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The assessment of pollution exposure is based on the analysis of a mul-
tivariate time series that include the concentrations of several pollutants as
well as the measurements of multiple atmospheric variables. It typically re-
quires methods of dimensionality reduction that are capable of identifying
potentially dangerous combinations of pollutants and simultaneously seg-
menting exposure periods according to air quality conditions. When the data
are high-dimensional, however, efficient methods of dimensionality reduc-
tion are challenging because of the formidable structure of cross-correlations
that arise from the dynamic interaction between weather conditions and nat-
ural/anthropogenic pollution sources. In order to assess pollution exposure
in an urban area while taking the above mentioned difficulties into account,
we have developed a class of parsimonious hidden Markov models. In a mul-
tivariate time series setting, this approach simultaneously allows for the per-
formance of temporal segmentation and dimensionality reduction. We specif-
ically approximate the distribution of multiple pollutant concentrations by
mixtures of factor analysis models, whose parameters evolve according to a
latent Markov chain. Covariates are included as predictors of the chain tran-
sition probabilities. Parameter constraints on the factorial component of the
model are exploited to tune the flexibility of dimensionality reduction. In or-
der to estimate the model parameters efficiently, we have proposed a novel
three-step Alternating Expected Conditional Maximization (AECM) algo-
rithm, which is also assessed in a simulation study. In the case study, the
proposed methods could (1) describe the exposure to pollution in terms of
a few latent regimes, (2) associate these regimes with specific combinations
of pollutant concentration levels as well as distinct correlation structures be-
tween concentrations, and (3) capture the influence of weather conditions on
transitions between regimes.
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1. Introduction. In urban areas, the study of pollutant concentrations is of
high interest since negative effects of air pollution have been observed [Lee and
Sahu (2016), Lee, Rushworth and Sahu (2014), Sahu et al. (2014)]; this has, in
particular, been reported for major pollutants such as carbon monoxide, nitrogen
monoxide, particulate matter, and sulphur dioxide [Kim, Jahan and Kabir (2013),
Latza, Gerdes and Baur (2009)]. Local and atmospheric sources of pollution may
influence pollution concentrations either directly, indirectly, or both. Empirical and
theoretical studies applied sophisticated strategies to link pollution with (observ-
able and unobservable) atmospheric and other sources [see, e.g., Chattopadhyay,
Mondal and Biswas (2015), Cooley, Davis and Naveau (2012), Lagona, Maruotti
and Picone (2011), Paciorek et al. (2009), Park, Guttorp and Henry (2001)], mod-
eled the fluctuations of concentrations over long periods, and accounted for un-
certainty in the observed measurements. Although it is known that air pollution
is a complex mixture of multiple pollutants, the pollution analyses are in general
conducted on each pollutant separately [see, e.g., Martinez-Zarzoso and Maruotti
(2013), Bornn, Shaddick and Zidek (2012), Greven, Dominici and Zeger (2011),
Shaddick et al. (2008)]. Hence, alternative multivariate approaches have been over-
looked so far, although the investigation of exposures to multiple pollutants would
be useful because it could provide a better understanding of potential combined
effects of individual pollutants and their interactions.

We consider a multivariate setting, where pollution is understood as levels of
the various pollutants, that is, pollutant concentrations. Since these concentrations
exhibit time variability, multivariate hidden Markov models (HMMs) constitute a
natural candidate for studying their joint temporal dynamics. More precisely, the
latent process of the HMM approach allows for the inference of a finite number of
concentration profiles, each of which is characterized by a specific combination of
pollutant concentrations. These profiles are a direct result of clustering similarities
occurring in both the variable space (i.e., between pollutants) and in a temporal
neighborhood. Each profile is linked to an easily interpretable multivariate distri-
bution, which provides an accurate representation of the respective concentration
of air pollutants, illustrating the potential of this type of modeling for defining
exposure characteristics (or conditions).

The proposed HMM accounts for three major dependency structures in multi-
variate time series data, including the correlation among multiple pollutants, tem-
poral dependence, and heterogeneity. Following the HMMs literature, we assume
that the hidden structure underlying the observed data is a first-order Markov chain,
and that time-specific concentrations can be modeled as a multivariate process con-
ditioning on the sequence of hidden states. The challenge of modeling multiple
pollutants and their interactions is fairly common to all analyses of high dimen-
sional data with many variable interests. In the context of understanding exposure
to multiple pollutants, dimensionality-related aspects present a challenge because
these pollutants could potentially be highly correlated. Therefore, estimation and
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interpretation of the parameters of interest may become nontrivial. In order to ex-
amine the interrelationships between pollutant concentrations to perform dimen-
sionality reduction in the variable space simultaneously (allowing for an easy inter-
pretation of model parameters), we propose the use of a latent factor model [Field
et al. (2016), Yao, Paliwal and Lee (2005), Rosti and Gales (2002)]. Accordingly,
we define a general class of parsimonious HMMs by imposing a factor decompo-
sition on state-specific covariance matrices. The loadings and noise terms of the
covariance matrix may be constrained to be equal or unequal across latent states.
In addition, the noise term may be subject to further restrictions, resulting in a
set of eight parsimonious covariance structures [McNicholas and Murphy (2008,
2010), McLachlan, Peel and Bean (2003), Ghahramani and Hinton (1997)]. This
model structure allows for the accounting of dependence between pollutants, and
provides a clear interpretation of the (latent) association structure between pol-
lutants. Moreover, unlike irreversible and progressive phenomena, pollution data
often comprises periods of flat stretches (also known as background concentra-
tions) and sudden bursts. Therefore, not only the identification of different levels
of exposure, but also the investigation of their transition patterns is of interest. In
order to characterize transitions between hidden states, along with estimating the
effects of observed atmospheric variables on these transitions, we use a multino-
mial logistic regression model, which is capable of revealing the heterogeneity in
the transition process.

In this framework, model parameters can be estimated by a full maximum like-
lihood method based on the Alternating Expectation Conditional Maximization
(AECM) algorithms [Yao, Paliwal and Lee (2005), Field et al. (2016)], and recur-
sions widely used in the HMM literature [Baum et al. (1970)]. However, the in-
clusion of covariates in the hidden process often renders the estimation step more
time consuming. Furthermore, several other drawbacks such as slowness of con-
vergence, instability, and multimodality in the likelihood function regularly arise.
To overcome all the aforementioned obstacles, we extend the recent proposal of
Bartolucci, Montanari and Pandolfi (2015) and introduce a three-step AECM al-
gorithm. Moreover, we consider a multiple random starting point strategy for en-
hancing the chance of reaching the global maximum of the likelihood.

After introducing the data sources of the analyzed pollutants (Section 2.1), we
summarize various properties of pollutant concentrations and atmospheric vari-
ables in Section 2.2. These include dynamics over time, marginal distributions,
and bivariate correlation. The proposed modeling framework is introduced in Sec-
tion 2.3: the nonhomogeneous multivariate HMMs is specified, along with several
possible constraints on the decomposition of covariance matrix that allows for di-
mensionality reduction. Identifiability conditions (Section 2.4) are also discussed.
In Section 3 we outline an ad hoc version of the AECM algorithm to estimate
model parameters that allow for the inclusion of covariates in the hidden part of
the model. Computational details (Section 3.2) and hidden state decoding (Sec-
tion 3.3) are also discussed. In Section 4, we illustrate the proposal by a simulation
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study to investigate the empirical behavior of the propose approach with respect to
several factors, such as the number of times, variables, and hidden states. At last,
we discuss and interpret the results of applying the proposal to the data and focus
on several different aspects of the modelling, for example, clustering and model
fit.

2. Data and methods.

2.1. Data source. In Italy, the Institute for Environmental Protection and Re-
search (ISPRA, http://www.isprambiente.gov.it) mainly provides information re-
garding the nationwide state of the environment and environmental trends. The
activities of ISPRA generally focus on monitoring the status and dynamics of the
environment in response to the directives of EU Commission. It is the natural ref-
erence for the European Environment Agency, and its research activity focuses on
thematic issues, such as environmental pollution, waste, etc., as well as multidis-
ciplinary issues (e.g., environmental assessment).

The data considered in this research originate from a regional monitoring net-
work system developed by the Lazio Region. This system has been organized in
order to respond to the increasing demand for environmental information, but also
for providing reliable data suitable for policy-related aspects. The entire network
produces large amounts of air pollution measurements, which are commonly sum-
marized for public reporting. Indeed, when leaving the data in their raw form,
it proves difficult to provide a complete overview of the overall exposure condi-
tions. Therefore, quantitative methods (models/summary statistics) with the ability
to condense the large volume data into a small number of categorical summaries
are regularly introduced. However, the method selected often depends on personal
preferences or political agendas, and statistical aspects may be neglected.

Therefore, the data present a good opportunity for investigating the advantages
of a purely quantitative approach, which is able to summarize overall exposure
conditions by means of categorical variables. These are, in our case, identified by
the hidden states and the corresponding conditional distributions, which provide a
condensed overview of their characteristics via the respective concentration pro-
file. Moreover, we link the dynamics of the hidden states and thus the evolution of
the exposure conditions in time to observed atmospheric variables, which improves
the characterization of the different levels of exposure.

2.2. Data description. In 2011, the ISPRA air quality network recorded
concentrations of nine air pollutants on hourly basis at monitoring stations in
the central area of the city of Rieti (Italy). We averaged the pollution data to
daily frequency and carried out a log-transformation. The original data series
are freely available to download from the ISPRA website (www.brace.sinanet.
isprambiente.it). The Rieti site has been chosen as it is classified as a traffic lo-
cation, although it is located a short distance from green areas and forests that

http://www.isprambiente.gov.it
http://www.brace.sinanet.isprambiente.it
http://www.brace.sinanet.isprambiente.it
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facilitate the movement of air masses and removal of pollutants. The recorded pol-
lutants are:

• NO2, Nitrogen dioxide,
• SO2, Sulphur dioxide,
• PM10, Particulate matter (aerodynamic diameter less than 10 μm),
• PM2.5, Particulate matter (aerodynamic diameter less than 2.5 μm),
• O3, Ozone,
• CO, Carbon monoxide,
• Toluene,
• Etilbenzene,
• Oxylene.

The concentrations are expressed in μg/m3, except for CO, which is expressed in
mg/m3. This set of pollutants has often been used to build air quality indicators
[see, e.g., Pollice and Jona Lasinio (2009), Fassò, Cameletti and Nicolis (2007)].
Most of the pollutants show a seasonal pattern with high concentrations in winter
due to the combination of car exhaust and heating emissions. These concentrations
tend to decrease during summer (see Figure 1). However, ozone concentration is

FIG. 1. Pollutant concentrations over time. Log-transformed pollutant concentrations over the one
year period considered. Vertical gray lines separate blocks of length three months.
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FIG. 2. Atmospheric variables over time. Atmospheric variables over the one year period consid-
ered. Vertical gray lines separate blocks of length three months.

subject to the opposite cycle. The chemical reactions leading to ozone formation
take place in conditions of high solar radiation and heat. Consequently, the highest
ozone concentrations are observed during summer, while the lowest concentrations
are recorded during cold seasons. Sulfur dioxide, generated almost exclusively by
traffic exposition, shows an almost uniform behavior during the year, with few
peaks and small bursts.

Therefore, atmospheric variables may play a major role in determining the level
of exposure to particular pollutants, but also for capturing time dependence as
proxies for seasonal variations and characteristics. Since pollution episodes are
triggered by specific atmospheric factors, we also included the following atmo-
spheric variables (see Figure 2) as covariates in the model, as they are important
for deliquescence, formation, and conservation of pollutants characterizing the dif-
ferent levels of exposure:

• daily average wind speed,
• daily average temperature,
• daily average pressure,
• temperature excursion.

Another noteworthy aspect is that the pollutants considered in our setting pos-
sess varying atmospheric lifetimes. Thus, a strong daily dependence would be
expected between pollutant concentrations [see, e.g., Shaddick and Wakefield
(2002)]. Therefore, the association between different pollutants constitutes a cru-
cial aspect of the analysis as well, and should not be neglected or treated as a nui-
sance. Figure 3 shows scatter plots of the variables considered: the blue line results
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FIG. 3. Pollutant concentrations: marginal distributions and bivariate correlations. Marginal den-
sities and scatter plots of log-transformed pollutant concentrations. The blue line results from robust
linear regression, and the red line from local polynomial regression. The dashed red lines determine
a 90% confidence interval of the smoother. The main diagonal shows marginal densities resulting
from a kernel density estimator.

from simple linear correlation, the solid red line from a local polynomial smooth-
ing, and the red dashed line corresponds to confidence intervals of the smoothing
line. Finally, the main diagonal contains the empirical densities. From the visual
perspective, it is apparent that patterns of nonlinear correlation can be detected and
that the correlation structure is rather heterogeneous, since each pollutant seems to
be related to others in different ways.

2.3. Methodology. Let {Yt , t = 1, . . . , T } denote a sequence of multivariate
observations (i.e., pollutant concentrations), where Yt = {Yt1, . . . , Ytp} ∈ Rp , and
{St , t = 1, . . . , T } denotes a Markov chain defined on the state space {1,2, . . . ,K}.
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In the context of our application, all response variables are continuous, although
HMMs may be also applied to variables having a different nature [see, e.g.,
Maruotti et al. (2016), Lagona, Picone and Maruotti (2015), Lagona, Maruotti
and Padovano (2015), Bulla et al. (2012), Bartolucci and Farcomeni (2009)]. For
up to date reviews of HMMs under different settings see, for example, Zucchini,
MacDonald and Langrock (2016), Bartolucci, Farcomeni and Pennoni (2013),
Maruotti (2011).

A HMM is a particular kind of dependent mixture. It is a stochastic process con-
sisting of two parts: the underlying unobserved process {St }, fulfilling the Markov
property, that is,

Pr(St | S1, S2, . . . , St−1) = Pr(St | St−1),

and the state-dependent observation process {Yt } for which the conditional inde-
pendence property holds, that is,

f (Yt | Y1, . . . ,YT , S1, . . . , ST ) = f (Yt | St ),

where f (·) is a generic probability density function. Assuming that the hidden
process follows a first-order Markov chain is equivalent to the assumption that any
latent variable St given St−1 is conditionally independent of S1, S2, . . . , St−2. This
dependence structure is seldom considered restrictive, and due to its easy interpre-
tation, it is usually preferred to more complex structures of the latent variables.

The hidden Markov chain has K states, labeled from 1 to K , with initial proba-
bilities

πk = Pr(S1 = k), k = 1, . . . ,K,

and transition probabilities

tπk|j = Pr(St = k | St−1 = j), t = 2, . . . , T ; j, k = 1, . . . ,K.

Note that k refers to the current state in the above definitions, whereas j refers
to the one previously visited; this convention will be used throughout the paper.
Moreover, the initial probabilities are collected in the K-dimensional vector π ;
whereas, the K × K transition probability matrix t� contains the time-varying
transition probabilities. The simplest model in this framework is the homogeneous
HMM, which assumes time-homogeneous transition probabilities, that is, indepen-
dence of t and thus t� = �. This specification fails to take into account how at-
mospheric observed conditions affect the evolution of unobserved exposure states
and, in general, time heterogeneity of the transition probability matrix. In order to
overcome this potential drawback, the transitions probabilities may be parameter-
ized as a function of P̃ exogenous covariates xt = {xt1, . . . , xtP̃

} by

(2.1) tπk|j = exp(x′
tγ jk + γjk0)

1 + ∑K
h=1 exp(x′

tγ jh + γjh0)
,
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where γ jk = {γjk1, . . . , γjkP̃
} represents a vector of fixed regressors and γjk0 is

an intercept term. To ensure identifiability, we impose γ jj = 0 and γjj0 = 0 for
j = 1, . . . ,K . Accordingly, the probability of no transition at time t is given by

tπj |j = 1

1 + ∑K
h=1 exp(x′

tγ jh + γjh0)
.

This model specification permits investigating the dynamics of the hidden state
sequence over time, and allows for a potential impact of covariates on its evolution
[see also Maruotti and Rocci (2012)].

At each time, the hidden variable St corresponds to an unobserved environmen-
tal condition. The way in which these hidden conditions affect the corresponding
multivariate response variable Yt depends on the type of distribution assumed for
the observed process. Nowadays, Gaussian HMMs are commonly used for cluster-
ing continuous data [see, e.g., Bartolucci and Farcomeni (2010), Scott, James and
Sugar (2005)], although some robust (conditional) distributions have been recently
proposed in the literature [Chatzis, Kosmopoulos and Varvarigou (2009), Chatzis
(2010), Farcomeni and Greco (2015), Punzo and Maruotti (2016)]. Since we per-
form our analysis on log-transformed data, the selection of Gaussian conditional
distributions for our HMM seems suitable. In addition, this specification permits
employing standard checks of model fit. Throughout the paper we consider the
following conditional distribution of Yt given St :

(2.2) Yt | St = k ∼ Np(μk,�k).

In the context of high dimensional data, parsimonious models should be used in
order to reduce the general (heteroscedastic) model and, accordingly, the number
of parameters to be estimated. As pointed out by Bouveyron and Brunet-Saumard
(2014), a popular approach is based on mixtures of factor analyzers, mainly be-
cause the number of covariance parameters is linear in data-dimensionality. In its
most general expression, the following decomposition of the covariance matrix is
considered:

�k = �k�
′
k + �k,

where �k is a p × q nonsparse real matrix of state-specific factor loadings, and
�k = diag(ψk1, . . . ,ψkp) represents a positive definite matrix containing the error
variances.

In other words, an observation in state k follows a multivariate Gaussian density
with mean μk and covariance �k�

′
k + �k , that is,

Yt | St = k ∼ Np

(
μk,�k�

′
k + �k

)
.

In a factor analysis framework, the p-dimensional Gaussian random vector of
state k can be decomposed in the following additive and independent parts. For-
mally,

yt = μk + �kutk + etk,
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TABLE 1
Covariance structure in a hidden Markov of factor analyzers framework

Model Loading matrix Error variance Isotropic Covariance Covariance
ID �k �k �k = ψkIp structure parameters

CCC Constrained Constrained Constrained �k = ��′ + ψIp [pq − q(q − 1)/2] + 1
CCU Constrained Constrained Unconstrained �k = ��′ + � [pq − q(q − 1)/2] + p

CUC Constrained Unconstrained Constrained �k = ��′ + ψkIp [pq − q(q − 1)/2] + K

CUU Constrained Unconstrained Unconstrained �k = ��′ + �k [pq − q(q − 1)/2] + Kp

UCC Unconstrained Constrained Constrained �k = �k�′
k + ψIp K[pq − q(q − 1)/2] + 1

UCU Unconstrained Constrained Unconstrained �k = �k�′
k + � K[pq − q(q − 1)/2] + p

UUC Unconstrained Constrained Unconstrained �k = �k�′
k + ψkIp K[pq − q(q − 1)/2] + K

UUU Unconstrained Unconstrained Unconstrained �k = �k�′
k + �k K[pq − q(q − 1)/2] + Kp

where utk is a q-dimensional vector of state-specific latent factors drawn from
N(0, Iq), and etk are Gaussian state-specific error terms with mean 0 and co-
variance matrix �k . Here and in the following, Iq denotes the q-dimensional
identity matrix. By imposing constraints upon �k and �k , whether or not �k =
ψkIp with positive-valued scalar ψk , and considering the special case ψk = ψ

(∀k = 1, . . . ,K), we provide a class of eight different parsimonious hidden
Markov models (see Table 1).

2.4. Identifiability. When dealing with the proposed setting, an important as-
pect is to establish model identifiability. Identifiability is a necessary requirement,
inter alia, for the common asymptotic theory in the context of maximum likeli-
hood estimation of the model parameters. As typically happens in connection with
mixtures of factor analyzers and related models, we focus on local identifiability,
that is, identifiability in a neighborhood of a given parameter value.

For HMMs with finite observational space, generic identifiability of the param-
eters, that is, identifiability except on a subset of the parameters space of Lebesgue
measure zero, has been investigated by Allman, Matias and Rhodes (2009). For
general HMMs with state-dependent distributions belonging to some parametric
family, identifiability has been proven up to label switching [Leroux (1992)]. Ac-
cordingly, in order to ensure identifiability, we need to prove identifiability of the
marginal mixtures [see, e.g., Dannemann, Holzmann and Lesiter (2014)]. In our
case, the marginal finite mixtures are represented by the finite mixtures of Gaus-
sian distributions. A sufficient condition for the identifiability of the mixture of
multivariate Gaussian distributions can be summarized as follows [see, e.g., Punzo
and McNicholas (2016)]: let ‖ · ‖F be the Frobenius norm. A finite mixture of
Gaussian distributions is identifiable if k1 �= k2 implies

‖μk1
− μk2

‖2
F + ‖�k1 − �k2‖2

F �= 0.

Based on Leroux (1992) and Dannemann, Holzmann and Lesiter (2014), the
same sufficient condition for identifiability is inherited by our Gaussian HMM.
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Further identifiability issues are related to the factor model used to parameterize
the state-specific covariance matrix. Bearing in mind that unobserved factors are
conditional independent given the hidden states, we observe that invariance under
orthogonal transformations holds for the proposed model. In fact, the transforma-
tion u∗

tk = 	utk , where 	 is an orthogonal matrix leads to

Var(	utk) = 	Iq	′ − 	μkμ
′
k	

′ = 	 Var(utk)	 = Iq,

since 		′ = Iq . Therefore, yt = μk + �kutk + etk is completely indistinguish-
able from the transformed model yt = μ∗

k + �∗
ku∗

tk + etk , where �∗
k = 	�k and

μk = 	−1μk . The practical implication of this result is that several known rota-
tions may be applied to the factors in order to improve the model interpretation.
We implemented two common rotations, Varimax and Promax. However, we did
not observe a major advantage of one or the other in terms of interpretability for
our application. Nevertheless, since the factor loadings can be seen as correlations
between single variables and factors for the orthogonal rotation, we chose Varimax
for all estimated models, whose results are presented in the following. A sufficient
condition for local identifiability of �k and �k is that the Hadamard square of the
matrix �k − �k(�

′
k�

−1
k �k)

−1�′
k is nonsingular [Anderson and Rubin (1956),

Theorem 5.9].

3. Maximum likelihood estimation. Even in this relatively general frame-
work, the parameters of the proposed parsimonious HMMs can be estimated us-
ing the method of maximum likelihood. In order to perform maximum likeli-
hood estimation of the above model on the basis of the multivariate response
yt = {yt1, . . . , ytp}, computation of the likelihood function

(3.1) L(θ) = π ′f(y1) 2�f(y2) 3� · · · f(yT −1) T �f(yT )1

is necessary. Here θk = {μk,�k,�k,γ jk, πk , k = 1,2, . . . ,K} is the set of all
model parameters; f(yt ) denotes a diagonal matrix with conditional probability
densities f (Yt = yt | St = k;μk,�k,�k) on the main diagonal [for further de-
tails, see, e.g., Zucchini, MacDonald and Langrock (2016)], and 1 represents a
unit vector of size K .

To maximize (3.1) with respect to θ , we introduce a three-step AECM based on
the following steps:

Step 1. Fit a homogeneous HMM, that is, without covariates for the multivari-
ate continuous outcomes. Maximum likelihood estimation is performed by maxi-
mizing (3.1) under the constraint t� = � using an AECM algorithm [Meng and
van Dyk (1997)]. The motivation beyond the use of the AECM algorithm lies in
its ability to break the model into smaller models. On the basis of this prelimi-
nary fitting, we obtain the final estimates of the conditional distribution parame-
ters.
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Step 2. For each time t = 1, . . . , T , we obtain the posterior expected values of
state membership on the basis of the first step.

Step 3. Maximize the component of the (complete-data log-) likelihood involv-
ing the hidden structure parameters.

After an initial estimate of the latent parameters, the second and the third steps are
iterated until convergence, while keeping the estimates of the conditional distribu-
tion parameters from the first step fixed.

3.1. Likelihood inference and parameters estimation. At the first step of the
algorithm, we partition the set of unknown parameters θ in two disjoint subsets
(θ1, θ2): θ1 contains the hidden chain parameters π and � and the elements of
the state-specific means μk , while θ2 consists of �k and �k . Then, the following
steps are alternated until convergence in order to carry out the AECM algorithm:

• First stage

E-step: Compute the conditional expectation of the complete-data log-
likelihood, given the observed data and the current estimate of the parameter vector
(μ, π , �), while keeping (�, �) fixed at their values resulting from the previous
iteration.

M-step: Maximize the preceding expected complete-data log-likelihood func-
tion with respect to (μ, π , �).

• Second stage

E-step: Compute the conditional expectation of the complete-data log-
likelihood, in this step conditional on (�, �), while considering (μ, π , �) fixed
as given by the calculations in the first stage of the AECM algorithm.

CM-step: Maximize the preceding expected complete-data log-likelihood func-
tion with respect to (�, �). The (conditional) maximization step depends on the
imposed model restrictions.

To illustrate the principle modus operandi of this algorithm, we need to specify
the sources of incompleteness in our setting. The common source arises from the
fact that we do not know the state membership and its evolution over time. This
source of incompleteness is introduced in the formulation of the model via the
definition of the unobserved state membership, that is, zt = (zt1, zt2, . . . , ztK) and
wt = (wt11,wt12, . . . ,wtjk, . . . ,wtKK) as missing data with

ztk =
{

1, St = k,

0 otherwise,

wtjk =
{

1, St−1 = j, St = k,

0 otherwise.
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Then, the complete-data log-likelihood function has the following form:

Lc1(y, z,w) =
K∑

k=1

z1k log(πk)

+
K∑

j=1

K∑
k=1

T∑
t=2

wtjk log(πk|j )

+
K∑

k=1

T∑
t=1

ztk

[
−p

2
log(2π) − 1

2
log

(∣∣�k�
′
k + �k

∣∣)
− 1

2
tr

{
(yt − μk)(yt − μk)

′(�k�
′
k + �k

)−1}]
.

The expected value of the complete-data log-likelihood is therefore

H1
(
θ1, θ

(m)
1

) =
K∑

k=1

ẑ1k log(πk)

+
K∑

j=1

K∑
k=1

T∑
t=2

ŵtjk log(πk|j )

− 1

2

K∑
k=1

T∑
t=1

ẑtk log
(∣∣�k�

′
k + �k

∣∣)

− 1

2

K∑
k=1

T∑
t=1

ẑtk tr
{
(�̃k

(
�k�

′
k + �k

)−1}
,

where

�̃k =
∑T

t=1 ẑtk(yt − μk)(yt − μk)
′∑T

t=1 ẑtk

is the state-specific sample covariance matrix for all k = 1, . . . ,K , and

ẑtk = E(ztk | y1, . . . ,yT ),

ŵtjk = E(wtjk | y1, . . . ,yT ).

At the first-stage, M-step, maximizing with respect to πk , �, and μk , yields

πk = ẑ1k,

πk|j =
∑T

t=2 ŵtjk∑K
k=1

∑T
t=2 ŵtjk

,

μk =
∑T

t=1 ẑtkyt∑T
t=1 ẑtk

.
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With regards to the maximization with respect to πk , it is in general not reason-
able to try to estimate the initial distribution from just one observation at time 1, es-
pecially as the state of the Markov chain itself is not observed. However, it should
be noted that π is one of the K possible unit vectors at a maximum of the like-
lihood, and, accordingly, its components do not require all to be estimated. An
alternative would be to assume that π corresponds to the stationary distribution of
the Markov chain [Bulla and Berzel (2008)]. This would, after all, further compli-
cate the M-step with only minor additional gain in settings and a comparably high
number of observations, which is why we did not investigate this approach.

At the second stage of the algorithm, we consider the state labels and the la-
tent factor that is missing data when estimating �k and �k . Therefore, here the
complete-data log-likelihood is of the form

Lc2(y, z,u) = C +
K∑

k=1

[
−

∑T
t=1 ztk

2
log

(∣∣�−1
k

∣∣) −
∑T

t=1 ztk

2
tr

(
�−1

k �̃k

)

+
T∑

t=1

ztk(yt − μk)
′�−1

k �kuk − 1

2
tr

(
�′

k�
−1
k �k

T∑
t=1

ztkuku′
k

)]
,

where C is a constant. The expected complete-data log-likelihood is then given by

H2
(
θ2, θ

(m)
2

) = C +
K∑

k=1

T∑
t=1

ẑtk

2
log

(∣∣�−1
k

∣∣)

−
K∑

k=1

T∑
t=1

ẑtk

2
tr

(
�−1

k �̃k

)

+
T∑

t=1

ẑtk(yt − μk)�
−1
k �kE(utk | yt ,μk,�k,�k)

− 1

2
tr

{
�′

k�k�k

T∑
t=1

ẑtkE
(
utku′

tk | yt ,μk,�k,�k

)}
,

where the ẑtk are computed by considering the updated values of μk , πk , and �k .
The resulting estimates of �k and �k matrices can easily be derived from the
expression for H2(·). In the most general case UUU, we have

�new
k = �̃kβ

′
k�

−1
k ,

�new
k = diag

(
�̃k − �new

k βk�̃k

)
,

where

βk = �′
k

(
�k�

′
k + �k

)−1
, �k = Iq − βk�k + βk�̃kβ

′
k.



DYNAMIC MIXTURES OF FACTOR ANALYZERS 1631

Estimates for other models in Table 1 can be easily obtained by imposing that β ,
�, and/or �̃ are state-invariant.

Once the AECM achieves convergence at the first step, we obtain ŵtjk and use
these to get estimates of tπk|j . The estimated parameters for the hidden process
are the solutions of

(3.2)
T∑

t=2

K∑
k=1

ŵtjk

∂tπk|j
∂(γ jk, γjk0)

= 0,

which are weighted sums of K multinomial regressions with weights ŵtjk . We
then update ŵtjk and iterate Step 2 and Step 3, plugging in the estimated transition
probabilities into the log-likelihood function until further convergence.

3.2. Computational details. The quantities ẑtk and ŵtjk can be computed re-
cursively [Baum et al. (1970), Welch (2003)]. Let us define the forward variable

αtk = f (y1, . . . ,yt , St = k),

which represents the probability of seeing the partial sequence ending in state k at
time t and the corresponding backward variable

βtk = f (yt+1, . . . ,yT | St = k).

It is worth noting that the computation of the forward and backward probabilities is
susceptible to errors resulting from numerical underflow or overflow. In applying
the algorithm as described here, a scaling procedure is adopted in order to prevent,
or at least reduce, the risk of such errors. For convenience, we work on the log-
scale; the forward recursion is then given by

log(α1k) = log
[
f (y1 | S1 = k)

] + log(πk),

and for t = 2, . . . , T we compute

log(αtk) = log
[
f (yt | St = k)

] +
K∑

j=1

log(αt−1,j ) + log(tπk|j ).

Similarly, it is possible to implement the following backward recursion:

log(βT k) = 0,

and for t = T − 1, . . . ,1 we have

log(βtj ) =
K∑

k=1

log
[
f (yt+1 | St+1 = k)

] + log(βt+1,k) + log(tπk|j ).

Then, the expected values of the quantities involved in the E-step can be computed
as

ẑtk = αtkβtk∑K
k=1 αtkβtk
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and

ŵtjk = tπk|jαt−1,kf (yt | St = k)βtk∑K
k=1 αT k

.

3.3. Path prediction. A major issue of interest in a HMM framework is the
prediction of the hidden state sequence, which can be determined by maximiz-
ing the posterior probability Pr(S1 = s1, S2 = s2, . . . , ST = sT | y1, . . . ,yT ) with
respect to (s1, s2, . . . , sT ). To avoid inconsistent sequences and to account for
the joint probability of the entire latent sequence, the Viterbi algorithm [Viterbi
(1967)] is the most suitable approach for this prediction, a procedure also termed
“global decoding.” With ρt (s) = maxs1,...,sT Pr(s1, . . . , st−1, st ,y1, . . . ,yt ), the al-
gorithm performs the following steps:

1. Compute ρ1(k) = πkf (y | S1 = k) for k ∈ {1,2, . . . ,K}.
2. Calculate ρt (k) = f (yt | St+1 = k)maxj [ρt(j)tπk|j ] for t = 2, . . . , T ,

k = 1, . . . ,K .
3. Find the optimal s̃T = arg maxk ρT (k).
4. Determine s̃t by s̃t = arg maxj ρt (j)t+1πs̃t+1|j for t = T − 1, T − 2, . . . ,1.

In other words, the algorithm performs a forward recursion to compute the above
quantities and subsequently finds the most likely latent sequence with a backward
recursion. All of the above quantities are computed on the basis of the maximum
likelihood parameter estimates.

4. Simulation study. In this section, we illustrate and discuss the results of a
simulation study aimed at assessing the properties of the maximum likelihood es-
timator outlined above. Various settings are investigated, such as different lengths
of time T , numbers of analyzed variables p, hidden states K , and latent factors q .
We treat only the UUU case in the following, since the others can be seen as spe-
cial cases. We obtained maximum likelihood estimates by following the three-step
AECM algorithm described in Section 3.1. To initialize state memberships, we
randomly generate state assignments from a multinomial distribution. The hidden
chain parameters are initialized according to the obtained partition. Similarly, all

̃k are computed based on the initial partition. Then, we obtain the initial values
for the elements of �k and �k following the procedure described by McNicholas
and Murphy (2008).

4.1. Simulation design. For each of the scenarios described below, we re-
peated the procedure B = 100 times and averaged the resulting measures of perfor-
mance over the replications. We considered the following experimental designs:

• number of observed times T = 100,365,1000;
• number of states K = 2,3;
• number of latent factors q = 2,4;
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• number of observed variables p = 10,50,100;
• hidden chain parameters and state-specific means defined as follows

– K = 2: we generate transition probabilities from the model

tπk|j = exp(x′
it γjk + γjk0)

1 + ∑2
h=1:h �=j exp(x′

it γjh + γjh0)
,

where xit is a covariate independently drawn from a N(0,1) distribution, γ12 =
−0.75, γ21 = −0.25, and γ11 = γ22 = 0 due to identification constraints. The in-
tercepts take the values γ120 = −1 and γ210 = −0.7, and we set π1 = 1. Then,

∗ for p = 10 we further specify the state-specific mean vector by

μ1 = {−2,0,1,0.5,−1,2,0,−1,0,−1},
μ2 = {2,0,−1,0,−1,0,0,0,−0.4,1.5};

∗ for p = 50,100 we draw the state-specific mean vectors from uniform distri-
butions defined by

μ1 ∼ U(−1,2),

μ2 ∼ U(−2,0);
– K = 3: we generate transitions probabilities from the following set of param-

eters

[γ110, γ120, γ130] = [0.00;−0.50;−0.25],
[γ210, γ220, γ230] = [−0.70;0.00;−0.50],
[γ310, γ320, γ330] = [−0.70;−0.20;0.00],

[γ11, γ12, γ13] = [0.00;−0.75;−0.20],
[γ21, γ22, γ23] = [−0.25;0.00;−0.25],
[γ31, γ32, γ33] = [−0.75;−0.20;0.00]

and

∗ for p = 10 we define the state-specific mean vector by

μ3 = {0,2,−1,0.5,0,−2,0,1,0.4,0};
∗ for p = 50,100 the stated-specific mean vectors result from

μ1 ∼ U(−1,2),

μ2 ∼ U(−2,0)

as before.
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FIG. 4. Example for a simulation setting with p = 10, K = 2, q = 2, and T = 365. Marginal
densities and scatter plots of a simulated data set. Each color identifies observations belonging
to a different state. The main diagonal shows marginal densities resulting from a kernel density
estimator.

At last, we generated the state-specific factor loading matrices �k randomly from
a uniform distribution on the interval [−1,1], and a reasonable level of noise was
added by generating �k = diag(Unif(0,1),p). In total, we generated 1800 data
sets. Figures 4 and 5 show the scatter plot matrices for samples drawn for the
settings commonly characterized by p = 10, q = 2, T = 365, but with varying
K = 2,3.

We analyzed the performance of the proposed approach obtained when em-
ploying the three-step AECM algorithm, in terms of mean and standard deviation
values of:
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FIG. 5. Example for a simulation setting with p = 10, K = 3, q = 2, and T = 365. Marginal
densities and scatter plots of a simulated data set. Each color identifies observations belonging to a
different state. The main diagonal shows marginal densities resulting from a kernel density estimator.

• the sum of the squared differences between the true and the estimated state-
specific means

Sobs =
K∑

k=1

‖μk − μ̂k‖2
2

and the sum of the squared distances between the true and the estimated initial
and transition probabilities, respectively,

Shidden = ‖π − π̂‖2
2 +

T∑
t=1

‖t� − t�̂‖2
F ,
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where ‖ · ‖2 and ‖ · ‖F denote the Euclidean norm and Frobenius norm, respec-
tively. Both indices serve for evaluating the accuracy of the estimators.

• the Adjusted Rand index [ARand, see Hubert and Arabie (1985)], which is a
measure of agreement between the true and the estimated cluster memberships.
It takes the value one in case of perfect agreement.

We halted the estimation process and assumed convergence to the maximum when
the log-likelihood obtained from two successive iteration steps increased by less
than 10−5.

4.2. Simulation results. Table 2 presents results concerning the accuracy of
the estimates (Sobs and Shidden), as well as the ability of recovering the true par-
tition (ARand). For all settings, the length of time T influences the accuracy of
the estimates and the goodness of classification: when T increases, the average
values of Sobs/Shidden and the Adjusted Rand Index decrease and increase, respec-
tively (keeping p, K , and q fixed). Considering only small values of T (T = 100),
the algorithms better recover the partition in settings with simpler data structure
and a lower number of variables. To a more minor degree, the same holds true
for T = 365. On the other hand, the recovery of the true partition remains sta-
ble at high values close to one over all settings for T = 1000. Overall, the re-
sults obtained indicate a satisfactory performance of the AECM algorithm in the

TABLE 2
Mean and standard deviation (in brackets) values of Sobs, Shidden, and the Adjusted Rand index

(ARand) obtained by the AECM algorithms over 100 samples in the different settings investigated

p = 10, q = 2,K = 2 p = 10, q = 2,K = 3

T = 100 T = 365 T = 1000 T = 100 T = 365 T = 1000

Sobs 0.106 (0.246) 0.019 (0.011) 0.007 (0.003) 0.225 (0.632) 0.021 (0.011) 0.007 (0.004)
Shidden 1.746 (2.576) 0.311 (0.294) 0.120 (0.096) 12.471 (17.056) 1.919 (1.124) 1.106 (0.377)
ARand 0.966 (0.148) 0.999 (0.003) 0.999 (0.002) 0.903 (0.158) 0.990 (0.009) 0.992 (0.005)

p = 50, q = 2,K = 2 p = 50, q = 2,K = 3

T = 100 T = 365 T = 1000 T = 100 T = 365 T = 1000

Sobs 0.101 (0.150) 0.014 (0.006) 0.005 (0.002) 0.934 (1.202) 0.044 (0.007) 0.008 (0.009)
Shidden 2.307 (2.812) 0.346 (0.329) 0.114 (0.102) 13.510 (45.523) 1.960 (0.977) 1.098 (0.998)
ARand 0.916 (0.223) 0.981 (0.032) 0.998 (0.002) 0.734 (0.195) 0.972 (0.072) 0.998 (0.019)

p = 100, q = 2,K = 2 p = 100, q = 2,K = 3

T = 100 T = 365 T = 1000 T = 100 T = 365 T = 1000

Sobs 0.230 (0.294) 0.086 (0.315) 0.022 (0.129) 2.273 (1.850) 0.610 (1.555) 0.108 (0.276)
Shidden 2.880 (2.816) 0.479 (0.508) 0.191 (0.238) 22.451 (75.743) 2.019 (0.982) 1.078 (0.995)
ARand 0.743 (0.329) 0.937 (0.221) 0.983 (0.123) 0.681 (0.200) 0.957 (0.118) 0.998 (0.019)
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simulated settings. In addition, one may observe relatively high values for the
standard deviation of almost all quantities estimated in all settings. This is most
likely a consequence from a relatively strong influence of choice for initial val-
ues.

5. Results. We fitted all eight models (see Table 1) to the data for K =
2, . . . ,4 and q = 1, . . . ,3, and computed the Akaike Information Criterion (AIC),
the Bayesian Information Criterion, and Integrated Completed Likelihood (ICL)
values for each model. The ICL essentially penalizes the BIC for estimated mean
entropy, and it is given given by

ICL = BIC +
T∑

t=1

K∑
k=1

ẑtk log ẑtk.

All criteria involve penalization terms depending on the number of redundant pa-
rameters, which is equal to the sum of the following:

• (K − 1) initial probabilities,
• K(K − 1)(P̃ + 1), corresponding to the number of regression parameters

(γ jk, j, k = 1, . . . ,K, j �= k) needed to compute transition probabilities collected
in t�,

• KP state-specific means, collected in μk, k = 1, . . . ,K ,
• covariance parameters, as defined in Table 1.

Figure 6 shows the minimum values over the eight models of each pair (q,K)

for the ICL. We would like to remark that both BIC and ICL select the UUU model
with K = 3 and q = 2, while AIC selects the UUU model with K = 4 and q = 4.
We would further remark that the nonhomogeneous HMMs lead to significant im-
provements in model fitting, as measured by log likelihoods and penalized criteria,
with respect to their homogeneous counterparts. Model selection results for the
homogeneous HMMs are not shown for the sake of brevity, but are available upon
request.

Since our main intention lies in the detection of meaningful clusters that charac-
terize particularly different exposure regimes, we choose to work with the model
selected by ICL (and BIC). One should, however, be taken into consideration
that a minor drawback of this rather restrictive model selection could be a re-
duced fit to the density, particularly in the tails. In order to investigate this po-
tential shortcoming, Figure 7 displays the Q-Q plots of the pseudo-residuals (see
Zucchini, MacDonald and Langrock [(2016), Chapter 6.2]) for each pollutant be-
longing to the observed process. The plots show, on the one hand, an overall sat-
isfactory fit for most pollutants, with NO2 and O3 exhibiting the largest devia-
tions from normality due to reduced fit in the tails and skewness, respectively. This
could be improved, for example, by a less parsimonious model or generalizations
of the Gaussian distribution. Furthermore, the model selected by AIC constitutes a
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FIG. 6. Heat map of model selection criteria. Heat maps of ICL values for each (K,q). For fixed
(K,q), the minimum value is determined from all eight models.

straightforward alternative if the focus lies on a more appropriate density approx-
imation. On the other hand, by considering the ICL-based solution we obtain a
more certain and less fuzzy classification. It is possible to quantify the uncertainty
surrounding the obtained classification by looking at histograms or rootograms of
the posterior state probabilities. In fact, both are suitable to usually assess the hid-
den structure. As a more informative alternative, a scatter plot of the state-specific
posterior probabilities may be used: a good classification results in the distribution
to be concentrated near the vertices (0,0), (0,1), and (1,0). In our simple example
the states are well separated (see Figure 8); the obtained classification is therefore
close to the so-called “hard case.”

To properly provide a physical meaning of the hidden states, we inferred the la-
tent process by applying the Viterbi algorithm. Figure 9 shows the resulting most
likely sequence of hidden states and suggests that the inferred states can be inter-
preted as latent exposures strongly characterized by seasonal weather conditions.
More specifically, State 1 tends to cluster days in late autumn, winter, and early
spring, while State 3 is generally inferred during mid-to-late summer, but also oc-
curs sporadically during autumn. Finally, State 2 mainly arises during late spring
and early summer; however, it can also be observed during various periods of the
rest of the year. Table 3 displays the estimated effects of the standardized mete-
orological variables on the transition probabilities and their standard errors. The
estimation procedure outlined in Section 3.1 does not produce standard errors of
the estimates. Therefore, following the suggestion of Visser, Raijmakers and Mole-
naar (2000), we implemented a parametric bootstrap approach to obtain the stan-
dard errors. We refitted the model to 200 bootstrap samples, which were simulated



DYNAMIC MIXTURES OF FACTOR ANALYZERS 1639

FIG. 7. Normality plots. Q-Q plots of the pseudo residuals for each pollutant.

from the estimated model parameters. On average, convergence was achieved in
5.04 seconds (s.d. 5.87) on average, and required 418 iterations (s.d. 177).

The negative signs of the estimated intercepts confirm that, overall, state persis-
tence is the norm. Furthermore, comparison of these values indicates that most of
the transitions can be expected to happen from State 1 to State 2 and from State 3
to State 1. Taking the effect of covariates into account, one can notice that transi-
tions from State 1 to State 2 are more likely when the temperature increases. The
contrary holds for reverse transitions (from State 2 to State 1), which can be asso-
ciated with low temperature values combined with low pressure and high values
of wind speed and temperature excursion. Furthermore, transitions from State 1 to
State 3 are more likely when the average temperature increases and temperature
excursion decreases, while the likelihood of a reverse transition increases during
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FIG. 8. Uncertainty surrounding the classification. State-specific posterior probabilities for the
three states model with two factors, selected by the BIC (and ICL) criterion.

autumn when small temperature excursions are accompanied by low wind speeds
and average temperatures. The remaining transitions between State 2 and State 3
can be mainly associated with typical summer days with low pressure and large
temperature excursions.

Table 4 displays the estimated, state-specific parameters (and their standard er-
rors) obtained under a UUU model with K = 3 states and q = 2 factors. Condi-
tionally on each hidden state, these estimates can be interpreted as if they were
the output of a factor model, which is a distinct advantage of our approach. State-
specific means allow to better characterize air conditions observed during different
times of the year. High pollution is estimated in State 1, where all the pollutants
but the O3 achieve their highest values. This is not surprising as State 1 is mainly
observed during winter and autumn. When the weather gets cold enough, pollution
from vehicles and homes becomes a very visible mist in the air. State 3 is charac-
terized by high values of O3, while all the other pollutants do not show particular

FIG. 9. Hidden state sequence. The most likely sequence of states inferred by the Viterbi algorithm.
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TABLE 3
Estimated regression coefficients and standard errors (within parentheses)

γ12 γ13 γ21 γ23 γ31 γ32

Intercept (γjk0) −2.71 (0.24) −5.92 (1.08) −0.73 (0.14) −6.90 (1.17) −2.13 (0.38) −8.59 (2.31)

Wind speed 0.28 (0.21) 0.31 (0.38) 0.63 (0.15) −2.65 (0.77) −1.21 (0.26) 1.26 (0.83)

Average
temperature

0.82 (0.33) 3.09 (1.02) −1.75 (0.23) −2.24 (0.54) −4.18 (0.56) −1.05 (0.94)

Pressure −0.05 (0.26) −0.48 (0.54) −0.34 (0.14) −1.23 (0.45) 0.91 (0.25) −3.46 (1.07)

Temperature
excursion

−0.36 (0.33) −2.41 (0.83) 1.33 (0.23) 6.48 (1.13) −0.65 (0.30) 2.35 (1.20)

TABLE 4
Estimated parameters and standard errors (within parentheses)

Residual
Variable Mean Factor 1 Factor 2 variance

State 1 NO2 2.12 (0.38) 0.84 (0.18) 0.43 (0.35) 0.12 (0.16)

SO2 −0.54 (0.13) 0.15 (0.22) 0.20 (0.27) 0.94 (0.19)

PM10 3.24 (0.16) 0.41 (0.24) 0.81 (0.33) 0.17 (0.21)

O3 3.70 (0.05) −0.66 (0.21) −0.50 (0.35) 0.32 (0.14)

CO −0.88 (0.23) 0.63 (0.32) 0.63 (0.26) 0.20 (0.26)

Toluene 1.16 (0.18) 0.87 (0.31) 0.47 (0.33) 0.02 (0.13)

Ethylbenzene −0.95 (0.19) 0.88 (0.14) 0.47 (0.21) 0.01 (0.13)

Oxylene −0.70 (0.19) 0.89 (0.20) 0.46 (0.26) 0.01 (0.11)

PM2.5 2.90 (0.29) 0.43 (0.23) 0.90 (0.32) 0.01 (0.21)

State 2 NO2 1.36 (0.30) 0.65 (0.18) 0.37 (0.34) 0.44 (0.15)

SO2 −0.71 (0.13) 0.02 (0.21) 0.50 (0.22) 0.75 (0.17)

PM10 2.98 (0.04) 0.62 (0.27) 0.18 (0.37) 0.59 (0.23)

O3 4.07 (0.09) −0.84 (0.28) 0.08 (0.33) 0.29 (0.18)

CO −1.36 (0.14) 0.97 (0.42) 0.20 (0.22) 0.01 (0.43)

Toluene 0.88 (0.05) 0.21 (0.35) 0.93 (0.33) 0.09 (0.11)

Ethylbenzene −1.72 (0.13) 0.67 (0.13) 0.49 (0.16) 0.31 (0.15)

Oxylene −1.18 (0.07) 0.47 (0.23) 0.75 (0.24) 0.21 (0.11)

PM2.5 2.27 (0.06) 0.59 (0.23) 0.23 (0.32) 0.60 (0.23)

State 3 NO2 0.63 (0.19) 0.84 (0.17) −0.11 (0.33) 0.27 (0.10)

SO2 −0.56 (0.11) −0.03 (0.16) 0.48 (0.20) 0.77 (0.13)

PM10 3.03 (0.08) 0.17 (0.22) 0.90 (0.32) 0.16 (0.14)

O3 4.26 (0.19) −0.54 (0.20) 0.44 (0.35) 0.51 (0.15)

CO −1.68 (0.08) 0.05 (0.35) 0.16 (0.20) 0.97 (0.35)

Toluene 0.85 (0.08) 0.93 (0.22) 0.32 (0.25) 0.04 (0.06)

Ethylbenzene −1.21 (0.16) 0.94 (0.11) 0.32 (0.16) 0.01 (0.08)

Oxylene −0.95 (0.10) 0.93 (0.14) 0.35 (0.19) 0.02 (0.07)

PM2.5 2.31 (0.12) 0.19 (0.21) 0.90 (0.25) 0.16 (0.14)
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behaviors. At last, State 2 is the one with the best air conditions. Low values for
both primary and secondary pollutants are observed. Columns three and four of
the table indicate the estimated factor loadings for each state, that is, the condi-
tional correlation between each variable and the factor. Furthermore, factors flex-
ibly accommodate different correlation structures within states. Consequently, the
interpretation of each factor is state-dependent, which is an additional advantage
of our approach. By focusing on the loadings that are significant at a 95% level, the
first factor is positively associated with nitrogen dioxide (NO2) and aromatic com-
pounds (Toluene, Ethylbenzene and Oxylene) in State 1. These pollutants form
mostly in cases of incomplete combustion, occurring when fuels are burned at
high temperatures. In urban areas, incomplete combustion is typically associated
with transportation vehicles and heating devices. Conditionally on State 1, Factor 2
is positively associated with harmful secondary air pollutants, such as particulate
matter in both fine (PM2.5) and coarse form (PM10), which are mainly produced
when precursor gases (captured by Factor 1) condense in the atmosphere. A similar
factorial interpretation holds under State 3, where Factors 1 and 2 are positively as-
sociated with primary and secondary pollutants, respectively. However, in State 1
the second factor is negatively associated with Ozone, while this correlation is pos-
itive in State 3. This pattern can be expected because the low temperature levels
in winter and autumn do not allow for the formation of this secondary pollutant,
which is instead typically produced during summer. In State 2, Factor 1 is pos-
itively correlated with carbon monoxide (CO) and Factor 2 with some aromatic
compounds, hence capturing a specific pattern of pollution emissions that occur
during spring.

The communality of each variable for each state can be obtained as the com-
plement of estimated residual variance (last column of Table 4). It indicates the
proportion of variability captured by the factorial space in each state. The hetero-
geneity of these communalities across states (Figure 10) reflects a data correlation
structure that significantly varies with the states. For State 1 and 3, high correlation
values allow most of the data variability to be represented in a two-dimensional
factorial space. However, in State 2 lower correlations are responsible for a larger
information loss due to the dimensional reduction. These results are confirmed by
Table 5, which displays the proportion of total data variability explained by each

FIG. 10. Communalities. Box plots of the communalities for each state.
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TABLE 5
Proportion of total variance associated with each factor

Residual
State Factor 1 Factor 2 variance

1 0.47 0.33 0.20
2 0.39 0.24 0.37
3 0.41 0.27 0.32

factor, thus providing a measure of the importance of this factor in determining the
variability of the data for each state.

6. Discussion. The assessment of pollution exposure is not only complicated
by the complex structure of cross-correlations between multiple pollutants, but
also by the nonstationary evolution of these correlations in time. In this paper we
propose to assess pollution exposure via a dynamic method of dimension reduc-
tion, the core of which consists in the extension of mixtures of factor analyzers to a
temporal setting. More specifically, we assume that the joint distribution of a mul-
tivariate time series of pollutant concentrations can be approximated by a dynamic
mixture of lower-dimensional Gaussian densities in the factor space, and that the
mixture parameters evolve according to a latent nonhomogeneous Markov chain.

Taking a factor analysis approach for dimensionality reduction has advantages,
but limitations as well. On the one hand, the requirement of multivariate nor-
mality presents a major limitation. In our case study, this issue was successfully
addressed by taking the logarithm of the observed concentrations. However, dif-
ferent applications may well require less obvious transformations. On the other
hand, the linear structure of factor analyzers simplifies the interpretation of the
low-dimensional Gaussian densities as regimes of air quality. The factor loadings
indicate which pollutants mainly contribute to each regime, while the residual vari-
ances describe the quality of the a dimensionality reduction within each regime.
Furthermore, a factor analysis approach provides a simple framework for param-
eter constraints, which can be specified via structured covariance matrices. From
a practical viewpoint, these different structures are not only important for tuning
the flexibility of dimensionality reduction. They also allow the model to be fitted
in high-dimensional settings because the number of covariance parameters is lin-
ear in data dimensionality. Therefore, our approach is potentially well suited to
the analysis of high-dimensional data. While our application is motivated by ques-
tions arising from ecological analyses, it can be easily adapted to a wide range of
real-world cases (e.g., financial time series).

We use a nonhomogeneous Markov chain to capture time-varying interactions
between pollution and weather conditions, while accounting for temporal depen-
dence simultaneously. In our case study, this model adequately represented the
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alternating periods of flat stretches and sudden bursts of pollution data. However,
other case studies might require more complex models that relax the Markovian
assumption, which results in a geometric distribution of the dwell times as implicit
consequence. This limitation could, for example, be overcome by considering a
hidden semi-Markov chain, which allows for more general dwell time distribu-
tions.

We propose an algorithm that allows for the estimation of models considered in
a stable manner, a direct consequence of assuming constraints on the covariance
structure. The proposed algorithm bases on the AECM algorithm, introducing a
further estimation step to estimate the effect of covariate on transitions between
hidden states. The resulting method is a valid alternative to the full maximum like-
lihood approach, which is typically based on the AECM algorithm only when the
latter becomes difficult to use due to the large number of response variables and
latent states. The further step introduced in the estimation process modifies the al-
gorithm in a suitable manner in order to obtain more precise estimates of the latent
parameters. This last step is iterated until convergence, while the estimates of the
conditional distributions are kept fixed. An aspect that seems worth investigating
in the future might be the dependence of the algorithm on “good” initial values, that
is, values leading to a convergence to the global maximum of the log-likelihood.
While carrying out additional simulation runs, we noticed that the algorithm seems
robust to poor initial values, but it could be of interest to investigate different ini-
tialization strategies to speed up the convergence of the algorithm.

We assumed that the number of factors is constant across latent states. This sim-
plifies model selection procedures on the one hand, but also imposes limitations in
terms of model flexibility on the other hand. An alternative could be a model spec-
ification allowing for state-varying numbers of factors. Such an approach does,
however, not necessarily guarantee a simple interpretation of the results and is cer-
tainly more demanding from a computational viewpoint than our model. Although
not explicitly shown, we noted that a model with state-varying number of factors
may be implemented by extending our algorithm, taking into consideration few
(relevant) adjustments.

Our approach could be further extended to directly deal and identify atypical
observations (outliers, spurious points, or noise), which may affect the parameter
estimates. However, despite the wide literature on robust estimation of mixture
models, the development of robust approaches in a HMM framework is still in its
infancy, and algorithms related to possible model extensions in this direction could
be even more cumbersome.

Lastly, the assessment of pollution in this paper is based on the analysis of a
multivariate time series. This approach is sensible in small urban areas, such as
the one considered in our case study. However, the spatial dimension of pollution
cannot be ignored when the study involves larger areas. In principle, an extension
of our approach to the spatial setting is possible by considering mixtures of fac-
tor analyzers with parameters that vary across space according to a latent Markov
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random field, hence obtaining a hidden Markov random field. Markov random
fields, also known as Gibbs fields, are spatial multinomial processes that extend
the Markov property to the spatial setting and naturally provide the spatial coun-
terpart of Markov chains. However, the distribution of a Markov field is typically
only known up to a computationally intractable normalizing constant, which com-
plicates the estimation step. Further research is therefore needed to extend our
approach to the spatial setting.
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