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BIOMARKER CHANGE-POINT ESTIMATION WITH RIGHT
CENSORING IN LONGITUDINAL STUDIES1

BY XIAOYING TANG∗, MICHAEL I. MILLER† AND LAURENT YOUNES†

Sun Yat-Sen University∗ and Johns Hopkins University†

We consider in this paper a statistical two-phase regression model in
which the change point of a disease biomarker is measured relative to an-
other point in time, such as the manifestation of the disease, which is sub-
ject to right-censoring (i.e., possibly unobserved over the entire course of the
study). We develop point estimation methods for this model, based on max-
imum likelihood, and bootstrap validation methods. The effectiveness of our
approach is illustrated by numerical simulations, and by the estimation of a
change point for amygdalar atrophy in the context of Alzheimer’s disease,
wherein it is related to the cognitive manifestation of the disease.

1. Introduction. The manifestation of an event, such as the onset of a dis-
ease, is not always immediate and often requires some time for its repercus-
sions to become observable. Slowly progressing diseases, and in particular neuro-
degenerative disorders such as Alzheimer’s disease (AD) which is a focus of the
current paper, fall into this category. The manifestation of such diseases is related
to the onset of cognitive or functional impairment and, at the time when this oc-
curs, the disease may have already had been affecting the brain anatomically and
functionally for a considerable time. Such effects, however, are only observable
through costly and sometimes even invasive medical examinations, which are not
routinely performed on healthy, or apparently healthy populations.

It is however extremely important scientifically and clinically to determine how
the disease evolves and the time when brain change begins, especially when the
disease’s pathology is (currently) irreversible like that of AD. The goal of this
paper is to propose and analyze a statistical model that addresses this issue by
determining a change point, at the population level, at which the evolution of a
given biomarker develops a regime change. Assuming the measurements of these
biomarkers are taken from a dataset including asymptomatic subjects, with a sub-
sequent determination of the disease manifestation made at a later time, we will
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describe the associated estimation procedure and provide numerical experiments
on both simulated and real data.

It is worthy of note that performing such disease-related observations on human
beings is a very challenging process. It requires following subjects regularly over
many years, starting at a time point when they have not manifested any sign of
the disease yet, with an uncertainty over how many subjects will have converted to
diseased status within the time frame of the study. While some genetic or family
history information can be used to increase the likelihood of observing disease
manifestation, the difficulty of this data acquisition task explains why datasets of
this kind are still relatively rare today. One may expect, however, that systematic
patient monitoring and computerized medical recording will lead to more such
datasets emerging in the future.

The real data that we will use in this paper are provided by the BIOCARD
study, which is a longitudinal study of AD in which subjects have been contin-
uously followed for more than 20 years. BIOCARD has, compared to other lon-
gitudinal studies on AD such as ADNI [Mueller et al. (2005)], the distinction of
having only included individuals who had no sign of cognitive impairment at base-
line. The BIOCARD study was initiated in 1995 with the subjects having received
their most recent cognitive assessment in 2012, resulting in about one-fourth of
the group being diagnosed with mild cognitive impairment (MCI) or AD. This
dataset motivates the development of the statistical model and parameter estima-
tion method presented in this paper, and more detailed information about it will be
provided in Section 4.2.

We will describe the basic assumptions of our model and our notation in Sec-
tion 2. Section 3 will describe the parameter estimation procedure. Section 4
will provide experimental results, both on simulated data and on the BIOCARD
dataset.

2. Statistical model and notation. We will let Y denote the dependent
variable, which in our application, will be associated to the measurement of a
biomarker for AD. The value of this variable is assumed to depend on time
(which, in this paper, will always be the subject’s age), disease status, and pos-
sibly other covariates (e.g., gender, intracranial volume, etc.). The general model
assumes that the disease status results in a change point in the evolution of the
biomarker, at a time which is indirectly observable through the induced external
manifestation (e.g., cognitive impairment) which happens after a delay, �, from
the change point time. We will assume that � is a fixed parameter specific to the
biomarker.

Let the random variable U denote the time of disease manifestation itself (and
thus the biomarker’s change point occurs at time U − �). We will refer to U as
the “manifest onset time”. We will assume that it is always finite, in the sense
that everyone in the considered population would eventually develop the dis-
ease if they were to live indefinitely. This manifest onset time is not always ob-
servable, since patients may still be healthy—or have an undetected onset—at
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the end of the study, resulting in right censoring. Some form of left censoring
is also possible, depending on how subjects participating in the study were se-
lected.

We let n denote the total number of subjects involved in the study, each with
their own manifest onset times U1, . . . ,Un. We let T1, . . . , Tn be the ages of the
subjects at the end of the study, which are the right censoring times, so that Uk

is observable only when it is less than the corresponding Tk . A value ykj of the
biomarker is measured for subject k at age tkj , with tk1 ≤ · · · ≤ tkpk

≤ Tk (pk there-
fore denotes the total number of longitudinal observations for subject k). We will
work with a model assuming a linear dependence of Y with respect to age and
onset time, with a rate change at t = U − �, in the form

(1) Y(t) = a + b1t + b2U + c(t − U + �)+ + η + ε(t),

where (x)+ = max(x,0). Here, a, b1, b2, c, and � are parameters, η ∼ N (0, ρ2)

models a time-independent random effect, and ε(t) ∼ N (0, σ 2) is a noise variable
modeling the longitudinal intra-subject variation. In our model, η and all ε(t) are
mutually independent, and all are independent of U . Note that the well-posedness
of the model requires some limits on the values of �; if � � 0, then (t −U +�)+
is almost always zero, and thus c and � become barely identifiable; conversely, if
� � 0, then (t −U +�)+ � t −U +� and the model becomes over-parametrized.
We will return to these issues later.

Assuming n independent realizations of this model, the observations are: ykj =
Y(tkj ), for k = 1, . . . , n and j = 1, . . . pk ; the end-of-study ages, Tk ; and the cen-
sored manifest onset times, Zk = min(Uk, Tk). We will assume that all Tk’s are
deterministic, or equivalently, that they are independent of other variables, and
work conditionally to them. The final piece of the model is the distribution of the
manifest onset time, U . We will use either a Gaussian or an exponentially modified
Gaussian distribution (see Section 3.1).

Our model is therefore a two-phase (or segmented) regression model with right-
censoring on the time variable. Parametric inference and testing for multi-phase
regression were studied in Quandt (1958), Sprent (1961), Hudson (1966), Hinkley
(1969, 1971), Farley and Hinich (1970), Feder (1975), Gombay and Horváth
(1994a, 1994b). Change-point models have also been introduced for survival anal-
ysis and hazard estimation, especially in the context of right censoring [Nguyen,
Rogers and Walker (1984), Pons (2003), Wu, Zhao and Wu (2003), Dupuy (2006),
Li, Qian and Zhang (2013)] [see also Chen and Gupta (2000) and references cited
there].

Note that, even though our data includes right censoring, we are using a linear
regression model rather than a hazard or Cox regression model. The model in (1)
provides the correct “causal” relationship in which the change point U −� triggers
a change of regime in the dependent variable Y .
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3. Parameter estimation.

3.1. Manifest onset time: Prior model. We here describe how the parameters
of the manifest onset time distribution can be estimated from data under various
hypotheses of right and left censoring. We consider it as a prior distribution and,
therefore, assume that it is estimated separately from the other model parameters.
This is justified by the fact that, while it would be possible to estimate the joint
distribution of (Y,U) for any given biomarker, it is generally preferable to work
with a single model of U shared by all biomarker variables Y . Moreover, manifest
onset time information for medical data is usually available for more diverse and
larger datasets than those on which biomarkers are measured, and this information
can naturally be used to estimate their distribution.

In typical studies, one can generally separate the subjects into three groups: the
subjects who converted during the study, that we will denote J0, the subjects who
converted after study end (right censored), denoted J1 and those who entered the
study with the disease (left censored), denoted J2. Some study designs (such as
BIOCARD) focused on incident disease are restricted to disease-free cohorts, thus
eliminating the last group.

Assuming right censoring only (J2 = ∅), and letting as before Tk be the age
at the end of the study, J1 ⊂ {1, . . . , n} is the subset of subject indexes for which
Uk ≥ Tk and J0 = {1, . . . , n} \ J1. Denote by fU(u|θ) the p.d.f. of the variable
U (for a given parameter θ ) and by FU(u|θ) the corresponding c.d.f. The log-
likelihood of the observed data, which is (min(Uk, Tk), k = 1, . . . , n), is

�(θ) = ∑
k∈J0

logfU(uk|θ) + ∑
k∈J1

log
(
1 − FU(Tk|θ)

)
.

For studies in which diseased subjects are not enrolled by design, the likelihood
must be modified to account for this bias, which requires that Uk ≥ tk1 for all k.
Taking the likelihood conditional on this event, we obtain

�(θ) = ∑
k∈J0

logfU(uk|θ) + ∑
k∈J1

log
(
1 − FU(Tk|θ)

)

−
n∑

k=1

log
(
1 − FU(tk1|θ)

)
.

(2)

Finally, if diseased subjects can be included in the study, yielding a non-empty
set J2, the resulting likelihood is

�(θ) = ∑
k∈J0

logfU(uk|θ) + ∑
k∈J1

log
(
1 − FU(Tk)|θ)

+ ∑
k∈J2

logFU(tk1|θ) − ∑
k∈J0∪J1

log
(
1 − FU(tk1|θ)

)
.

(3)
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First, consider the case in which fU is a Gaussian distribution N (m1, σ
2
1 ),

which is probably the simplest choice. In this case, the log-likelihood is

�
(
m1, σ

2
1
) = −|J0|

2
log

(
2πσ 2) − 1

2σ 2

∑
k∈J0

(uk − m2)
2

+ ∑
k∈J1

log
(

1 − 


(
Tk − m1

σ

))
+ ∑

k∈J2

log


(
tk1 − m1

σ

)

− ∑
k∈J0∪J1

log
(

1 − 


(
tk1 − m1

σ

))
(4)

and its gradient can be easily computed.
One may however prefer using a distribution with heavier tails, allowing for

large values of the variable to occasionally occur. Such a behavior may be im-
portant to allow for healthy controls to have a manifest onset time so far in the
future that they do not enter the second phase of the regression model during the
study time. We will present simulations using an exponentially modified Gaussian,
which can be written as U = W + S, where W ∼ N (m1, σ

2
1 ) and S ∼ exp(α) (an

exponential variable with mean α). Its p.d.f. is the convolution of the Gaussian and
exponential densities, and is given by

fU

(
u|m1, σ

2
1 , α

) = 1

α
√

2πσ 2
1

∫ u

−∞
exp

(
−(w − m1)

2

2σ 2
1

− u − w

α

)
dw

= 1

α
exp

(
−u − m1

α
+ σ 2

1

2α2

)



(
u − m1

σ1
− σ1

α

)
,

(5)

where 
 is the cumulative distribution function (c.d.f.) of a standard Gaussian
variable. Similarly, the c.d.f. of U is

FU

(
u|m1, σ

2
1 , α

) = P(U ≤ u)

= 


(
u − m1

σ1

)
− exp

(
−u − m1

α
+ σ 2

1

2α2

)



(
u − m1

σ1
− σ1

α

)
.

These expressions can be plugged into (3), and the gradient of the resulting log-
likelihood with respect to each of the three parameters m1, σ1, and α can also be
computed analytically. Our implementation uses the Matlab optimization toolbox
to compute the maximum likelihood estimators of those three parameters.

This exponentially modified Gaussian model obviously reduces to the Gaussian
one when α = 0, and we used a log-likelihood ratio test in order to assess the
validity of the hypothesis α > 0.

Note that we should in principle have conditioned our prior distribution to take
only positive values. However, the models estimated in our applications are such
that the probability of taking a negative value is negligible (less than 10−10) and
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such a modification was not necessary. If implemented, this modification would
only have affected the case J2 = ∅, since the likelihood for subjects in J0 and J1
is already left-censored by U > tk,1, and would have resulted in the addition of the
term

− ∑
k∈J2

log
(
1 − FU(0|θ)

)

to the log-likelihood in (3).

Illustration. We first provide an application using simulations based on popu-
lation data relative to Alzheimer’s disease. The prevalence of Alzheimer’s disease
over various age groups was published in Hebert et al. (2013). From this source,
prevalence is about 3% in the 65–74 age group, 17.6% in the 75–84 age group
and 30% in the 85–94 age group. Similarly, data in the Alzheimer’s Association
(2015) indicate that prevalence among people above 95 years may be as high as
50%. Based on results such as those provided in Larrieu et al. (2002), one may
add about 5% to these numbers to also include the fraction of population with
mild cognitive impairment, a precursor state to Alzheimer’s. Using this informa-
tion, it is easy to derive a logistic regression model that provides the conditional
probability of disease conditional to age.

We can then use this information combined with census data to simulate a large-
scale sample of population at various ages and their disease status. For such a
sample, which is purely cross-sectional (i.e., does not contain any longitudinal in-
formation), one can estimate an exponentially modified Gaussian distribution with
(using the previous notation) uk = Tk = tk1, J0 = ∅, J1 being the set of healthy
subjects and J2 the set of disease subjects. Doing so, the obtained parameters pro-
vide a Gaussian term with a very large variance (m1 � 95, σ1 � 20) and a small ex-
ponential term (α � 0.1) which is not significant (implying that a Gaussian model
can be used). The values that we used in our experiments were slightly differ-
ent (m1 = 93, σ1 = 14.5), because the BIOCARD dataset is slightly biased, in the
sense that it enrolled a majority of patients with a family history of AD. We esti-
mated these parameters from another dataset, with enrollment procedures similar
to BIOCARD.

As a further illustration, Tables 1 to 3 provide simulation results for various pa-
rameters of an exponentially modified Gaussian model, with 1000 subjects initially
generated with ages normally distributed with mean 57 and standard deviation 10,
and true model parameters m1, σ1, and α. We assumed both left and right cen-
soring: only healthy subjects were kept at the beginning of the “study”, with a
study length being 15 years (so that T − t1 = 15). We kept α = 2 years and ran
simulations with m1 = 55,65,75 years and σ1 = 1,2,3,5,10, and 15 years.

From these results, we note that α becomes almost impossible to separate from
0 when σ1 increases, inducing biases in the combined estimation of m1 and α.
For smaller values of σ1, the bias is small and the likelihood ratio test has high
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TABLE 1
Parametric estimation of the onset time model averaged over 10,000 simulations. Here, n is the

number of subjects after left censoring (out of 1000), and |J1| is the average number of
right-censored objects (healthy 15 years after enrollment). Numbers between parentheses provide
information on the estimation of a Gaussian model with same mean and variance. The power is

computed as the fraction of likelihood ratios relative to the submodel α = 0 who were
larger than 3.84

True parameters Bias Standard dev.
Power
(in %)m1 σ1 α n |J1| m1 σ1 α m1 σ1 α

55 1 2 384 40 0.008 −0.005 −0.006 0.150 0.122 0.165 100.0
(57) (2.2) (0) (−0.100) (0.228) (0.122) (0.159)

55 2 2 386 42 0.023 −0.001 −0.022 0.265 0.194 0.245 98.7
(57) (2.8) (0) (−0.100) (0.187) (0.170) (0.163)

55 3 2 388 45 0.076 0.004 −0.078 0.474 0.286 0.444 67.2
(57) (3.6) (0) (−0.102) (0.149) (0.241) (0.184)

55 5 2 395 57 0.400 −0.003 −0.392 1.076 0.457 1.049 11.1
(57) (5.4) (0) (−0.094) (0.094) (0.428) (0.274)

55 10 2 417 104 0.090 −0.455 0.108 2.167 1.101 2.162 3.0
(57) (10.2) (0) (−0.124) (0.059) (1.233) (0.695)

55 15 2 434 160 −0.942 −1.291 1.577 3.632 2.335 3.781 3.0
(57) (15.1) (0) (−0.335) (0.112) (2.658) (1.443)

TABLE 2
Same as Table 1, with m1 = 65 years

True parameters Bias Standard dev.
Power
(in %)m1 σ1 α n |J1| m1 σ1 α m1 σ1 α

65 1 2 752 217 0.007 −0.001 −0.007 0.138 0.100 0.157 99.8
(67) (2.2) (0) (−0.034) (−0.016) (0.093) (0.105)

65 2 2 749 220 0.018 −0.000 −0.017 0.218 0.142 0.221 99.6
(67) (2.8) (0) (−0.034) (−0.008) (0.122) (0.109)

65 3 2 745 225 0.071 0.009 −0.069 0.421 0.211 0.416 72.0
(67) (3.6) (0) (−0.033) (−0.003) (0.160) (0.127)

65 5 2 731 240 0.359 0.004 −0.353 1.070 0.362 1.073 11.5
(67) (5.4) (0) (−0.032) (0.004) (0.259) (0.198)

65 10 2 688 287 −0.181 −0.371 0.279 2.289 0.884 2.370 3.0
(67) (10.2) (0) (−0.052) (0.017) (0.646) (0.527)

65 15 2 650 329 −1.569 −1.107 1.980 3.888 1.929 4.310 2.8
(67) (15.1) (0) (−0.129) (0.057) (1.392) (1.122)
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TABLE 3
Same as Table 1, with m1 = 75 years

True parameters Bias Standard dev.
Power
(in %)m1 σ1 α n |J1| m1 σ1 α m1 σ1 α

75 1 2 952 576 0.005 −0.005 −0.005 0.138 0.096 0.178 100.0
(77) (2.2) (0) (−0.033) (−0.201) (0.110) (0.108)

75 2 2 949 576 0.026 −0.002 −0.024 0.285 0.158 0.309 94.8
(77) (2.8) (0) (−0.032) (−0.151) (0.137) (0.112)

75 3 2 945 574 0.120 0.010 −0.120 0.602 0.233 0.623 48.2
(77) (3.6) (0) (−0.034) (−0.112) (0.172) (0.134)

75 5 2 933 569 0.336 −0.023 −0.322 1.252 0.368 1.284 8.0
(77) (5.4) (0) (−0.027) (−0.064) (0.256) (0.203)

75 10 2 883 556 −0.639 −0.423 0.794 2.710 0.864 2.899 2.8
(77) (10.2) (0) (−0.014) (−0.016) (0.511) (0.496)

75 15 2 826 544 −2.353 −1.133 2.857 4.665 1.846 5.326 2.8
(77) (15.1) (0) (−0.037) (0.015) (0.886) (1.026)

power; this is mostly independent of the proportion of left censored data. For large
standard deviation, the null hypothesis is almost always accepted (about 98% of the

time). The estimations of the mean (m1 + α) and standard deviation (
√

σ 2
1 + α2)

remain relatively accurate via the Gaussian submodel, even when the bias and
variance of the full model parameter estimates increase.

3.2. Change point onset model. We now describe the estimation of the pa-
rameters a, b1, b2, c, ρ2, and σ 2 which affect the change-point onset model (1),
assuming that m1, σ 2

1 and α are fixed. The joint p.d.f. of the model variables is∏
k f (yk, uk, ηk) where yk = (yk1, . . . , ykpk

), with

f (yk, uk, ηk) = fU(uk)

(2π)(pk+1)/2ρσpk

× exp

(
− η2

k

2ρ2

− 1

2σ 2

pk∑
j=1

(
ykj − a − b1tkj − b2uk − c(tkj + � − uk)

+ − ηk

)2

)
,

and fU(u) = 1
α

exp(− u
α

+ m1
α

+ σ 2
1

2α2 )
(u−m1
σ1

− σ1
α

), or simply ϕ((u−m1)/σ1)/σ1

if α = 0, where ϕ and 
 are the p.d.f. and c.d.f. of a standard Gaussian variable.
Because we assume that m1, σ1, and α are fixed, we omit the left-censoring nor-
malization which only depends on them and, therefore, will not impact the maxi-
mization of the likelihood of the observation process.
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The observations are either (yk, uk) for k ∈ J0, or just yk and the additional
information that uk ≥ Tk (resp., uk ≤ tk1) for k ∈ J1 (resp., k ∈ J2). The likelihood
of the observed data is therefore given by

L(θ) = ∏
k∈J0

fY,U (yk, uk)
∏
k∈J1

fY (yk|Uk ≥ Tk)
∏
k∈J2

fY (yk|Uk ≤ tk,1),

where fY,U is the marginal density of Y and U in the first product, and the p.d.f.’s
in the next two products are conditional densities of Y given the relevant event
for U . Note that

fY (yk|Uk ≥ Tk) = 1

P(Uk ≥ Tk)

∫ ∞
Tk

fY,U (yk, u) du.

The denominator was computed in the previous section. It depends on only the
fixed distribution of U , and can therefore be treated as a constant. Using the nota-
tion

fY,U (y;T ,S) =
∫ S

T
fY,U (y,u) du,

we therefore need to maximize

L̃(θ) = ∏
k∈J0

fY,U (yk, uk)
∏
k∈J1

fY,U (yk;Tk,+∞)
∏
k∈J2

fY,U (yk;−∞, tk1).

We now provide the expression of the marginal densities in the product. For
simplicity, we will drop the index k in the rest of the computation, therefore letting
y = (y1, . . . , yp) and t = (t1, . . . , tp).

We start with

fY,U (y,u) =
∫ ∞
−∞

f (y,u, η) dη.

Using rj = yj − a − b1tj − b2u − c(tj + � − u)+, we have

fY,U (y,u)

=
∫ +∞
−∞

fU(u)√
2π

p+1
ρσp

× exp

(
−

(
1

2ρ2 + p

2σ 2

)
η2 + 2

2σ 2 η

p∑
j=1

rj − 1

2σ 2

p∑
j=1

r2
j

)
dη

= τpfU(u)√
2π

p
ρσp−1

exp

(
− 1

2σ 2

p∑
j=1

r2
j + τ 2

p

2σ 2

( p∑
j=1

rj

)2)
,

with

τ 2
p = ρ2

σ 2 + pρ2 = 1

p
− σ 2

p(σ 2 + pρ2)
.
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Given this, we have

fY,U (y, T , S) = τp√
2π

p
ρσp−1

×
∫ S

T
fU(u) exp

(
− 1

2σ 2

p∑
j=1

r2
j (u) + τ 2

p

2σ 2

( p∑
j=1

rj (u)

)2)
du,

(6)

in which we have made explicit the dependency of rj in u. The resulting integral
cannot be computed analytically and our implementation is based on numerical
evaluations using Matlab. Let ψ(θ,u) denote the term in the exponential in (6).
The gradient of (6) with respect to the parameters then takes the form

fY,U (y, T , S) = τp√
2π

p
ρσp−1

∫ S

T
∇θψ(θ,u)fU(u) exp

(−ψ(θ,u)
)
du,

which can also be computed numerically. We used Matlab’s gradient-based opti-
mization functions to maximize the log-likelihood. Because of the non-convexity
of the likelihood function, we have found it a necessity to perform several runs
with different initial conditions. Our numerical procedure is summarized below.
When estimating the optimal value of �, we fix an interval [�min,�max] and step
δ for incrementing �. (To ensure that the likelihood is differentiable in �, we have
replaced the positive part function x �→ x+ by a smooth approximation, replacing
x+ with (x + ε)2/(4ε) for x ∈ [−ε, ε] and ε small enough.)

OPTIMIZATION ALGORITHM. Initialization: We first estimate a sub-model
with c = 0, estimating initial values for a, b1, b2, ρ2, and σ 2. To simplify this
initialization step, we impute values for the missing observations of U (using the
conditional expectation of U given U ≥ T in place of right-censored observations),
therefore, reducing the problem to a linear model with random effects.

Preliminary step: Maximize the complete model log-likelihood initializing the
gradient ascent algorithm with the parameters obtained at the previous step com-
pleted with c = 0 and � = �min. Assuming that �min is small enough for
(t − U + �min)

+ to vanish most of the time, the parameters estimated for the
reduced model can be expected to provide a reasonable initial guess.

Step m: If �min + mδ > �max, go to the final step. Otherwise, maximize the
likelihood using as an initial condition the parameters found in the previous itera-
tion, but replacing � with �min + mδ.

Final step: Keep the set of parameters that provided the largest value of the log-
likelihood.

3.3. Validation. Since � is not identifiable when c = 0, it is important to reject
this hypothesis to ensure that the estimated value of the change point is meaningful.
We used a likelihood ratio test, therefore comparing the maximum log-likelihood
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obtained in the previous section to the one obtained in the case of c = 0. The
likelihood in this latter case (which can be computed using the same approach
as for the general model) was also maximized using a gradient-based method,
and in this case, we used the better result from two runs: the first one starts from
the parameters estimated from the imputed model in the initialization step of the
general algorithm. The second starts with a + c�, b1 + c, b2 − c, ρ and σ , where
(a, b1, b2, c,�,ρ,σ ) are the maximum likelihood parameters estimated for the
general model. This choice relies on the fact that for large values of �, ensuring
t −U +� > 0 with large probability, the general model becomes very close to the
linear submodel with the chosen transformation of parameters.

A p-value for the likelihood ratio can be computed based on bootstrap esti-
mates. We used for this purpose a semi-parametric approach in which each boot-
strap sample was computed as follows, given the maximum likelihood parameters
(a, b1, b2, c,�,ρ,σ ).

(i) Impute random values uk for the right-censored U ’s, drawn, for each k,
according to the conditional distribution of U given the observed variables.

(ii) Compute “model residuals”

Rkj = ykj − a − b1tkj − b2uk − c(tkj − uk + �)+.

(iii) Whiten residuals according to the random effect model as follows. For each
k, with pk observations, let τ 2

pk
= σ 2/(σ 2 + pkρ

2). Set

Wkj = Rkj + (τpk
− 1)R̄k,

where R̄k = (Rk1 + · · · + Rkpk
)/pk .

(iv) Stack all Wkj in an N = p1 + · · · + pn vector, and sample with replace-
ments new values W ∗

kj from this vector.
(v) Reconstruct bootstrap residuals using

R∗
kj = W ∗

kj − (
1 − τ−1

pk

)
W̄ ∗

k .

(vi) Define the complete bootstrap sample by

y∗
kj = a + b1tkj + b2uk + c(tkj − uk + �)+ + R∗

kj

and the null bootstrap sample by

y
0,∗
kj = a + b1tkj + b2uk + R∗

kj .

A p-value for the hypothesis c = 0 can then be obtained by computing the frac-
tion of times the likelihood ratio obtained on the true sample is smaller than the
ratios obtained on a large number of null bootstrap samples. When this p-value is
small enough, standard deviations, or confidence intervals on the estimated param-
eters can be deduced from the distribution of the complete bootstrap samples.

Steps (iii) and (v) above are justified as follows (fixing k and letting p = pk).
The covariance matrix between the residuals is S = (sij ,1 ≤ i, j ≤ p) with
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sij = σ 2δij + ρ2. The vector 1p/
√

p (where 1p is p-dimensional and composed
entirely of ones) is an eigenvector with eigenvalue σ 2 + pρ2 and the other p − 1
eigenvectors span the space orthonormal to it, with eigenvalue σ 2. This implies
that, for x ∈ R

p , and letting x̄ = (x1 + · · · + xp)/p = xT 1p/p,

S−1/2x = (
σ 2 + pρ2)−1/2

(x̄)1p + σ−1(
x − (x̄)1p

)

= σ−1
(
x −

(
1 −

√
σ 2

σ 2 + pρ2

)
x̄1p

)

= σ−1(
x − (1 − τp)x̄1p

)
.

Similarly,

S1/2x = (
σ 2 + pρ2)1/2

(x̄)1p + σ
(
x − (x̄)1p

)
= σ

(
x + (

τ−1
p − 1

)
x̄1p

)
,

which justifies steps (iii) and (v), in which we have used the fact that the factors σ

and σ−1 cancel in the overall computation.

3.4. Remarks. 1. Our change-point onset model is similar to the one proposed
in Younes et al. (2014), which was applied to anatomical changes of brain struc-
tures based on the BIOCARD dataset. The approach in Younes et al. (2014), how-
ever, made the simplifying assumption that whenever uk ≥ Tk (and, therefore, the
manifest onset time is not observed), then uk − � was also larger than the last
measurement time, tkpk

. This was justified by the rather large delay between this
last measurement and the last cognitive assessment (about five years), and the be-
lief that � would be less than or comparable to this delay. Some other biomarkers,
however, which were not considered in Younes et al. (2014), appear to be asso-
ciated to large values of � for which these assumptions would not be justified,
motivating the more complex procedure proposed in this paper.

2. Even though we have limited our discussion to the model described in equa-
tion (1), it is easy to generalize it to more complex models, including for example
additional variables (covariates) or higher-order dependency with respect to age.

4. Experiments.

4.1. Simulations. In our first analysis, we conducted simulation experiments
with synthetic data, which allowed us to evaluate the performance of our estimation
algorithm with a known ground truth. We used two sets of parameter values for
a, b1, b2, c, ρ, and σ , and for each of these sets, simulated data with � = 5, 10, 15,
or 20 years (see Table 4). These values were based on two sets of observed values
from real-data experiments. We also simulated samples with c = 0 to estimate a
threshold for the likelihood ratio under the null hypothesis.
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TABLE 4
Simulation results. Each group of results provides the true values of the model parameters, followed

by the 25, 50, and 75 percentiles of the estimated values based on 1000 independent simulations

a b1 b2 c � ρ σ

True values 20.00 1.70 0.01 1.40 5.00 10.00 10.00
25 percentile 9.485 1.619 −0.014 1.169 4.181 9.174 9.873
Median 18.15 1.668 0.047 1.489 5.438 9.539 10.125
75 percentile 21.318 1.722 0.171 1.816 7.011 10.132 10.243

True values 20.00 1.70 0.01 1.40 10.00 10.00 10.00
25 percentile 7.969 1.578 −0.025 1.382 9.002 9.118 9.870
Median 14.59 1.671 0.113 1.524 10.160 9.540 10.100
75 percentile 20.906 1.738 0.207 1.774 11.797 10.120 10.207

True values 20.00 1.70 0.01 1.40 15.00 10.00 10.00
25 percentile 6.784 1.547 −0.124 1.308 12.166 8.741 9.871
Median 16.68 1.693 0.051 1.556 13.717 9.533 10.103
75 percentile 26.955 1.796 0.250 1.772 17.708 10.012 10.200

True values 20.00 1.70 0.01 1.40 20.00 10.00 10.00
25 percentile 4.713 1.471 −0.221 1.205 15.678 8.645 9.911
Median 17.96 1.746 −0.039 1.486 18.070 9.370 10.087
75 percentile 31.384 1.892 0.297 1.729 23.962 9.992 10.218

True values 1.40 −0.10 0.00 −0.02 5.00 0.16 0.12
25 percentile 1.304 −0.101 −0.001 −0.025 3.702 0.150 0.118
Median 1.40 −0.100 0.000 −0.021 4.770 0.155 0.121
75 percentile 1.458 −0.099 0.001 −0.016 6.331 0.161 0.123

True values 1.40 −0.10 0.00 −0.02 10.00 0.16 0.12
25 percentile 1.263 −0.101 −0.001 −0.024 8.747 0.150 0.118
Median 1.39 −0.100 0.000 −0.020 9.847 0.156 0.121
75 percentile 1.433 −0.099 0.002 −0.018 10.750 0.162 0.123

True values 1.40 −0.10 0.00 −0.02 15.00 0.16 0.12
25 percentile 1.265 −0.101 −0.001 −0.022 12.436 0.149 0.118
Median 1.32 −0.100 0.001 −0.020 14.273 0.153 0.121
75 percentile 1.420 −0.098 0.003 −0.017 17.222 0.161 0.123

True values 1.40 −0.10 0.00 −0.02 20.00 0.16 0.12
25 percentile 1.143 −0.103 −0.002 −0.022 16.107 0.145 0.119
Median 1.33 −0.101 0.002 −0.020 20.438 0.150 0.122
75 percentile 1.481 −0.097 0.005 −0.017 22.806 0.157 0.123

Our simulations try to follow a subject recruitment process. We started with 300
“subjects”, with age at the beginning of the study (tk1) simulated from a Gaussian
distribution with mean 60 and standard deviation 10. The manifest onset time (uk)
was sampled according to an exponentially modified Gaussian distribution with
m1 = 73, σ1 = 17, and α = 2. Subjects that did not satisfy the right censoring con-
dition uk ≥ tk1 were automatically excluded from analysis (the average number of



BIOMARKER CHANGE-POINT ESTIMATION 1751

FIG. 1. Simulated dataset with 206 subjects and 599 total observations represented without right
censoring. Lines represent observed data (one line per subject) while gray triangles are the model
predictions. The true change point is 10 years before onset (represented by vertical lines in the second
chart). The other parameters are those used in the four first simulations in Table 4.

excluded subjects was 67.2). We also assumed that the number of biomarker ob-
servations for each subject followed a uniform distribution over {1, . . . ,5}. The in-
terval between every two consecutive longitudinal measurements was fixed, equal
to 2 years. The length of the entire study was assumed to be 15 years, and thus
Tk = tk1 + 15 for every k. About 64.5% of the selected subjects were right cen-
sored (i.e., had a manifest onset age posterior to the end of the study). An example
of a simulated dataset is illustrated in Figure 1.

For each of these 8 estimation experiments (and for the two simulations made
under the null hypothesis), a total of 1000 independent simulations were per-
formed. Table 4 provides 25, 50, and 75 percentiles of the observed distribution
of the estimated coefficients. The estimated 95 percentile of the log-likelihood dif-
ference under the null hypothesis (c = 0) was found to equal 3.6 in both models.
This allows us to estimate the power of the rejection test in the other cases. The
fraction of simulations for which the log-likelihood difference was larger than this
threshold was 87%, 99.2%, 99.5%, and 99.5% for � = 5, 10, 15, and 20, respec-
tively, under the first parameter set (for which a = 20) and 94%, 99.6%, 99.5%,
and 99.3% for the second parameter set (a = 1.4).

These results indicate a reasonable accuracy in the estimation of the change
point. Small change point values are more accurately estimated. The estimation
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of a also seem to slightly degrade with large change points. The estimation of the
change point’s slope is also quite accurate and the fixed and random effect standard
deviations (ρ and σ ) are consistently well estimated.

4.2. Onset of Alzheimer’s disease. We now provide a few results based on real
data, focusing on biomarkers related to AD. Magnetic resonance imaging (MRI)
measures are an indirect reflection of the neuronal injury that occurs in the brain
as the AD pathophysiological process evolves. The volumetric measurements of
medial temporal lobe structures, such as the hippocampus and the amygdala, have
been shown to be important anatomical hallmarks for AD, exhibiting significant
atrophy in patients with both AD and MCI as compared to their healthy counter-
parts [Jack et al. (1997, 1992)]. Those volumetric measurements have also been
shown to be associated with time to progress from MCI to AD dementia [Atiya
et al. (2003), Kantarci and Jack (2003)]. In addition to volumetric measurements,
shape-based biomarkers have also been found to be sensitive to the pathology of
AD, revealing region-specific heterogeneous atrophy patterns in the hippocampus
and the amygdala [Tang et al. (2014), Miller et al. (2015)]. It has also been demon-
strated that baseline morphometric measures, in terms of both volume and shape,
of the hippocampus and the amygdala in healthy controls were capable of predict-
ing subsequent development of MCI [den Heijer et al. (2006)], with hippocampal
shape differences detected among healthy controls who subsequently developed
cognitive impairment [Csernansky et al. (2005), den Heijer et al. (2006), Kantarci
and Jack (2003), Rusinek et al. (2003), Thambisetty et al. (2010)].

Extracting shape measurements of the structural biomarkers of AD, such as the
hippocampus and the amygdala, from MRI datasets usually requires a complex
processing pipeline before the statistical analysis described in this paper can be
performed. This starts with the extraction of “regions of interest” (ROI) which are
3D volumes or 2D surfaces of specific anatomical structures of the human brain
that are affected by the disease, such as the entorhinal cortex, the hippocampus
or the amygdala in AD [Fischl (2012), Pierson et al. (2011), Tang et al. (2013)].
This segmentation step, even if mostly automated, still requires significant human
intervention for quality control and small manual corrections. The 2D surfaces
contouring the boundary of the segmentations provide the collection of “shapes”
on which the second step, non-rigid alignment, will be performed.

Non-rigid alignment can be interpreted as an operation that places all shapes in
a common “coordinate system” in an infinite-dimensional “shape space”. While
all of this can be mathematically formalized [Miller, Younes and Trouvé (2014,
2015), Younes (2010), Bauer, Bruveris and Michor (2014)], from a computational
point of view, the operation boils down to solving a collection of optimal con-
trol problems, each of which optimizes a deformation process in which an initial
shape (called template) is mapped onto a subject shape, with the template being
optimized at the same time [Ma, Miller and Younes (2010)]. At the end of the
process, each subject shape is represented as a diffeomorphic transformation of a
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FIG. 2. Two views of the template surface for the amygdala. Gray-levels are associated with spec-
tral segmentation labels.

common shape (the template), and the problem is reduced to the study of the result-
ing collection of diffeomorphisms (yielding the term“diffeomorphometry” [Miller,
Younes and Trouvé (2014)]). A variety of mathematically refined descriptors of the
diffeomorphisms can then be analyzed, with the simplest case usually being their
Jacobian determinant indexed at each vertex of the template surface, where the
diffeomorphism is either considered as a 3D transformation (interpreting the Jaco-
bian as a volume ratio), or a 2D transformation between surfaces (interpreting the
Jacobian as a surface area ratio). As a result, shape data are transformed so that
each individual surface is represented as a large collection of variables, a random
field supported by the template surface. In this paper, we take an additional step to
reduce the dimension of the shape variables by averaging these variables over sub-
regions of the template obtained via spectral segmentation [Reuter (2010)]. The
template surface for the amygdala, on which we will focus here, and the computed
subregions are illustrated in Figure 2.

With seven segmented sub-regions, and a separate analysis of the amygdalar
surfaces in both hemispheres, our final real data consist in a collection of four-
teen variables that provide an average amount of atrophy or expansion measured
for each subject relative to the template. The dataset we used included 292 sub-
jects among which 70 were diagnosed as MCI before the end of the study (right-
censoring therefore applying to 222 subjects).

Based on the discussion made at the end of Section 3.1, we used a Gaussian
prior with m1 = 93 and σ1 = 14.5. We applied the change-point model separately
to each surface, obtaining in this way fourteen regional estimates. Figure 3 pro-
vides likelihood plots (maximum log-likelihood as a function of � for the first
four regions on the left hemisphere). We used 1000 bootstrap replicates to estimate
the 25th and 75th percentiles of the estimators’ distribution, and 1000 additional
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FIG. 3. Likelihood profiles (maximum log-likelihood with fixed � as a function of �) for the first
four regions on the left amygdala (from left to right and top to bottom). Note that the change point
model for the fourth region is not significant, with a likelihood exhibiting a smaller spread in value.
These plots also illustrate the non-concavity of the likelihood function.

replicates to estimate p-values for testing the null hypothesis of no change point.
These results are summarized in Table 5. Note that the p-values we tabulate in this
table were computed separately for each variable, and were therefore not corrected
for multiple comparisons. Subregions 4 and 5 (p-values: 0.088, 0.130) on the left
amygdala and subregions 1, 2, 4, 5, and 6 (p-values: 0.231, 0.078, 0.240, 0.127,
0.182) on the right amygdala were not significant and are not reported in this table.
Figures 4, 5, and 6 illustrate the results on regions 1, 2, and 3 of the left amygdala
by plotting the biomarker values and the model predictions as functions of age and
of years before onset. Figure 7 provides a visual representation of the estimated
change point results for each subregion of the bilateral amygdalas.

For regions on which p-values were not significant, we also tested the hypoth-
esis b2 = 0 within the submodel c = � = 0, in order to evaluate the significance
of the onset time U on a linear model without change point. None of these tests
showed significance.
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TABLE 5
Results of change point estimation for the amygdala, based on the BIOCARD dataset. Each group
of results provides the estimated values of the model parameters, followed by the median absolute

deviation (MAD). Only results with uncorrected p-value p < 0.05 are provided

a b1 b2 c � ρ σ

Region 1 (left), p = 0.002
Estimated value 0.004 0.000 −0.001 −0.007 11.052 0.067 0.064
MAD 0.054 0.000 0.001 0.002 2.109 0.003 0.002

Region 2 (left), p = 0.002
Estimated value 0.086 0.000 −0.002 −0.010 8.394 0.079 0.081
MAD 0.057 0.000 0.000 0.002 1.670 0.004 0.002

Region 3 (left), p = 0.001
Estimated value 0.051 0.000 −0.001 −0.011 9.723 0.071 0.070
MAD 0.056 0.000 0.000 0.002 1.408 0.004 0.002

Region 7 (left), p = 0.006
Estimated value 0.044 0.000 −0.001 −0.009 9.225 0.084 0.085
MAD 0.063 0.000 0.001 0.002 2.120 0.004 0.002

Region 2 (right), p = 0.021
Estimated value 0.079 −0.000 −0.001 −0.007 11.199 0.079 0.084
MAD 0.071 0.000 0.001 0.002 3.032 0.004 0.003

Region 3 (right), p = 0.012
Estimated value −0.019 0.000 −0.001 −0.011 5.469 0.066 0.077
MAD 0.047 0.000 0.000 0.003 1.234 0.004 0.003

Region 5 (right), p = 0.036
Estimated value 0.176 −0.001 −0.001 −0.007 11.348 0.093 0.091
MAD 0.088 0.000 0.001 0.002 4.027 0.005 0.003

Region 7 (right), p = 0.044
Estimated value 0.103 0.000 −0.001 −0.006 10.834 0.078 0.083
MAD 0.067 0.000 0.001 0.002 3.260 0.004 0.002

The amygdala is suggested to play a major role in enhancing the explicit mem-
ory related to emotional stimuli, by modulating the consolidation of memory
[Hamann (2001)] which is greatly affected by the pathology of AD. Studies have
reported amygdalar abnormalities induced by AD, such as loss of neurons as mea-
sured in neuropathological analyses [Tsuchiya and Kosaka (1990), Scott, DeKosky
and Scheff (1991), Scott et al. (1992)]; loss of volume measured from MRI
[den Heijer et al. (2006), Poulin et al. (2011)]; local atrophy based on shape analy-
sis on MRI [Cavedo et al. (2011), Miller et al. (2015)]. Our observations of amyg-
dalar shape atrophy (see Figure 7 and Table 5) are keeping in line with previous
findings. In addition, results from our method revealed an accelerated amygdalar
atrophy rate induced by AD relative to normal aging. This finding is also con-
sistent with those reported in longitudinal studies of AD focusing on amygdalar
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FIG. 4. Shape biomarker for the left amygdala (region 1) plotted as a function of age (up) and as
a function of years before onset (down). Lines represent observed data (one line per subject) while
gray circles and triangle are the model predictions, respectively, for right-censored (controls) and
diseased subjects. On the second chart, the time before onset for right-censored subjects (circles)
is replaced by its posterior mean. The distance between the two vertical lines in this chart in the
estimated change-point time before onset.

shape [Tang et al. (2015)]. The localization of subregions found to be significantly
affected by AD in our experiment is also roughly consistent with previous lon-
gitudinal results obtained from high-field subregion segmentations [Miller et al.
(2015), Tang et al. (2015)], even though variation may occur due to the limited
resolution of our MRI data. As shown in Table 5, mainly the amygdalar subre-
gions 2, 3, and 7 were identified, which roughly corresponds to the basolateral
and basomedial subregions of the amygdala, the core subregions of the amygdala
as defined according to functional characteristics Price (2003), Sheline, Gado and
Price (1998). With that being said, none of these previous research work has ever
provided the information that seems to be emerging from our analyses, namely an
acceleration or start of amygdalar atrophy about 10 years before the onset of AD.
Our analysis is the first time, to the best of our knowledge, to have demonstrated
that there are subregion-dependent amygdalar atrophy onsets ranging from 8 to
11 years before the clinical onset of AD. This provides unique and important in-
formation that furthers our understanding of the pathology of AD, especially its
influence on the amygdalar morphometry.
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FIG. 5. Shape biomarker for the left amygdala (region 2) plotted as a function of age (up) and as
a function of years before onset (down). See Figure 4 for more details.

5. Discussion. We have described in this paper an approach to estimate a
change point for a biomarker relative to the occurrence of an event (manifest
onset), which may be only partially observed. We have described parameter es-
timation procedures for the prior model on the manifest onset time, and for the
two-phase regression model on the biomarkers, with a bootstrap-based model val-
idation scheme.

Our simulation study shows that the learning procedures perform satisfactorily
in the ideal case (correct model class), with parameters akin to those estimated
from some of the real world data we considered later. With roughly 230 obser-
vations, among which about 2/3 were right-censored, change point estimates for
true values of 5, 10, 15, and 20 years showed little or even no bias with the gap
between the 1/4 and 3/4 quantiles being about 1 and 2 years away. Most of the
other coefficients were estimated with very good accuracy, except for the intercept
(the variations of which are exacerbated by the fact that the sample ages were far
away from 0). It is also important for the validation of the real-data study that we
found a rather large power (close to or larger than 90%) for the likelihood-ratio
test of the change point detection.

The bootstrap-estimated variations of the change point estimated from real
shape data were consistent with those observed in the simulations. They indicated
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FIG. 6. Shape biomarker for the left amygdala (region 3) plotted as a function of age (up) and as
a function of years before onset (down). See Figure 4 for more details.

a disease effect around 10 years before the manifest (cognitive) onset. The likeli-
hood profiles computed in Figure 3 illustrate the difficulty of the estimation of the
change point, with a non-concave likelihood exhibiting several local maxima. This
observation, which is typical of change-point estimation problems, is reinforced in
our case by the fact that we are working with a significant amount of right censored
subjects.

On the theoretical side, important problems are raised by the presented ap-
proach, this paper being limited to experimental validations. The consistency of
the maximum-likelihood estimate, and its asymptotic accuracy need to be stud-
ied. A rigorous justification of the bootstrap procedure also needs to be developed.
These issues, which are left open in the present paper, will be the subject of fu-
ture work in our group. Future work will also focus on extensions of the model,
allowing for evolutions that are more complex than a two-phase linear regression:
estimating more than one change point or allowing for non-linear changes in each
of the phases.

The results presented here are valid at the population level. Even though, using
our model, we were able to compute an individual estimator of the time to onset
(as used in Figures 4, 5, and 6), this estimator is very crude and does not provide
a reliable individual prediction. Research in this direction is likely to intensify in
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FIG. 7. Change point estimates mapped on segmented regions in the amygdala (two views of
left-side results, followed by two views of right side). Black areas are not significant

the near future, however, and we can expect that several weak predictors, such as
those derived here for the amygdala, will need to be combined for early diagnosis
of AD.
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