess. Blanche et al. (2015) provides excellent illustration of AUC and
BS.

is to account for censoring with So denoting the Kaplan—
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4. Application to the DATATOP study. In this section, we apply the pro-
posed joint model and prediction process to the motivating DATATOP study. For
all results in this section, we run two parallel MCMC chains with overdispersed
initial values and run each chain for 2000 iterations. The first 1000 iterations are
discarded as burn-in and the inference is based on the remaining 1000 iterations
from each chain. Good mixing properties of the MCMC chains for all model pa-
rameters are observed in the trace plots. The scale reduction R of all parameters
are smaller than 1.1.

In order to validate the prediction and compare the performance of candi-
date models, we conduct a 5-fold cross-validation, where 4 partitions of the data
are used to train the model and the left-out partition is used for validation and
model selection. Then we fit the final selected model to the whole dataset, ex-
cept that 2 patients are set aside for subject-specific prediction purpose. The co-
variates of interest included in equation (3) are baseline disease duration, base-
line age, treatment (active deprenyl only), time, and the interaction term of treat-
ment and time. We allow a flexible and smooth disease progression along time
by using penalized truncated power series splines with 7 knots at the location
kt=(1.2,3,6,9,12, 15, 18) in months, to ensure sufficient patients within each
interval. Specifically, equation (3) is

0;(tij) = Bo + Biduration; + Brage; + Bstrt; + Bat;;
7
+ Bs(trt; X 1) + Z Cr(tij — k)4 +ujo +uirtij,

r=1

where the random effects (u;g, u;i1)’ ~ N2(0, ¥) with ¥ = {(012, p0102), (po107,
0’22)} and ¢ ~ N (O, Ggl) to avoid overfitting.

For the survival part, three different formulations are considered as discussed
in Section 3.1. For instance, the shared latent variable model (Model 1) is
h;i(t) = ho(t) exp(y1duration; + yrage; + ystrt; + v6;(¢)). The proposed time-
dependent slope model (Model 2) and shared random effects model (Model 3)
can be obtained by replacing v6;(¢) with v16;(¢) + v29i’ (t) and v'u;, respec-
tively. The baseline hazard h¢(¢) is similarly approximated by penalized splines
ho(t) = exp{no + nmit + ZZ=1 & —kr)+} and £ ~ N(O, 0521). In addition, we
compared the proposed model with two standard predictive models for time to
event data, (1) a widely used univariate joint model (refer to as Model JM), where
the continuous UPDRS is used as the longitudinal outcome regressing on same
covariates of interest and the survival part is constructed in the same structure,
and (2) a naive Cox model adjusted for time-independent covariates including all
baseline characteristics as well as UPDRS, HY, and SEADL scores.

We compare the performance of all candidate models in terms of discrimination
and validation using 5-fold cross-validation and present AUC and BS score in Ta-
ble 1 and Web Table 1. All of the three formulations of the proposed MLLTM
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TABLE 1
Area under the ROC curve and Brier score (BS) for the DATATOP study

Model 1 Model 2 Model 3 Model JM Cox

t ! AUC BS AUC BS AUC BS AUC BS AUC BS

3 9 0754 0.136 0.759 0.138 0.761 0.139 0.757 0.140 0.736 0.139
12 0744 0204 0.744 0200 0.744 0.200 0.739 0203 0.725 0.203
15 0744 0216 0.742 0.212 0.744 0211 0.726 0.218 0.719 0212
18 0775 0171 0.766 0.163 0.772 0.167 0.728 0.186 0.720 0.185

6 9 0789 0.078 0.806 0.078 0.806 0.078 0.770 0.081 0.721 0.094
12 0764 0.159 0.778 0.154 0.775 0.154 0.732 0.164 0.705 0.173
15 0763 0.183 0.771 0.178 0.771 0.178 0.725 0.194 0.697 0.194
18 0786 0.158 0.773 0.154 0.769 0.159 0.726 0.175 0.701  0.175

12 15 0766 0.108 0.787 0.103 0.782 0.102 0.695 0.124 0.647 0.155
18 0.758 0.149 0.739 0.147 0.723 0.153 0.700 0.161 0.663 0.163

joint model outperform the univariate Model JM [except AUC(t = 3,t" = 9)]
and naive Cox model with larger AUC and smaller BS in most of the scenar-
ios, suggesting that the MLLTM model accounting for multivariate longitudinal
outcomes are preferable in terms of prediction. The three formulations have very
similar performance with close AUC and BS. Model 1 is selected as our final
model, because it leads to a straightforward interpretation of the overall covari-
ate effect described in Section 3.1 and it is more intuitive to use the trajectory
of latent variable 6;(¢) to predict the time to event as in Model 1, instead of us-
ing time-dependent slope 0/(¢) or random effects u; as in Models 2 and 3. The
results also suggest that AUC increases by using more follow up measurements,
for example, in Model 1, conditional on the the measurement history up to month
3 (i.e., t =3), when ¢/ =15, AUC(t = 3,t' = 15) = 0.744, while AUC increase
to AUC(t = 12, ' = 15) = 0.766, indicating that conditional on the measurement
history up to month 12, our model has 0.766 probabilities to correctly assign higher
probability of functional disability by month 15 to more severe patients (who had
functional disability earlier) than less severe patients (who had functional disability
later). Meanwhile, BS decreases from BS(3, 15) = 0.216 to BS(12, 15) = 0.108,
that is, the mean square error of prediction decreases from 0.216 to 0.108, suggest-
ing better prediction in terms of validation.

Parameter estimates based on Model 1 are presented in Table 2 and Web Table 2
(outcome-specific parameters only). To illustrate the subject-specific predictions,
we set aside two patients from the DATATOP study and predict their longitudinal
trajectories as well as the probability of functional disability at a clinically relevant
future time point, conditional on their available measurements. A more severe Pa-
tient 169 with clinically worse longitudinal measures and earlier development of
functional disability as well as a less severe Patient 718 are selected. Patient 169
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TABLE 2
Parameter estimates for the DATATOP study from Model 1

Mean SD 95% CI

For latent disease severity

Int —0.738 0.338 —1.385 —0.081
Duration (months) 0.021 0.004 0.014 0.028
Age (years) 0.024 0.005 0.014 0.035
Trt (deprenyl) —0.108 0.099 —0.304 0.099
Time (months) 0.021 0.025 —0.028 0.070
Trt x Time —0.089 0.010 —0.109 —0.071
P 0.310 0.044 0.226 0.393
o1 1.328 0.051 1.230 1.430
lp) 0.116 0.006 0.104 0.128
Og 5.081 0.074 4.933 5.226
For survival process

Duration (months) —0.009 0.004 —0.017 —0.002
Age (years) —0.034 0.006 —0.045 —0.024
Trt (deprenyl) —0.608 0.118 —0.846 —0.375
v 0.692 0.039 0.618 0.769

had 8 visits with mean UPDRS 42.6 (SD 7.7), median HY 2, median SEADL 80,
and developed functional disability at month 16. In contrast, Patient 718 had 9
visits with mean UPDRS 15.6 (SD 3.1), median HY 1, median SEADL 95, and
was censored at month 21. Figure 2 displays the predicted UPDRS trajectories for
these two patients, based on different amounts of data. When only baseline mea-
surements are used for prediction, the predicted UPDRS trajectory is biased with
wide uncertainty band. For example, Patient 169 had a relatively low baseline UP-
DRS value of 33 and our model based only on baseline measurements tends to
underpredict the future UPDRS trajectory (#; = 0, the first plot in upper panels).
However, Patient 169’s higher UPDRS values of 41 and 40 at months 1 and 3, re-
spectively, subsequently shift up the prediction and tend to overpredict the future
trajectory (#; = 3 months, the second plot in upper panels). By using more follow-
up data, predictions are closer to the true observed values and the 95% uncertainty
band is narrower (#; = 6 or 12 months, the last two plots in upper panels). Patient
169’s predicted UPDRS values after 12 months are above 40 and increase rapidly,
indicating a higher risk of functional disability in the near future. In comparison,
the predicted UPDRS values for Patient 718 are relatively stable because his/her
observed UPDRS values are relatively stable.

The predicted probability being in each category for outcomes HY and SEADL
are presented in Web Figures 1 and 2, respectively. Please refer to the Supple-
mentary Material for the interpretation. Besides the predictions of longitudinal
trajectories, it is more of clinical interest for patients and clinicians to know the
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probability of functional disability before time ¢ > ¢: 7; (t'|r), conditional on the
patient’s longitudinal profiles up to time ¢ and the fact that he/she did not have
functional disability up to time ¢. The predicted probabilities for Patients 169 and
718 based on various amount of data are presented in Figure 3. A similar pattern
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is that the prediction becomes more accurate if more data are used. With such pre-
dictions, clinicians are able to precisely track the health condition of each patient
and make better informed decisions individually. For example, based on the first
12 months’ data, for Patient 169, the predicted probabilities in the next 3, 6, 9, and
12 months are 0.21, 0.46, 0.78, and 0.97 (the last plot of upper panels), while for
Patient 718, the probabilities are 0.02, 0.06, 0.13, and 0.30 (the last plot of lower
panels). Patient 169 has higher risk of functional disability in the next few months
and clinicians may consider more invasive treatments to control the disease symp-
toms before the functional disability is developed.

To facilitate the personalized dynamic predictions in clinical setting, we de-
velop a web-based calculator available at https://kingjue.shinyapps.io/dynPred_
PD. A screenshot of the user interface is presented in Web Figure 3. The calculator
requires as input the PD patients’ baseline characteristics and their longitudinal
outcome values up to the present time. The online calculator will then produce
time-dependent predictions of future health outcomes trajectories and the proba-
bility of functional disability, in addition to the 95% uncertainty bands. Moreover,
additional data generated from more follow-up visits can be input to obtain updated
predictions. The calculator is a user friendly and easily accessible tool to provide
clinicians with dynamically-updated patient-specific future health outcome trajec-
tories, risk predictions, and the associated uncertainty. Such a translational tool
would be relevant both for clinicians to make informed decisions on therapy selec-
tion and for patients to better manage risks.

5. Simulation studies. In this section, we conduct an extensive simulation
study to investigate the prediction performance of the probability 7z (¢'|¢) using the
proposed Model 1. We generate 200 datasets with samples size n = 800 subjects
and six visits, that is, baseline and five follow-up visits (J; = 6), with the time
vector t; = (#;1, t2, ..., tig) = (0,3, 6,12, 18, 24). The simulated data structure is
similar to the motivating DATATOP study, and it includes one continuous outcome
and two ordinal outcomes (each with 7 categories).

Data are generated from the following models: 6;(#;;) = Bo + Bixi1 + Batij +
B3xiitij +ujo +u;1t;j and h;(t) = hoexp{yx;2 + v0;(t)}, where the longitudinal
and survival submodels share the latent variable as in proposed Model 1. Covariate
x;1 takes value O or 1 each with probability 0.5 to mimic treatment assignment and
covariate x;; is randomly sampled integer from 30 to 80 to mimic age. We set coef-
ficients B = (Bo, B1, B2, B3) = (—1,-0.2,0.8, —0.2)’, y = —0.12 and v = 0.75.
For simplicity, baseline hazard is assumed to be constant with 4o = 0.1. Parame-
ters for the continuous outcome are a; = 15, by =7, and o, = 5. Parameters for
the ordinal outcomes area, = (0,1,2,4,5,6),a3=(—1,1,3,4,6,8),bp, =1, and
b3 = 1.2. We assume that random effects vector u; = (u;0, u;1)’ follows a multi-
variate normal distribution N, (0, X), where X = { (012, 00103), (pojoz, 022)} with
o1 =1.5,07 =0.15, and p = 0.4. The independent censoring time is sampled from
Uniform(10, 24).
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From each simulated dataset, we randomly select 600 subjects as the training
dataset and set aside the remaining 200 subjects as the validation dataset. Web
Table 3 displays bias (the average of the posterior means minus the true values),
standard deviation (SD, the standard deviation of the posterior means), coverage
probabilities (CP) of 95% equal tail credible intervals (CI), and root mean squared
error (RMSE) of model inference based on the training dataset. The results suggest
that the model fitting based on the training dataset provides parameter estimates
with very small biases and RMSE and the CP being close to the nominal level
0.95. Using MCMC samples from the fitted model and available measurements up
to time 7, we make prediction of 7; (#'|r) for each subject in the validation dataset.

Web Table 4 compares the time-dependent AUC based on various amount of
data from Model 1, Model JM, and naive Cox model. When 3 or 6 months data
are available, Model 1 outperforms Model JM and Cox with high discriminating
capability and higher AUC values above 0.9. In general, AUC is increasing with
more available data, for example, AUC(3, 12) =0.920 and AUC(6, 12) = 0.930.

From each of the 200 simulation datasets, we randomly select 20 subjects to
plot the bias between the predicted event probability 7(¢'|¢t) from Model 1 and
the true event probability with t' = 9 (upper panels) and " = 12 (lower panels)
in Web Figure 4. When more data are available, bias is decreasing as more bias
is within the region of [—0.2,0.2]. For example, with only baseline data, 5.8%
and 21.7% of bias for the predictions of 7 (t' = 9|r = 0) and 7 (¢’ = 12|t = 0),
respectively, are outside the range. With up to three months’ data, 3.4% and 13.7%
of bias for the predictions of 7 (+' = 9|r = 3) and 7 (t' = 12|t = 3), respectively, are
outside the range. With up to six months’ data, the prediction is precise with only
1.2% and 7.7% of bias for the prediction of 7 (t' = 9|t = 6) and (¢’ = 12|t = 6),
respectively, being outside the range.

6. Discussion. Multiple longitudinal outcomes are often collected in clinical
trials of complex diseases such as Parkinson’s disease (PD) to better measure dif-
ferent aspects of disease impairment. However, both theoretical and computational
complexity in modeling multiple longitudinal outcomes often restrict researchers
to a univariate longitudinal outcome. Without careful analysis of the entire data,
pace of treatment discovery can be dramatically slowed down.

In this article, we first propose a joint model that consists of a semiparametric
multilevel latent trait model (MLLTM) for the multiple longitudinal outcomes by
introducing a continuous latent variable to represent patients’ underlying disease
severity, and a survival submodel for the event time data. The latent variable mod-
eling effectively reduces the number of outcomes and has improved computational
feasibility and model interpretability. Next, we develop the process of making per-
sonalized dynamic predictions of future outcome trajectories and risks of target
event. Extensive simulation studies suggest that the predictions are accurate with
high AUC and small bias. We apply the method to the motivating DATATOP study.
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The proposed joint models can efficiently utilize the multivariate longitudinal out-
comes of mixed types, as well as the survival process to make correct predictions
for new subjects. When new measurements are available, predictions can be dy-
namically updated and become more accurate and efficient. A web-based calcula-
tor is developed as a supplemental tool for PD clinicians to monitor their patients’
disease progression. For subjects with high predicted risk of functional disability in
the near future, clinicians may consider more targeted treatment to defer the initi-
ation of levodopa therapy because of its association with motor complications and
notable adverse events [Brooks (2008)]. Although the dynamic prediction frame-
work has utilized only three longitudinal outcomes in the DATATOP study, it can
be broadly applied to similar studies with more longitudinal outcomes.

There are some limitations in our proposed dynamic prediction framework that
we will address in the future study. First, the semiparametric MLLTM submodel
assumes a univariate latent variable (unidimensional assumption), which may be
reasonable for small number of outcomes. However, for large number of longi-
tudinal outcomes, multiple latent variables may be required to fully represent the
true disease severity across different domains impaired by PD. We will refine our
dynamic prediction framework using a multidimensional latent trait model that al-
lows multiple latent variables as in Wang and Luo (2017). Second, Proust-Lima,
Amieva and Jacgmin-Gadda (2013) and Proust-Lima, Dartigues and Jacqmin-
Gadda (2016) proposed a flexible multivariate longitudinal model that can handle
mixed outcomes, including bounded and non-Gaussian continuous outcomes. In
contrast, our model (1) only applied to normally distributed continuous outcomes.
In our future research, we would like to extend the dynamic prediction framework
to accommodate more general continuous outcomes including bounded and non-
Gaussian variables. Third, we have chosen multivariate normal distribution for the
random effects vector because it is flexible in modeling the covariance structure
within and between longitudinal measures of patients and it has meaningful inter-
pretation on correlation. In fact, misspecification of random effects and residuals
has little impact on the parameters that are not associated with the random effects
[Jacgmin-Gadda et al. (2007), McCulloch and Neuhaus (2011), Rizopoulos, Ver-
beke and Molenberghs (2008)]. The impact of misspecification in the proposed
modeling framework warrants further investigation. Alternatively, we will relax
the normality assumption by considering Bayesian nonparametric (BNP) frame-
work based on Dirichlet process mixture [Escobar (1994)].

Equation (2) for ordinal outcome requires the proportional odds assumption.
Statistical tests to evaluate this assumption in the traditional ordinal logistic re-
gression have been criticized for having a tendency to reject the null hypothesis,
when the assumption holds [Harrell (2015)]. Tests of the proportional odds as-
sumption in the longitudinal latent variable setting are not well established, and
the consequence of violating the assumption is unclear and is worth future exam-
ination. Three different functional forms of joint models that allow various asso-
ciation between the longitudinal and event time responses are examined and they
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provide comparable predictions in the DATATOP study. Instead of selecting a final
model in terms of simplicity and easy interpretation, a Bayesian model averag-
ing (BMA) approach to combine joint models with different association structures
[Rizopoulos et al. (2014)] will be investigated in future study. In addition, missed
visits and missing covariates exist in the DATATOP study. In this article, we as-
sume that they are missing at random (MAR). However, the missing data issue
becomes more complicated in prediction model framework because it can impact
both the model inference (missing data in the training dataset) and dynamic predic-
tion process (e.g., the new subject only has measurements of UPDRS and HY, but
not SEADL). How to address this issue in the proposed prediction framework is an
important direction of future research. Moreover, the online calculator is based on
the DATATOP study, which may not represent PD patients at all stages and from
all populations. Nonetheless, the large and carefully studied group of patients pro-
vide an important resource to study the clinical expression of PD. We will continue
to improve the calculator by including more heterogeneous PD patients from dif-
ferent studies.
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SUPPLEMENTARY MATERIAL

Web supplement: Web-based supporting materials (DOIL: 10.1214/17-
AOAS1059SUPP; .pdf). The web-based supporting materials include additional
results and figures discussed in the main text, Stan code for the simulation study
and a screenshot of the online calculator.
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