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Latent class models are widely used to identify unobserved subgroups
(i.e., latent classes) based upon one or more manifest variables. The prob-
ability of belonging to each subgroup is typically modeled as a function of
a set of measured covariates. In this paper, we extend existing latent class
models to incorporate matrix covariates. This research is motivated by a ran-
domized placebo-controlled depression clinical trial. One study goal is to
identify a subgroup of subjects who experience symptoms improvement early
on during antidepressant treatment, which is considered to be an indication
of a placebo rather than a true pharmacological response. We want to relate
the likelihood of belonging to this subgroup of early responders to baseline
electroencephalography (EEG) measurement that takes the form of a ma-
trix. The proposed method is built upon a low-rank Candecomp/Parafac (CP)
decomposition of the target coefficient matrix through low-dimensional la-
tent variables, which effectively reduces the model dimensionality. We adopt
a Bayesian hierarchical modeling approach to estimate the latent variables,
which allows a flexible way to incorporate prior knowledge about covariate
effect heterogeneity and offers a data-driven method of regularization. Simu-
lation studies suggest that the proposed method is robust against potentially
misspecified rank in the CP decomposition. With the motivating example we
show how the proposed method can be applied to extract valuable information
from baseline EEG measurements that explains the likelihood of belonging
to the early responder subgroup, helping to identify placebo responders and
suggesting new targets for the study of placebo response.

1. Introduction. Placebo responses to antidepressant treatment (also known
as nonspecific response, that is, an improvement in symptoms that is not due to
the effect of the active chemicals in the drug) is highly prevalent. Patients who
have responded to such nonspecific aspects of the treatment are called placebo
responders. Clearly, there could be placebo responders among both placebo and
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drug treated patients. For example, it is widely accepted that antidepressants from
the class of the selective serotonin reuptake inhibitors (SSRIs) do not begin to
exert their effect until at least two weeks of treatment, during which time serotonin
levels can accumulate in the brain and exert a therapeutic effect [e.g., Quitkin et al.
(1991); Stewart et al. (1998); Sonawalla and Rosenbaum (2002)]. Therefore, an
early improvement experienced among drug treated patients is an indication of a
placebo (i.e., nonspecific) response rather than a true drug response.

Figure 1 shows a histogram of the change in the Hamilton Depression (HAM-D)
scale (baseline—week 1) for the first 96 subjects with major depressive disorder
(MDD) from an ongoing randomized placebo controlled clinical trial of sertraline.
The HAM-D is a clinical measure designed to rate severity of depression, where
higher scores indicate more severe depression; and therefore a positive change in
HAM-D (baseline—week 1) would indicate improvement in symptoms. Although
HAM-D scores are bounded and discrete (we used the 17-item scale), they are
typically modeled adequately as continuous variables [e.g., Bonate and Howard
(2011)]. The figure includes both placebo and sertraline treated patients. Patients’
levels of depression were assessed at baseline and continued to be monitored after
randomization, including at 1 week. The pattern in the distribution of the change
in HAM-D, as suggested in Figure 1, is consistent with previous findings on early

FIG. 1. Histogram of the change in HAM-D (baseline—week 1) showing the amount of improve-
ment in depression symptoms after 1 week for both drug and placebo treated patients. The solid
curve is the posterior density estimate of this distribution under the joint 2-component mixture model
specified in (1) and (2) (and the dashed and dotted curves are the estimated component densities).
The marked points on the x-axis are the posterior estimates of the subgroup means, along with the
lower and upper bounds of the corresponding 95% credible intervals.



A BAYESIAN HIERARCHICAL MODEL WITH MATRIX COVARIATES 1515

placebo response [e.g., Tarpey, Yun and Petkova (2008)], indicating that these pa-
tients may possibly cluster into two clinically distinct groups: a small proportion
of patients who experience an early improvement in symptoms (i.e., early respon-
ders), while the majority of patients are not early responders (i.e., early nonrespon-
ders), who remain unimproved or in some cases got worse during early treatment.
As discussed in Section 4, accounting for such heterogeneity in treatment response
leads to a better model fit. The solid curve in Figure 1 represents the 2-component
mixture model corresponding to the early placebo responder and nonresponder
subgroups estimated using the models specified in (1) and (2), and the dashed and
dotted curves are the corresponding component densities.

Much research has focused on the identification of placebo responders and the
discovery of patients’ characteristics that could be related to placebo response
[e.g., Joyce and Paykel (1989); Tarpey, Petkova and Ogden (2003); Elliott et al.
(2005); Muthén and Brown (2009); Petkova, Tarpey and Govindarajulu (2009);
Tarpey and Petkova (2010)]. However, the typically measured clinical phenotypes,
such as symptom severity and treatment history, have shown low predictive power
[Leuchter et al. (2002); Phillips et al. (2015)]. One goal of the motivating study
is to explore the predictive ability of baseline neuroimaging phenotypes, such as
the brain activity measured through electroencephalography (EEG), for identifica-
tion of early responders, who have improved due to nonspecific placebo effects.
Although EEG data are regarded as having relatively low spatial resolution, com-
pared to data from other imaging modalities, EEG has found extensive use in
depression studies, in part due to its noninvasive nature and cost-effectiveness.
As commented by Holsboer (2008), “Studies that investigate the use of EEG as
a tool to make predictions about whether patients will respond favourably to a
given antidepressant have a long tradition.” For example, a number of previous
studies have indicated that pretreatment EEG predicts response to active antide-
pressant treatment [e.g., Bruder et al. (2001, 2008), Holsboer (2008), Tenke et al.
(2011), Khodayari-Rostamabad and Reilly (2010), Tenke et al. (2011), Mumtaz
et al. (2015), Patel, Khalaf and Aizenstein (2016), Wade and Iosifescu (2016)].
However, the capability of EEG in differentiating patients who may have an early
response due to the nonspecific placebo effect is unknown [Wade and Iosifescu
(2016)]. Such knowledge is useful in clinical practices as it could guide clinicians
in deciding which patients should receive an antidepressant and which are likely
to improve without an active drug. Also, it could potentially lead to improvements
and new developments in precision medicine for treating MDD and allow a sharper
focus on the specific effects of an active drug.

This problem can be naturally formulated as a latent class model [e.g.,
Lazarsfeld and Henry (1968); MacCutcheon (1987); Clogg (1995); Collins and
Lanza (2013)], which is often referred to as a mixture of experts model in the
machine learning literature [e.g., Jacobs et al. (1991); Jordan and Jacobs (1994);
Gormley and Murphy (2011); White and Murphy (2016)]. Specifically, a mixture
distribution is postulated for the observed change in HAM-D scores to classify
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subjects into two subgroups corresponding to two unobserved latent classes: early
responders and nonresponders. Additionally, the latent class model can be used for
prediction of the probability of being in the early responder subgroup as a function
of the covariates of interest, including baseline EEG measurements. Latent class
models and their extensions have been successfully used in various applications
to accommodate heterogeneity in the outcome and to simultaneously characterize
the latent class memberships through its association with explanatory variables
[e.g., Bandeen-Roche et al. (1997); Muthén and Shedden (1999); Elliott (2007);
Muthén and Brown (2009)]. In a more recent example, Shen and He (2015) used
a logistic-normal mixture model to identify a subgroup of patients who benefited
from an enhanced treatment effect in a randomized clinical trial and related base-
line covariates of interest to the probability of being in this subgroup.

In our motivating dataset, each subject’s EEG data takes the form of a 14 × 45
matrix. This EEG data matrix contains the current source density (CSD) amplitude
spectrum values µV/m2) [Nunez and Srinivasan (2006)] at a total of 14 electrodes
located in the brain’s posterior (occipital and parietal) regions, crossed with 45
frequency ranges within the theta (4–7 Hz) and alpha (7–15 Hz) frequency bands
(leading to a total of 45 frequencies, given a 0.25 Hz frequency resolution). The
CSD measures of EEG are the widely preferred methods for sharpening the spa-
tial resolution of EEG data and thus improving interpretability [e.g., Tenke et al.
(2011) and Kamarajan et al. (2015)]. The CSD measures at the 14 posterior brain
region electrodes over the theta/alpha frequency bands have been previously re-
ported to be related to antidepressant response [Bruder et al. (2001, 2008) and
Tenke et al. (2011)] and hypothesized by the investigators in this study to be ca-
pable of differentiating patients who may have an early treatment response due to
nonspecific placebo effects. However, common practice in the EEG literature is
to use low-dimensional EEG summaries, such as the mean over a small number
of frequency bands. This practice potentially leads to an important loss of infor-
mation. Instead, we propose to directly model the matrix-valued EEG data as pre-
dictors. To effectively exploit the information embedded in these EEG measures
that relates to the subgroup membership, we consider a Bayesian hierarchical ap-
proach that utilizes the powerful Candecomp/Parafac (CP) decomposition [Kolda
and Bader (2009)]. In particular, a CP decomposition imposes a special low-rank
structure on the target regression coefficient matrix that explicitly captures the bi-
linear row and column effects of the matrix covariate, and greatly reduces model
dimensionality. In the case of EEG data, different electrodes and different frequen-
cies could contribute to both the variability in the EEG signals and their effects on
the likelihood for belonging to the early responder group; CP decomposition of
these signals models the bilinear two-way interaction effects between electrodes
and frequencies.

Recent related work that also explores low-rank CP decomposition in regression
problems with multidimensional covariates includes Hung and Wang (2013) and
Zhou, Li and Zhu (2013). Specifically, Hung and Wang (2013) considered logistic
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regression for matrix covariates with the rank in CP decomposition fixed at one;
more generally, Zhou, Li and Zhu (2013) proposed a new class of generalized
linear models (GLMs) for array covariates of arbitrary order. Both papers focused
on penalized maximum likelihood estimation methods. In contrast, we adopt a
hierarchical approach in formulating the CP decomposition and employ Bayesian
methods for parameter estimation. Our approach is new and is characterized by the
following novel features:

1. It allows for the incorporation of prior knowledge on covariate effect hetero-
geneity by using postulated prior distributions on the latent variables associated
with the electrodes and the frequencies.

2. It provides a method of regularization, with the amount of shrinkage being
determined in a data-driven fashion.

3. The credible intervals for all the elements in the resulting regression coef-
ficient matrix through CP decomposition can be obtained straightforwardly as a
natural consequence of applying Bayesian methods; construction of such confi-
dence intervals are not discussed in Hung and Wang (2013) and Zhou, Li and Zhu
(2013).

The remainder of the paper is organized as follows. Section 2 presents the pro-
posed hierarchical models, the Bayesian method for estimation and the choice of
rank in the CP decomposition. The performances of the proposed method are eval-
uated through two simulation studies in Section 3 when the rank is correctly as-
sumed or misspecified. In Section 4, we apply the proposed method to our motivat-
ing study to explore the association between the baseline characteristics, including
matrix EEG measurements and the likelihood of being in an early responder sub-
group. We conclude with a discussion in Section 5.

2. The hierarchical Bayesian modeling and estimation. In this section, we
present the model for the observed clinical outcome and baseline EEG measure-
ments. First, we assume a 2-mixture latent class model to reflect the widely held
theory in psychiatry that there will be early responders and nonresponders to an-
tidepressant treatment. Then the binary subgroup indicators are modeled via a hi-
erarchical probit model as a function of the baseline EEG measurements and other
covariates of interest. We choose a probit link, as it is frequently used in practice
and can lead to closed-form full conditional posterior distributions in the Gibbs
sampler (discussed in Section 2.5). For more general link functions, please refer to
Kim, Chen and Dey (2008).

2.1. Model for the observed outcome. For each subject i = 1, . . . , n, let yi de-
note the observed clinical outcome, where higher yi values indicate greater clinical
improvement. We consider the following model for yi :

(1) yi = η0 + η1γi + εi, εi
i.i.d.∼ N

(
0, σ 2)

,
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where γi is an indicator variable with γi = 1 indicating an early responder and
γi = 0 indicating not an early responder who does not demonstrate nonspecific
effects. We constrain η0 + η1 > 0 so that the early responder subgroup consists of
subjects who experience improved symptoms and hence positive clinical outcome
values. As discussed in the Introduction, because early improvement of depressive
symptoms within one week of treatment is believed to be a nonspecific placebo
response rather than due to medication effect [e.g., Quitkin et al. (1991); Stewart
et al. (1998); Sonawalla and Rosenbaum (2002)], we do not include a treatment
indicator variable in model (1).

2.2. Model for the latent class indicator with matrix covariates. For given
positive integers p and q , Rp×q denotes the space of all matrices of dimension
p × q . For each subject i, let xi ∈ R

p×q denote the matrix covariate and zi is a
vector that contains all scalar covariates for subject i. To relate the covariates xi

and zi to the likelihood of being an early responder, that is, γi = 1, we consider
the following probit model for the latent class indicator:

(2) �−1[
Pr{γi = 1}] = θ�zi + 〈�,xi〉,

where �(·) denotes the cumulative distribution function of a standard normal dis-
tribution, � ∈ R

p×q denotes the target coefficient matrix for xi , and their inner
product is defined as 〈�,xi〉 = vec(�)� vec(xi ). Instead of focusing on estimat-
ing the entire matrix �, we assume a low-dimensional structure on � through
CP decomposition [Kolda and Bader (2009)]. Specifically, we represent the tar-
get coefficient matrix � by a sum of R outer products of two nonzero column
vectors such that R < min(p, q); that is, we can express � = ∑R

r=1 αrβ
�
r , where

αr = (α1r , . . . , αpr)
� ∈ R

p and βr = (β1r , . . . , βqr)
� ∈R

q , r = 1, . . . ,R. Further,
letting A = [α1, . . . ,αR] ∈ R

p×R and B = [β1, . . . ,βR] ∈ R
q×R , we can rewrite

� = AB�. Under this setup, model (2) can be rewritten as

(3) �−1[
Pr{γi = 1}] = θ�zi + 〈

AB�,xi

〉
.

The task is to estimate the two low-dimensional matrices A and B , leading to
R(p + q) parameters, instead of the total pq matrix parameters in the uncon-
strained �. In the case of a rank-one (i.e., R = 1) CP decomposition, model (3) is
reduced to �−1[p{γi = 1}] = θ�zi + α�

1 xiβ1. In contrast to a variable selection
approach that forces some elements in � to be zero, the proposed CP decomposi-
tion approach provides regularization by imposing sparsity on the total number of
rank-one matrices to express �, leading to a low-rank approximation. Therefore,
the proposed approach could potentially outperform a simple variable selection
approach when the true effect signal in � can be well approximated by a low-rank
structure. Note that AB� = A��−1B� for any nonsingular matrix � ∈ R

R×R , A
and B are not individually identifiable and therefore lack interpretability. However,
� = AB� as a whole is identifiable, and therefore good mixing and convergence
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can be achieved for all parameters in �. We defer the discussion of the selection
of rank R in Section 2.6.

Further, we can re-express A and B with respect to their row vectors. Specif-
ically, letting α̃�

j = (αj1, . . . , αjR) denote the j th row of A, j = 1, . . . , p and

β̃
�
k = (βk1, . . . , βkR) denote the kth row of B , k = 1, . . . , q , we can rewrite

A = [α̃1, . . . , α̃p]�, B = [β̃1, . . . , β̃q]�. Then α̃j and β̃k can be interpreted as
representing the effects due to the j th row and kjth column component of the
matrix covariate xi , respectively; and the CP decomposition � = AB�, or its
(j, k)th element 	jk = 〈α̃j , β̃k〉 = ∑R

r=1 αjrβkr is equivalent to modeling the bi-
linear two-way interaction effects between the row and column components of the
matrix covariate.

Remark 2.1. Following Li, Kim and Altman (2010) and Hung and Wang (2013),
a data preprocessing step to reduce the dimensionality of the original matrix co-
variate xi can be considered before applying our proposed method. For exam-
ple, when the original matrix covariate xi can be well approximated by a lower
dimensional matrix x̂∗

i = U�xiV ∈ Rp0×q0 with p0 < p and q0 < q through
Multilinear Principal Component Analysis [Lu, Plataniotis and Venetsanopoulos
(2008)], where U = (u1, . . . ,up0) ∈ R

p×p0 and V = (v1, . . . ,vq0) ∈ R
q×q0 are

the eigenvector matrices such that UT U = Ip0×p0 and V T V = I q0×q0 , the pro-
posed method can be applied to model the lower dimensional x̂∗

i with the as-
sociated coefficient matrix �∗ represented by A∗B∗�. Finally, the desired co-
efficient matrix for the original matrix covariate xi can then be recovered from
� = UA∗B∗�V �. More detailed discussion is given in Section 3.1 in Appendix
B in the supplementary material [Jian et al. (2017)]. The intuition behind including
an MPCA step in combination with our proposed approach is similar to conducting
a principle component regression (PCR). By eliminating noisy and potentially ir-
relevant and redundant data features in the original space, the extracted MPCA fea-
tures can be highly informative but take the form of a relatively low-dimensional
matrix, and therefore some estimation efficiency gain would be expected when
considering an MPCA step before applying our proposed approach. Further, as
discussed in Section 3.1 in Appendix B in the supplementary material [Jian et al.
(2017)], an MPCA step would not artificially make the coefficient matrix follow
the assumed low rank in our proposed method. Simulations [presented in Sec-
tion 3.2 in Appendix B in the supplementary material, Jian et al. (2017)] also show
that the MPCA preprocessing step can improve the efficiency of the proposed es-
timation method, even when the original matrix predictor is not of extremely large
dimensions. However, like PCA, MPCA might not be effective at all times in prac-
tice. While there exists no one universal solution for all applications, we stress
that the utility of our proposed method for matrix covariates is not related to any
data preprocessing step, although an effective dimension reduction preprocessing
is likely to further improve efficiency.



1520 JIANG, PETKOVA, TARPEY AND OGDEN

2.3. Specification of priors. For the parameters in model (1), we impose dif-
fuse priors: η0 ∼ N(0, τ 2

0 ), η1 | η0 ∼ N(0, τ 2
0 )I(−η0,∞) with τ 2

0 = 100 and
σ 2 ∼ inverse gamma(a0, b0) with a0 = b0 = 0.01.

For the row and column effect parameters in the CP decomposition in model
(3), we consider the following hierarchical priors:

(4) α̃1, . . . , α̃p
i.i.d.∼ MVN(μα,�α); and β̃1, . . . , β̃q

i.i.d.∼ MVN(μβ,�β).

In other words, the parameters representing the row effects, that is, {α̃j }pj=1, are
assumed to come from the same underlying distribution, which allows borrowing
information across different rows when estimating any individual parameter, and
therefore provides a data-driven method of regularization. The same is applied to
the column effects, that is, {β̃k}qk=1. To complete the specification of these hierar-
chical priors, we define the following hyperpriors:

(5) μα,μβ ∼ MVN(0,�0); and �α,�β ∼ inverse Wishart(S0, s0).

For the hyperparameters in these priors, we let �0 = (9/4)I ; and we assume a
diffuse prior for �α and �β with S0 = 10I , and s0 = R + 1. In the case of a rank-
one (i.e., R = 1) CP decomposition, the parameters in (4) and (5) will be scalars;
and, accordingly, the above Normal-Wishart priors can be replaced by the Normal-
Gamma priors. Last, for the covariate effect parameters in the probit model, we
specify a prior θ ∼ N(0,V 0), where V 0 = (9/4)I . This specification, along with
�0 = (9/4)I specified above, is chosen in order to bound the probability that γi =
1 in model (2) to be away from 0 and 1, following the suggestion given by Garrett
and Zeger (2000), among many others [e.g., Elliott et al. (2005); Neelon, O’Malley
and Normand (2011); Jiang et al. (2015)]. When a training dataset prior to the
analysis of the current dataset is available, an alternative approach is to reset these
hyperparameters based upon the posterior distributions of the parameters using the
training dataset.

2.4. Hierarchical structure specification. We let φ include all parameters in
models (1) and (3), φ = (η0, η1, σ

2, θ,μα,�α,μβ,�β). The unobserved latent

variables are denoted by ν = (γ , {α̃j }pj=1, {β̃k}qk=1)
�. The complete data likeli-

hood of φ [based on the complete data (y, ν)] is given by

f (y, ν | φ) =
n∏

i=1

[
1√

2πσ
exp

{
−(yi − η0 − η1γi)

2

2σ 2

}

× {
π

I(γi=1)
i (1 − πi)

I(γi=0)}]

×
p∏

j=1

1√
(2π)R|�α|

exp
{
−1

2
(α̃j − μα)��−1

α (α̃j − μα)

}
(6)
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×
q∏

k=1

1√
(2π)R|�β |

exp
{
−1

2
(β̃j − μβ)��−1

β (β̃j − μβ)

}
,

where πi = �(θ�zi + 〈AB�,xi〉) with A = [α̃1, . . . , α̃p]� and B = [β̃1, . . . ,

β̃q]�.

2.5. Posterior computation. First, note that 〈AB�,xi〉 in the probit model (3)
can be rewritten as a linear function with respect to α̃1, . . . , α̃p or β̃1, . . . , β̃q as
follows:

(7)
〈
AB�,xi

〉 =
p∑

j=1

α̃�
j uij =

q∑
k=1

β̃
�
k vik,

where u�
ij denotes the j th row of xiB ∈ R

p×R , j = 1, . . . , p and v�
ik denotes the

kth row of x�
i A ∈ R

q×R , k = 1, . . . , q . This suggests that {α̃j }pj=1 and {β̃�
k }qk=1

can be updated iteratively in a similar fashion as in a regular regression model.
With the data augmentation algorithm of Albert and Chib (1993) for our binary
probit model, the posterior computation becomes straightforward with Gibbs sam-
pling. Specifically, we introduce a latent variable wi such that γi = I(wi > 0) and
wi ∼ N(θ�zi + 〈AB�,xi〉,1). The detailed MCMC algorithm is given in Web
Appendix A in the supplementary material [Jian et al. (2017)].

2.6. Rank selection. We follow Zhou, Li and Zhu (2013) to formulate this
task as a model selection problem. Given the hierarchical structure in our model,
we adopt a more recent model selection criteria, Watanabe–Akaike information
criterion (WAIC), as recommended by Gelman, Hwang and Vehtari (2014) for
Bayesian hierarchical models. As a generalization of AIC [Akaike (1974)], WAIC
was derived based on singular learning theory [Watanabe (2010)] as an asymp-
totically unbiased approximation to out-of-sample prediction error. Importantly,
WAIC is straightforward to compute based on posterior draws without the need
to adjust for the effective number of parameters in hierarchical models. Gelman,
Hwang and Vehtari (2014) discussed the Bayesian aspects of model selection and
concluded that while cross-validation is their preferred method, WAIC offers a
computationally convenient alternative to it. In a Bayesian setting, another com-
monly used cross-validation-based criterion to assess the model’s predictive per-
formance is the logarithm of the pseudomarginal likelihood [LPML, see Geisser
and Eddy (1979); Gelfand and Dey (1994)]. For a thorough discussion of Bayesian
predictive model assessment methods, please see Vehtari and Ojanen (2012).

WAIC is defined based on the observed data (y) likelihood, given all model pa-
rameters φ and latent variables ν, denoted by f (yi | ν,φ), and then adds a penalty
term to correct for model complexity,

WAIC = −2
n∑

i=1

log
[
Eν,φ

{
f (yi | ν,φ) | y}] + 2pWAIC,
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where, for our models, f (yi | ν,φ) = (2πσ 2)−1/2 exp{−(yi − η0 − η1γi)
2/2σ 2}.

The penalty term pWAIC is defined as

pWAIC = 2
n∑

i=1

{
log

[
Eν,φ

{
f (yi | ν,φ) | y}] − Eν,φ

{
logf (yi | ν,φ) | y}}

.

As indicated by these expressions, WAIC can be obtained from its Monte Carlo
estimate by averaging over posterior draws of ν and φ.

2.7. Prediction of future samples. It is clinically useful to obtain the probabil-
ity of being an early responder with associated prediction uncertainty for a future
subject prior to treatment. Knowing a patient’s likelihood to improve without an
active chemical drug can guide an initial treatment decision, for example, replac-
ing routine chemical drug treatment by a treatment with less severe side effects.
Specifically, the prediction can be obtained as follows. For a future sample with
baseline covariates {xnew,znew}, the posterior predictive probability of being an
early responder, that is, γ new = 1, is given by

(8)

Pnew = Pr
(
γ new = 1 | xnew,znew,y,x,z

)

=
∫

Pr
(
γ new = 1 | xnew,znew, α̃, β̃,φ

)
f (α̃, β̃,φ | y,x,z) dφ dα̃ dβ̃

=
∫

�
(
θ�znew + 〈

AB�,xnew〉)
f (α̃, β̃,φ | y,x,z) dφ dα̃ dβ̃,

where α̃, β̃ and φ are the vectorized versions of all α̃�
j , j = 1, . . . , p, all β̃

�
k ,

k = 1, . . . , q and all model parameters, respectively.

With the MCMC posterior samples θ (m), {α̃(m)
j }pj=1 and {β̃(m)

k }qk=1, m =
1, . . . ,M , conditional on the data {y,x,z}, the quantity Pnew at the mth MCMC
iteration is given by

(9) p(m)
new = �

(
θ (m)T znew + 〈

A(m)B(m)T ,xnew〉)
,

where A(m) = [α̃(m)
1 , . . . , α̃(m)

p ]� and B(m) = [β̃(m)

1 , . . . , β̃
(m)

q ]�. Then Pnew can be

estimated by M−1 ∑M
m=1 �(θ (m)T znew + 〈A(m)B(m)T ,xnew〉), and the associated

uncertainty can be quantified by the corresponding credible interval.

3. Simulations. In this section, we describe several simulation studies to eval-
uate the performance of our proposed method, focusing on two aspects: (1) esti-
mation of the coefficient matrix � and (2) prediction accuracy of the latent class
indicators for both the within and out-of samples. In our first study, we investigate
how performances may be affected by different true rank values, dimensions of
the matrix covariate and sample sizes, when the rank R is correctly assumed and
the two latent classes in the manifest model (1) are well separated. In our second
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study, we evaluate the robustness of our proposed method when the true rank of �
is equal to the assumed rank, and when it is not, under different degrees of overlap
between the two latent classes in the manifest model (1).

For all simulation scenarios (for selected p, q , R, η0 and η1), the observed data
(yi,xi ,zi ) and the latent class indicator γi , i = 1, . . . , n, are generated as follows:

1. each element in xi , {xi}j,k i.i.d.∼ uniform(−1,1), j = 1, . . . , p and k =
1, . . . , q;

2. zi = (1, zi1)
� with zi1 ∼ uniform(0,1);

3. � is generated as follows:

(a) let μα = μβ = (0, . . . ,0)� and �α = �β be diagonal with all diagonal

elements equal to 0.52; generate α̃j
i.i.d.∼ N(μα,�α), j = 1, . . . , p and β̃k

i.i.d.∼
N(μβ,�β), k = 1, . . . , q;

(b) set A = [α̃1, . . . , α̃p]� and B = [β̃1, . . . , β̃q]�, then � = AB�.

Note: when the true rank R = 1, the parameters in (a) are scalars and are generated
from the corresponding univariate Normal distributions.

4. γi is generated from model (3) given xi , zi and �, where θ = (0,0.2)�.
5. yi is generated from model (1) given γi , where η0 = 0 and σ = 0.2; the value

of η1 is varied in different scenarios.

We have followed other applied work in the Bayesian literature to simulate
S = 100 datasets corresponding to 100 draws of � for each of the simulation sce-
narios. For each generated dataset, we obtain the posterior samples of all model
parameters using the Gibbs sampling algorithm described in Section 2.5, retaining
every 10th draw from 150,000 iterations after a burn-in period of 25,000 iterations.

To assess the performance on the estimation of the coefficient matrix �, we ob-
tain the overall mean squared error (MSE) based on S simulated datasets, defined
as follows:

MSE = 1

S

S∑
s=1

{
1

pq

∥∥�̂(s) − �(s)
∥∥2
F

}
,

where ‖·‖2
F represents the Frobenius norm. �(s) is the true coefficient matrix from

the sth simulated dataset and �̂
(s)

is its posterior mean estimate.
There are many performance measures to evaluate the prediction accuracy of

binary classifications, including sensitivity, specificity, F1-score (also known as
F-score or F-measure), Matthews correlation coefficient [MCC, see Matthews
(1975)] and the area under the curve (AUC) of the receiver operating character-
istic (ROC). Each measure has its own advantages and disadvantages under dif-
ferent situations; see Powers (2011) for an extensive discussion. In this paper, we
consider the widely used AUC measure to quantify the accuracy of predicting the
binary latent class indicators. Specifically, the posterior mean AUC is obtained by
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averaging the AUC values calculated across all MCMC iterations using the ROCR
package in R [Sing et al. (2005)]. The reported AUCs are then the average pos-
terior mean AUCs across S simulated datasets. Specifically, for each simulated
dataset {y,x,z} of size n (with n varying in different simulation scenarios), we
also generate an additional validation dataset of size ñ = 50 with baseline covari-
ates {xnew,znew} to evaluate the out-of-sample predictive accuracy. The within-
sample AUC is obtained based on p(γi = 1 | y,x,z), i = 1, . . . , n; and the out-of-
sample AUC is obtained based on p(γ new

i = 1 | xnew
i ,znew

i ,y,x,z), i = 1, . . . , ñ,
which can be computed from (8) as described in Section 2.7.

3.1. Study 1. In this section, we let η1 = 1.0 in the manifest model (1) so that
the two latent classes defined by γi = 0 and γi = 1 are well separated. Under this
setup, we consider the rank R ∈ {1,2}, the dimension of the matrix covariate xi ∈
R

p×q , (p, q) ∈ {(15,15), (25,25)}, and the sample size n ∈ {200,400,600,800},
leading to a total of 16 scenarios. For each combination of rank R and dimension
(p, q), we simulate 100 sets of the coefficient matrix �, based on which we gen-
erate 100 datasets {(yi,xi,zi) : i = 1, . . . , n} for n = 200,400,600 and 800, re-
spectively; that is, the 100 simulated sets of � are common to all the 400 datasets
under 4 different sample sizes.

Figure 2(a) shows the boxplots of the root MSEs of �̂ across 100 simula-
tions for all 16 scenarios. Overall, we see that the estimation accuracy for �̂
improves when the sample size increases. The results show that, relative to esti-
mating a lower rank coefficient matrix, estimating a higher rank coefficient matrix
requires a relatively larger sample size to achieve the same estimation accuracy as
measured by the overall MSE of �̂, in comparison to the estimation of a lower
rank coefficient matrix. This is not surprising given the increase of the number
of model parameters. However, increasing the dimensions of the matrix covari-
ate from (15,15) to (25,25) results in very little deterioration in performance
for �̂, due to regularization imposed by the hierarchical modeling of the coeffi-
cient matrix. In fact, for the rank R = 1 case, the increases in the root MSE when
(p, q) = (25,25) versus (p, q) = (15,15) are only 0.046, 0.008, 0.006, 0.002 for
sample size n = 200,400,600 and 800, respectively; for the rank R = 2 case, such
increases in the root MSE are 0.041, 0.032, 0.020 and 0.012, respectively.

Next we turn our attention to evaluating the accuracy in predicting the latent
class indicator γi for both within-sample and out-of-sample. As shown in Ta-
ble 1(a), the within-sample AUC values are all 1’s for all 16 simulation scenarios,
suggesting perfect within-sample prediction, partly due to fairly high separation in
the two latent classes. The out-of-sample AUC values are all high and only slightly
smaller than their within-sample versions. This is because the out-of-sample pre-
diction is solely dependent on the matrix covariate without relying on information
from the clinical outcome and reflects how accurately the coefficient matrix can be
estimated under different scenarios. Specifically, for fixed true rank R and dimen-
sion (p, q), the out-of-sample AUC values increase as the sample size increases;
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FIG. 2. Boxplots of the root mean squared errors (MSEs) of the coefficient matrix estimate �̂

across 100 simulations from study 1 and 2, respectively.
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and for fixed sample size n and dimension (p, q), the out-of-sample AUC values
for the true rank R = 2 cases are slightly smaller than the true rank R = 1 case.
These results are consistent with the conclusions for the estimation of the ma-
trix coefficient. More notably, by assuming a larger dimension (p, q) = (25,25)

compared to dimension (p, q) = (15,15), the out-of-sample prediction accuracy is
only reduced for the scenario when true rank R = 2 and sample size n = 200; the
improved out-of-sample prediction accuracy under all other scenarios is likely due
to more information brought in by assuming a larger dimensional matrix covariate
with strong signals.

3.2. Study 2. In this section, we study the impact on the performance of our
proposed method when the true rank of � is either correctly specified or misspec-
ified and when the two latent classes in the model (1) are either overlapping by
letting η1 = 0.4 or well separated by letting η1 = 1.0. We consider two sample
sizes n ∈ {200,800}. For the matrix covariate xi ∈ R

p×q , we let (p, q) = (15,15),
and the true rank R = 3 for the associated coefficient matrix �. We simulate
100 replicates of the coefficient matrix � with R = 3 and (p, q) = (15,15),
which are used in all the simulation scenarios to generate the datasets. Next,
for each sample size n, we generate 100 replicates of {(xi,zi, γi) : i = 1, . . . , n},
and based on which, we generate 100 replicates of the clinical outcome {yi : i =
1, . . . , n} for η1 ∈ {0.4,1.0}, respectively; that is, the 100 simulated replicates of
{(�,xi ,zi , γi) : i = 1, . . . , n} are common to all the 200 datasets under 2 different
degrees of overlapping between the two latent classes. For each simulated dataset
under all 4 simulation scenarios, we fit five models assuming the rank of � being
R = 1 to 5.

Figure 2(b) summarizes the root MSEs of �̂ across 100 simulations for each
of the assumed models with varying ranks under the 4 total simulation scenarios.
When the sample size is large, the root MSE of �̂ achieves the minimum at the
true rank value 3, and slightly increases as the assumed rank is either increased
beyond or decreased below this true rank value. This U-shaped trend in these root
MSEs also suggests that our proposed hierarchical modeling approach for � is
robust to over-fitting regardless of the overlap between the latent classes. When
the sample is small, such U-shaped trend in estimating � is not as obvious, with
similar performance at the true rank value or its adjacent rank values. For either
sample size, as indicated by these boxplots in Figure 2(b), more overlapping in the
latent classes leads to slightly larger MSE of �̂, due to difficulty in separating the
two latent classes.

Since the true rank of � is generally not known in practice, we next report the
robustness of our proposed method in the case of incorrectly assuming the rank R.
Table 1(b) reports the AUC values for both the within- and out-of-samples under
the high and low degrees of latent class overlapping scenarios, respectively, for
each sample size. In general, the predictive accuracy for both within- and out-
of-samples improves if the two latent classes are less overlapping. As expected,
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TABLE 1
The mean Area Under the ROC curves (AUC) for both within- and out-of-samples across 100

simulations from study 1 and 2, respectively

(a) Study 1: the degree of overlapping between the two latent subgroups is fixed by letting η1 = 1.0;
true values for R, (p, q) and n vary under different simulation scenarios.

True rank R = 1 True rank R = 2

n = 200 n = 400 n = 600 n = 800 n = 200 n = 400 n = 600 n = 800

Within sample AUC
(p, q) = (15,15) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(p, q) = (25,25) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Out of sample AUC
(p, q) = (15,15) 0.86 0.90 0.90 0.91 0.80 0.88 0.91 0.92
(p, q) = (25,25) 0.87 0.93 0.94 0.95 0.74 0.88 0.92 0.94

(b) Study 2: the true rank R = 3, (p, q) = (15,15), and n = 200 or 800; and η1 = 0.4 and η1 = 1.0
indicate high and low degrees of overlapping between the two latent subgroups, respectively. The

models are fit with varying assumed rank values.

η1 = 0.4 η1 = 1.0

Assumed rank R = 1 R = 2 R = 3 R = 4 R = 5 R = 1 R = 2 R = 3 R = 4 R = 5

Within sample AUC
n = 200 0.90 0.89 0.87 0.84 0.80 1.00 1.00 1.00 1.00 1.00
n = 800 0.94 0.96 0.96 0.95 0.93 1.00 1.00 1.00 1.00 1.00

Out of sample AUC
n = 200 0.59 0.63 0.63 0.63 0.63 0.71 0.75 0.75 0.73 0.72
n = 800 0.80 0.84 0.84 0.81 0.79 0.82 0.88 0.88 0.86 0.84

we see an indication for a U shape in these out-of-sample AUC values by fitting
models with varying assumed ranks. However, when fitting a model with assumed
rank being close enough to the true rank, the out-of-sample AUC values suggest
little or no loss of predictive power under misspecified rank. In fact, under both
simulation scenarios, assuming one rank lower than the true rank leads to the same
out-of-sample AUC value as that by assuming the true rank. These investigations
suggest that the hierarchical modeling approach for � proposed here provides
good robustness against misspecified rank regardless of how much the two latent
classes overlap.

4. Application to identify early responder subgroup using EEG data. In
this section, we present an analysis of the data introduced in Section 1. One study
goal is to determine to what extent the resting state EEG alpha and theta power
(i.e., indicating neural activity in the frequency ranges for alpha and theta waves)
in the posterior region of the brain under a closed eyes condition could help iden-
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tify a potential early responder subgroup (which is believed to consist of subjects
susceptible to nonspecific placebo effects), given the outcome collected early in
the course of treatment. Specifically, we use the model defined in (1) to describe
the bimodal pattern in the change in HAM-D (baseline—week 1) (Figure 1), cor-
responding to two subgroups, defined by whether or not subjects demonstrate an
early response, and the hierarchical model defined in (2) to relate the EEG mea-
surements to the likelihood of responding early.

For the 96 study subjects we let yi denote the change in HAM-D (baseline—
week 1), where a positive change indicates diminished symptom severity; and
we let x∗

i denote the EEG measurement that takes the form of a 14 × 45 ma-
trix. Before applying our proposed method, we performed the MPCA step as dis-
cussed in Section 2 to our EEG matrix covariate. This step plays an important
role in removing some noisy and irrelevant information in our original EEG data,
while attempts to directly apply the proposed method to the original EEG data re-
sulted in an unstable estimate of the coefficient matrix. Specifically, the MPCA
procedure seeks to find two eigenvector matrices U = (u1, . . . ,up0) ∈ R

p×p0

and V = (v1, . . . ,vq0) ∈ R
q×q0 , respectively, such that they minimize the Frobe-

nius norm loss n−1 ∑n
i ‖x∗

i − x̂∗
i ‖2

F between x∗
i and its lower-dimensional rep-

resentation x̂∗
i = U�x∗

i V ∈ R
p0×q0 , where p0 < p and q0 < q . The explained

proportion of total variation in x∗
i represented by x̂∗

i is defined by
∑n

i=1 ‖x̂∗
i −

x̄∗‖2
F /

∑n
i=1 ‖x∗

i − x̄∗‖2
F , where x̄∗ = n−1 ∑n

i=1 x∗
i . In our analysis, the MPCA

dimensions (p0, q0) were chosen via WAIC; see Table 2 for the illustration. When
applying the MPCA method, we use the rTensor package in R software that imple-
ments the general algorithm by Lu, Plataniotis and Venetsanopoulos (2008) and
consider p0 ∈ {2, . . . ,10} and q0 ∈ {2, . . . ,6}. The resulting MPCA features (tak-
ing the form of a p0 × q0 matrix) can be highly correlated, and the range of their

TABLE 2
WAIC from fitting different models for the prediction of the early responder subgroup using EEG
data under different choices of MPCA dimensions in both row (p0) and column (q0) directions

Rank R = 1 Rank R = 2

p0/q0 2 3 4 5 6 2 3 4 5 6

2 603.4 605.5 601.3 600.2 601.9 604.4 604.6 601.0 601.3 599.1
3 602.8 601.2 594.2 593.9 594.8 604.0 599.2 596.2 596.5 603.8
4 602.7 603.9 583.7 590.2 595.1 604.1 601.7 595.1 596.0 602.0
5 601.1 602.4 591.6 598.0 598.1 603.5 602.3 598.5 597.8 598.0
6 598.1 600.1 577.3 577.9 582.1 600.6 601.7 589.9 588.6 588.7
7 582.9 591.1 571.9 578.7 578.7 599.2 595.4 588.1 593.9 596.2
8 584.7 589.4 573.3 574.7 575.0 599.3 597.3 590.1 589.8 594.0
9 587.1 594.4 568.8 573.1 573.5 602.3 600.6 591.8 594.4 592.8

10 588.4 594.2 571.1 574.1 583.8 600.5 600.0 590.6 588.8 590.3
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values is over different orders of magnitude, which may result in slow or no con-
vergence in the MCMC algorithm. To prevent this from happening, we apply the
common trick in applied regression by standardizing all p0q0 elements in x̂∗

i to
have mean 0 and standard deviation 1. The resulting matrix covariate, denoted by
xi , from this step is used in model (3). To emphasize the importance of regular-
ization provided by our proposed method in our case, Web Figure 3 presents the
trace plots of four random selected coefficients in our final model when fitting the
total p0q0 MPCA features directly without imposing any assumption, where con-
vergence is not achieved. In contrast, as discussed below, applying our proposed
method on the resulting MPCA extracted matrix covariate led to stable results and
discovery of important EEG features.

We also adjust for additional baseline covariates in model (2) by letting z1 =
gender (1 for female; 0 for male) and z2 =depression chronicity (1 for being de-
pressed for 24 months or more in the past 4 to 5 years; 0 otherwise). For each
combination of (p0, q0), we fit models assuming the rank in model (2) both set-
ting R = 1 and R = 2. For all these models considered here, we ran two MCMC
chains of 175,000 iterations to reduce Monte Carlo errors, with the initial 25,000
iterations discarded as burn-in, and retained every 10th draw to reduce autocorre-
lation. Convergence of the chains was assessed using the Gelman–Rubin statistic
R̂ [Gelman and Rubin (1992)]. The maximum value among all model parameters
was less than 1.1, indicating convergence. To provide additional evidence for con-
vergence, Web Figure 1 in the Web Appendix B in the supplementary material
[Jian et al. (2017)] included the trace plots for 4 randomly selected coefficients in
� from our real data analysis.

Table 2 presents the WAIC statistics for these models, where all these 2-
component mixture models fit the data much better than a 1-component model
(WAIC = 845.6 for 1 component). In particular, WAIC suggests that the model
with (p0, q0) = (9,4), which extracted 98.6% of the major variation in our orig-
inal EEG measurements, and rank R = 1 offers the best balance between good-
ness of fit and model complexity. Under this best fitting model, we classify sub-
jects into one of the two subgroups based on the maximum posterior estimate
of p(γi | y,x,z). Specifically, 16 subjects (17%) were classified to the early re-
sponder subgroup (the likely cause of the positive skewness seen in Figure 1),
with the change in HAM-D (baseline—week1) centering at 9.10 (95% CI: 5.44,
12.37), while the other 80 subjects (83%) were assigned to the other subgroup,
with the change in HAM-D (baseline—week1) centering at 0.96 (95% CI: −0.18,
2.08). Note that this CI contains zero, which is consistent with what one would
expect for subjects without a placebo response before a drug response begins to
take effect. Figure 3(a) shows the posterior density of the probability for subjects
assigned to these two subgroups, respectively. The clear separation in these two
distributions indicates that our model is effective in identifying these two postu-
lated subgroups. Further, a chi-squared test indicates no significant difference in
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FIG. 3. Results of using EEG data to predict the early responder subgroup. Left: posterior density
estimate of the probability of being in the early responder subgroup; Right: posterior density estimate
of 〈�,xi〉 for the early responder and nonresponder subgroups, respectively.

the proportion of early responders for the placebo arm and drug arm, with the pro-
portion being 9/50 = 18% and 7/46 = 15%, respectively. This provides support-
ing evidence that any improvement seen at week 1 is more likely due to nonspecific
placebo effects and that a specific drug effect is not evident by week 1.

In terms of predicting an early responder, our results suggest that chronically
depressed patients are less likely to be early responders, with θ̂2 = −1.65 (95%
CI: −3.59, −0.12), while gender is not a contributing factor, with θ̂1 = −1.34
(95% CI: −3.14, 0.02). Figure 3(b) shows the posterior density of 〈�,xi〉 for sub-
jects assigned to the early responder and nonresponder subgroups, respectively. It
clearly illustrates the usefulness of EEG measures in distinguishing the two sub-
groups.

Further, by mapping the coefficient matrix estimate �̂ ∈ R
9×4 on the reduced

feature space obtained by MPCA to the original space, we obtain the coefficient
estimate at each combination of electrode locations crossed with frequency ranges.
For the posterior estimates of 	 on the reduced MPCA feature space, please refer
to Web Table 1 in the supplementary material [Jian et al. (2017)]. As shown in Fig-
ure 4, the heat maps for the coefficient matrix look very similar for ranks R = 1
and R = 2 models, which is consistent with our findings in the simulation stud-
ies. However, most of the estimates have much wider credible intervals (and hence
are no longer statistically significant) under the assumption of R = 2. Based on
our best fitting R = 1 model, the EEG CSD levels at the electrode locations “P7,”
“P9,” “PO4” and “POZ” through most theta/alpha frequency ranges are found to
play significantly important roles in predicting the membership in the early re-
sponder subgroup. This finding is consistent with the scientific hypothesis that
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FIG. 4. Heat map of the estimated coefficient matrix for the prediction of the early responder
subgroup using EEG data (* indicates significance at the 0.05 level): (a) rank R = 1 model; (b) rank
R = 2 model.

EEG alpha and theta power recorded in the brain posterior region might be useful
to identify potential early responders for patients with MDD, and largely agrees
with existing literature on EEG theta/alpha powers as predictors to antidepressant
response [Wade and Iosifescu (2016)]. Additionally, we used a Bayes factor to
compare a model with and without the EEG measurements. Using the approach of
Chib (1995), the log marginal likelihood for the model using EEG measurements is
estimated to be −124 compared to −281 in a model with no EEG measurements,
producing a large Bayes factor, exp(157). This provides further evidence of the
usefulness of EEG measurements for differentiating between early responders and
early nonresponders. In contrast to most common practices in the EEG literature,
where the focus is on a univariate (i.e., scalar) predictor equal to the mean measure
across one or a small subset of frequency bands, our approach can directly accom-
modate matrix-valued EEG data. In particular, our analysis found that theta/alpha
power at “POZ” and “P7” have an inverse association with nonspecific effect in
comparison to the “PO4” and “P7” locations, further suggesting that the predic-
tive values within different frequency ranges could be different. In fact, Ciarleglio
et al. (2015) reported that EEG CSD measures at different frequency ranges within
the theta/alpha band also predict differential response to treatment with sertraline
versus placebo.

5. Discussion. In this paper, we have considered a regression extension of
existing latent class models to incorporate matrix covariates as predictors of the
latent subgroup membership. This research is motivated by a placebo controlled
clinical trial to investigate whether the baseline matrix-valued EEG alpha and theta
powers are associated with an early placebo responder subgroup inferred from the
change in HAM-D scores (baseline—week1).

Our approach utilizes the powerful low-rank CP decomposition to achieve a
bilinear representation of the target coefficient matrix. Specifically, such a CP ma-
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trix decomposition factorizes the coefficient matrix into row and column compo-
nents and assumes a multiplicative form among them. For parameter estimation,
we adopt a Bayesian hierarchical modeling approach that provides both a flexible
way to incorporate a priori assumptions and a data-driven method of regulariza-
tion. Further, the simulation studies show that the proposed hierarchical approach
is robust against rank misspecification in the sense that, although the estimation
of � generally achieves the minimum MSE when the true rank is known, our ap-
proach leads to very stable estimates of � across different choices of the assumed
rank.

Using the proposed approach for our motivating dataset, we are able to identify
specific posterior regions at certain alpha and theta frequency ranges in the EEG
CSD levels that are predictive of being in the early placebo responder subgroup.
This finding raises hope for using EEG measures to differentiate potential early
responders from nonresponders in clinical practice to further guide the selection
of effective treatment for patients with MDD. Although the proposed approach
was motivated by modeling our matrix-valued EEG data (with electrode loca-
tion and frequency range as its two dimensions) within the framework of latent
class models, it can be broadly applied to any regression problem with covariates
taking a natural matrix form. Also, the proposed approach readily extends to ac-
commodate covariates that are multi-dimensional arrays in general regression set-
tings. To extend the proposed low-rank CP decomposition method by introducing
cross-frequencies and cross-electrodes interactions would be interesting. For ex-
ample, the EEG data could be also represented by three-way electrode-electrode-
frequency arrays (also order-3 tensor) by mapping the scalp electrode locations to
rectangular grids, and then one could study the two-way electrode-electrode inter-
actions along with their interactions with different frequencies. This is a potentially
promising direction for future extensions of our research.

We view our work as a first step toward a fully Bayesian treatment (i.e., also
modeling the rank) of the CP decomposition problems in regression settings. Un-
der the Bayesian hierarchical framework proposed in this paper, it is straightfor-
ward to infer the rank by further considering a prior for the rank R, for example,
a uniform prior with an upper bound. In this example, however, under the rank
R = 2 model, the credible intervals of the coefficients’ estimates are much wider
[resulting in the identification of only a very small number of statistically signif-
icant features; see Figure 4(b)]. This suggests that, at least in some cases, setting
the rank R as a parameter and estimating it could diminish the ability to find im-
portant EEG features, as the resulting estimates might need to be averaged across
models with several different ranks. Future work should investigate the rank esti-
mation thoroughly, where the implementation might not be trivial to move between
models with parameter spaces of different dimensions (corresponding to different
ranks). The improvement by averaging over models with different ranks might not
be always dramatic, given that our proposed method is not particularly sensitive to
the choice of the rank as seen in our simulation studies.
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Immediate extensions of the proposed approach could be to consider more struc-
tured hierarchical priors for smoothness regularization. For instance, for the EEG
data example without the MPCA preprocessing step, we could instead adopt a class
of conditionally autoregressive (CAR) priors [Besag and Kooperberg (1995)] for
α̃j to reflect the spatial similarities among EEG signals at nearby electrode loca-
tions. Additionally, sparsity-inducing priors could be helpful to applications in-
volving ultrahigh dimensional neuroimaging phenotypes that are in the form of
multidimensional arrays.

SUPPLEMENTARY MATERIAL

Supplement to “Latent class modeling using matrix covariates with appli-
cation to identifying early placebo responders based on EEG signals” (DOI:
10.1214/17-AOAS1044SUPP; .pdf). Web Appendices A and B referenced in Sec-
tions 2.5 and 4 are available with this paper at the journal website.
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