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A NOVEL AND EFFICIENT ALGORITHM FOR DE NOVO
DISCOVERY OF MUTATED DRIVER PATHWAYS IN CANCER1

BY BINGHUI LIU∗,†, CHONG WU†,2, XIAOTONG SHEN† AND WEI PAN†

Northeast Normal University∗ and University of Minnesota†

Next-generation sequencing studies on cancer somatic mutations have
discovered that driver mutations tend to appear in most tumor samples, but
they barely overlap in any single tumor sample, presumably because a single
driver mutation can perturb the whole pathway. Based on the corresponding
new concepts of coverage and mutual exclusivity, new methods can be de-
signed for de novo discovery of mutated driver pathways in cancer. Since
the computational problem is a combinatorial optimization with an objec-
tive function involving a discontinuous indicator function in high dimension,
many existing optimization algorithms, such as a brute force enumeration,
gradient descent and Newton’s methods, are practically infeasible or directly
inapplicable. We develop a new algorithm based on a novel formulation of
the problem as nonconvex programming and nonconvex regularization. The
method is computationally more efficient, effective and scalable than exist-
ing Monte Carlo searching and several other algorithms, which have been
applied to The Cancer Genome Atlas (TCGA) project. We also extend the
new method for integrative analysis of both mutation and gene expression
data. We demonstrate the promising performance of the new methods with
applications to three cancer datasets to discover de novo mutated driver path-
ways.

1. Introduction. It is known that cancer is characterized by numerous so-
matic mutations, of which only a subset, named “driver” mutations, contribute
to tumor growth and progression. With next-generation whole-genome or whole-
exome sequencing, somatic mutations are measured in large numbers of cancer
samples [Mardis and Wilson (2009), Meyerson, Gabriel and Getz (2010)]. To im-
prove understanding and treatment of cancers, it is critical to distinguish driver
mutations from neutral “passenger” mutations. A standard approach to predicting
driver mutations is to identify recurrent mutations in cancer patients [Beroukhim
et al. (2007), Getz et al. (2007)], which has its drawback in its inability to cap-
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ture mutational heterogeneity of cancer genomes [Ding et al. (2008), Jones et al.
(2008)]. An emerging discovery is that in a given sample driver mutations typi-
cally target one, but not all, of several genes in cellular signaling and regulatory
pathways [Vogelstein and Kinzler (2004)]. Hence the research has shifted from the
gene level to pathway level [Boca et al. (2010), Efroni (2011)]. Recent studies indi-
cated that mutations arising in driver pathways often cover a majority of samples,
but, importantly, for a single sample only a single or few mutations appear because
a single mutation is capable of perturbing the whole pathway; the latter concept is
the so-called mutual exclusivity. By using mutual exclusivity, new pathway-based
methods are developed to identify de novo driver mutations and pathways [Ciriello
et al. (2012), Masica and Karchin (2011), Miller et al. (2011)]. For example, Miller
et al. (2011) proposed a method to find functional sets of mutations by using pat-
terns of recurrent and mutually exclusive aberrations; Ciriello et al. (2012) not only
used the mutual exclusivity pattern, but also incorporated a gene functional net-
work constructed based on prior knowledge. Recently, Vandin, Upfal and Raphael
(2012) introduced a novel scoring function combining the two concepts, coverage
and mutual exclusivity, to identify mutated driver pathways through optimizing
this scoring function, which has been used in some large-scale cancer sequencing
studies. It is solved by stochastic search methods: a greedy algorithm and a Markov
chain Monte Carlo method. Other proposals based on binary linear programming,
genetic search algorithm and integer linear programming have appeared [Leiserson
et al. (2013), Zhao et al. (2012)], all of which are still relatively slow, especially
for large-scale problems. To address these issues, we reformulate the problem of
identifying mutated driver pathways as a statistical problem of subset identifica-
tion to minimize a new cost function, what we call minimum cost subset selection
(MCSS). A key component is a novel approximation to a combinatorial problem
through regularization, where a discontinuous indicator function is approximated
by a continuous and nonconvex truncated L1 (TL) function [Shen, Pan and Zhu
(2012)]. Furthermore, we add a truncated L1 penalty (TLP) to the cost function
to seek a sparse solution, as well as adding a small ridge penalty to alleviate the
problem of multiple solutions. As a result, a combinatorial optimization problem
becomes a continuous but nonconvex one in the Euclidean space, which can be
efficiently solved through a nonconvex optimization technique, leading to high
computational improvement.

Another advantage of the proposed method is that it is able to find multiple mu-
tated driver pathways. An existing method to identify multiple mutated driver path-
ways is Multi-Dendrix [Leiserson et al. (2013)], in which the number of pathways
and the number of the genes in each pathway have to be specified in advance. On
the contrary, our proposed method does not need to fix such numbers beforehand.
Based on a series of randomly selected initial estimates, a series of low-cost esti-
mates of mutated driver pathways can be obtained. Moreover, the proposed method
is general so that other types of information can be incorporated in a simple way.
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For example, if a gene interaction network is available, it can be incorporated by
adding a network-based penalty to the current cost function as in Li and Li (2008);
since it is more informative to combine mutation data with other types of data
such as gene expression data [Zhang and Zhou (2014)], an integrative version can
be developed by adding other cost functions for other types of data into the current
one. As a concrete example, we propose a new method to integrate mutation data
with gene expression data.

2. Methods.

2.1. Problem. Consider mutation data with n patients and p genes repre-
sented as an n × p mutation matrix A with entry Aij = 1 if gene j is mutated
in patient i, and Aij = 0 otherwise. For gene j ∈ V = {1, . . . , p}, let �(j) = {i :
Aij = 1} be a subgroup of patients whose gene j is mutated. Moreover, given a
subset of genes B ⊆ {1, . . . , p}, let �(B) be a subgroup of patients with at least
one of the genes in B mutated, that is, �(B) = ⋃

j∈B �(j). Cancer sequencing
studies have been motivated to identify a set of mutated genes across a large num-
ber of patients, whereas only a small number of patients have mutations in more
than one gene in the set, that is, these mutations are approximately exclusive. This
amounts to finding a set B ⊆ V of genes such that (i) the coverage is high, that is,
most patients have at least one mutation in B; (ii) the genes in B are approximately
exclusive, that is, most patients have no more than one mutation in B . A mea-
sure ω(B) = ∑

j∈B |�(j)| − |�(B)| was proposed by Vandin, Upfal and Raphael
(2012), called the coverage overlap, to balance the trade-off between coverage and
exclusivity. To maximize the coverage |�(B)| and minimize the coverage overlap
ω(B) simultaneously, Vandin, Upfal and Raphael (2012) suggest to minimize

f (B) = ω(B)

n
− |�(B)|

n
= 1

n

∑
j∈B

∣∣�(j)
∣∣ − 2

n

∣∣�(B)
∣∣(2.1)

with respect to B , thus obtaining an estimate B̂ . Note that minimizing f (B) is a
nontrivial combinatorial problem, to which most existing optimization algorithms
based on the gradient descent or Newton’s algorithm cannot be directly applied.
A popular method called Dendrix is based on a Monte Carlo search algorithm
to seek an approximate solution to minimize f (B) [Vandin, Upfal and Raphael
(2012)].

2.2. New formulation. For the combinatorial problem in (2.1), a brute force
search is time-consuming and not scalable for large (n,p), while many exist-
ing algorithms like gradient descent or Newton’s method cannot be directly ap-
plied. Here we formulate it as a nonconvex minimization and examine a reg-
ularized version by imposing penalties to ensure proper solutions. Specifically,
for any β ∈ R

p , let B = B(β) = {j ∈ V : |βj | �= 0}, and we rewrite |�(B)| =
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∑n
i=1 I (

∑p
j=1 Aij I (|βj | �= 0) �= 0),

∑
j∈B |�(j)| = ∑p

j=1 I (|βj | �= 0)A·,j , A·,j =∑n
i=1 Aij and |�(j)| = A·,j for each j ∈ {1, . . . , p}. Then (2.1) becomes

f
(
B(β)

) = 1

n

p∑
j=1

I
(|βj | �= 0

)
A·,j − 2

n

n∑
i=1

I

( p∑
j=1

Aij I
(|βj | �= 0

) �= 0

)
.(2.2)

Minimizing (2.2) in β yields an estimate β̌ = (β̌1, . . . , β̌p)′, and thus an estimated
set B̌ = {j : |β̌j | �= 0}. However, due to the discontinuity with the indicator func-
tion I (·), it is difficult to minimize (2.2) directly; instead, since min(|βj |/τ1,1) →
I (|βj | �= 0) as τ1 → 0+, we propose a surrogate to minimize

S(β) = 1

n

p∑
j=1

min(βj/τ1,1)A·,j − 2

n

n∑
i=1

min

( p∑
j=1

Aijβj/τ1,1

)

(2.3)

+ λ

p∑
j=1

min(βj/τ2,1) + α

n

p∑
j=1

β2
j ,

with respect to β = (β1, . . . , βp)′ ∈ [0,+∞)p; that is, β is a vector of parameters
to be estimated; λ, α, τ1 and τ2 are nonnegative tuning parameters to be determined
via a grid search in cross-validation (as used in the later experiments); Aij ’s are
observed and known. Note that, in (2.3), the last two terms, as a TLP and a ridge
penalty, respectively, ensure sparse and proper solutions.

2.3. Computation. To solve nonconvex minimization (2.3), we employ dif-
ference convex (DC) programming by decomposing the objective function into
a difference of two convex functions, on which convex relaxation is performed
through iterative approximations of the trailing convex function through majoriza-
tion. Specifically, min( z

τ
,1) can be written as a difference of two convex functions:

min(z/τ,1) = z/τ − max(z/τ − 1,0) for any z > 0 and τ > 0. Then we obtain a
sequence of upper approximations S(m)(β) of S(β) at iteration m (up to a constant)
as follows:

S(m)(β) = β ′
(

diag(A·)I
(
β̂

(m−1) ≤ τ1
)
/nτ1 + λI

(
β̂

(m−1) ≤ τ2
)
/τ2 − 2A·

nτ1

)
(2.4)

+ 2

n

n∑
i=1

max

( p∑
j=1

Aijβj/τ1 − 1,0

)
+ α

n
β ′β,

where β ∈ [0,+∞)p , A· = (A·,1, . . . ,A·,p)′, and diag(A·) is a diagonal matrix
with elements of A· as diagonals. Now S(m)(β) is strictly convex (since the first
term is linear in β , the second is convex while the last is quadratic in β with α �= 0),
and we use some existing convex program package (CVX in Matlab), or, more effi-
ciently, the subgradient descent method (as shown in the Appendix) [Shor (1985)],
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to obtain a unique minimizer β̂
(m)

; we repeat the process until convergence to

obtain β̃ = β̂
(+∞)

.
Interestingly, one may replace the TLP in S(β) in (2.3) with the L1-penalty,

yielding β̂
L

. This, together with other randomly generated numbers, can be used

as an initial value β̂
(0)

for our method. For selection of tuning parameters, we may
consider cross-validation, as discussed later.

The following algorithm summarizes our computational method.

ALGORITHM 1. Given the parameters τ1, τ2, λ, α.

Initialization Supply an initial estimate β̂
(0)

.

Iteration At iteration m, compute β̂
(m)

by minimizing (2.4).

Stopping rule Terminate when S(β̂
(m−1)

) − S(β̂
(m)

) ≤ 0. The estimate is β̃ =
β̂

(m�−1)
, where m� is the smallest index satisfying the termination criterion.

The estimated subset is B̃ = {j ∈ {1, . . . , p} : β̃j �= 0}.
The following convergence property of Algorithm 1 has been established.

THEOREM 1. β̂
(m)

in Algorithm 1 converges in finite steps to a local mini-

mizer β̃ of S(β) in (2.3). S(β̂
(m)

) strictly decreases in m until β̂
(m) = β̂

(m−1) =
β̂

(m�−1)
for all m ≥ m�.

2.4. Initial estimate. In general, a large number of good or randomly selected
initial estimates may be used to obtain multiple solutions from which a subset of
more promising ones with smaller objective or cost function values can be selected.
Below, we describe a simple way to obtain a good initial estimate, which was
used in later simulations; we modify S(β) such that the modified version SL(β)

becomes much easier to optimize. A local condition of (2.3) can be established
based on regular subdifferentials

A·,j b(1)
j

nτ1
+ 2

n∑
i=1

b
(2)
ij

nτ1
+ λb

(3)
j

τ2
+ 2

α

n
βj = 0, j = 1, . . . , p,

where b
(1)
j ∈ [−1,1] if βj = 0, b

(1)
j = sign(βj ) if 0 < |βj | < τ1, b

(1)
j = 0 if |βj | >

τ1 and b
(1)
j = ∅ if |βj | = τ1 for j = 1, . . . , p; b

(3)
j ∈ [−1,1] if βj = 0, b

(3)
j =

sign(βj ) if 0 < |βj | < τ2, b
(1)
j = 0 if |βj | > τ2 and b

(3)
j = ∅ if |βj | = τ2 for j =

1, . . . , p. Note that b
(2)
ij is more complicated as it depends on the values of Aij ′ and

βj ′ , j ′ ∈ {1, . . . , p}, and b
(2)
ij = 0 or b

(2)
ij = −Aij or b

(2)
ij ∈ [−Aij ,0] for βj > 0.

Based on these regular subdifferentials, we develop the following lemma.
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LEMMA 1. If there exists a nonzero local minimizer β∗ of S(β) in (2.3) on
R

p , then 0 ≤ |β∗
j | ≤ τ1 for each j ∈ {1, . . . , p}.

Lemma 1 says that the set of all local minimizers of S(β) in (2.3) over [0,+∞]p
is the same as that obtained from the following cost function over [0, τ1]p:

S(β) = 1

n

p∑
j=1

βjA·,j
τ1

− 2

n

n∑
i=1

min
(∑p

j=1 Aijβj

τ1
,1

)
(2.5)

+ α

n

p∑
j=1

β2
j + λ

p∑
j=1

min
(

βj

τ2
,1

)
, β ∈ [0, τ1]p.

If we use the L1-penalty as opposed to the truncated L1-penalty in (2.5), then the
cost function becomes

SL(β) = 1

n

p∑
j=1

βjA·,j
τ1

− 2

n

n∑
i=1

min
(∑p

j=1 Aijβj

τ1
,1

)

+ α

n

p∑
j=1

β2
j + λ

p∑
j=1

βj

τ2
, β ∈ [0, τ1]p,

which is strictly convex in β ∈ [0, τ1]p , yielding a unique minimizer β̂L.

2.5. Model selection. Tuning parameters (λ, r) need to be estimated from
data, where τ2 = rτ1 (0 < r < 1), while α is fixed at a sufficiently small pos-
itive number, say α = 10−3, and τ1 is fixed at any positive value, say τ1 = 1.
Tuning of (λ, r) can be achieved through sample splitting. As a matter of fact,
the term α

n

∑p
j=1 β2

j is introduced to improve the solution for (2.4) so that the
bias caused by the ridge penalty is nearly ignorable for sufficiently small α. On
the other hand, given the ratio r , an exact value of (τ1, τ2) is unimportant. This
is because minβ∈[0,+∞)p S(β;Kτ1, r, λ,α′) = minβ ′∈[0,+∞)p S(β ′; τ1, r, λ,α′) =
minβ∈[0,+∞)p S(β; τ1, r, λ,α′) if S(β;Kτ1, r, λ,α′) = S(β ′; τ1, r, λ,α′) with
β ′ = β/K and α = α′/τ 2

1 for any K > 0. Consequently, given the ratio r , opti-
mization in terms of different choices of τ1 are equivalent. Given a n×p mutation
matrix A, a candidate set 	 ⊆ (0,+∞) of the tuning parameter λ and a candidate
set R ⊆ (0,+∞) of the tuning parameter r = τ2/τ1, we use a sample splitting
procedure to select the tuning parameters λ̂ ∈ 	 and r̂ ∈ R:

Initialization Supply a randomly selected initial estimate β̂
(0)

.
Partition Randomly partition the rows of the mutation matrix A into two parts:

training data Atr and tuning data Atu.
Training For each λ ∈ 	 and each r ∈ R, apply Algorithm 1 to the training data

Atr with the initial estimate β̂
(0)

and parameters λ and r to get the correspond-

ing estimate β̂
tr

(λ, r).
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Tuning Based on the tuning data Atu, we formulate a tuning error for each

β̂
tr

(λ, r) as

TE
(
β̂

tr
(λ, r),Atu) = 1

ntu

p∑
j=1

I
(
β̂tr (λ, r)j > 0

)
Atu·,j

− 2

ntu

ntu∑
i=1

I

( p∑
j=1

Atu
ij β̂tr (λ, r)j > 0

)
,

where ntu denotes the number of rows of Atu, that is, the patient number in the
tuning data, and Atu·,j = ∑ntu

i=1 Atu
ij . We select λ and r as

(λ̂, r̂) = arg min
(λ,r)∈	×R

TE
(
β̂

tr
(λ, r),Atu)

.

Given λ = λ̂ and r = r̂ , we apply Algorithm 1 to the original mutation matrix
A to find β̂ ∈ [0,+∞)p that minimizes S(β) in (2.3).

2.6. Integrative analysis. An advantage of the proposed algorithm is its possi-
ble extensions to include other types of genomic data, in addition to mutation data.
To this end, we modify the proposed cost function and algorithm to incorporate
other types of data such as gene expression. Let fME(B) denote the integrative
cost function, which is the sum of the original cost function f (B) and a new one
fE(B) for gene expression data:

fME(B) = f (B) + γfE(B) = 1

n

∑
j∈B

∣∣�(j)
∣∣ − 2

n

∣∣�(B)
∣∣ − γ

∑
j,k∈B,j �=k

cjk,

where cjk is the Pearson correlation coefficient of the expression profiles of genes
j and k. Note that the integrative cost function is based on the observation that the
genes in the same pathway usually collaborate with each other to execute a com-
mon function. Therefore, the expression profiles of the genes in the same pathway
usually have higher correlations than those from different pathways [Qiu et al.
(2010), Zhao et al. (2012)].

To minimize fME(B), we develop a similar algorithm as before, called
MCSS_ME, where S(β) and S(m)(β) are replaced by SME(β) and S

(m)
ME (β) re-

spectively as follows:

SME(β) = 1

n

p∑
j=1

min(βj/τ1,1)A·,j − 2

n

n∑
i=1

min

( p∑
j=1

Aijβj/τ1,1

)

− γ
∑
j,k

cjk min(βj/τ1,1)min(βk/τ1,1)

+ λ

p∑
j=1

min(βj/τ2,1) + α

n

p∑
j=1

β2
j
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and

S
(m)
ME (β) = β ′

(
diag(A·)I (β̂

(m−1) ≤ τ1)

nτ1
+ λI (β̂

(m−1) ≤ τ2)

τ2
− 2γ

Dβ̂
(m−1)

τ 2
1

− 2
A·
nτ1

− 2γ diag
(
I
(
β̂

(m−1)
> τ1

))
D

max(β̂
(m−1)

/τ1 − 1,0)

τ1

)

+ 2γC.′ diag
(
max(β/τ1 − 1,0)

)
max(β/τ1 − 1,0)

+ 2γC.′ diag(β)β/τ 2
1 + 4γ max(β/τ1 − 1,0)′Cβ/τ1

+ 2

n

∣∣max(Aβ/τ1 − 1,0)
∣∣ + α

n
β ′β,

where D = C + diag(C.), C = [cjk] (cjj = 0) and C. is the row sum vector of C.
Here we use the subgradient descent method (as shown in the Appendix) to obtain
a minimizer of S

(m)
ME (β).

To choose a suitable γ in situations with no prior information, we propose a
method to balance the contributions to the new cost function from mutation data
and from gene expression data. Specifically, we randomly select a large number
of subsets, say B1,B2, . . . ,BR , of the genes from {1,2, . . . , p} with the size of
each subset |Bj | randomly generated from {2,3, . . . , np}. Then we choose γ =
minj f (Bj )/minj fE(Bj ), which aims to give an equal weight on the contribution
of the mutation data and that of the expression data to the overall cost function
fME(). In our following experiments, we always used R = 10,000 and np = 8,
though other values may be used.

After determining γ , we choose the other tuning parameters similarly as before
but according to an integrative version of the tuning error

TEME
(
β̂

tr
(λ, r),Atu)

= 1

ntu

p∑
j=1

I
(
β̂tr (λ, r)j > 0

)
Atu·,j − 2

ntu

ntu∑
i=1

I

( p∑
j=1

Atu
ij β̂tr (λ, r)j > 0

)

− γ

‖β̂ tr
(λ, r)‖0

∑
j,k

cjkI
(
β̂

tr
(λ, r)j > 0

)
I
(
β̂

tr
(λ, r)k > 0

)
.

2.6.1. Evaluation metrics. Several metrics are used for evaluation, including
the correct (C) or incorrect (IC) numbers of nonzero estimates for the muta-
tions/genes in the true pathway B0, and average differences of the cost function
values (ADC) between the true set B0 and the estimated set B̂ of the driver muta-
tions/genes; that is, C = |B0 ∩ B̂|, IC = |Bc

0 ∩ B̂|, ADC = (f (B0) − f (B̂))/n. We
also include the running time (RT) (in minutes) of each algorithm. Note that ADC
is important because the basic task for minimum cost subset selection is to identify
a set of mutations with the minimum cost.
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In addition to using the correct (C) or incorrect (IC) numbers of nonzero es-
timates and ADC to measure how close the estimated pathways are close to the
true pathway, we also investigate several other metrics in decomposing the cost
function into the coverage (cc) and exclusivity (ce), and displaying the proportion
of the patients carrying a mutation of a gene in a pathway (c1), as well as the pro-
portion of those carrying multiple mutations in more than one gene in the pathway
(c2). Specifically, we define

f (B) = ce + cc,

ce = ω(B0)/n, ĉe = ω(B̂)/n,

cc = −∣∣�(B0)
∣∣/n, ĉc = −∣∣�(B̂)

∣∣/n,

c1 =
n∑

i=1

I

( ∑
j∈B0

Aij = 1
)/

n, ĉ1 =
n∑

i=1

I

(∑
j∈B̂

Aij = 1
)/

n,

c2 =
n∑

i=1

I

( ∑
j∈B0

Aij = 2
)/

n, ĉ2 =
n∑

i=1

I

(∑
j∈B̂

Aij = 2
)/

n.

Due to the coverage and exclusivity of a pathway, c1 is often similar to −cc, while
c2 is similar to ce.

3. Results.

3.1. Real data examples. In this section we first illustrate the application of the
proposed method to two cancer datasets that were previously examined by Vandin,
Upfal and Raphael (2012), then to a more recent and larger dataset including both
mutation and expression data. As argued by Vandin, Upfal and Raphael (2012), a
set of mutated genes with a low cost function value is likely to be a mutated driver
pathway, based on which our primary objective is to identify such mutated driver
pathways through minimum cost subset selection of mutated genes. For each of the
first two datasets, the proposed method was applied with the tuning parameter λ

chosen from a tuning set of size 10, while 100 randomly generated initial estimates
were used. For each initial estimate, we applied the proposed method by which we
identified multiple low-cost sets of mutations.

3.1.1. Lung adenocarcinoma. The original dataset contains 1013 somatic mu-
tations in 623 sequenced genes from 188 lung adenocarcinoma patients in the Tu-
mor Sequencing Project [Ding et al. (2008)]. For our purpose, we examined 356
genes that were mutated for at least one patient from a group of 162 patients, as in
Vandin, Upfal and Raphael (2012).

The proposed method was applied to identify multiple sets of mutated genes
with low-cost function values. Using 100 randomly selected initial values for
MCSS, it cost 0.85 minutes and identified some gene sets with low cost. To demon-
strate the resulting low-cost sets of mutations as possible candidates for mutated
driver pathways, in Table 1 we group these discovered sets in terms of known path-
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TABLE 1
Applied to the mutation data of lung adenocarcinoma [Ding et al. (2008)], the new method MCSS identified multiple sets of low-cost mutated genes,

grouped in terms of associated pathways

Pathway Highly mutated genes B̂ f (B̂) ĉe ĉc ĉ1 ĉ2

mTOR signaling EGFR, EPHA3, KRAS, NF1, STK11 (EGFR, KRAS, NF1, STK11) −0.611 0.117 −0.728 0.617 0.104
(EGFR, KRAS, STK11) −0.593 0.086 −0.679 0.593 0.086
(EGFR, KRAS, NF1) −0.574 0.031 −0.605 0.574 0.031
(EGFR, EPHA3, KRAS, NF1) −0.574 0.061 −0.636 0.586 0.037
(EGFR, EPHA3, KRAS) −0.568 0.025 −0.593 0.568 0.025
(EGFR, KRAS) −0.556 0 −0.556 0.556 0

cell cycle ATM, TP53 (ATM, TP53) −0.463 0.006 −0.469 0.463 0.006

mTOR signaling EGFR, EPHA3, KRAS, NF1, STK11 (ATM, EGFR, STK11, TP53) −0.525 0.173 −0.698 0.537 0.148
& cell cycle & ATM, TP53 (KRAS, TP53) −0.469 0.148 −0.617 0.469 0.148

(EGFR, TP53) −0.444 0.068 −0.512 0.444 0.068
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FIG. 1. The mTOR signaling pathway and the cell cycle pathway associated with lung adenocar-
cinoma as reported in Ding et al. (2008). The KRAS gene is one of the three oncogenes in the Ras
family.

ways. In Table 1, all the discovered sets related to two known pathways associated
with lung adenocarcinoma: the mTOR signaling pathway and the cell cycle path-
way. Gene interactions in these pathways were reported in Ding et al. (2008) as
depicted in Figure 1.

First, as indicated in Figure 1 [see Figure 6 of Ding et al. (2008)], the mTOR
signaling pathway consists of some highly mutated genes, such as EGFR, EPHA3,
KRAS, NF1 and STK11. EGFR is a well-known oncogene, whose mutations
are strongly associated with lung cancer [da Cunha Santos, Shepherd and Tsao
(2011)]. In contrast, EPHA3 is one of the most frequently mutated genes in lung
cancer, which however has not yet been extensively investigated. As suggested
by Zhuang et al. (2012), tumor-suppressive effects of wild-type EPHA3 could be
overridden in trans by dominant negative EPHA3 somatic mutations discovered
in patients with lung cancer. KRAS is an oncogene associated with nonsquamous
nonsmall cell lung cancer. As indicated by many studies as well as our analysis,
the mutations of KRAS and EGFR are strongly mutually exclusive. KRAS serves as
a mediator between extracellular ligand binding and intracellular transduction of
signals from the EGFR to the nucleus. The presence of activating KRAS mutations
has been identified as a potent predictor of resistance to EGFR-directed antibodies
[Heinemann et al. (2009)]. STK11 encodes a tumor suppressor enzyme, and its mu-
tations can allow cells to grow and divide uncontrollably, leading to the formation
of cancerous cells [Gill et al. (2011)]. In particular, STK11 mutations are found in
nonsquamous nonsmall cell lung cancer, however uncommon in most other types
of cancer.

Interestingly, all the identified sets of mutated genes with the cost function val-
ues f (B̂) lower than −0.556 = 90/162 are related to these five genes. Recall
that in Ding et al. (2008), (EGFR, KRAS) [f (B̂) = −0.556] and (KRAS, STK11)
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[f (B̂) = −0.420] are the most significant pairs in the mutual exclusiveness test,
and in Vandin, Upfal and Raphael (2012), the triplet (EGFR, KRAS, STK11)
[f (B̂) = −0.593] was found with a lower cost, which was reported as a novel dis-
covery. As indicated in Table 1, we could find not only this triplet (the second set in
Table 1), but also another set (EGFR, KRAS, NF1, STK11) [f (B̂) = −0.611] (the
first set in Table 1) that contains this triplet and has a lower cost function value.
It is a better characterized gene set, containing the already discovered (EGFR,
KRAS, STK11). In addition, we also identified four low-cost sets: (EGFR, KRAS,
NF1) [f (B̂) = −0.574], (EGFR, EPHA3, KRAS, NF1) [f (B̂) = −0.574], (EGFR,
EPHA3, KRAS) [f (B̂) = −0.568] and (EGFR, KRAS) [f (B̂) = −0.556]. These
discoveries suggest possible roles of these genes related to the mTOR signaling
pathway.

Second, the cell cycle pathway includes two highly mutated genes, ATM and
TP53. ATM plays a central role in cell division and DNA repair, and the protein
encoded by this gene is an important cell cycle checkpoint kinase, which functions
as a regulator of a wide variety of downstream proteins. Some studies suggested
that ATM mutations may increase the risk for lung cancer [Lo et al. (2008)]. On
the other hand, TP53 encodes a tumor suppressor protein p53 that regulates cell
division by keeping cells from growing and dividing too fast or in an uncontrolled
way. TP53 mutations are the most common genetic changes found in human can-
cer, in particular as one of the most significant events in lung cancer while playing
an important role in the tumorigenesis of lung epithelial cells [Ding et al. (2008)].

The pair (ATM, TP53) was identified by the proposed method with the cost func-
tion value of −0.463, which was also discovered in Vandin, Upfal and Raphael
(2012) by removing the triplet (EGFR, KRAS, STK11) from the original dataset.
Note that among the identified low-cost sets in Table 1, the cost function value of
(ATM, TP53) was relatively high due to its low value of the coverage: |�(B̂)| = 76,
much smaller than the maximum value of n = 162. As hypothesized in Vandin,
Upfal and Raphael (2012), the low coverage is possibly because somatic mutations
were measured in only a small subset of genes, or because only single-nucleotide
mutations and small indels in these genes were measured, and other types of ge-
nomic or epigenetic alterations might occur in the “unmutated” patients.

In addition, we identified some low-cost sets consisting of the genes related
to both the mTOR signaling and the cell cycle pathways, namely, (ATM, EGFR,
STK11, TP53) [f (B̂) = −0.525], (KRAS, TP53) [f (B̂) = −0.469] and (EGFR,
TP53) [f (B̂) = −0.444]. Presumably these discoveries are related to that EGFR
and KRAS are upstream regulators of TP53, as suggested by Ding et al. (2008).

3.1.2. Glioblastoma multiforme (A). Next, we analyzed the mutation data of
84 glioblastoma multiforme (GBM) patients from The Cancer Genome Atlas [The
Cancer Genome Atlas Research Network (2008)], where 601 somatic mutations in
these patients occurred. The mutation data consist of 84 patients and 178 genes,
with each mutation occurring in at least one patient. The proposed method was
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applied to identify multiple sets of mutations with low-cost values. Using 100 ran-
domly selected initial values for MCSS, it cost 0.66 minutes and identified some
gene sets with low cost. In Table 2 we also group the identified low-cost sets in
terms of the possibly associated pathways. Most of the sets are associated with
three important pathways of glioblastoma multiforme: the p53 signaling pathway,
the RB signaling pathway and the RAS/RTK/PI(3)K signaling pathway. Interac-
tions in these pathways were reported in The Cancer Genome Atlas Research Net-
work (2008) as described in Figure 2. Below we discuss each pathway and the
discovered sets of mutations.

First, the p53 signaling pathway consists of some highly mutated genes,
CDKN2A, MDM2, MDM4 and TP53. Importantly, mutations in the tumour sup-
pressor gene TP53 are typical events in primary glioblastoma multiforme, which
is characterized by a short clinical history and the absence of a pre-existing, less
malignant astrocytoma. In contrast, the cellular oncogene MDM2 is viewed as an
important negative regulator of the p53 tumor suppressor, whose overexpression
is a characteristic feature of secondary glioblastoma multiforme, progressing from
less malignant astrocytoma [Stark et al. (2003)].

Interestingly, the set of these four genes (CDKN2A, MDM2, MDM4, TP53)
[f (B̂) = −0.655 = −55/84] was identified by the proposed method as a novel
discovery unreported before, for example, in comparison with the pair (CDKN2A,
TP53) [f (B̂) = −0.631] identified by Vandin, Upfal and Raphael (2012). As in-
dicated in Table 2, the pair (CDKN2A, TP53) was also uncovered by the pro-
posed method, in addition to another two sets, (CDKN2A, DTX3, TP53) [f (B̂) =
−0.679] and (CDKN2B, TP53) [f (B̂) = −0.631]. Since CDKN2A and CDKN2B
are tumor suppressor genes located on a common homozygous deletion region
on the human genome, they mutate almost simultaneously, which leads to a low-
cost function value of (CDKN2B, TP53). However, for (CDKN2A, DTX3, TP53),
currently without further biological evidence, we conjecture that it has a low-cost
function value mainly because it consists of a low-cost set (CDKN2A, TP53) and
gene DTX3 with infrequent mutations.

Second, the RB signaling pathway consists of some highly mutated genes,
CDKN2A/B, CDK4, RB1, where CDKN2A and CDKN2B are tumor suppressor
genes, whose gene products, p16INK4A and p15INK4B, are both able to inhibit
the binding of CDK4 and CDK6 to cyclin D, preventing the cell cycle progres-
sion at the G1 phase. As a result, by negatively controlling cell cycle progression,
these genes function as a critical defense against tumorigenesis of a great vari-
ety of human cancers, including glioblastoma multiforme [Feng et al. (2012)].
The main set of mutations identified by the proposed method and associated with
this pathway is likely to be (CDKN2B, CYP27B1, RB1) [f (B̂) = −0.738] since
it has very low cost and often overlaps with other sets with low cost, which is
coincided with that identified by Vandin, Upfal and Raphael (2012). Since the mu-
tational profile of CYP27B1 is nearly identical to a metagene including CDK4,
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TABLE 2
Applied to the mutation data of glioblastoma multiforme (data GBM A) [The Cancer Genome Atlas Research Network (2008)], the new method MCSS

identified multiple sets of low-cost mutated genes, grouped in terms of associated pathways

Pathway Highly mutated genes B̂ f (B̂) ĉe ĉc ĉ1 ĉ2

p53 signaling CDKN2A, MDM2, MDM4, TP53 (CDKN2A, MDM2, MDM4, TP53) −0.655 0.167 −0.821 0.667 0.143
(CDKN2A, DTX3, TP53) −0.679 0.107 −0.786 0.691 0.083
(CDKN2A, TP53) −0.631 0.071 −0.702 0.631 0.071
(CDKN2B, TP53) −0.631 0.107 −0.738 0.631 0.107

RB signaling CDKN2A/B, CDK4, RB1 (CDKN2B, CYP27B1, RB1) −0.738 0.048 −0.786 0.738 0.048
(CDKN2B, ERBB2, RB1, TSPAN31) −0.762 0.071 −0.833 0.762 0.071
(CDKN2A, CYP27B1, RB1) −0.667 0.048 −0.714 0.667 0.048
(CDKN2B, CYP27B1, NF1) −0.667 0.107 −0.774 0.667 0.107
(CDKN2A, CYP27B1, NF1) −0.643 0.083 −0.723 0.643 0.083
(CDKN2B, CYP27B1) −0.643 0.036 −0.679 0.643 0.036

RAS signaling EGFR, NF1 (EGFR, KDR, NF1) −0.631 0.024 −0.655 0.631 0.024

Unknown (MTAP, TP53, TSFM) −0.667 0.131 −0.798 0.679 0.107
(CYP27B1, MTAP, PTEN) −0.655 0.155 −0.810 0.655 0.155
(CDK4, MTAP, PTEN) −0.655 0.155 −0.798 0.643 0.155
(EGFR, TP53) −0.619 0.083 −0.702 0.612 0.083
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FIG. 2. Three pathways associated with glioblastoma multiforme as reported in The Cancer
Genome Atlas Research Network (2008).

Vandin, Upfal and Raphael (2012) believed that the triplet (CDKN2B, CDK4,
RB1) may be of interest. For (CDKN2B, CYP27B1, RB1), the low-cost func-
tion value is mainly due to the inclusion of CDKN2B and CYP27B1. As shown
in Table 2, we identified several other sets containing CDKN2A/CDKN2B and
CYP27B1, namely, (CDKN2A, CYP27B1, RB1) [f (B̂) = −0.667], (CDKN2B,
CYP27B1, NF1) [f (B̂) = −0.667], (CDKN2A, CYP27B1, NF1) [f (B̂) = −0.643]
and (CDKN2B, CYP27B1) [f (B̂) = −0.643]. In addition, we also uncovered a
set (CDKN2B, ERBB2, RB1, TSPAN31) [f (B̂) = −0.762], which is another new
discovery by the proposed method. Interestingly, TSPAN31 belongs to the same
metagene including CDK4.

Third, the RAS/RTK/PI(3)K signaling pathway consists of some highly mutated
genes, EGFR, NF1, PI(3)K and PTEN. Associated with this pathway, we identified
a set of (EGFR, KDR, NF1) [f (B̂) = −0.619]. Its low-cost function value is likely
due to the inclusion of EGFR and NF1.

Finally, among the other identified low-cost sets in Table 2, (MTAP, TP53,
TSFM) [f (B̂) = −0.667], (CYP27B1, MTAP, PTEN) [f (B̂) = −0.655] and
(CDK4, MTAP, PTEN) [f (B̂) = −0.655] are not known to be related to the path-
ways associated with glioblastoma multiforme. Hopefully, these low-cost sets will
be useful for suggesting new links to glioblastoma multiforme. For (EGFR, TP53)
[f (B̂) = −0.619], its low cost function value is possibly due to the approximate
exclusiveness of EGFR and TP53. In particular, tumors in the “classical” subtype
of glioblastoma multiforme often carry extra copies of EGFR and are rarely mu-
tated in TP53.

In summary, as shown in the above two real data examples, nearly all of
the identified low-cost sets by the proposed method are associated with some
known mutated driver pathways. This suggests potential usefulness of the pro-
posed method. More importantly, in comparison with an existing method, some
new discoveries were obtained, such as (EGFR, KRAS, NF1, STK11) [f (B̂) =
−0.611 = −99/162] associated with the mTOR signaling pathway of lung cancer,
and (CDKN2A, MDM2, MDM4, TP53) [f (B̂) = −0.656 = −55/84] associated
with the p53 signaling pathway of glioblastoma multiforme.
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3.1.3. Glioblastoma multiforme (B). Finally we analyzed a larger dataset
of glioblastoma multiforme (GBM) patients from The Cancer Genome Atlas
[Brennan et al. (2013)]. The mutation data consist of 291 patients and 9539 genes,
while the gene expression data include 558 patients and 12,042 genes. Focusing
on the intersection of the two gene sets, we obtained 5959 genes. Hence, we stud-
ied the filtered mutation data with 291 patients and 5959 genes, and the filtered
expression data with 558 patients and 5959 genes.

First, the proposed MCSS was applied to identify multiple sets of mutations
with low-cost values using only the filtered mutation data. Using 10,000 randomly
selected initial values for all genes and 10,000 randomly selected initial values for
the subset of the genes with mutation rate larger than 0.05, MCSS identified some
top gene sets with the six lowest cost function values (Table 3); note some gene
sets with tied cost function values. They are mainly the variations and combina-
tions of two core sets, (EGFR, KEL, NF1, TP53) and (IDH1, PIK3CA, PTEN), as
contained in the top two sets identified. The list includes many well-known GBM
genes, such as EGFR, PTEN, IDH1, TP53 and NF1 [Frattini et al. (2013)]. Nev-
ertheless, it is surprising that some top genes identified in Table 2 do not show up
in the current list. Accordingly, we examined the top gene sets identified in the
previous section but calculated their cost function values using the current data.
From Table 4, we see that the top sets obtained earlier all have higher (i.e., worse)
cost function values than those obtained in Table 3, indicating some inherent dif-
ferences between the two datasets. For example, some high-mutation genes in the
previous dataset, such as CDKN2A, MDM2, MDM4, CDKN2B, CYP27B1, ERBB2
and TSPAN31, had a low-mutation rate <5% in the current dataset. We use the less
frequent mutation (LFM) (i.e., with a mutation rate < 5% among the subjects) ra-
tio (i.e., the proportion of the LFM genes in a gene set) to indicate the presence of
LFM genes in Table 4. The inherent differences between the two datasets confirm
the genomic heterogeneity of GBM, one of the biggest challenges in current data
analysis.

Finally, MCSS_ME was applied in an integrative analysis of both the filtered
mutation and gene expression data. We did not apply the GA method because
its current implementation requires the same set of the subjects with both muta-
tion and gene expression data, which did not hold here. Using 10,000 randomly
selected initial values, MCSS_ME identified its top 10 gene sets shown in Ta-
ble 5. We note that several genes were also identified from the other dataset in
the previous section. Many selected genes are annotated in the Cancer Gene Cen-
sus in the Catalogue Of Somatic Mutations In Cancer (COSMIC) [Forbes et al.
(2015)], including well-known GBM genes (EGFR, PTEN, IDH1, TP53 and NF1,
among others) [Frattini et al. (2013)]. Here we only highlight a few examples.
Gene ATRX was an important member of the H3.3-ATRX-DAXX chromatin re-
modeling pathway, among the most frequently mutated genes in paediatric and
adult GBM [Schwartzentruber et al. (2012)]. Gene PIK3CA encodes a protein that
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TABLE 3
Application to the mutation data of glioblastoma multiforme (data GBM B) [Brennan et al. (2013)]:

the top gene sets with the six lowest cost function values identified by the new method MCSS

B̂ f (B̂) ĉe ĉc ĉ1 ĉ2

(EGFR, KEL, NF1, CNTNAP2, TP53) −0.515 0.127 −0.642 0.526 0.106
(EGFR, MUC4, KEL, CNTNAP2, TP53) −0.509 0.103 −0.612 0.512 0.096
(FCGBP, IDH1, MUC16, PIK3CA, PTEN) −0.509 0.110 −0.619 0.512 0.103
(EGFR, NF1, CNTNAP2, TP53) −0.505 0.103 −0.608 0.509 0.096
(EGFR, MUC4, CNTNAP2, TP53, RYR3) −0.505 0.110 −0.615 0.509 0.103
(FCGBP, IDH1, MUC16, PTEN) −0.498 0.065 −0.563 0.502 0.058
(IDH1, MUC16, PIK3CA, PTEN) −0.498 0.089 −0.587 0.498 0.089
(DSP, MUC4, FCGBP, IDH1, NF1, MUC16, PTEN) −0.498 0.175 −0.673 0.512 0.148
(IDH1, NF1, MUC16, PTEN) −0.495 0.096 −0.591 0.495 0.096
(EGFR, KEL, TP53, FLG) −0.491 0.131 −0.622 0.502 0.110
(EGFR, MUC4, CNTNAP2, TP53) −0.491 0.083 −0.574 0.491 0.082
(EGFR, USH2A, CNTNAP2, TP53) −0.491 0.096 −0.587 0.498 0.082
(DSP, IDH1, MUC16, DNAH3, PTEN) −0.491 0.100 −0.591 0.495 0.093
(ATRX, FCGBP, MUC16, PIK3CA, PTEN) −0.491 0.124 −0.615 0.502 0.103
(EGFR, CNTNAP2, TP53, RYR3) −0.491 0.089 −0.581 0.491 0.089
(EGFR, IDH1, NF1, MUC16, RELN) −0.491 0.110 −0.601 0.495 0.103

antagonizes the function of PTEN protein in the PI3K/Akt pathway; an exclusive
mutation pattern was observed in PIK3CA and PTEN [Hartmann et al. (2005)].
Mutations in a single gene, IDH1, resulted in reorganization of the methylome
and transcriptome in glioblastomas and other cancers [Turcan et al. (2012)]. As
reviewed in Sturm et al. (2014), unsupervised clustering of the gene expression

TABLE 4
The cost function values of the gene sets in the larger GBM (B) dataset with the gene sets identified

from the smaller GBM (A) dataset

B̂ f (B̂) ĉe ĉc ĉ1 ĉ2 LFM ratio

(CDKN2A, MDM2, MDM4, TP53) −0.285 0.007 −0.292 0.285 0.007 3/4
(CDKN2A, TP53) −0.289 0 −0.289 0.289 0 1/2
(CDKN2B, TP53) −0.285 0 −0.285 0.285 0 1/2
(CDKN2B, CYP27B1, RB1) −0.103 0 −0.103 0.103 0 2/3
(CDKN2B, ERBB2, RB1, TSPAN31) −0.103 0 −0.103 0.103 0 3/4
(CDKN2A, CYP27B1, RB1) −0.107 0 −0.107 0.107 0 2/3
(CDKN2B, CYP27B1, NF1) −0.124 0 −0.124 0.124 0 2/3
(CDKN2A, CYP27B1, NF1) −0.124 0 −0.124 0.124 0 2/3
(CDKN2B, CYP27B1) −0.127 0 −0.127 0.127 0 2/2
(EGFR, KDR, NF1) −0.354 0.024 −0.378 0.354 0.024 1/3
(EGFR, TP53) −0.447 0.048 −0.495 0.447 0.048 0/2
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TABLE 5
Application to the mutation data and gene expression data of glioblastoma multiforme [Brennan et al. (2013)]: the top 10 gene sets identified by the new

method MCSS_ME with the automatically selected γ = 0.1. The known cancer genes annotated on COSMIC are underlined

B̂ fME(B̂) ĉe ĉc ĉ1 ĉ2 f (B̂) γfE(B̂) LFM ratio

(FCGBP, RYR2, PCLO, CNTP2, TP53) −0.781 0.113 −0.515 0.419 0.079 −0.402 −0.379 1/5
(ATRX, PIK3CA, DOCK5, MUC5B, DH3, PTEN) −0.779 0.113 −0.519 0.419 0.086 −0.405 −0.374 1/6
(EGFR, KEL, NF1, TP53, DH3) −0.761 0.144 −0.625 0.498 0.113 −0.481 −0.280 0/5
(PIK3CA, TP53, PTEN) −0.754 0.137 −0.549 0.419 0.124 −0.412 −0.342 0/3
(PIK3R1, DSP, MUC4, FCGBP, MUC16, PTEN) −0.753 0.162 −0.612 0.474 0.113 −0.450 −0.303 0/6
(ATRX, KEL, PIK3CA, PTEN) −0.752 0.052 −0.474 0.423 0.052 −0.423 −0.329 0/4
(DSP, FCGBP, IDH1, MUC16, DOCK5, PTEN) −0.751 0.124 −0.612 0.502 0.096 −0.488 −0.263 0/6
(KEL, PIK3CA, FRAS1, MUC5B, DH3, PTEN) −0.745 0.117 −0.529 0.426 0.089 −0.413 −0.332 ¡¡1/6
(FCGBP, IDH1, MUC16, PIK3CA, PTEN) −0.740 0.110 −0.619 0.512 0.103 −0.509 −0.231 0/5
(EGFR, IDH1, KEL, NF1, PIK3CA, DNAH3, PTEN) −0.739 0.244 −0.701 0.495 0.168 −0.457 −0.282 0/7
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data from 200 adult GBM samples from TCGA identified four different molecu-
lar subtypes: proneural, neural, classical and mesenchymal. The proneural subtype
was largely characterized by abnormalities in the platelet-derived growth factor
receptor α (PDGFRA) or isocitrate dehydrogenase 1 (IDH1), whereas mutation of
the epidermal growth factor receptor (EGFR) was found in the classical subgroup
and mutations in neurofibromin (NF1) were common in mesenchymal tumors. In
particular, Sturm et al. (2014) mentioned the detection of lower-frequency events
in both cancer-related as well as previously unassociated genes such as ATRX and
KEL.

Note that all the gene sets identified with only the mutation data include only
high-mutation genes (i.e., with a mutation rate > 5% among the subjects), while
it is of interest but difficult to identify driver genes with less frequent mutations
(i.e., with a mutation rate ≤ 5%). Hence, we show the LFM ratio in Table 5. It is
interesting to note the presence of two LFM genes, CNTP2 and DH3. In summary,
our preliminary results seem to support the use of integrative analysis as advocated
by others [Frattini et al. (2013)].

3.2. Simulations. Due to the difficulties in evaluating de novo discoveries with
real data, we performed extensive simulations to study the operating characteris-
tics of the proposed method and compared its performance against its competi-
tors. All simulations were performed on a single processor of an Intel(R) Xeon(R)
2.83 GHz PC.

3.2.1. Simulation I: A single driver pathway. We first considered the case with
only a single driver pathway, in which the focus was on comparing our new method
with its strong competitor, the MCMC algorithm of Dendrix as implemented in
Python [Vandin, Upfal and Raphael (2012)], though several other methods were
also included.

For the proposed method, we fixed τ1 = 1, τ2 = 0.1 and α = 10−3, and tuned
λ over a tuning set 	. Specifically, λ was selected by minimizing a tuning error
over a set of 10 equally spaced points. We used 100 random initial estimates for
MCSS (based on the subgradient descent algorithm), containing the Lasso estimate
β̂L, as well as the other 99 random initial estimates. For the algorithm of Dendrix
[Vandin, Upfal and Raphael (2012)], 1,000,000 iterations were run for MCMC
with sampling sets of size 4 for every 1000 iterations. Moreover, the algorithm
was run with the number of driver mutations varying from 1 to 10 to select the best
fitted subset with the lowest cost of f (·) in (2.1) as the final result.

For each simulated dataset, an n × p mutation matrix A was generated with a 1
indicating a mutation and 0 otherwise. For each patient, a gene in a driver pathway
B0 = {1,2,3,4} was randomly selected and it mutated with probability p1, and
another gene in B0 was randomly selected to have a mutation with probability
p2. Consequently, p1 and p2 controlled the coverage and exclusiveness of B0,
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respectively. Other genes outside B0 mutated with probability p3. Six setups were
examined with (p1,p2,p3) = (0.95,0.01,0.05): (1) n = 50 and p = 1000, (2)
n = 100 and p = 1000, (3) n = 1000 and p = 50, (4) n = 1000 and p = 100,
(5) n = 50 and p = 10,000, (6) n = 100 and p = 10,000. With (p1,p2,p3) =
(0.8,0.02,0.05), we had similar setups. The simulation results are summarized in
Tables 6 and 7.

As suggested in Tables 6 and 7, the proposed method outperformed the MCMC
algorithm of Dendrix, especially in the high-dimensional situations, with respect
to the accuracy of selection as well as computational efficiency measured by the
values of C, IC, ADC and RT, respectively. The amount of improvement of the pro-
posed method over the competitor ranged from low to high. For the running time,
the proposed algorithm was overwhelmingly faster than the MCMC algorithm of
Dendrix. In particular, it was often more than 50 times faster than the MCMC al-
gorithm of Dendrix. As expected, both methods tended to perform worse as the
amount of coverage and exclusiveness of a mutated driver pathway decreased.

We also compared our new method with several other alternative methods that
were proposed more recently, including Multi-dendrix-MCMC of Leiserson et al.
(2013), BLP (binary linear programming) and GA (genetic algorithm) of Zhao
et al. (2012). The numerical results of the three methods are also summarized
in Tables 6 and 7. These results suggest that the performance of Multi-dendrix-
MCMC was quite similar to that of Dendrix-MCMC but much faster; BLP and
GA performed better than their competitors if the algorithms could finish running;
however, they were not robust with frequent running errors (up to 15% failing
to converge or giving output properly). In particular, BLP ran quite unsteadily in
high-dimensional situations, say n = 50 and p = 1000 or 10,000, while GA was
too slow in high-dimensional situations since it tried to seek an exact solution.
As expected, we see that these three methods also tended to perform worse as the
amount of coverage and exclusiveness of a mutated driver pathway decreased.

Since a rarely mutated gene may by chance satisfy the (approximate) exclu-
sivity property with a highly mutated gene, the union of the highly mutated gene
and some rarely mutated genes could drive down the cost function value, lead-
ing to false positives. To investigate this issue, we conducted a simulation study.
As before, the driver pathway contained four genes. We set the 1st gene to have
a mutation in a fraction p∗

0 of all n patients, while setting the other three driver
genes {2,3,4} to have mutations only in the remaining patients, for whom a gene
from {2,3,4} was randomly selected with probability p∗

1 to have a mutation, and
another gene in {2,3,4} was randomly selected to have a mutation with probabil-
ity p∗

2 . Finally, other genes outside B0 = {1,2,3,4} mutated with a background
probability p∗

3 . The corresponding simulation results are summarized in Table 8,
suggesting that the proposed method still performed well.

To evaluate the performance involving cross-validation, consider the first setup:
n = 50 and p = 1000 with (p1,p2,p3) = (0.95,0.01,0.05). The cross-validation
procedure was applied with an enlarged size of 	, say 100, and Algorithm 1 was
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TABLE 6
Results in Simulation I based on 100 simulation replications with (p1,p2,p3) = (0.95,0.01,0.05). The sample means (SD in parentheses) of correct

(C) or incorrect (IC) numbers of nonzero estimates, average differences of the cost (ADC) between the true gene subset B0 = {1,2,3,4} and the

estimated subset B̂ , that is, f (B0)−f (B̂)
n , and the running time (RT) (in minutes) of the algorithms

n p Method C IC ADC ĉ1 [c1] ĉ2 [c2] RT

50 1000 MCSS 4 (0) 0 (0) 0 (0) 0.95 [0.95] 0.01 [0.00] 0.22 (0.02)
Dendrix-MCMC 3.80 (0.41) 0.50 (0.94) −0.02 (0.04) 0.94 [0.95] 0.01 [0.00] 16.89 (2.01)

Multi-dendrix-MCMC 3.90 (0.30) 0.15 (0.36) −0.01 (0.03) 0.95 [0.95] 0.01 [0.00] 0.81 (0.01)
BLP 3.39 (0.86) 3.82 (2.59) 0.05 (0.03) 0.99 [0.95] 0.00 [0.00] 0.01 (0.01)
GA 3.90 (0.38) 2.13 (1.69) 0.04 (0.03) 0.98 [0.95] 0.01 [0.00] 2.97 (0.25)

100 1000 MCSS 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.37 (0.04)
Dendrix-MCMC 4 (0) 1.00 (0.53) 0.02 (0.01) 0.95 [0.94] 0.01 [0.01] 27.01 (3.71)

Multi-dendrix-MCMC 4 (0) 1.1 (0.55) 0.03 (0.02) 0.98 [0.94] 0.01 [0.01] 0.81 (0.01)
BLP 4 (0) 1.76 (1.27) 0.01 (0.01) 0.97 [0.94] 0.02 [0.01] 0.05 (0.01)
GA 4 (0) 1.68 (1.21) 0.01 (0.01) 0.97 [0.94] 0.02 [0.01] 1.96 (0.16)

1000 50 MCSS 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.27 (0.01)
Dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 134.34 (27.79)

Multi-dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.78 (0.19)
BLP 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.07 (0.01)
GA 0 (0) 0 (0) −0.94 (0.00) 0 [0.94] 0 [0.01] 0.00 (0.00)

1000 100 MCSS 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.41 (0.03)
Dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 144.46 (28.75)

Multi-dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.68 (0.24)
BLP 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.21 (0.01)
GA 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.11 (0.00)

50 10,000 MCSS 4 (0) 0 (0) 0 (0) 0.95 [0.95] 0.01 [0.01] 1.67 (0.29)
Dendrix-MCMC 1.25 (1.02) 5.96 (3.62) −0.24 (0.04) 0.83 [0.95] 0.02 [0.01] 67.06 (5.22)

Multi-dendrix-MCMC 1.45 (1.23) 5.25 (4.02) −0.24 (0.03) 0.83 [0.95] 0.03 [0.00] 1.88 (0.03)
BLP 3.42 (0.91) 2.72 (2.06) 0.05 (0.03) 0.99 [0.95] 0.01 [0.00] 0.27 (0.48)
GA 3.93 (0.25) 1.50 (0.92) 0.04 (0.02) 0.98 [0.95] 0.01 [0.00] 284.92 (32.79)

100 10,000 MCSS 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 3.94 (0.43)
Dendrix-MCMC 4 (0) 0.96 (0.41) 0.02 (0.01) 0.95 [0.94] 0.01 [0.01] 75.46 (8.37)

Multi-dendrix-MCMC 4 (0) 0.90 (0.44) 0.02 (0.01) 0.96 [0.94] 0.01 [0.01] 3.75 (0.02)
BLP 3.95 (0.22) 3.90 (1.58) 0.04 (0.02) 0.99 [0.94] 0.01 [0.01] 2.89 (2.96)
GA 3.97 (0.14) 3.45 (1.51) 0.04 (0.02) 0.99 [0.94] 0.01 [0.01] 275.39 (69.92)
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TABLE 7
Results in Simulation I based on 100 simulation replications with (p1,p2,p3) = (0.8,0.02,0.05)

n p Method C IC ADC ĉ1 [c1] ĉ2 [c2] RT

50 1000 MCSS 3.70 (0.47) 0.25 (0.44) −0.01 (0.02) 0.79 [0.79] 0.02 [0.01] 0.17 (0.02)
Dendrix-MCMC 2.95 (0.83) 3.15 (2.21) −0.03 (0.04) 0.77 [0.79] 0.01 [0.01] 16.39 (2.22)

Multi-dendrix-MCMC 3.00 (0.72) 3.40 (1.93) −0.01 (0.02) 0.79 [0.79] 0.01 [0.01] 0.59 (0.01)
BLP 2.85 (1.01) 6.62 (1.53) 0.20 (0.05) 1.00 [0.79] 0.00 [0.01] 0.04 (0.02)
GA 3.63 (0.61) 5.21 (1.04) 0.18 (0.04) 0.97 [0.79] 0.02 [0.01] 2.58 (0.21)

100 1000 MCSS 4 (0) 0.05 (0.07) 0.00 (0.00) 0.79 [0.79] 0.01 [0.01] 0.30 (0.05)
Dendrix-MCMC 4 (0) 2.40 (0.60) 0.05 (0.05) 0.84 [0.79] 0.01 [0.01] 29.60 (1.72)

Multi-dendrix-MCMC 4 (0) 2.25 (0.78) 0.05 (0.01) 0.85 [0.79] 0.05 [0.01] 0.82 (0.02)
BLP 3.89 (0.31) 5.90 (0.70) 0.11 (0.02) 0.91 [0.79] 0.04 [0.01] 0.09 (0.01)
GA 4 (0) 5.65 (0.67) 0.11 (0.03) 0.90 [0.79] 0.04 [0.01] 2.00 (0.11)

1000 50 MCSS 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 0.27 (0.02)
Dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 163.85 (30.12)

Multi-dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 1.81 (0.34)
BLP 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 0.09 (0.01)
GA 0 (0) 0 (0) −0.78 (0.01) 0 [0.78] 0 [0.02] 0.00 (0.00)

1000 100 MCSS 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 0.36 (0.03)
Dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 186.10 (37.15)

Multi-dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 1.51 (0.50)
BLP 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 0.27 (0.03)
GA 4 (0) 0 (0) 0 (0) 0.78 [0.78] 0.02 [0.02] 0.11 (0.00)

50 10,000 MCSS 3.15 (0.67) 0.40 (0.68) −0.06 (0.05) 0.73 [0.79] 0.02 [0.01] 0.98 (0.27)
Dendrix-MCMC 0.30 (0.42) 8.70 (1.16) −0.10 (0.05) 0.71 [0.79] 0.03 [0.01] 56.09 (4.85)

Multi-dendrix-MCMC 0.15 (0.48) 9.10 (1.07) −0.05 (0.02) 0.77 [0.79] 0.03 [0.01] 1.86 (0.03)
BLP 2.45 (1.40) 5.44 (2.13) 0.20 (0.05) 0.99 [0.79] 0.00 [0.01] 0.83 (1.06)
GA 3.24 (1.20) 3.82 (2.16) 0.16 (0.04) 0.95 [0.79] 0.01 [0.01] 276.33 (37.50)

100 10,000 MCSS 4 (0) 0.05 (0.07) 0.00 (0.00) 0.79 [0.79] 0.01 [0.01] 2.70 (0.46)
Dendrix-MCMC 3.98 (0.00) 1.87 (0.54) 0.01 (0.01) 0.79 [0.79] 0.01 [0.01] 64.89 (6.75)

Multi-dendrix-MCMC 3.64 (0.99) 1.17 (2.35) 0.12 (0.28) 0.94 [0.79] 0.01 [0.01] 3.82 (0.04)
BLP 3.85 (0.36) 6.05 (0.51) 0.17 (0.02) 0.98 [0.79] 0.00 [0.01] 12.43 (8.76)
GA 4 (0) 5.33 (0.62) 0.15 (0.02) 0.96 [0.79] 0.01 [0.01] 252.74 (73.58)
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TABLE 8
Results in Simulation I based on 100 simulation replicates with (p∗

0 ,p∗
1 ,p∗

2 ,p∗
3) = (0.7,0.8,0.02,0.05)

n p Method C IC ADC ĉ1 [c1] ĉ2 [c2] RT

50 1000 MCSS 2.95 (0.60) 0.20 (0.52) −0.05 (0.05) 0.88 [0.94] 0.02 [0.00] 0.48 (0.05)
Dendrix-MCMC 2.60 (0.50) 1.55 (1.27) −0.04 (0.03) 0.90 [0.94] 0.01 [0.00] 12.58 (0.78)

Multi-dendrix-MCMC 2.45 (0.75) 2.20 (1.91) −0.04 (0.03) 0.90 [0.94] 0.02 [0.00] 0.46 (0.05)
BLP 3.32 (0.81) 2.95 (1.50) 0.06 (0.03) 1.00 [0.94] 0.00 [0.00] 0.02 (0.01)
GA 3.15 (0.93) 3.25 (1.58) 0.06 (0.03) 1.00 [0.94] 0.00 [0.00] 2.50 (0.18)

100 1000 MCSS 3.85 (0.41) 0.30 (0.73) −0.02 (0.05) 0.91 [0.94] 0.03 [0.00] 0.64 (0.08)
Dendrix-MCMC 3.95 (0.34) 0.31 (0.61) −0.00 (0.01) 0.94 [0.94] 0.01 [0.00] 21.55 (0.84)

Multi-dendrix-MCMC 3.95 (0.22) 0.35 (0.93) −0.00 (0.01) 0.94 [0.94] 0.01 [0.00] 0.70 (0.07)
BLP 3.95 (0.22) 3.00 (1.72) 0.03 (0.02) 0.97 [0.94] 0.01 [0.00] 0.05 (0.02)
GA 4 (0) 2.60 (1.39) 0.03 (0.01) 0.97 [0.94] 0.01 [0.00] 1.84 (0.11)

1000 50 MCSS 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.49 (0.04)
Dendrix-MCMC 4 (0) 0.10 (0.31) −0.00 (0.01) 0.93 [0.94] 0.01 [0.01] 127.60 (5.49)

Multi-dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.43 (0.21)
BLP 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.04 (0.00)
GA 0 (0) 0 (0) −0.94 (0.01) 0 [0.94] 0 [0.01] 0.00 (0.00)

1000 100 MCSS 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.65 (0.06)
Dendrix-MCMC 4 (0) 0.05 (0.22) −0.00 (0.01) 0.94 [0.94] 0.01 [0.01] 153.12 (7.03)

Multi-dendrix-MCMC 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 1.16 (0.42)
BLP 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.08 (0.00)
GA 4 (0) 0 (0) 0 (0) 0.94 [0.94] 0.01 [0.01] 0.10 (0.01)

50 10,000 MCSS 2.65 (0.68) 0.95 (1.10) −0.10 (0.05) 0.86 [0.94] 0.04 [0.00] 5.91 (1.52)
Dendrix-MCMC 1.25 (0.44) 3.20 (1.32) −0.07 (0.03) 0.87 [0.94] 0.01 [0.00] 40.77 (2.01)

Multi-dendrix-MCMC 1.50 (0.57) 3.75 (2.51) −0.08 (0.04) 0.87 [0.94] 0.02 [0.01] 1.37 (0.09)
BLP 2.89 (1.17) 2.40 (1.27) 0.06 (0.03) 1.00 [0.94] 0.00 [0.00] 0.15 (0.31)
GA 2.00 (1.08) 3.70 (1.62) 0.06 (0.03) 1.00 [0.94] 0.00 [0.00] 224.29 (30.99)

100 10,000 MCSS 3.15 (0.64) 0 (0) −0.04 (0.03) 0.89 [0.94] 0.00 [0.00] 10.92 (2.57)
Dendrix-MCMC 2.70 (0.57) 1.41 (2.06) −0.06 (0.02) 0.88 [0.94] 0.02 [0.00] 49.40 (1.76)

Multi-dendrix-MCMC 3.34 (0.57) 2.04 (2.65) −0.04 (0.02) 0.90 [0.94] 0.02 [0.00] 2.41 (0.15)
BLP 3.30 (0.92) 5.45 (1.90) 0.06 (0.02) 1.00 [0.94] 0.00 [0.00] 0.42 (0.24)
GA 3.65 (0.67) 4.50 (1.50) 0.06 (0.02) 0.99 [0.94] 0.00 [0.00] 308.46 (44.10)
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FIG. 3. Tuning error, cost and number of nonzero (i.e., true positive) estimates of MCSS versus the
tuning parameter value λ ∈ 	 with |	| = 100 for the first simulation setup: n = 50, p = 1000 and
(p1,p2,p3) = (0.95,0.01,0.05).

applied to A for each λ ∈ 	 separately. The results are displayed in Figure 3,
demonstrating that the λ’s minimizing the tuning error corresponded to the mini-
mum cost of (2.1) and the true size of B0, say 4.

Moreover, the current tuning error is obtained by applying the cross-validation
procedure for once in consideration of computational efficiency. For instance, in
the first setup with (n = 50,p = 1000) and (p1,p2,p3) = (0.95,0.01,0.05), as in-
dicated in Figure 4, as the cross-validation fold number increased, the performance
of the proposed method measured by C, IC and ADC did not improve, while RT
increased linearly.

3.2.2. Simulation II: Multiple driver pathways. We further compared the per-
formance of MCSS against Multi-dendrix in identifying multiple true driver path-
ways as follows.

The simulation setup was similar as before except that there were two true
driver pathways B1 and B2. We used 100 random initial estimates for MCSS.
We compared their performance using the top two estimated sets (with the min-
imum cost function values) by each method for each dataset. As shown in Ta-
ble 9, MCSS performed much better for the most challenging high-dimensional
case with p = 10,000 and n = 50: it correctly identified a much larger number
of the genes in the two true driver pathways (i.e., with a larger number of esti-
mated true positives) while yielding fewer false positives. On the other hand, as
the sample size n increased to 100, the performance of Multi-dendrix caught up.

FIG. 4. The correct (C #) and incorrect (IC #) numbers of nonzero (i.e., true positive) estimates,
the average difference of the costs (ADC) and running time (RT) of MCSS versus the fold number
of cross-validation used in Algorithm 2 (CV #) for the first simulation setup: n = 50, p = 1000 and
(p1,p2,p3) = (0.95,0.01,0.05).
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TABLE 9
Results in Simulation II based on 100 simulation replications with (p1,p2,p3) = (0.8,0.02,0.05)

n p Method C IC ADC RT

50 1000 Multi-dendrix-MCMC 2.70 (1.65) 13.40 (6.09) −0.27 (0.07) 0.59 (0.02)
MCSS 7.35 (0.67) 0.55 (0.89) −0.03 (0.06) 0.35 (0.06)

100 1000 Multi-dendrix-MCMC 8 (0) 2.80 (1.19) 0.05 (0.01) 0.85 (0.01)
MCSS 8 (0) 0 (0) 0 (0) 0.57 (0.06)

50 10,000 Multi-dendrix-MCMC 0.25 (0.55) 18.55 (1.73) −0.37 (0.08) 1.88 (0.05)
MCSS 5.52 (1.54) 1.91 (1.89) −0.14 (0.10) 3.69 (0.38)

100 10,000 Multi-dendrix-MCMC 5.75 (1.06) 2.75 (3.91) −0.25 (0.07) 3.87 (0.04)
MCSS 7.42 (0.82) 0.65 (0.67) −0.14 (0.13) 7.15 (1.11)

3.2.3. Simulation III: With both mutation and gene expression data. We gen-
erated the mutation data as in Table 7 and the gene expression data from a multi-
variate normal distribution N(0,V ). Specifically, we divided the genes {1, . . . , p}
into mutually disjoint subsets B0 = {1,2,3,4}, B1, B2, . . . ,BK , where, for each
k ∈ {1, . . . ,K}, the gene set size |Bk| was random from {2, . . . ,20}. V is a corre-
lation matrix with all diagonal elements Vjj = 1; for any j1 < j2 both in the same
Bk , Vj1j2 = Vj2j1 = 0.9; otherwise, Vj1j2 = Vj2j1 = 0.1. The rationale is that, for
the genes in the same set, due to their shared function, their expression levels are
also highly correlated. We used our proposed method to select all the tuning pa-
rameters, including γ . The simulation results for the integrative analysis of both
mutation data and gene expression data are summarized in Table 10, where the
new method MCSS_ME is compared with GA_ME, the integrative version of GA
[Zhao et al. (2012)]. Note that, to our knowledge, the integrative version of BLP in
Zhao et al. (2012) is not yet publicly available. From Table 10, we see that GA_ME
failed in situations with the dimension p much smaller than the sample size n; in
contrast, the new method MCSS_ME performed well. Furthermore, GA_ME was
much time-consuming for large p.

4. Conclusions. This paper has introduced a new computational method for a
combinatorial optimization problem motivated from cancer genomics. It approxi-
mates a combinatorial cost function with a continuous and nonconvex relaxation.
In particular, the indicator function is approximated by a nonconvex truncated L1-
function. The proposed method is computationally more efficient than an existing
approach based on stochastic search, and compares favorably over several exist-
ing methods in simulations. Through both real data and simulated data analyses,
the proposed method was shown to be promising for discovering mutated driver
pathways with tumor sequencing data. In light of that Dendrix and other meth-
ods have been successfully applied to the TCGA [Kandoth et al. (2013)], it would
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TABLE 10
Results in Simulation III for integrative analysis of mutation data and gene expression data

(p1,p2,p3) =(0.8,0.02,0.05)

n p Method C IC ADC RT

50 1000 MCSS_ME 4 (0) 0 (0) 0 (0) 5.11 (0.38)
GA_ME 3.61 (0.54) 5.62 (1.67) −0.36 (0.04) 38.22 (1.95)

100 1000 MCSS_ME 4 (0) 0 (0) 0 (0) 7.96 (0.70)
GA_ME 4 (0) 5.6 (0.54) −0.38 (0.05) 30.81 (1.28)

1000 50 MCSS_ME 4 (0) 0 (0) 0 (0) 0.58 (0.02)
GA_ME 0 (0) 0 (0) −1.41 (0.01) 0.00 (0.00)

1000 100 MCSS_ME 4 (0) 0 (0) 0 (0) 0.77 (0.03)
GA_ME 4 (0) 0 (0) 0 (0) 2.10 (0.12)

50 10,000 MCSS_ME 4 (0) 0 (0) 0 (0) 432.55 (35.63)
GA_ME – (–) – (–) – (–) >1500.00 (–)

100 10,000 MCSS_ME 4 (0) 0 (0) 0 (0) 100.77 (24.25)
GA_ME – (–) – (–) – (–) >1500.00 (–)

be interesting to apply our proposed method to ongoing large cancer genomics
projects. Furthermore, the current problem differs from existing pathway analy-
sis of genome-wide association studies (GWAS) [Schaid et al. (2012), Torkamani,
Topo and Schork (2008), Wang, Li and Bucan (2007)] in two aspects: (i) the cur-
rent problem is more challenging in the sense that no pathway is given a priori;
(ii) however, GWAS data is different with genetic variants (or mutations) present
for healthy control subjects, and it is also higher dimensional with a larger num-
ber of genetic variants. It would be interesting to see whether the key concept of
mutation exclusivity and associated methodology in the current context can be ex-
tended and applied to GWAS for de novo pathway or gene subnetwork [Liu et al.
(2014)] discovery to handle genetic heterogeneity. Finally, the main idea of our al-
gorithm is quite general and may be modified and extended for other challenging
combinatorial search problems.

Matlab code implementing the new method and a manual are available at https:
//github.com/ChongWu-Biostat/MCSS.

APPENDIX

PROOF OF THEOREM 1. For convergence of Algorithm 1, by construction,

we have, for m ∈ N, S(β̂
(m)

) = S(m+1)(β̂
(m)

) ≤ S(m)(β̂
(m)

) ≤ S(m)(β̂
(m−1)

) =
S(β̂

(m−1)
). Since S(β) is obviously bounded below, the convergence is proved.

Converging finitely follows from the strict decreasing character of S(m)(β̂
(m)

) in

m, uniqueness of minimizer of S(m)(β) and finite possible values of ∇S2(β̂
(m−1)

)

https://github.com/ChongWu-Biostat/MCSS
https://github.com/ChongWu-Biostat/MCSS
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in (2.4). After termination occurs at m�, β̂
(m)

remains unchanged for m ≥ m�,

and so does the cost function S(β̂
(m)

) in (2.3) for m ≥ m�. By construction of

S(β), we have that β̃ = β̂
(m) = β̂

(m�−1)
for all m ≥ m�. β̃ is uniquely defined be-

cause, for each m ∈ N, the minimizer β̂
(m)

of S(m)(β) is uniquely defined. Since

∇S(m�)(β̂
(m�)

) = ∇S1(β̂
(m�)

) − ∇S2(β̂
(m�−1)

) = 0, we get that ∇S1(β̂
(m�)

) =
∇S2(β̂

(m�−1)
) = ∇S2(β̂

(m�)
). Thus, ∇S(β̂

(m�)
) = ∇S1(β̂

(m�)
) − ∇S2(β̂

(m�)
) = 0,

which completes the proof. �

PROOF OF LEMMA 1. We prove by contradiction. By construction of S(β),
we see that |β∗| = (|β∗

1 |, . . . , |β∗
p|)T is also a local minimum of S(β), β ∈ Rp .

Without loss of generality, we assume that |β∗
1 | > τ1. Let

s1(β1, . . . , βp) = 1

n

p∑
j=1

min
( |βj |

τ1
,1

)
A·,j + λ

p∑
j=1

min
( |βj |

τ2
,1

)
,

s2(β1, . . . , βp) = −2

n

n∑
i=1

min
(∑p

j=1 Aij |βj |
τ1

,1
)

+ α

n

p∑
j=1

β2
j ,

s∗
1 (β1) = s1

(
β1,

∣∣β∗
2
∣∣, . . . , ∣∣β∗

p

∣∣),
s∗

2 (β1) = s2
(
β1,

∣∣β∗
2
∣∣, . . . , ∣∣β∗

p

∣∣),
s∗(β1) = S

(
β1,

∣∣β∗
2
∣∣, . . . , ∣∣β∗

p

∣∣) = s∗
1 (β1) + s∗

2 (β1).

Since
∂s∗

1 (β1)

∂β1
= 0 and

∂s∗
2 (β1)

∂β1
> 0 whenever |β∗

1 | > τ1, we see that |β∗
1 | is not a

local minimizer of s∗(β1), which is contrary to the assumption. �

PROOF OF LEMMA 2. We prove by contradiction. We assume that β∗ �= 0 is
a local minimizer of S(β) in (A.1) on R

p . By construction of S(β), we see that
|β∗| = (|β∗

1 |, . . . , |β∗
p|)T is also a local minimum of S(β), β ∈ Rp . Without loss of

generality, we assume that |β∗
1 | > 0. Let

s1(β1, . . . , βp) = 1

n

p∑
j=1

min
( |βj |

τ11
,1

)
A·,j + λ

p∑
j=1

min
( |βj |

τ2
,1

)
,

s2(β1, . . . , βp) = −2

n

n∑
i=1

min
(∑p

j=1 Aij |βj |
τ12

,1
)

+ α

n

p∑
j=1

β2
j ,

s∗
1 (β1) = s1

(
β1,

∣∣β∗
2
∣∣, . . . , ∣∣β∗

p

∣∣),
s∗

2 (β1) = s2
(
β1,

∣∣β∗
2
∣∣, . . . , ∣∣β∗

p

∣∣),
s∗(β1) = S

(
β1,

∣∣β∗
2
∣∣, . . . , ∣∣β∗

p

∣∣) = s∗
1 (β1) + s∗

2 (β1).
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We first consider the situation of |β∗
1 | = τ11. Denote the right derivative of

s∗
1 (β1) at |β∗

1 | to be b. By construction of s∗
1 (·), its left derivative at |β∗

1 | must be

b + A·,1
nτ11

. Let c1 and c2 denote the left derivative and right derivative of s∗
2 (β1)

at |β∗
1 |, respectively. Since s∗(β1) achieves a minimum at |β∗

1 |, we have that

c1 + b + A·,1
nτ11

≤ 0 and c2 + b ≥ 0, which implies that c2 − c1 ≥ A·,1
nτ11

. On the other

hand, since |β∗
1 | > 0, we have that c1, c2 ∈ [−2

∑n
i=1

Ai1
nτ12

+ 2α
n
|β∗

1 |,2α
n
|β∗

1 |], and

thus |c2 − c1| ≤ 2A·,1
nτ12

≤ 2A·,1
2nτ11

= A·,1
nτ11

because we have assumed that τ12 > 2τ11,

which is contrary to the fact that c2 − c1 >
A·,1
nτ11

.
Second, we consider the situation of τ2 < |β∗

1 | < τ11. In this situation, the left

derivative of s∗
1 (β1) at |β∗

1 |, b, is A·,1
nτ11

, and the left derivative of s∗
2 (β1) at |β∗

1 |, c1,

belongs to [−2 A·,1
nτ12

+ 2α
n
|β∗

1 |,2α
n
|β∗

1 |], which implies b + c1 > 0 and is contrary
to the the assumption of the local minimum of |β∗

1 |.
Third, we consider the situation of 0 < |β∗

1 | ≤ τ2. We see that the left derivative

of s∗
1 (β1) at |β∗

1 |, b, is A·,1
nτ11

+ λ
τ2

, and the left derivative of s∗
2 (β1) at |β∗

1 |, c1, belongs

to [−2 A·,1
nτ12

+ 2α
n
|β∗

1 |,2α
n
|β∗

1 |], which implies b + c1 > 0 and is contrary to the the
assumption of the local minimum of |β∗

1 |.
Finally, we consider the situation of |β∗

1 | > τ2. Since
∂s∗

1 (β1)

∂β1
= 0 and

∂s∗
2 (β1)

∂β1
> 0

whenever |β∗
1 | > τ12, we see that |β∗

1 | is not a local minimizer of s∗(β1), which is
contrary to the assumption. �

Other choices of the tuning parameters. This section focuses on situations
involving different thresholding parameters for different approximations of indi-
cator functions in (2.3). Consider, for β ∈ [0,+∞)p ,

S(β) = 1

n

p∑
j=1

min
(

βj

τ11
,1

)
A·,j − 2

n

n∑
i=1

min
(∑p

j=1 Aijβj

τ12
,1

)
(A.1)

+ λ

p∑
j=1

min
(

βj

τ2
,1

)
+ α

n

p∑
j=1

β2
j ,

where τ11 and τ12 may not be equal.
First, we examine the cases of τ12 > 2τ11 (τ2 < τ11, τ12).

LEMMA 2. Let τ12 ≥ 2τ11 and τ2 < τ11, τ12. If there exists a local minimizer
β∗ �= 0 of S(β) in (A.1), then β∗

j = 0 or τ11 < |β∗
j | ≤ τ12 for each j ∈ {1, . . . , p}.
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Letting τ12 ≥ 2τ11, we have that, in each iteration of Algorithm 1,

S(m)(β) = βT

{
diag(A·)I (β̂

(m−1) ≤ τ11)

nτ11
+ λ

I (β̂
(m−1) ≤ τ2)

τ2
− 2A·

nτ12

}
(A.2)

+ 2

n

n∑
i=1

max
(∑p

j=1 Aijβj

τ12
− 1,0

)
+ α

n
βT β, β ∈ [0,+∞)p.

It follows from (A.2) that once we have that β̂
(m−1) = 0 for some m, S(m)(β) ≥ 0

for all β ∈ [0,+∞)p , which terminates the DC iteration process because β̂
(m) =

β̂
(m−1) = 0. This indicates that if τ12 ≥ 2τ11, then the DC algorithm becomes sen-

sitive to an initial value β̂
(0)

.
Next, we examine the case of 0 < τ12 < 2τ11 (τ2 < τ11, τ12), where the DC al-

gorithm is not sensitive as the first one. However, based on the results of a few
numerical examples (not shown), we found that, in this situation, even using one
more parameter, the performance of finding the minimum cost subset did not im-
prove over the proposed method.

Finally, we consider the case of τ1 = τ11 = τ12 and τ2 ≥ τ1. In this case, similar
to Lemma 1, any local minimizer of S(β) belongs to [0, τ2]p , where the truncated
L1 penalty becomes a L1 penalty that does not restrict the number of nonzero
coordinates of a minimizer as an L0 penalty does. In particular, in the situation
with τ1 = τ2, S(β) becomes a strictly convex function on [0, τ2]p , which indicates
that, for any β1 and β2 with S(β1) = S(β2), S(

β1+β2
2 ) < S(β1). As a result, if

there exist two minimum cost subsets B1 and B2 in the finite-sample situation,
then, by using τ1 = τ2, the corresponding method is more likely to select B1 ∪ B2

as the minimum cost subset.

The subgradient descent algorithm. For MCSS, we denote β̂
(m,1) = (β̂

(m,1)
1 ,

. . . , β̂
(m,1)
n )′ = β̂

(m−1)
, use the following subgradient of S(m)(β) at β̂

(m,t−1)
:

∇S(m)(β̂(m,t−1))
= diag(A·)I

(
β̂

(m−1) ≤ τ1
)
/nτ1 + λI

(
β̂

(m−1) ≤ τ2
)
/nτ2 − (1 + ρ) ∗ AT· /τ1

+ (1 + ρ)AT I
(
Aβ̂(m,t−1)/τ1 > 1

)
/nτ1 + 2αβ̂(m,t−1)/n,

and then update β̂
(m,t)

until convergence to obtain β̂
(m)

,

β̂
(m,t) = β̂

(m,t−1) − 1

2
√

npt
∇S(m)(β̂(m,t−1))

.(A.3)
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For MCSS_ME, we denote β̂
(m,1) = (β̂

(m,1)
1 , . . . , β̂

(m,1)
n )′ = β̂

(m−1)
, use the fol-

lowing subgradient of S(m)(β) at β̂
(m,t−1)

:

∇S(m)(β̂(m,t−1))
= (

diag(A·)I
(
β̂

(m−1) ≤ τ1
)
/nτ1 + λI

(
β̂

(m−1) ≤ τ2
)
/nτ2 − 2A·/nτ1

− 2γDβ̂
(m−1)

/τ 2
1

− 2γ diag
(
I
(
β̂

(m−1)
> τ1

))
D max

(
β̂

(m−1)
/τ1 − 1,0

)
/τ1

)
+ (1 + ρ)AT I

(
Aβ̂(m,t−1)/τ1 > 1

)
/nτ1 + 2αβ̂(m,t−1)/n

+ 2 diag(C·)β̂(m,t−1)/nτ1 + 2C max
(
β̂(m,t−1)/τ1 − 1,0

)
/n

+ 2 diag(C·)diag
(
I
(
β̂(m,t−1) > τ1

))
max

(
β̂(m,t−1)/τ1 − 1,0

)
/nτ1

+ 2C diag
(
β̂(m,t−1))I (

β̂(m,t−1) > τ1
)
/nτ1,

and then update β̂
(m,t)

by equation (A.3) until convergence to obtain β̂
(m)

.
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