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In many biomedical settings, assigning every patient the same treatment
may not be optimal due to patient heterogeneity. Individualized treatment
regimes have the potential to dramatically improve clinical outcomes. When
the primary outcome is censored survival time, a main interest is to find op-
timal treatment regimes that maximize the survival probability of patients.
Since the survival curve is a function of time, it is important to balance short-
term and long-term benefit when assigning treatments. In this paper, we pro-
pose a doubly robust approach to estimate optimal treatment regimes that
optimize a user specified function of the survival curve, including the re-
stricted mean survival time and the median survival time. The empirical and
asymptotic properties of the proposed method are investigated. The proposed
method is applied to a data set from an ongoing HIV/AIDS clinical observa-
tional study conducted by the University of North Carolina (UNC) Center of
AIDS Research (CFAR), and shows the proposed methods significantly im-
prove the restricted mean time of the initial treatment duration. Finally, the
proposed methods are extended to multi-stage studies.

1. Introduction. The primary outcome of interest in many clinical studies is
survival time, which can be, for example, how long patients will be alive after
treatment initiation, or how long patients will stay on the current treatment before
switching to other treatment. One big challenge in this setting is that the event of
interest may not be observed for all patients by the end of the study, that is, the
survival times are subject to right censoring.

Traditionally, interest focused on estimating the survival functions under two
treatment options and then evaluating which treatment is better. One commonly
used estimator for the survival function is the Kaplan–Meier estimator [Kaplan and
Meier (1958)], while the Cox proportional hazard model [Cox (1972)] is another
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popular tool for studying effects of covariates on survival. Sometimes, we may
find the estimated survival curves intersect at one or more time points; however,
this does not necessarily indicate that the two treatments are equally efficacious
for every patient. Moreover, it is not uncommon that two different treatments favor
different sub-groups of patients, yet yield similar survival time distributions in the
entire population. For example, Jiang et al. (2016) showed that the zidovudine plus
didanosine treatment and zidovudine plus zalcitabine treatment led to similar sur-
vival curve estimates for HIV infected individuals with CD4 counts between 200
and 500 per milliliter. However, for the sub-group of older HIV infected patients
with age greater than or equal to 34 years, the zidovudine plus didanosine treat-
ment recipients showed slower disease progression compared to the zidovudine
plus zalcitabine treatment. In contrast, for the sub-group of HIV infected patients
with age less than 34 years, the zidovudine plus zalcitabine treatment was associ-
ated with slower disease progression compared to the zidovudine plus didanosine
treatment.

To formalize this idea, we consider individualized treatment regimes. A treat-
ment regime is a deterministic function that maps patient specific data to candidate
treatments. An optimal treatment regimen assigns treatment individually to each
patient in order to maximize some clinical outcome or utility (e.g., maximize the
median survival time). Even if treatments have similar effects at the population
level, we still have the potential to further improve clinical benefit by appropriate
personalization.

Two popular modeling approaches to estimate the individualized treatment
regime are Q-learning and A-learning [Murphy (2003, 2005), Robins (2004),
Watkins and Dayan (1992), Zhao, Kosorok and Zeng (2009)]. When survival time
is the primary endpoint of interest, Chen and Tsiatis (2001) proposed using a Cox
model with treatment-covariate interaction terms to estimate the optimal individu-
alized treatment regime. Tian et al. (2014) proposed a similar approach by fitting a
Cox model with modified covariates. A concern with these approaches is that the
Cox model relies on the proportional hazard assumption. Under this assumption,
the regime that maximizes a short-term outcome would be the same as the regime
that maximizes a long-term outcome. That one regime may be optimal for both
short-term and long-term outcomes may be implausible in many cases. For exam-
ple, coronary bypass surgery is not as favorable as medical therapy in the short
term due to its perioperative mortality, but the advantage of surgery is evident in
the long term [Zucker (1998)]. In this case, the proportional hazard model is no
longer suitable, and thus, the associated optimal regime is questionable.

Another approach might entail finding the optimal regime which maximizes
the survival probability at a particular time point, say three years after treatment.
The t-year survival probability is a commonly used criterion to compare different
treatments. Bai, Tsiatis and O’Brien (2013) proposed a locally efficient estimator
to compare treatment specific t-year survival probabilities. Jiang et al. (2016) pro-
posed a doubly robust method to estimate the optimal regime for maximal t-year
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survival probability. However, one potential problem of using the t-year survival
probability criterion is that the choice of time t can be subjective. Additionally, it
is difficult to balance the short-term benefit and long-term benefit by using a single
value of t .

Alternatively, some function of the entire survival curve may be a better criterion
to measure the treatment effect, due to its more composite nature. One example is
the restricted mean survival time (RMST) [Irwin (1949)], which accumulates in-
formation up to a pre-determined time point and balances the short term effect
and long term effect to some extent. Goldberg and Kosorok (2012) proposed a
Q-learning method for censored data to estimate the dynamic optimal regime that
maximizes the RMST. However, the proposed Q-learning method relies on the as-
sumed model for the survival time. Zhao et al. (2015) developed a doubly robust
method using outcome weighted learning to maximize the RMST. Another infor-
mative measure in survival analysis is the median survival time. To date, there
are no methods for determining the optimal individualized treatment regime that
maximizes the median survival time.

In this article, we propose a doubly robust approach to estimate the opti-
mal treatment regime, which is an extension of the inverse propensity score
weighted (IPSW) and augmented inverse propensity score weighted (AIPSW)
Kaplan–Meier estimators of the t-year survival probability proposed in Jiang et
al. (2016). The proposed methods demonstrate how to estimate the optimal treat-
ment regime which maximizes a user-specified function of the survival curve, such
as the RMST, median survival time, or t-year survival probability. When the user-
specified function is the RMST, the proposed approach differs from Zhao et al.
(2015) in two respects. First, the proposed method directly maximizes the esti-
mated RMST while the inverse probability of censoring weighted (IPCW) out-
come weighted (OW) learning approach of Zhao et al. (2015) does not because
the optimization problem is transformed into a classification problem. Therefore,
for the proposed method it is straightforward to derive the asymptotic distribution
of the estimated RMST under the estimated optimal treatment regimen; it is not
clear how to do this using the IPCW-OW learning approach. Second, the IPSW
Kaplan–Meier estimator proposed in Jiang et al. (2016) is not equivalent to the
IPCW estimator of the regime-specific survival function. Therefore, our proposed
estimator for the regime-specific restricted mean survival time is different from the
IPCW-OW-learning estimator of Zhao et al. (2015).

The rest of the article is organized as follows. Section 2 describes an HIV/AIDS
treatment study which motivates the developed methodology. Section 3 presents
the proposed method. Sections 4 and 5 show simulations and the analysis results
for the HIV/AIDS study, respectively. Section 6 extends the proposed method to
multistage studies, followed by a discussion section. The Supplementary Appendix
includes technical conditions and additional simulation results [Jiang et al. (2017)].
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2. Data. This research is motivated by a data set from an ongoing HIV/AIDS
clinical observational study conducted by the University of North Carolina (UNC)
Center of AIDS Research (CFAR). The UNC CFAR Clinical Cohort was created
in 2000 and includes data from over 4800 HIV infected patients [Howe et al.
(2010)]. Antiretroviral therapy (ART) suppresses circulating levels of HIV RNA,
with most patients treated with modern ART achieving and maintaining unde-
tectable HIV RNA levels for years [Dombrowski et al. (2013)]. Long-term HIV
RNA suppression improves immune function and lowers the risk of adverse clini-
cal complications. A large number of antiretroviral agents are available which can
be categorized into a number of classes based on the type of compound and mode
of action. Until recently, the three most commonly used agents included drugs
from three specific classes: nucleoside reverse transcriptase inhibitors (NRTI),
non-nucleoside reverse transcriptase inhibitors (NNRTI), and protease inhibitors
(PI), which may or may not have been pharmacokinetically enhanced. Modern
ART includes a combination of HIV antiretroviral agents; in general this combi-
nation (or regimen) includes at least three agents from at least two different classes
[Gunthard et al. (2014)]. For an individual patient, the component agents of ART
are changed as needed based on treatment failure, emergence of drug resistance,
and/or issues with tolerability. Maximizing the initial treatment duration, the time
between ART initiation and discontinuation or modification, is critical to optimal
clinical outcomes since shorter initial treatment duration is associated with greater
morbidity and mortality [Willig et al. (2008)]. Therefore, choosing between differ-
ent possible ART regimens for initial treatment is essential to long term outcomes
for HIV infected individuals. In this paper, we consider choosing the initial ART
regimen based on individual patient characteristics in order to maximize expected
initial treatment duration.

In the UNC CFAR Clinical Cohort, ART-naive patients were followed from
the later of January 2000 or ART initiation until ART modification or discon-
tinuation, loss to follow-up or administrative censoring. The study data included
990 HIV-infected patients who were 72% male, 57% black, 28% white, 9% His-
panic, and 6% of other races/ethnicities. The median age at ART initiation was
38 years, 44% were men who have sex with men (MSM) and 7% had a history
of injection drug use (IDU). At ART initiation (baseline), the median CD4 cell
count was 209 cells/mm3 (range 1 to 1422) and the median HIV RNA level was
4.9 log10 copies/mL (range 1.6 to 7.2). The initial ART treatment was chosen by
providers and patients based on clinical indication and included in all cases two
NRTI agents with either an NNRTI or PI.

3. Methodology.

3.1. The general strategy. Assume that a study consists of n independently
and identically distributed observations. The ith observation contains the p-
dimensional covariates Xi ∈ X and the observed treatment assignment Ai ∈ A.
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The assignment of Ai may depend on Xi . The ith observation also contains
T̃i = min(Ti,Ci) and δi = I {Ti ≤ Ci}, where Ti is the survival time and Ci is
the censoring time. An individualized treatment regime g is a function that maps
covariate space X to treatment space A. The objective is to estimate the optimal
treatment regime gopt which maximizes f (S(·)), where f is some pre-specified
function of the survival function S(t) = P(T > t). For example, f (S(·)) = S(t0)

is the t0-year survival probability; f (S(·)) = ∫ L
0 S(t) dt is the restricted mean sur-

vival time up to time L; and f (S(·)) = inf{t : S(t) ≤ 0.5} is the median survival
time.

For simplicity, we consider two treatment options A = {0,1}, though the pro-
posed methods can be easily extended to cases with multiple treatment options.
We are interested in estimating the optimal regime gopt within a class of fea-
sible regimes G, which is parametrized by a finite-dimensional parameter η. As
an example, we may take G = {g : g(x;η) = I (ηT x̃ ≥ 0)}, where η ∈ R

p+1 and
x̃ = (1, xT )T . Regimes of this form recommend treatment 1 if the linear com-
bination of the covariates ηT x̃ is greater than or equal to zero, and recommend
treatment 0 otherwise, given a patient’s covariate x. We denote the survival curve
under regime g(x;η) by S(t;η). Estimation of the optimal regime gopt is equiva-
lent to the estimation of the optimal ηopt. The general idea underlying the proposed
method is to approximate f (S(t;η)) by f (Ŝ(t;η)), where Ŝ(t;η) is a nonpara-
metric estimator (defined below) of S(t;η), and then estimate ηopt by maximizing
f (Ŝ(t;η)). The optimal regime gopt is then estimated by g(x; η̂opt), where η̂opt is
the maximizer of f (Ŝ(t;η)).

Jiang et al. (2016) proposed two propensity score based Kaplan–Meier estima-
tors of the survival curve under any given regime. The inverse propensity score
weighted estimator for the survival curve under regime g(x;η) is

(1) ŜI (v;η) = ∏
s≤v

{
1 −

∑n
i=1 ŵη,i dNi(s)∑n
i=1 ŵη,iYi(s)

}
,

where v > 0 is the time point of interest, Ni(s) = I {T̃i ≤ s, δi = 1} is the counting
process, Yi(s) = I {T̃i ≥ s} is the at risk process, and ŵη,i is an estimate of the
weight wη,i for the ith observation. The weight wη,i is

(2) wη,i = AiI {ηT X̃i ≥ 0} + (1 − Ai)(1 − I {ηT X̃i ≥ 0})
Aiπ(Xi) + (1 − Ai)(1 − π(Xi))

,

where π(Xi) = P(Ai = 1|Xi) is the propensity score for treatment assignment. To
estimate the propensity score, we posit a logistic regression model with respect to
Ai and covariates Xi

(3) logit
(
P(Ai = 1|Xi; θ)

) = θT X̃i,

where X̃i = (1,XT
i )T . Then π(Xi) is estimated by exp(θ̂T X̃i)/{1 + exp(θ̂T X̃i)}

where θ̂ is the maximum likelihood estimator. Estimates of π(Xi) are plugged-in
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to (2) to compute the estimated weights ŵη,i . As long as model (3) is correctly
specified, ŜI (v;η) is consistent and asymptotically normal.

Another estimator for the survival curve under regime g(x;η) is the augmented
inverse propensity score weighted estimator,

ŜA(v;η)

= ∏
s≤v

(
1 −

(
n∑

i=1

[
ŵη,i dNi(s) + (1 − ŵη,i)ŜT

{
s|gη(Xi),Xi

}
(4)

× ŜC(s) d�̂T

{
s|gη(Xi),Xi

}])
/(

n∑
i=1

[
ŵη,iYi(s) + (1 − ŵη,i)ŜT

{
s|gη(Xi),Xi

}
ŜC(s)

]))
,

where ŜT (s|a, x) is an estimator of P(Ti ≤ s|Ai = a,Xi = x), the survival
probability conditional on covariates and received treatment; �̂T (s|a, x) =
− log ŜT (s|a, x) is the estimated cumulative hazard function for T ; and ŜC(s)

is the estimated survival probability for the censoring time. The additional terms
in (4), when compared to (1), contain information from regression models of the
survival time T and the censoring time C. The estimates of the survival function
ŜT {s|gη(Xi),Xi} and the hazard function �̂T {s|gη(Xi),Xi} can be obtained by
fitting the Cox proportional hazard model [Cox (1972)]

(5) �T (u|A,X;β) = �0(u) exp
(
βT (

XT ,A,AXT )T )
,

where �0(u) is the baseline cumulative hazard function and β is a (2p + 1)-
dimensional parameter. Under the assumption of independent censoring, SC(v)

can be consistently estimated by Kaplan–Meier estimator [Kaplan and Meier
(1958)]. The benefit of including the augmented terms is double robustness. As
long as either model (3) or model (5) is correctly specified, ŜA(v;η) is consistent
and asymptotically normal.

Both ŜI (v;η) and ŜA(v;η) have corresponding smoothed versions, which are
denoted as ŜSI(v;η) and ŜSA(v;η), respectively. ŜSI has the same form as ŜI (v;η),
except that the indicator function I (ηT X̃i > 0) is replaced by �(ηT X̃i/h), where
�(s) is the cumulative distribution function of the standard normal distribution
and h is the bandwidth. The same modification is applied to ŜA(v;η) in order to
obtain ŜSA(v;η). In practice, h is set to n−1/3sd(ηT X), where sd(z) is the stan-
dard deviation of z. The smoothed versions ŜSI(v;η) and ŜSA(v;η) have the same
asymptotic properties as the original versions ŜI (v;η) and ŜA(v;η), respectively,
but they tend to have better finite sample performance as demonstrated in Jiang et
al. (2016).

With consistent estimators for the survival curve, we can easily estimate
f (S(t;η)) by f (ŜK(t;η)) under any given regime g(x;η), where K = I,A,SI,
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or SA. The optimizer of f (ŜK(t;η)) with respect to η, denoted by η̂
opt
K , is a natural

estimator for the optimal ηopt. We estimate the optimal regime gopt by g(x; η̂opt
K ).

In subsequent subsections, we shall discuss two important examples.

3.2. Restricted mean survival. One popular scalar summary of the survival
curve is the RMST, in which case the function f is defined as f (S(t;η)) =∫ L

0 S(v;η)dv for some pre-determined time point L. Let ηopt be the maximizer
of f (S(t;η)), such that g(x;ηopt) is the optimal regime. Clearly, the value of ηopt

may depend on the value of L. For simplicity, we suppress such dependence in the
notation. The RMST summarizes information up to time L. The time L may be
chosen based on study specific considerations in order to balance both short-term
and long-term outcomes.

Using the aforementioned strategy, the RMST under regime g(x;η) can be es-
timated by

R̂K(η) =
∫ L

0
ŜK(v;η)dv

(6)

=
n∑

i=0

I (T̃(i) ≤ L)ŜK(T̃(i), η)
[
min{T̃(i+1),L} − T̃(i)

]
,

where T̃(0) = 0, {T̃(i)}ni=1 are the order statistics of {T̃i}ni=1 and K = I,A,SI, or
SA. The optimal regime that maximizes the RMST can be estimated by g(x; η̂opt

K )

where η̂
opt
K is the maximizer of R̂K(η). Note that we have four estimators of the

optimal individualized regimes. Two are based on the inverse propensity score
weighted approach, while the other two are based on the augmented inverse
propensity score weighted approach. Theorem 1 establishes their asymptotic prop-
erties.

THEOREM 1. Under certain regularity conditions (see the Supplementary Ap-
pendix), as n → ∞:

(i) If model (3) is correctly specified, R̂K(η̂
opt
K ) is consistent for R(ηopt) and√

n(R̂K(η̂
opt
K ) − R(ηopt)) →d N(0, σ 2

R,K(ηopt)), for K = I or SI.

(ii) If either the model (3) or the model (5) is correctly specified, R̂K(η̂
opt
K )

is consistent for R(ηopt) and
√

n(R̂K(η̂
opt
K ) − R(ηopt)) →d N(0, σ 2

R,K(ηopt)), for
K = A or SA.

The proof of Theorem 1 relies on R̂K(η) being a linear function of estimates
of the t-year survival probability ŜK(t, η). Therefore, the proofs of the asymp-
totic properties in Theorem 1 utilize those for ŜK(t, η) given in Jiang et al.
(2016). Consistent estimates of the asymptotic variances can also be similarly ob-
tained. Details are presented in the Appendix. Note σ 2

R,I (η
opt) = σ 2

R,SI(η
opt) and



1770 R. JIANG ET AL.

σ 2
R,A(ηopt) = σ 2

R,SA(ηopt), that is, smoothing does not impact the asymptotic dis-
tribution. Nevertheless, smoothing tends to improve the finite sample performance
of the estimators, as demonstrated below in Section 4.

3.3. Median survival time. Another commonly used measure to characterize
the survival curves in clinical studies is the median survival time. Under any regime
g(x;η), the median survival is defined as

(7) ξ(η) = inf
{
t : S(t;η) ≤ 0.5

}
.

Let ηopt denote the maximizer of ξ(η). A natural estimator for ηopt is η̂
opt
K =

arg maxη{ξ̂ (η)}, where ξ̂ (η) = inf{t : ŜK(t;η) ≤ 0.5} and K = I,SI,A, or SA.
We estimate the optimal regime gopt that maximizes the median survival time by
g(x; η̂opt

K ) accordingly. The proposed method can be easily extended to other cases
where qth-quantile of the survival probability, ξ(η) = inf{t : S(t;η) ≤ 1 − q},
is of interest, for some q ∈ (0,1). We let ξ̂K(η) = inf{t : ŜK(t;η) ≤ 1 − q},
η̂

opt
K = arg maxη{ξ̂ (q;η)} and estimate gopt by g(x; η̂opt

K ). As before, we have four
estimators for the optimal regime. Theorem 2 establishes the asymptotic properties
of these estimators.

THEOREM 2. Under certain regularity conditions (see the Supplementary Ap-
pendix), as n → ∞:

(i) If model (3) is correctly specified, ξ̂K(η̂
opt
K ) is consistent for ξ(ηopt) and√

n(ξ̂K(η̂
opt
K ) − ξ(ηopt)) →d N(0, σ 2

ξ,K(ηopt)), for K = I or SI.

(ii) If either the model (3) or the model (5) is correctly specified, ξ̂K(η̂
opt
K ) is

consistent for ξ(ηopt) and
√

n(ξ̂K(η̂
opt
K ) − ξ(ηopt)) →d N(0, σ 2

ξ,K(ηopt)), for K =
A or SA.

The proof of Theorem 2 makes use of the functional delta method and details
are given in the Appendix. Similar to the RMST cases, smoothing does not af-
fect the asymptotic distribution, that is, σ 2

ξ,I (η
opt) = σ 2

ξ,SI(η
opt) and σ 2

ξ,A(ηopt) =
σ 2

ξ,SA(ηopt), but it tends to improve the finite sample performance. To estimate the

asymptotic variances, it can be shown that σ 2
ξ,K(ηopt) = σ 2

K(ξ ;ηopt)/q2(ξ ;ηopt),

where ξ = ξ(ηopt), σ 2
K(ξ ;ηopt) is the asymptotic variance of the estimator

ŜK(ξ, ηopt) for the ξ -year survival probability and q(ξ ;η) = −dS(t, η)/dt |t=ξ .
A consistent estimator of σ 2

ξ,K(ηopt) is presented in the Appendix.

4. Simulation studies. The performance of the proposed methods was in-
vestigated by several simulation studies. In the first set of simulations, for each
individual p = 2 covariates X1 and X2 were independently generated from
uniform(−2,2) distribution. Treatment A, either 1 or 0, was assigned based
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on a Bernoulli distribution, where the probability of assigning treatment 1 was
π(X1,X2) = logit−1(X1 − 0.5X2). The survival time T was generated from a
linear transformation model: h(T ) = −0.5X1 + A(X1 − X2) + ε, where h(s) =
log(es −1)−2 and ε is the error term. We considered two distributions for the error
term, either extreme value distribution or logistic distribution. The censoring time
was generated from uniform(0,C0), where C0 was chosen such that the censoring
rate was controlled at either 15% or 40%. The sample size was set to either 250 or
500. We aimed to estimate the optimal individualized treatment regimes among the
regime class {gη(X1,X2) = I {η0 + η1X1 + η2X2 ≥ 0}, η = (η0, η1, η2)

T }, which
maximize the RMST up to L = 3 or the median survival time. We also added
the constraint ‖η‖ = 1, to ensure the uniqueness of the the optimal regime. It is
straightforward to show ηopt = (0,0.707,−0.707) for all the simulation scenar-
ios discussed above. Under the true optimal regime g(x;ηopt), the RMST is 2.13
and the median survival time is 2.33 when ε is extreme value distributed, and the
RMST is 2.28 and the median survival time is 2.72 when ε is logistic distributed.

We applied the proposed methods with ŜK , where K = I,SI,A, and SA. A lo-
gistic regression model was fit with either intercept only or intercept along with
a linear combination of the X1 and X2, to estimate the treatment assignment
mechanism. The former model is mis-specified, while the latter model is correctly
specified. Model (5) was used to model the survival time T , which is correctly
specified when ε is extreme value distributed and mis-specified when ε is logistic
distributed. The Kaplan–Meier estimator was used to estimate the survival func-
tion of the censoring time C. The optimization was implemented by a genetic
algorithm in the R package rgenoud [Mebane and Sekhon (2011)]. We ran 1000
Monte Carlo replications in each simulation scenario.

Results for the RMST are summarized in Figure 1. The first row of Figure 1
shows the true RMST of each estimated optimal regime compared to the true
RMST of the true optimal regime. The true RMST was approximated by stochas-
tically generating survival times for 5 × 106 individuals from the true survival
model with treatment assignment according to the estimated optimal regimen. The
true RMST was then approximated by the average of the maximum of the sim-
ulated survival times and L = 3. We also compare the treatment recommenda-
tion between the true optimal regime g(x;ηopt) and the estimated optimal regime
g(x; η̂opt) and compute the mis-classification rate (MR), shown in the second row
in Figure 1. Additionally, we show the estimated RMST of the estimated optimal
regime (the third row in Figure 1) and the associated empirical coverage probabil-
ity (CP) of the 95% confidence interval (the fourth row in Figure 1). For brevity,
we only present the results for 15% censoring and sample size 250. Simulation
results for other settings were similar.

When the propensity score model was correctly specified, the I , SI, A, and SA
approaches (the left four box plots of each panel in the first two rows) all provided
good estimates of the true optimal treatment regime, that is, the simulated R(η̂opt)’s
were very close to the upper bounds R(ηopt) and the MRs were very close to zero.



1772 R. JIANG ET AL.

FIG. 1. Simulation results for maximizing the RMST. The left column is for extreme value dis-
tributed error, while the right column is for logistic distributed error. The first row displays box plots
for R(η̂opt), with the horizontal lines indicating the upper bound R(ηopt). The second row displays
box plots for MR, with the horizontal lines indicating zero. The third row displays box plots for
R̂(η̂opt), with the horizontal lines indicating the true value R(ηopt). The fourth row presents the
empirical coverage probability of the confidence interval of R̂K(η̂opt), with the horizontal lines indi-
cating the nominal level of 95%. Within each panel, the left half of the plot is for correctly specified
logistic regression, while right half of the plot is for misspecified logistic regression.
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When the propensity score model was mis-specified but the regression model was
correctly specified (the right four box plots of each panel in the left column), the
I and SI approaches had relatively large biases as expected, while the A and SA
approaches still performed well, demonstrating the double robustness of the A and
SA methods. When both the propensity score model and the regression model were
misspecified (the right four box plots of each panel in the right column), the I , SI,
A, and SA approaches all had some biases, however, the A and SA approaches
had much smaller biases than those of the I and SI approaches. This implies that
the augmented approaches can help to reduce the biases even when the regression
model is mis-specified. In addition, as shown in the box plots given in the third row,
the estimated RMST based on the unsmoothed approaches I and A all have rela-
tively large biases, which in turn lead to empirical CP less than the nominal level.
But the smoothing technique helps to reduce the biases of the estimated RMST,
and thus improves the associated empirical CP. In particular, when the propensity
score model was correctly specified, the SI and SA approaches have empirical CP
close to 95%, while when the propensity score model was mis-specified but the
regression model was correctly specified, the SA approach has correct empirical
CP. The results for the median survival time were given in Figure 2. The findings
for the median survival time are similar to those for the RMST.

For the simulations described above, the optimal treatment regimes obtained
by maximizing the t-year survival probability, restricted mean survival time and
median survival time are all the same. In this setting, the proposed methods are
expected to perform similar to the method of Jiang et al. (2016) for maximizing
the t-year survival probability and the method of Zhao et al. (2015) for maximiz-
ing the RMST. This is demonstrated empirically by the results in Table 1 of the
Supplementary Appendix.

Additional simulations were conducted with p = 10 covariates. Specifically,
the same simulation setting as above was considered, but eight additional “noise”
covariates were generated independent of T , each independently generated from
uniform(−2,2). Here, we only considered the model with the extreme value distri-
bution for the error term. For each setting, we generated 500 data sets with sample
size 250. Results for the RMST and median survival time are given in Tables 2 and
3 of the Supplementary Appendix, respectively. Table entries give the true RMST
and the true median survival times under the estimated optimal treatment regimes,
MRs of the estimated optimal treatment regimes, and the average computation
time (in seconds) per run. These results indicate that the proposed methods work
reasonably well for p = 10. The estimated optimal treatment regimes for p = 10
covariates give slightly smaller values of the RMST and median survival times
with nearly doubled MRs compared with the results for p = 2 covariates. This is
expected because eight noise variables are added but the estimated optimal treat-
ment regimes are not sparse. As a result, the MRs (comparing the estimated opti-
mal regime with the true sparse regime) increased almost one-fold. On the other
hand, the RMST and median survival time values of the estimated regimes only
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FIG. 2. Simulation results for maximizing the median survival time. See Figure 1 for detailed de-
scriptions of the plots.

decreased slightly because the estimators of η are still close to the true value and
the RMST and median survival time values of the estimated regimes are less sen-
sitive to the biases of the estimators of η compared with the MRs. In addition, the
computation time increased 1.5–5.5 times compared with simulations with p = 2
covariates.
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Next, we conducted simulation studies for a setting where the regimes maxi-
mizing the median and restricted mean survival times are different. Specifically,
the survival time T was generated by

T = 12 + 0.5 sin
(
π(X1 − X2)

) + 0.25(1 + X1 + 2X2)
2

+ A(0.5 + 2X1 − X2) + (
1 + 2AX2

1
)
e,

where X1 and X2 were generated independently from uniform(−2,2), A was
generated from Bernoulli distribution with success probability 0.5 and e was
an independent error generated from an exponential distribution with mean 0
and variance 1. Under this data generating mechanism, the true optimal treat-
ment regime for maximizing the median survival time is given by ηopt =
(0.760,0.169,−0.690), which is different from the regimes that maximize the
t-year survival probability and restricted mean survival time. The median survival
time under the optimal treatment regime g(x;ηopt) is 14.935. The censoring time
C was generated from uniform(0,C0), where C0 was chosen to give a censoring
rate of 0.25. We compare the proposed methods, the method of Jiang et al. (2016)
for maximizing the t-year survival probability, the method of Zhao et al. (2015)
for maximizing the RMST, and Cox regression with the linear baseline covari-
ate effects and linear treatment-covariate interaction effects. Results based on 500
simulated data sets each with sample size 250 are summarized in Table 1. Table
entries give the estimates of η, the true median survival times under the estimated
optimal treatment regimens (denoted by V ), and the MRs of the estimated optimal
treatment regimes. Based on the results, compared with other methods, the pro-
posed method for maximizing the estimated median survival time gives estimators
of η closer to its true value, and leads to estimated optimal treatment regimes with
larger median survival times and smaller MRs. Note the treatment effect is rel-
atively small in this simulation setting, such that the advantage of the proposed
method is more pronounced when comparing MR rather than V .

5. Application. In this section, we apply these methods to the UNC CFAR
HIV Clinical Cohort study data. Our objective is to identify the optimal treatment
regime that results in the expected longest initial treatment duration. Particularly,
we aim to find the optimal regime that maximizes the restricted mean initial treat-
ment duration up to day 4000. Day 4000 is chosen so that approximately 99%
of event times are less than the time point of interest. The covariates include age,
gender (male vs. female), race (black, white, Hispanic, or other), MSM (yes, no, or
unknown), IDU (yes, no, or unknown), CD4 count, and viral load (VL). Categori-
cal variables are transformed into dummy variables, resulting in an 11-dimensional
covariate vector X. The NNRTI plus NRTI combination is coded as treatment 1,
while the PI plus NRTI combination as treatment 0. The primary outcome of inter-
est is time to the discontinuation of the initial treatment, which is defined as either
a change in the anchor agent (PI or NNRTI), or discontinuing ART for more than
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TABLE 1
Simulation results comparing the proposed methods for maximizing the median survival time

(denoted by Med) and restricted mean survival time (denoted by RM), the method of Jiang et al.
(2016) (denoted by tyear), the method of Zhao et al. (2015) (denoted by Zhao) and the Cox

regression (denoted by Cox). I and A denote the inverse probability weighted and augmented inverse
probability weighted estimation methods, respectively; SI and SA denote the corresponding

smoothing counterparts. Table entries are averages of estimates of ηj for j = 0,1,2, median
survival times under the estimated optimal treatment regimes (V), and mis-classification rates of the
estimated optimal treatment regimes (MR). The numbers in parenthesis are the standard deviations

of the corresponding estimates

Method η0 η1 η2 V MR

Med I 0.57 (0.32) 0.24 (0.39) −0.54 (0.29) 14.84 (0.08) 0.20 (0.15)
Med SI 0.58 (0.31) 0.27 (0.38) −0.50 (0.32) 14.85 (0.07) 0.21 (0.15)
Med A 0.59 (0.32) 0.23 (0.40) −0.50 (0.31) 14.85 (0.07) 0.20 (0.16)
Med SA 0.58 (0.31) 0.27 (0.39) −0.49 (0.33) 14.85 (0.07) 0.21 (0.16)
RM I 0.24 (0.27) 0.74 (0.16) −0.51 (0.20) 14.79 (0.04) 0.39 (0.08)
RM SI 0.22 (0.24) 0.78 (0.15) −0.48 (0.19) 14.80 (0.03) 0.41 (0.07)
RM A 0.22 (0.25) 0.77 (0.14) −0.50 (0.18) 14.79 (0.04) 0.40 (0.07)
RM SA 0.21 (0.22) 0.79 (0.14) −0.48 (0.18) 14.80 (0.03) 0.41 (0.07)
tyear I 0.29 (0.23) 0.82 (0.12) −0.34 (0.24) 14.77 (0.06) 0.43 (0.06)
tyear SI 0.17 (0.26) 0.86 (0.09) −0.35 (0.18) 14.79 (0.04) 0.46 (0.04)
tyear A 0.24 (0.27) 0.82 (0.13) −0.33 (0.26) 14.76 (0.08) 0.45 (0.06)
tyear SA 0.14 (0.27) 0.86 (0.11) −0.34 (0.22) 14.77 (0.05) 0.46 (0.05)
Zhao I 0.05 (0.55) 0.32 (0.51) −0.26 (0.53) 14.41 (0.51) 0.45 (0.19)
Zhao A −0.08 (0.68) 0.15 (0.47) −0.18 (0.51) 14.22 (0.58) 0.49 (0.23)
Cox 0.66 (0.14) 0.54 (0.15) −0.47 (0.10) 14.81 (0.04) 0.28 (0.06)

30 days. Among all 990 study patients, 35% were observed to have the event of
interest during follow-up, and the remaining patients were censored at their last
known clinical encounter.

To estimate the optimal treatment regime, we applied the I , SI, A, and SA ap-
proaches. We first fit the logistic regression model (3) to estimate the propensity
score. Table 2 shows the estimated coefficients, standard errors, and p-values of
the estimates. As expected patients with lower CD4 cell counts, indicating more
advanced HIV disease progression, were more likely to be prescribed a PI-based
regimen, because the commonly used PI had demonstrated greater CD4 cell count
recovery and less drug resistance associated with virologic failure in comparison to
the commonly used NNRTI during the years of this study. Women were also more
likely to be prescribed a PI-based regimen during these years because of concerns
the primary NNRTI used may have had teratogenic effects [Panel on Antiretroviral
Guidelines for Adults and Adolescents (2016)].

For the augmented estimation methods, we fit the proportional hazards
model (5). Table 3 presents the estimated coefficients in the optimal regimes ob-
tained by the I , SI, A, and SA approaches. Overall, the four estimated optimal



OPTIMAL TREATMENT REGIMES FOR SURVIVAL DATA 1777

TABLE 2
Estimated coefficients (Est.), standard errors (s.e.), and Wald test p-values (p-val) from the fitted

logistic regression model

gender race1 race2 race3 msm1 msm0 idu1 idu0
Int. age male black white Hispanic yes no yes no CD4 VL

Est. −1.36 −0.00 0.53 −0.16 −0.59 0.15 0.11 −0.10 −0.12 0.11 0.23 0.04
s.e. 0.78 0.01 0.20 0.29 0.30 0.36 0.25 0.27 0.32 0.21 0.06 0.04
p-val 0.08 0.67 0.01 0.57 0.05 0.67 0.66 0.71 0.72 0.61 0.00 0.35

treatment regimes give relatively similar treatment allocation rules. Here, we ex-
amine the results using the regime g(x; η̂opt

SA ) obtained by the SA approach. We
estimate the restricted mean survival times under the estimated optimal regimes
and compare these restricted mean survival times with those under the fixed treat-
ment regimes by assigning all patients to one treatment. The restricted mean sur-
vival time is 2776 days under the regime g(η̂

opt
SA ), 2637 days if all the patients were

given treatment 1, and 2339 days if all the patients were given treatment 0. Figure 3
shows the estimated survival curves under the regime g(η̂

opt
SA ), the fixed regimes,

and the observed treatment assignment (i.e., the empirical regime). The estimated
survival curve under the estimated optimal treatment regime g(η̂

opt
SA ) is uniformly

better than under the empirical and fixed regimes, indicating that the estimated
optimal individualized treatment regime may lead to improved clinical outcomes
if used in routine medical care. Additionally, the estimated survival curve if all pa-
tients were assigned to treatment 1 led to better patient outcomes than if all patients
were assigned to treatment 0. Given the antiretroviral agents used in these calen-
dar years these findings are not surprising. The NNRTI used as an anchor agent
for treatment 1 continues to be recommended for initial HIV treatment; however,
with one exception the PIs included in treatment 0 are no longer recommended
as initial treatment [Gunthard et al. (2014)]. Table 4 shows the 95% confidence
intervals of the difference between the restricted mean survival times under the
estimated optimal regimes obtained by the I , A, SI, and SA approaches and the
fixed regimes. The estimated optimal treatment regimes significantly increase the

TABLE 3
Estimated coefficients of optimal treatment regimes by the I , SI, A, and SA methods

int. age gender race1 race2 race3 msm1 msm0 idu1 idu0 CD4 VL

I 0.38 −0.02 −0.26 −0.15 −0.53 −0.58 −0.16 −0.13 −0.23 −0.18 0.11 0.09
SI 0.48 −0.02 −0.12 0.13 −0.35 −0.46 −0.09 −0.10 −0.43 −0.44 0.03 0.09
A 0.25 −0.01 0.54 −0.36 −0.39 −0.17 −0.26 0.10 0.38 0.08 −0.26 0.21
SA 0.48 −0.02 −0.09 0.07 −0.36 −0.47 −0.10 −0.08 −0.43 −0.44 0.03 0.09



1778 R. JIANG ET AL.

FIG. 3. Survival function estimates if all the patients followed g(x; η̂opt
SA ) (solid line), the observed

treatment (dashed line), received treatment 1 (dotted line) or received treatment 0 (dotted dashed
line).

restricted mean survival times of the initial treatment duration compared with the
fixed treatment regimes.

Next, we compare treatment allocation of the observed treatment assignment
and the estimated optimal regime g(x; η̂opt

SA ) in Table 5. Overall only 55% of the
patients received the ART estimated to be the optimal ART by the SA approach.
Moreover, the SA approach estimated that 85% patients who received a PI should
have received an NNRTI, but only 14% of patients who received an NNRTI would
have fared better if they had received a PI-based ART. These findings are supported
by the estimated survival curves given in Figure 3 since the survival function if
the whole population received treatment 1 is uniformly better than if all patients
received treatment 0.

We also compare treatment allocation of the empirical regime and the estimated
optimal regime g(x; η̂opt

SA ) across strata of each demographic and clinical patient
characteristic of interest. Figures 4 and 5 present the results for the categorical and
continuous covariates, respectively. For continuous covariates age, CD4 count, and
VL, we discretized them into four ranges based on quartiles. Consistent with ob-
servations for the entire study population (Figure 3), the estimated optimal regime

TABLE 4
Confidence intervals for the difference of estimated

restricted mean survival times

compared to trt. 1 compared to trt. 0

I (63,286) (232,707)

SI (54,249) (199,694)

A (20,139) (123,631)

SA (47,231) (189,684)
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TABLE 5
Comparison between the observed treatment

assignment and recommended treatment by the regime
g(η̂

opt
SA )

A

0 1

g(η̂
opt
SA ) 0 63 76

1 367 484

overwhelmingly favored initiating an NNRTI-based ART versus a PI-based ART
across all patient characteristics. In nearly all cases, a greater proportion of patients
were allocated to treatment 1 (an NNRTI) by the estimated optimal regime than
were observed to receive treatment 1. During the years of this study, the PI used
most frequently, in comparison to the predominantly used NNRTI, had slightly
lower efficacy in reducing circulating HIV RNA levels, but was associated with
slightly greater CD4 cell count recovery and lower antiretroviral drug resistance
evolution with virologic failure [Panel on Antiretroviral Guidelines for Adults and
Adolescents (2016)]. These known properties of the primary anchor agents avail-
able at the time, in addition to slightly different tolerability profiles of the an-
tiretrovirals under consideration, likely influenced the channeling bias observed in
clinical care and shaped the estimated optimal regime results. For example, this
effect can be observed for CD4 cell count (Figure 5) where it is clear that patients
with lower CD4 were more likely to be prescribed a PI-based ART than those at
higher CD4 cell counts. A further example is age, in general patients at older ages
enter HIV care and start ART at lower CD4 where a PI-based ART may have been
more effective. In general, men entered HIV care, and hence started ART, at lower
CD4 cell counts in this clinical cohort, therefore, as expected the estimated optimal
regime was PI-based in a greater proportion of men than women (Figure 4). On the
other hand a PI-based regime was prescribed to women at a higher proportion than
men. In part, this may be related to the efficacy and tolerability differences in the
agents used, as described above. Additionally, there were clinical concerns that the
primary NNRTI available at the time had teratogenic effects and, therefore, women
of reproductive age may have been steered away from NNRTI use.

6. Extension.

6.1. Framework. In this section, we extend the proposed methods from Sec-
tion 3 to multi-stage studies, where treatment assignment is made at multiple time
points based on patients’ covariate information available at each time point. For
simplicity, we consider a two-stage study, with two treatment options at each stage.
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FIG. 4. Comparison of treatment allocation percentages stratified on each categorical covariates.
The left panel is for the observed assignment while the right panel is for the estimated optimal
treatment regime (denoted by gSA).
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FIG. 5. Comparison of treatment allocation percentages stratified on each continuous covariates
(based on quartiles). The left panel is for the observed assignment while the right panel is for the
estimated optimal treatment regime (denoted by gSA).

Assume treatment A1 is assigned s days after the initial treatment A0. The objec-
tive is still to maximize either the RMST up to time L or the median survival time.

For each patient, baseline covariates X0 are collected at the first visit and the
initial treatment A0 ∈ A0 = {0,1} is assigned based on X0. The follow-up visit is
scheduled at s days after the initial visit. If the patient is still at risk at the second
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visit, additional covariates X1 are collected and the follow-up treatment A1 ∈A1 =
{0,1} is given based on the accumulated information X0, A0 and X1. Thus, the
observed data is {(X0i ,A0i ,X1iI {T̃i > s},A1iI {T̃i > s}, T̃i, δi), i = 1, . . . , n}.

6.2. Methods. We want to find the optimal dynamic regime g = (g0, g1)

which maximizes the restricted mean survival time or median survival time, re-
spectively. As before, we consider regimes of the form

g0(x0;η0) = I
{
ηT

0
(
1, xT

0
) ≥ 0

}
,

g1(x0, x1;η1) = I
{
ηT

1
(
1, xT

0 , g0(x0;η0), x
T
1

) ≥ 0
}
.

Equation (1) is still applicable in the multi-stage studies, if the weight function is
replaced with

w(2) = I (T̃i ≤ s)δi

ŜC(T̃i)
× I {A0i = g0(X0i;η0)}

π̂A0(X0i )

+ I (T̃i > s)

ŜC(s)
× I {A0i = g0(X0i;η0),A1i = g1(X0i ,X1i;η1)}

π̂A0(X0i )π̂A1(X0i ,A0i ,X1i)
,

where π̂A0(X0i ) = π̂0(X0i )A0i + {1 − π̂0(X0i )}(1 − A0i ), π̂A1(X0i ,A0i ,X1i) =
π̂1(X0i ,A0i ,X1i)A1i + {1 − π̂1(X0i ,A0i ,X1i)}(1 − A1i ), and π̂0(X0i ) and
π̂1(X0i ,A0i ,X1i) are the maximum likelihood estimates of the propensity scores
P(A0i = 1|X0i ) and P(A1i = 1|X0i ,A0i ,X1i , T̃i > s), respectively. See Jiang et
al. (2016) for details. Let Ŝ

(2)
I (u, η) denote the resulting estimator of the survival

function S(2)(u, η) under the regime g(x0, x1;η).
We can also apply the kernel smoothing technique to improve finite sam-

ple performance in the multi-stage setting. Specifically, we replace the indica-
tor functions g0(X0i;η0) and g1(X0i ,X1i;η1) in Ŝ

(2)
I (u;η) by �(ηT

0 (1,XT
0i )/h0)

and �(ηT
1 (1,XT

0i , g0(X0i;η0),X
T
1i)/h1), respectively, where h0 and h1 are band-

widths. The resulting smoothed estimator is denoted by Ŝ
(2)
SI (u;η). A natu-

ral estimator of the optimal dynamic treatment regime is given by ĝ
opt,(2)
η =

{g0(X0; η̂opt,(2)
K,0 ), g1(X0,X1; η̂opt,(2)

K,1 )}, where η̂
opt,(2)
K = (η̂

opt,(2)
K,0 , η̂

opt,(2)
K,1 ) maxi-

mizes f (Ŝ
(2)
K (t;η)), k = I or SI, and f is a user-specified function, such as the

RMST or median survival time.
Let R̂

(2)
K (η̂

opt,(2)
K ) and ξ̂

(2)
K (η̂

opt,(2)
K ) denote the estimated RMST and median

survival time under the estimated optimal dynamic treatment regime ĝ
opt,(2)
η , re-

spectively. Jiang et al. (2016) showed that Ŝ
(2)
K (u, η) is a consistent estimator for

S(2)(u, η) no matter whether u ≥ s or u < s. Following the proof in Jiang et al.
(2016), it can be shown that the estimators R̂

(2)
K (η̂

opt,(2)
K ) and ξ̂

(2)
K (η̂

opt,(2)
K ) are con-

sistent and asymptotically normal. Theorem 3 establishes the asymptotic proper-
ties of these estimators.
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THEOREM 3. Under certain regularity conditions (see the Supplementary Ap-
pendix), when model πA0 and πA1 are correctly specified, as n → ∞:

(i) R̂
(2)
K (η̂

opt,(2)
K ) is consistent for R(2)(ηopt,(2)) and

√
n{R̂(2)

K (η̂
opt,(2)
K ) −

R(2)(ηopt,(2))} →d N{0, σ 2
R,K(ηopt,(2))}, for K = I or SI.

(ii) ξ̂
(2)
K (η̂

opt,(2)
K ) is consistent for ξ (2)(ηopt,(2)) and

√
n{ξ̂ (2)

K (η̂
opt,(2)
K ) −

ξ (2)(ηopt,(2))} →d N{0, σ 2
ξ,K(ηopt,(2))}, for K = I or SI.

As before, smoothing does not impact the asymptotic distribution. In addition,
the asymptotic variances of the estimators can be consistently estimated in a sim-
ilar fashion as for the one-stage estimators. We conducted simulation studies to
investigate the finite sample properties of the proposed two-stage estimators. The
simulation settings and results are given in the Supplementary Appendix. Both I

and SI based methods performed well and again smoothing helped improve the
finite sample performance.

7. Discussion. In this paper, we proposed a doubly robust estimation method
for obtaining the optimal treatment regime which maximizes a prespecified func-
tion of the survival function, including the RMST and median survival time as
special cases. The proposed method can be employed to determine optimal in-
dividualized treatment regimes that balance short-term and long-term treatment
effects on survival, thus providing optimal regimens that target clinically mean-
ingful quantities of interest. Extensions to multistage studies were also developed,
broadening the scope of settings where this method can be applied.

There are several possible avenues of future related research. For instance, in
survival analysis it is common for competing risks to be present. In the HIV con-
text, the initial treatment may be discontinued due to several competing reasons.
Thus it would be of interest to extend the proposed method to incorporate com-
peting risks. One approach could entail deriving nonparametric estimators of the
cumulative incidence function associated with a given treatment regime and then
determining the optimal treatment regime which maximizes a pre-specified func-
tion of the cumulative incidence function. Another common occurrence in survival
analysis, especially in HIV studies, is interval censoring wherein the failure time
is known only to occur within some interval. Extensions of the proposed methods
to allow for interval censoring is another possible area of future research. Finally,
similar to the value search method of Jiang et al. (2016), the proposed methods
directly maximize the estimated RMST or median survival time using a genetic
algorithm. A computational limitation of such algorithms is the inability to handle
high-dimensional covariates. Thus extensions of the proposed method to allow for
high-dimensional covariates could also be considered.
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APPENDIX

Proof of Theorem 1. As shown in Jiang et al. (2016), for any time point t < τ ,
ŜK(t; η̂opt

K ) is consistent for S(t;ηopt) and

√
n
{
ŜK

(
t; η̂opt

K

) − S
(
t;ηopt)} = 1√

n

n∑
i=1

ζi,K

(
t;ηopt, α∗) + op(1),

where ζi,K(t;η,α∗) is the ith influence function for ŜK(t;η, α̂) and α∗ includes
all parameters in the treatment assignment model and/or the regression model. For
any pre-determined time point L, the RMST up to L is a continuous function of
S(t;η). By applying the continuous mapping theorem, R̂K(η̂opt) is consistent for
R(ηopt).

By applying the delta method, we have

√
n
{
R̂K

(
η̂

opt
K , α̂

) − R
(
ηopt)} = 1√

n

n∑
i=1

ρi,K

(
ηopt, α∗) + op(1)

where

ρi,K

(
ηopt, α∗) = −

∫ L

0
S
(
t;ηopt)ζi,K

(
t;ηopt, α∗)

dt.

Thus, R̂K(η̂
opt
K , α̂) is asymptotic normal with variance σ 2

R,K(ηopt) = E[{ρi,K(ηopt,

α∗)}2], which can be consistently estimated by

σ̂ 2
R,K

(
η̂opt) = n−1

n∑
i=1

[∫ L

0
ŜK

(
t; η̂opt

K

)
ζi,K

(
t; η̂opt

K , α̂
)
dt

]2
.

Proof of Theorem 2. Recall that median survival time is also a continuous
function of survival time. Define φ(S(t;η)) = S−1(0.5;η) = inf{t : S(t;η) ≥ 0.5}.
We have ξ(η) = φ(S(t;η)) and ξ̂K(η̂

opt
K ) = φ(ŜK(t; η̂opt

K )). Applying the continu-
ous mapping theorem, ξ̂K(η̂

opt
K ) can be shown to be consistent for ξ(ηopt).

To derive the limiting distribution of ξ̂K(η̂
opt
K ), we follow the steps in Gill, Kei-

ding and Andersen (1997), Section IV.3.4. When regularity condition A10 holds,
φ is compactly differentiable at S. We have

√
n
{
ξ̂K

(
η̂

opt
K

) − ξ
(
ηopt)} = 1

q(ξ ;ηopt)

√
n
{
ŜK

(
ξ, η̂

opt
K

) − S
(
ξ, ηopt)} + op(1).

Thus,

√
n
{
ξ̂K

(
η̂

opt
K

) − ξ
(
ηopt)} d→N

(
0,

σ 2
K(ξ ;ηopt)

q2(ξ ;ηopt)

)
,
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where σ 2
K(ξ ;ηopt) is the asymptotic variance of the estimator ŜK(ξ, η̂

opt
K ) as de-

rived in Jiang et al. (2016). A consistent estimator of σ 2
ξ,K(ηopt) = σ 2

K(ξ ;ηopt)/

q2(ξ ;ηopt) can be obtained as σ̂ 2
K(ξ̂K(η̂

opt
K ); η̂opt

K )/q̂(ξ̂K(η̂
opt
K ); η̂opt

K ), where

q̂(v;η) = −1

h

∫ ∞
0

ϕ

(
v − u

h

)
dŜK(u;η),

ϕ(x) is the density function for the standard normal distribution and h = sd(T̃i) ∗
n−1/5 is the bandwidth.

Proof of Theorem 3. The proof of Theorem 3 is similar to those of Theorems
1 and 2, and is omitted here.
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SUPPLEMENTARY MATERIAL

Supplement to “Doubly robust estimation of optimal treatment regimes for
survival data—with application to an HIV/AIDS study” (DOI: 10.1214/17-
AOAS1057SUPP; .pdf). It contains regularity conditions referenced in Theorems 1
and 2, and additional simulation results referenced in Sections 4 and 6.
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