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Patients’ biomarker data are repeatedly measured over time during their
follow-up visits. Statistical models are needed to predict disease progression
on the basis of these longitudinal biomarker data. Such predictions must be
conducted on a real-time basis so that at any time a new biomarker mea-
surement is obtained, the prediction can be updated immediately to reflect
the patient’s latest prognosis and further treatment can be initiated as nec-
essary. This is called dynamic prediction. The challenge is that longitudinal
biomarker values fluctuate over time, and their changing patterns vary greatly
across patients. In this article, we apply functional principal components anal-
ysis (FPCA) to longitudinal biomarker data to extract their features, and use
these features as covariates in a Cox proportional hazards model to conduct
dynamic predictions. Our flexible approach comprehensively characterizes
the trajectory patterns of the longitudinal biomarker data. Simulation stud-
ies demonstrate its robust performance for dynamic prediction under various
scenarios. The proposed method is applied to dynamically predict the risk
of disease progression for patients with chronic myeloid leukemia following
their treatments with tyrosine kinase inhibitors. The FPCA method is applied
to their longitudinal measurements of BCR-ABL gene expression levels dur-
ing follow-up visits to obtain the changing patterns over time as predictors.

1. Introduction. Precision medicine has been cast as the future of medical
care, which has increased interest in prognostic models for many diseases. Ex-
amples of such models available in the literature include prognostic models for
various types of cancer, such as liver cancer, prostate cancer, and leukemia. How-
ever, the majority of prognostic models in the literature provide risk predictions
using only a small portion of the recorded information. Patient outcomes are typ-
ically measured repeatedly over time, yet only the last one or two measurements
are used in prognostic models. An advantage of such a simple model is that it can
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be easily applied in everyday clinical practice. However, an important limitation is
that valuable information is discarded, which, if appropriately used, could offer a
better insight into the dynamics of disease progression. In particular, an inherent
characteristic of many medical conditions is their dynamic nature. That is, disease
severity and the rate of disease progression not only differ from patient to patient
but also dynamically change over time for the same patient. It is critical to capture
these changing patterns and use this information to predict patients’ prognoses and
make medical decisions in a real-time fashion. Well-designed statistical methods
and software are needed for such dynamic predictions.

To construct real-time prediction models for time to next failure event using
longitudinal biomarker data, while the current biomarker value is usually an im-
portant predictor, quite often the changing pattern of biomarker values over time
contains more information and thus has higher predictive power. For example,
the transcript level of the gene BCR-ABL is a good indicator of residual disease
for chronic myeloid leukemia (CML) patients [Quintas-Cardama et al. (2014)].
Figure 1 shows that three patients have similar BCR-ABL transcript levels at 20
months, but their changing patterns before that are quite different. The patient
who has always maintained a decreasing pattern may have the best future outcome
(longer time to disease progression). The other patient whose BCR-ABL values
decreased initially but had an increase after 10 months may experience disease
progression soon (worst outcome). The remaining patient has an almost constant
BCR-ABL value over time. His/her outcome might be intermediate between the
above two scenarios. From these hypothetical examples, we can see that it is im-
portant to incorporate biomarker changing patterns into prediction models.

FIG. 1. Three hypothetical examples of changing patterns of BCR-ABL transcript levels over time:
always decreasing, flat, decreasing first, and then bounce back. These patterns may indicate very
different future prognosis, despite similar BCR-ABL levels at the 20th month.
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The traditional survival analysis literature has provided many models for esti-
mating the time to an event of interest. However, many of them incorporate base-
line covariates only [Zheng, Cai and Feng (2006), Uno et al. (2007)], which means
that such models can only be used to predict survival at the baseline. Recent work
has focused on the dynamic prediction of future survival at any time point be-
yond the baseline [Huang et al. (2016)]. For this purpose, jointly modeling longi-
tudinal information and survival data has been broadly used. The joint modelling
approach usually uses a parametric trajectory model with random effects for lon-
gitudinal data, which are used as time-dependent covariates in a Cox proportional
hazards model [Wulfsohn and Tsiatis (1997), Tsiatis and Davidian (2001), Xu and
Zeger (2001), Song, Davidian and Tsiatis (2002), Ibrahim, Chen and Sinha (2004),
Huang and Liu (2007), Liu and Huang (2009), Rizopoulos (2011), Rizopoulos and
Ghosh (2011), Rizopoulos et al. (2014)]. However, the nature of the longitudi-
nal biomarker trajectory differs in each specific clinical setting. Therefore, it is
difficult to identify a satisfactory parametric family to use in modeling longitudi-
nal biomarker data in all situations. Based on this consideration, others have used
segmented mixed effect models [Slate and Turnbull (2000)], change point models
[Pauler and Finkelstein (2002)], and B-splines [Brown, Ibrahim and DeGruttola
(2005)] to characterize longitudinal biomarker trajectories.

Although many nonparametric methods, such as splines and kernel smoothing,
have been applied to models for longitudinal biomarkers, they aim to better fit the
biomarker trajectories over time, and then use the fitted (denoised) biomarker val-
ues to do prediction. In this article, while we can keep these denoised biomarker
values as predictors, we also use a functional principal component analysis (FPCA)
approach to extract the changing patters (features) of each individual’s biomarker
trajectory, and then use these features as additional predictors to improve the pre-
diction. The FPCA is employed to characterize the pattern of random trajectories
of repeatedly measured biomarkers [Besse and Ramsay (1986), Rice and Silver-
man (1991), Silverman (1996), James, Hastie and Sugar (2000), Yao et al. (2003),
Yao, Müller and Wang (2005), Yao and Lee (2006), Hall, Müller and Wang (2006),
Liu and Yang (2009), Berkey and Kent (2009)]. It attempts to identify the dominant
modes of variation in a sample of trajectories around an overall mean trend func-
tion. Under this framework, we construct our dynamic prediction models in two
steps. We first decompose different patterns of biomarker changes over time, and
then use the feature information extracted from this decomposition to make predic-
tions. Simulation studies in Section 4 show that our proposed method has robust
performance, reflected by a larger area under the curve (AUC) of receiver’s operat-
ing characteristics (ROC), and smaller residual mean square errors (RMSE), when
comparing some joint models with misspecified biomarker submodels. When com-
paring correctly specified joint models, our AUCs and RMSEs are close to them.

The rest of this article is organized as follows. In Section 2, we introduce a
chronic myeloid leukemia (CML) dataset that motivated this research. In Sec-
tion 3, we briefly review FPCA for longitudinal biomarkers measured at irregu-
lar time intervals and obtain FPCA scores to characterize the trajectory pattern of
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data observed during the entire span of patient follow-up time. Then, we provide
the dynamic prediction based on the FPCA scores. In Section 4, we introduce the
formulations of joint modeling and describe simulations we performed to compare
our proposed method with some commonly used joint modeling approaches. We
illustrate the application of our technique to the CML dataset in Section 5, and
provide concluding remarks in Section 6.

2. A motivating example. This article is motivated by a study of CML that
focused on the early detection of disease progression [Quintas-Cardama et al.
(2014)]. Up to 95% of patients diagnosed with CML have a BCR-ABL fusion gene.
Fusion genes result from the abnormal joining of DNA from two genes (genes BCR
and ABL in this example) as a result of inversion or translocation. Tyrosine kinase
inhibitors (TKIs) have been used since year 2000 to stop the expression of BCR-
ABL in CML patients. After treatment with TKIs, a large fraction of patients will
achieve some level of good response, defined by improved clinical symptoms and
reduced BCR-ABL expression levels. These patients then take the TKI drugs daily
for life (until they become resistant to the drug), and have regular follow-up visits.
Residual evidence of CML can be represented by the transcript level of BCR-ABL.
The best outcome for patients is to achieve major molecular response (MMR),
which is defined as the BCR-ABL transcript level standardized by the international
scale as less than 0.1%. This value is simply denoted as 0.1, and similarly done
thereafter in this article for all the BCR-ABL values (i.e., the % sign is removed).
Some patients may never achieve MMR, but they are still free of clinical symp-
toms of CML, and do not need any additional treatments. Their disease may re-
main under control for many years with an almost constant low level of BCR-ABL
expression. However, CML may progress with increased levels of BCR-ABL. The
common clinical practice has been to wait until patients show symptoms of disease
progression to start new treatments. However, for many patients, their BCR-ABL
transcript levels increase before clinical symptoms of disease progression appear.
Thus, it will be helpful to use this biomarker to predict the time to disease progres-
sion so that physicians can initiate new treatments early to prevent it.

Imatinib and dasatnib are first and second-generation TKIs. The study under
consideration was a randomized trial that used second-line TKI therapy to treat
670 patients with CML in a dose optimization phase and compared different dose
schedules of dasatinib in patients with chronic phase CML, who had become re-
sistant to imatinib therapy. A 6-year update of this study showed similar efficacy
results across the 4 dose schedules tested. In this article, we do not consider the
comparison between the 4 dose schedules, but focus on the dynamic prediction
of disease progression using longitudinal BCR-ABL transcript levels. All patients
were followed every 3 months in the first year, every 6 months in the second year,
and annually thereafter. The transcript levels of BCR-ABL were measured by a
polymerase chain reaction during these follow-up visits. For illustration purposes,
Figure 2 shows the BCR-ABL trajectories for 50 randomly selected patients. These
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FIG. 2. Plots of BCR-ABL trajectories for 50 randomly selected subjects.

trajectories have changing patterns over time, which may be important predictors
for time to disease progression. Moreover, due to the bumpy shapes of the BCR-
ABL trajectories, these changing patterns may not be easily characterized by some
simple summary statistics, such as changing slopes calculated from the raw data
over a specific time interval. This motivates us to use a more systematic approach,
namely, a functional principal component analysis approach to extract “features”
from individual biomarker trajectories, and then use these “features” to make pre-
dictions of the time to disease progression.

3. Method. In Section 3.1, we decompose the biomarker trajectories into
some “feature” functions, which we then use in Section 3.2 to predict the time
to disease progression, the event of interest.

3.1. Functional principal component analysis (FPCA). FPCA has emerged
as a powerful approach for modeling noisy and irregularly measured longitudinal
data. Similar to the way in which principal component analysis extracts features
from multivariate random vectors, FPCA extracts features from random functional
data observed over time. Here, we model the n individuals’ biomarker trajectories
as independent realizations from a square integrable stochastic process L2[0,U ]
on time interval [0,U ], where U is the maximum follow-up time.

For subject i = 1,2, . . . , n, let Yij be the observed biomarker at random times
Uij for j = 1, . . . ,mi , where mi is the number of observations from the ith subject.
Denote by Zi(t) the biomarker trajectory of subject i that is free of measurement
errors. Zi(t) are often not directly observable, but have to be reconstructed from
noisy observations. We write this formula as

(3.1) Yij = Zi(Uij ) + εij , Uij ∈ [0,U ],
where εij are independent measurement error terms with E(εij ) = 0 and
Var(εij ) = σ 2. Here, Zi , Uij , and εij are mutually independent. The observation
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time points Uij can be either the same across individuals (regular time intervals)
or differently and irregularly spaced for each individual.

Let Zi(t), i = 1, . . . , n be n independent realizations of the same square-
integrable stochastic process Z(t), which has the mean function E[Zi(u)|Ti ≥
u] = μ(u) and covariance function E[{Zi(u) − μ(u)} × {Zi(v) − μ(v)}|Ti ≥
u, v] = G(u,v), for u, v ∈ [0,U ], where Ti is the survival time for subject i. Here,
G(u,v) is symmetric about u and v, nonnegative definite. According to Mercer’s
theorem [Leng and Müller (2006)], there exists a square integrable orthonormal
basis {ρk(u),0 ≤ u ≤ U,k = 1, . . . ,∞} (eigenfunctions) and {λk, k = 1, . . . ,∞}
(eigenvalues) such that

(3.2) G(u,v) =
∞∑

k=1

λkρk(u)ρk(v),

where ρk(v) is the orthonormal eigenfunction in L2[0,U ] corresponding to the
eigenvalue λk for λ1 ≥ λ2 ≥ · · · > 0. This decomposition provides a basic tool
to describe the distribution of the random trajectories Zi . We use the Karhunen-
Loeve decomposition [Yao, Müller and Wang (2005)], which represents the mean
of a random curve Zi(t) (biomarker trajectory for subject i), as

(3.3) Zi(u) = μ(u) +
∞∑

k=1

γikρk(u), i = 1, . . . , n,

where γik = ∫ U
0 {Zi(t) − μ(t)}ρk(t) dt is the kth FPCA score of random trajec-

tory Zi(t), 0 ≤ t ≤ U . Since ρk(t) and ρj (t), 0 ≤ t ≤ U are orthogonal for j �= k,
the random variables γik , 1 ≤ k < ∞ are not correlated with each other, while
E(γik) = 0 and Var(γik) = λk . A good approximation of the equation (3.3) usually
can be achieved by using only the first few components of the above decomposi-
tion. That is to say,

(3.4) Zi(u) ≈ μ(u) +
K∑

k=1

γikρk(u), i = 1, . . . , n.

The choice of K can be based on the fraction of variance as explained by Yao,
Müller and Wang (2005) or some information criterion, which we introduce later.

The value of γik measures the similarity between Zi(t) − μ(t), the deviation of
individual curve Zi(t) from the population mean, and the kth eigenfunction ρk(u).
The above FPCA framework for functional data is a flexible method for capturing
the trajectories of longitudinal biomarker data. It is analogous to the representation
of random vectors in multivariate analysis by principal components, in which a
random vector can be represented as a linear combination of the orthonormal basis
defined by the eigenvectors of its covariance matrix.

We use the principal analysis by conditional estimation (PACE) algorithm [Yao,
Müller and Wang (2005)] to estimate the mean function μ(u), covariance function
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G(u,v), eigenfunction ρk(t), and FPCA scores γik from the entire set of observed
data {Yij , i = 1, . . . , n, j = 1, . . . ,mi}. The PACE method has been shown to be
versatile and powerful when applied to sparse and irregularly measured longitu-
dinal data contaminated with measurement errors. Briefly, the PACE method car-
ries out FPCA as follows using the data {(Uij , Yij ), i = 1, . . . , n, j = 1, . . . ,mi}.
First, we estimate μ̂(u) of the mean function μ(u), which is obtained by a one-
dimensional kernel smoother, such as a local linear smoother. Second, the estimate
covariance Ĝ(u, v), given u, v ∈ [0,U ], is obtained by a two-dimensional kernel
smoother with all pairwise products {Yij − μ̂(tij )}{Yil − μ̂(til)} for j �= l as the
response and (tij , til) as the predictors. Details about how smoothing parameters
were chosen can be found in Yao, Müller and Wang (2005) and Dai et al. (2016).
The smoothing techniques in these two steps are conducted over all the subjects
who are still at-risk at time u. Third, the estimates of eigenfunctions and eigenval-
ues correspond to the solution ρ̂k , λ̂k of the equation

(3.5)
∫
U

Ĝ(u, v)ρ̂k(u) du = λ̂kρ̂k(v), k ≥ 1,

where the ρ̂k are subject to
∫
U ρ̂2

k (u) du = 1 and
∫
U ρ̂k(u)ρ̂l(u) du = 0 for l �= k.

Based on the above results, we can estimate γik = ∫
(Zi(t) − μ(t))ρk dt by in-

tegration. Yao, Müller and Wang (2005) provides an alternative method to avoid
numerical integration. Their PACE method takes measurement errors and sparse
measurements into account by assuming γik and εij to be mutually indepen-
dent and predicting the random effects γik based on its conditional expectation:
γ̃ik = E(γik|Yi). Predictions for γik are then obtained by plugging in estimates
of the parameters from the entire dataset, borrowing information from all sub-
jects. Specifically, let Yi = (Yi1, . . . , Yimi

)′, μi = (μ(ti1), . . . ,μ(timi
))′, and ρik =

(ρk(ti1), . . . , ρk(timi
))′. Write Zi = (Zi1, . . . ,Zimi

)′, then let �Yi
= cov(Yi, Yi) =

cov(Zi,Zi) + σ 2Imi
. That is to say, the (j, l) entry of the mi × mi matrix �Yi

is
(�Yi

)j,l = G(tij , til) + σ 2δjl with δjl = 1 if j = l, and 0 otherwise. Note that the
diagonal terms (j = l) have an σ 2 term. That is why the above Ĝ(u, v) in (3.5) was
obtained without including those terms {Yij − μ̂(tij )}{Yil − μ̂(til)} with j = l in
the computaion. On the other hand, applying local linear smoother to these terms
with j = l, an estimator V̂ (t) for G(t, t) + σ 2 is obtained. Consequently, σ 2 can
be estimated by

(3.6) σ̂ 2 = 2

U

∫ 3U/4

U/4

{
V̂ (t) − Ĝ(t, t)

}
dt,

where the interval [U
4 , 3U

4 ] is used to mitigate boundary effects. Staniswalis and
Lee (1998) showed in their Theorem 2 that under certain regularity conditions, the
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estimator for σ 2 is consistent. Following the above process, we can obtain

(3.7) γ̂ik = Ê(γik|Yi) = λ̂kρ̂
′
ik�̂

−1
Yi

(Yi − μ̂i).

To choose K , which is the number of eigenfunctions needed to provide a rea-
sonable approximation for the infinite-dimensional process, we may use the cross-
validation score based on the leave-one-out prediction error [Rice and Silverman
(1991)]. Let μ̂(−i) and ρ̂

(−i)
k be the estimated mean and eigenfunctions after re-

moving the data for the ith subject. Then, we choose K so as to minimize the
cross-validation score based on the squared prediction error,

(3.8) CV(K) =
n∑

i=1

mi∑
j=1

{
Yij − Ŷ

(−i)
i (tij )

}2
,

where Ŷ
(−i)
i is the predicted curve for the ith subject, computed after removing the

data for this subject, that is, Ŷ
(−i)
i (t) = μ̂(−i)(t) + ∑K

k=1 γ̂ikρ̂
(−i)
k (t), where γ̂ik is

estimated by (3.7).
Alternatively, we may use an adapted Akaike information criterion (AIC).

A pseudo-Gaussian log-likelihood L̂ can be defined as the sum of the contributions
from all subjects, treating the estimated FPCA scores γ̂ik as normally distributed
with variance σ̂ 2 and independent across both i and k, as below,

(3.9) L̂ =
n∑

i=1

{
−mi

2
log

(
2πσ̂ 2) − 1

2σ̂ 2

mi∑
j=1

(
Yij − ẐK

i (tij )
)2

}
.

Then, let AIC = −L̂+K . It has been showed that this AIC is computationally more
efficient and achieves results that are similar to those obtained by cross-validation
[Yao, Müller and Wang (2005)].

3.2. Survival analysis with longitudinal biomarker data. The FPCA scores
γik can be estimated from the observation {Yi1, . . . , Yi,mi

}. In this section, we
show how to use those FPCA scores in the survival analysis. Assume that the
infinite-dimensional covariate trajectories Zi(t) under consideration are well ap-
proximated by the projection onto the function space spanned by K eigenfunc-
tions. The estimated trajectory Zi(t) for the ith subject, using the first K eigen-
functions, is given by

(3.10) ẐK
i (t) = μ̂(t) +

K∑
k=1

γ̂ikρ̂k(t), t ∈ [0,U ].

The number of eigenfunctions, K , can be chosen by cross-validation based on
the AIC or leave-one-out prediction error. Given the estimates μ̂(t) and ρ̂k (k =
1, . . . ,K), the various FPCA scores γ̂ik result in different trajectory patterns.
Therefore, the FPCA scores γ̂ik can be used as covariates in modeling the rela-
tionship between the survival time and the patterns of the trajectories.



DYNAMIC PREDICTION 1657

Let Ti and Ci denote the event and censoring times, respectively, and assume
Ci is independent of biomarker measurements. Rather than observe Ti for all i, we
observe only Vi = min(Ti,Ci) and 
i = I (Ti ≤ Ci). Let Xi be a q-dimensional
vector of the baseline covariates and let Zi(t), t ≥ 0, be the longitudinal biomarker
trajectory for subject i. Our consideration of the baseline covariates for simplicity
does not alter the general insights we highlight in the next section. The following
approach is commonly used for dynamic prediction. For subject i, assume a Cox
proportional hazards model [Cox (1972)] that specifies hi(t), the hazard function
for Ti as

(3.11) hi

(
t |Xi,Zi(t)

) = h0(t) exp
{
θ ′Xi + αZi(t)

}
,

where h0(t) is an arbitrary non-negative function, and θ and α are unknown pa-
rameters.

The above approach uses the biomarker values measured at time t only. It may
use historical biomarker values in some ad hoc way, such as letting Z(t) be the
biomarker value change or changing rate from the previous observation. However,
these approaches may not be sufficient to fully capture the longitudinal biomarker
information. In many situations, the biomarker trajectory features (changing pat-
terns) are more important than the current biomarker value or recent changing
magnitude or slope, in terms of predicting a future event. In the decomposition,
equation (3.3), each ρ̂(u), u ∈ [0,U ] may be viewed as a changing pattern, and
γ̂ik describes how strongly the data from subject i follow this pattern. Our idea is
to use γ̂ik , k = 1, . . . ,K , as predictors. With this preparation, we conduct dynamic
prediction at any time t using the following model:

(3.12) hi(t |Xi, γ̂i) = h0(t) exp
{
θ ′Xi + β ′γ̂i

}
,

where β = (β1, . . . , βK)′ are the regression coefficients for the K estimated FPCA
score vector γ̂i = (γ̂i1, . . . , γ̂iK)′, and θ = (θ̂1, . . . , θ̂q)

′ are the regression coeffi-
cients for the baseline covariates.

In the above, for simplicity, we use the Cox (1972) proportional hazards model
for prediction. However, in practice, it is important to test whether the proportional
hazards assumption holds. A few different approaches have been proposed to test
this assumption. For a categorical covariate, we may plot the estimated cumulative
hazard functions for different levels of this variable, and check whether they are
parallel of each other. For both continuous and categorical covariates, we may add
to the model their interactions with a function of time, such as log(t). If some
of these interactions terms turn out to be statistically significant, the proportional
hazards assumption is violated. In this case, those significant interaction terms
can be added to the model to improve its goodness-of-fit [Cox (1972)]. Lin, Wei
and Ying (1993) proposed to check the Cox model assumption with cumulative
sums of martingale-based residuals. Their method has been implemented in SAS
Proc Phreg (SAS Institute Inc., Cary, NC, USA). Grambsch and Therneau (1994)
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provided a diagnosis test based on weighted residuals, which can be done by the
cox.zph function in R (https://www.r-project.org/). Other approaches include Lin,
Zhang and Davidian (2006), Grant, Chen and May (2014), among others.

3.3. Dynamic individualized predictions. To apply the above dynamic pre-
diction method to an existing dataset, we first obtain estimated FPCA scores
(γ̂i1, . . . , γ̂iK) using the longitudinal biomarker data, and then estimate θ , β ,
h0(t) using the baseline covariates, survival information, and FPCA scores.
Then, for a new subject (not in the dataset) with baseline covariate Xn+1
and biomarker measurements Yn+1 = (Yn+1,1, . . . , Yn+1,mn+1)

′ at time points
Un+1,1, . . . ,Un+1,mn+1 ≤ U , we use the following formula to compute the FPCA
scores for this subject:

(3.13)
γ̂n+1,k = Ê(γn+1,k|Yn+1)

= λ̂kρ̂
′
n+1,k�̂

−1
Yn+1

(Yn+1 − μ̂n+1), k = 1, . . . ,K,

where ρ̂′
n+1,k , �̂Yn+1 and μ̂n+1 are computed similarly as done for ρ̂′

i,k , �̂Yi
and μ̂i ,

1 ≤ i ≤ n, in the preparation of equation (3.7). Then, the prediction for this new
subject can proceed as follows. At any time t after the last biomarker observation,
that is, t ≥ Un+1,mn+1 , the predicted future survival distribution can be written as

(3.14)

Pr(Tn+1 ≥ t + u|Tn+1 > t,Xn+1, γ̂n+1)

=
{
Ŝ0(t + u)

Ŝ0(t)

}exp{θ̂ ′Xn+1+β̂ ′γ̂n+1}
,

where S0(t) = exp{− ∫ t
0 h0(u) du}, and Ŝ0(t) is its Breslow estimator [Breslow

(1972)] resulting from model (3.12). Note this prediction is dynamic, which means
it can be updated at any time, as soon as the subject n + 1 has new biomarker
measurements. This is to simply replace the biomarker vector Yn+1 by its updated
version, and then update equations (3.13) and (3.14) accordingly.

By using FPCA scores, we achieve the following advantages. First, a biomarker
trajectory model is not assumed, which is usually difficult to specify, and a mis-
specified trajectory model may lead to biased predictions. Second, we obtain the
FPCA scores using only the observed biomarker values. There is no need for all
subjects to have biomarker measurements made at the same post-baseline time
point. Third, the proposed method can be used to continuously conduct and update
predictive analyses over time.

4. Simulations. We conducted simulation studies under several scenarios to
compare our proposed method to joint modeling approaches with parametric mod-
els for longitudinal biomarker trajectories, and assessed the advantages and disad-
vantages of these approaches.

https://www.r-project.org/
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4.1. Model specification. Most approaches for jointly modeling time-to-event
and longitudinal data are based on the Cox proportional hazards model with time-
dependent covariates. Focusing on normally distributed longitudinal outcomes, we
use a linear mixed-effects model to generate the subject-specific longitudinal tra-
jectories. Namely, we have

Yi(t) = Zi(t) + εi(t),

εi(t) ∼ N
(
0, σ 2)

,

where Zi(t) denotes the true (unobserved) value of the longitudinal biomarker data
without error at time t , and Yi(t) is a measurement of Zi(t) with error εi(t). Then,
we assume the hazard function of subject i is

(4.1) hi

(
t |Zi(t)

) = h0(t) exp
{
αZi(t)

}
,

where h0(t) = λtλ−1 exp(η), a Weibull baseline hazard function with λ = 2,
η = −5, and the association parameter α = 0.5. For the longitudinal process,
we consider four different scenarios, including linear and nonlinear mixed-effects
models, to capture the variation of biomarkers for an individual subject, as follows.

I: Linear Model Zi(t) = a + bt + bi1 + bi2t,

II: Exponential Model Zi(t) = c exp(at) + bi1 + bi2t,

III: Quadratic Model Zi(t) = a(t − b)2 + c + bi1 + bi2t,

IV: Piecewise Function Model

Zi(t) =

⎧⎪⎪⎨
⎪⎪⎩

Wi exp(−ait) + bi1 + bi2t, t ≤ 2,

di + bi1 + bi2t, 2 < t ≤ 5,

di + ci(t − 5)2 + bi1 + bi2t, t > 5.

In scenario I, a linear longitudinal trajectory is described with a = 1, b = −2. In
scenario II, an exponential trajectory is represented with a = 0.1, c = 3. Similarly,
scenario III uses a quadratic model to generate a nonlinear longitudinal trajectory
with a = 0.2, b = 3, c = 1. Scenario IV defines a piecewise function trajectory,
with Wi ∼ N(3,0.12), ai ∼ N(1,0.12), ci ∼ N(0.3,0.12), di ∼ N(0.3,0.12). All
trajectories considered above use random effect terms bi = (bi1, bi2)

′ ∼ N(0,D),
with D =

(
0.4 0.1
0.1 0.2

)
. For simplicity, we generate longitudinal data on irregular time

points t = 0 and t = j + εij , j = 1,2, . . . ,10 and εij ∼ N(0,0.12) independent
across all i and j . Considering the existence of measurement error, we also set
εi(t) ∼ N(0,0.62), independent of each other across i and t . We simulated the
censoring times from a uniform distribution in (0, tmax), with tmax set to result in
about 25% censoring in each scenario. Using the models and parameter settings
above, we generated four scenarios of datasets. For each scenario, we simulated
100 datasets with sample sizes n = 400.
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The next step after generating the data for the four scenarios is to analyze these
datasets with dynamic prediction methods. For each scenario, we considered four
dynamic prediction methods: our proposed method, FPCA, which uses a func-
tional form to capture the variation of the longitudinal biomarker data, and three
approaches that use a joint modeling framework: JML, JME and JMQ. JML uses
a linear model as a fixed-effect term in a longitudinal data submodel; JME uses
an exponential formula to model the main trend of the longitudinal data; and JMQ
employs a quadratic expression to capture the non-monotonic longitudinal trajec-
tories. The R package JM [Rizopoulos (2010)] was used to fit these joint models.

4.2. Measures to assess predictive performance. We use two measures to eval-
uate the predictive performance of our proposed method. The first is the root mean
squared errors (RMSEs) between the predicted survival probabilities and their true
values (which are known in simulation studies). The second is the area under the
receiver’s operating characteristic curve (AUC). To compute AUC, we focus on a
time interval of medical relevance (t, t + 
t). Let πi(t + 
t) represent the sur-
vival probability for subject i at t + 
t . It has been proposed that the AUC can be
computed as follows [Harrell, Lee and Mark (1996), Heagerty and Zheng (2005),
Antolini, Boracchi and Biganzoli (2005)]. For a randomly chosen pair of subjects
{i, j} who have both provided measurements up to time t ,

(4.2)

AUC(t,
t)

= Pr
[
πi(t + 
t |t) < πj (t + 
t |t)|{

T ∗
i ∈ (t, t + 
t]} ∩ {

T ∗
j > t + 
t

}]
.

That is, the AUC can be computed as a concordance measure between predictions
and observed events.

4.3. Analysis and results. In each scenario, we used all observations for 400
subjects to fit the four dynamic predictive models (FPCA, JML, JME, and JMQ).
The JML, JME and JMQ are the true models for scenarios I, II and III respec-
tively. The FPCA approach used the FPCA scores obtained as in (3.7) as covari-
ates to form the hazard function in equation (3.12). The FPCA scores represent the
changing patterns of the longitudinal observations throughout the time intervals.

We used the RMSE to assess calibration. The mean RMSEs and their standard
deviations over all subjects from the 100 datasets are shown in Table 1, for pre-
dictions conducted at t = 4 for survival probability at t + 
t = 6. We used the
AUC described above to similarly assess the discrimination ability of the four ap-
proaches. For each simulated dataset and based on each joint model, we estimated
AUC(t = 2,
t = 6) using all 400 subjects. The means and standard deviations
of AUCs from the 100 simulated datasets are shown in Table 2. From Tables 1
and 2, we observe that for all scenarios, FPCA has robust predictive performance,
in terms of both calibration and discrimination, outperforming joint models with
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TABLE 1
Simulation results: Mean (standard deviation) of the root mean squared prediction errors (RMSEs)
by the four methods (JML, JME, JMQ, FPCA) in each scenario of longitudinal biomarker values as

a function of observation time (Linear, Exponential, Quadratic, Piecewise function models)

RMSE Linear Exponential Quadratic Piecewise

JML 0.09642 0.09831 0.15694 0.14949
(0.00537) (0.01112) (0.00462) (0.01674)

JME 0.09698 0.09656 0.17599 0.15863
(0.00537) (0.01100) (0.01819) (0.02641)

JMQ 0.09677 0.09840 0.15617 0.23850
(0.00526) (0.01115) (0.01840) (0.06086)

FPCA 0.08537 0.07100 0.07218 0.08724
(0.00785) (0.00948) (0.00938) (0.01975)

parametric biomarker models. The JM package had not implemented the computa-
tion for conditional survival probabilities based on Cox proportional hazards mod-
els with time-dependent covariates, so piecewise constant hazard functions were
assumed. This may have affected the performance of joint models for prediction.

FPCA is somewhat time-consuming compared to the other methods. Using a
personal computer (RAM 12 G, CPU 3.4 GHz) for the above simulation study, it
takes about 6 hours using FPCA, while it takes about 1 hour for each of JML, JME
and JMQ.

5. Application. We return to the CML dataset described in Section 2. This
was a study of 670 patients diagnosed with CML and enrolled in a trial to receive

TABLE 2
Simulation results: Mean (standard deviation) of the area under the receiver’s operating

characteristics curve (AUCs) by the four methods (JML, JME, JMQ, FPCA) in each scenario of
longitudinal biomarker values as a function of observation time (Linear, Exponential, Quadratic,

Piecewise function models)

AUC Linear Exponential Quadratic Piecewise

JML 0.6634 0.7052 0.5057 0.5753
(0.09681) (0.11995) (0.05239) (0.05877)

JME 0.6520 0.7070 0.5677 0.5783
(0.09673) (0.11469) (0.05454) (0.05306)

JMQ 0.6542 0.6971 0.5712 0.5409
(0.09874) (0.12827) (0.04857) (0.06424)

FPCA 0.6908 0.8613 0.6182 0.8487
(0.09931) (0.07412) (0.05600) (0.04022)



1662 F. YAN, X. LIN AND X. HUANG

FIG. 3. Kaplna–Meier estimator for time to disease progression.

dasatinib. Only 567 of the patients had BCR-ABL measurements taken both before
and after the dasatinib treatment, and thus were included in our data analysis for
the prediction model. Figure 3 shows their progression-free survival distribution
estimated by the Kaplan–Meier method [Kaplan and Meier (1958)] without using
the information from their longitudinal BCR-ABL measurements. We are interested
in predicting progression-free survival probabilities for patients each time after
they obtain their updated BCR-ABL measurements during follow-up visits.

Although patients are supposed to have follow-up visits at 3, 6, 9, 12, 18 and 24
months, and every year thereafter, in reality, their visiting times are irregular due
to various constraints, and they may miss some of their scheduled visits. There-
fore, patients and physicians would like to have updated predictions at any time
immediately after new BCR-ABL measurements are available, rather than on just
a few discrete time points. In order to handle irregular time intervals and sparse
observation data by the FPCA method introduced in Section 3, we decompose the
BCR-ABL trajectories as

(5.1) Yij = μ(Uij ) +
∞∑

k=1

γikρk(Uij ) + εij , Uij ∈ [0,U ].

The PACE method was employed to estimate the mean function μ(Uij ), eigen-
value λk , and eigenfunction ρk(Uij ). With the resulting estimators μ̂(Uij ), λ̂k ,
ρ̂k(Uij ) available, FPCA scores were obtained by equation (3.7). All calculations
mentioned above can be completed in R with the package “fpca.” The smoothed
mean function of BCR-ABL is plotted in Figure 4. By adjusting grids in R function
fpca.mle(), we obtain smoother eigenfunctions and a mean function. The pattern of
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FIG. 4. Mean function of BCR-ABL with functional principle component analysis.

the mean function demonstrates that most patients experience a sharp decrease at
the beginning of treatment (within about 15 months), followed by a slight decline.
After 60 months, the mean BCR-ABL level increases substantially.

By applying the FPCA techniques, we obtain eigenfunctions, which are ba-
sis functions to form biomarker trajectories, as defined in equations (3.2)–(3.4).
The number of eigenfunctions was chosen using the cross-validation score. Three
eigenfunctions were chosen and shown in the bottom panels of Figure 5. Based on
the mean and eigenfunctions, the fitted biomarker trajectories for three randomly
selected subjects are shown in the top panels of Figure 5.

The FPCA scores represent the changing pattern of BCR-ABL levels over the
whole time interval. We used them to model the hazard function as below:

(5.2) hi(t) = h0(t) exp{β1γ̂i1 + β2γ̂i2 + β3γ̂i3}.
To check the proportional hazards assumption, the interaction terms γi1 log(t),

γi2 log(t), and γi3 log(t) are added to the model in (5.2). The parameter estima-
tion of this extended model shows that γi3 and γi3 log(t) are not significant, with
P-values 0.3984 and 0.3576, respectively, while the remaining four terms are all
significant with P-values less than 0.01. This means the proportional hazards as-
sumption is violated. So, we further improved model (5.2) by including two prin-
cipal components γi1, γi2, and their interaction terms with log(t), as below:

(5.3) hi(t) = h0(t) exp
{
β1γ̂i1 + β2γ̂i2 + β3γ̂i1 log(t) + β4γ̂i2 log(t)

}
.

Based on this model and equation (3.14), dynamic prediction can be performed
to provide future survival rate estimation at time point t . In order to keep consistent
with simulation, here we also used FPCA, JML, JME, and JMQ to fit joint models.
Figure 6 plots the estimated survival curves of a specific patient based on these
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FIG. 5. Predicted trajectories with observed measurements (dots) and three eigenfunctions recov-
ered by this method.

different prediction methods. It can be seen from this figure that the biomarker
trajectory of this patient shows a nonlinear decreasing trend, where linear, expo-
nential, and quadratic longitudinal submodles may not be suitable to fit biomarker
values. This may be the reason why JML, JME, and JMQ show similar suboptimal
performance. In contrast, FPCA uses a nonparametric method to extract dominant
information from longitudinal biomarker, which may give more accurate predic-
tion probabilities than the joint modeling approaches. Certainly these predictions
for a particular subject are presented more for illustration, rather than the compar-
ison of the performance between different methods.

The prediction performances of the aforementioned four methods are compared
below by their time-dependent AUC curves. That is, at a time point t , we conduct
prediction of disease-progression by time t + 
t , with 
t = 20 months. Then, we
compute the AUC of this prediction using the method defined in equation (4.2).
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FIG. 6. Dynamic predictions for one patient by four models. Each panel shows the survival proba-
bilities conditional on the longitudinal measurements up to the time point conducting the predictions.
The predicted survival curves by “JML” and “JMQ” overlap.

This process is repeated for series of different time points t , and the results are plot-
ted in Figure 7. We can see that our proposed FPCA method has the highest AUC
levels over time, outperforming the joint models using linear (JML), quadratic
(JMQ), and exponential (JME) submodels for longitudinal data. This may be ex-
plained by the observation that, in this data set, the biomarkers do not follow a
linear, quadratic, or exponential model. This can be reflected in the mean function
plot in Figure 4. On the other hand, the proposed FPCA method is flexible to fit
biomarker trajectories of all kinds of different shapes. This is a great advantage of
the proposed method since the biomarker trajectories in the real world are always
much more complicated than the commonly used parametric forms.

For the Cox proportional hazards model in (5.2), we attempted to include some
baseline covariates such as patient age, race, and sex. However, these variables do
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FIG. 7. Time-dependent AUC curves for dynamic predictions conducted at time t (the x-axis),
for survival outcome at t + 
t , with 
t = 20 months: Comparison of prediction performance by
four methods of joint modelling longitudinal and survival data, with longitudinal data modelled by
functional principal component analysis (FPCA, solid line), linear model (JML, dot line), quadratic
model (JMQ, dash line) or exponential model (JME, dot–dash line)

not have much predictive power. Prediction at t = 40 months with 
t = 20 months
by a Cox model with only these three variables results a low AUC value of 0.53.
Adding the FPCA terms γ1, γ2, and γ3 improves the AUC to 0.62.

Yao, Müller and Wang (2005) imposed normal distribution assumptions for γik

and εik in deriving the FPC scores Histogram plots for γik and εij showing that
both normal distribution assumption are satisfied (Figure 8).

In summary, accurate prediction of the risks of disease progression can help
physicians and patients make better treatment decisions. For example, they may
decide that at any time when the risk of disease progression in the next year (or
six months) is greater than 20%, then they should start a prevention therapy. Our
proposed method can also help identify patients who are at elevated risks of disease
progression, and remind them to have more frequent follow-up visits.

6. Discussion. The relationship between longitudinal biomarker data and
clinical outcomes is important in precision medicine. Conventional survival anal-
ysis fits the Cox proportional hazards model, using biomarker data measured at a
specific time point as covariates. However, it is often the pattern of covariate values
that predicts a patient’s survival time. The aim of this article is to capture the tra-
jectory pattern of longitudinal biomarker data within the collection period and use
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FIG. 8. Histograms to check normality assumptions.

this summary information as predictors to conduct real-time dynamic prediction
of the time to a specific event.

The simulation studies show that our proposed method can characterize the tra-
jectory patterns of the covariates and have more robust performance than other
joint modeling approaches that use parametric biomarker models. Our proposed
method does not need to specify a model for the longitudinal biomarker, and thus
avoids the bias caused by the misspecification of such a model. It performs well
under various scenarios, demonstrating that it is a versatile and robust approach
for dynamic prediction.

A limitation of all principal component analysis approaches is that they are con-
ducted independent of the outcomes, and thus the resulting order of the principal
components may not indicate the order of their predictive power. With this con-
sideration, it warrants further research to explore alternative approaches, such as
using supervised functional principal component analysis for dynamic prediction.
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We have assumed independence between censoring time and biomarker mea-
surement. This assumption is reasonable for most types of administrative censor-
ing, such as when censoring happen at the end of the study. If many subjects drop
out of the study, then this assumption may not hold. To handle such a situation,
we need to make changes to both the estimation of functional principal compo-
nents and the survival modelling. It is important to consider such scenarios, which
warrant further research.
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