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In this paper we develop a statistical method for identifying links of a
network from time to event data. This method models the hazard function of
a node conditional on event time of other nodes, parameterizing the condi-
tional hazard function with the links of the network. It then estimates the haz-
ard function by maximizing a pseudo partial likelihood function with param-
eters subject to a user-specified penalty function and additional constraints.
To make such estimation robust, it adopts a pre-specified risk control on the
number of false discovered links by using the Stability Selection method.
Simulation study shows that under this hybrid procedure, the number of false
discovered links is tightly controlled while the true links are well recovered.
We apply our method to estimate a political cohesion network that drives
donation behavior of 146 firms from the data collected during the 2008 Tai-
wanese legislative election. The results show that firms affiliated with elite
organizations or firms of monopoly are more likely to diffuse donation be-
havior. In contrast, firms belonging to technology industry are more likely to
act independently on donation.

1. Introduction. Network analysis aims to understand a network by explor-
ing its links along with node attributes. Important network properties such as
centrality [Freeman (1977)], transitivity and assortativity [Newman (2002)] are
computed using information about links with additional information about node
attributes. Links of a network are conventionally defined by nodes of the network
or identified by researchers during the data collection process. However, informa-
tion about links is not always explicit, sometimes it is even unobservable. When
such information is not available, one way to obtain the links is to identify them
statistically, by building a model for a network with the links as parameters and
estimating these parameters from the data.

Currently there are several statistical approaches to identifying links of a net-
work. One approach relies on estimating Gaussian graphical models with contin-
uous data [Banerjee, El Ghaoui and d’Aspremont (2008), Chandrasekaran, Parrilo
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and Willsky (2012), Danaher, Wang and Witten (2014), Friedman, Hastie and Tib-
shirani (2008), Khare, Oh and Rajaratnam (2015), Meinshausen and Bühlmann
(2006), Peng, Zhou and Zhu (2009), Ren et al. (2015), Yuan and Lin (2007)]. The
other approach focuses on estimating Ising models with binary data [Amhed and
Xing (2009), Anandkumar et al. (2012), Loh and Wainwright (2013), Ravikumar,
Wainwright and Lafferty (2010), Xue, Zou and Cai (2012)]. The third approach
is to estimate graphical models using nonparametric techniques [Cai, Liu and Luo
(2011), Lafferty, Liu and Wasserman (2012), Liu et al. (2012), Qiu et al. (2016)].
Although these methods are efficient and powerful, with excellent properties in es-
timation, they are mainly developed for dealing with non-censored continuous data
or binary data. To deal with censored data, or time to event data in general, there
exist several research works with a focus on estimation of network diffusion. One
early study is Strang and Tuma (1993), who proposed a Cox proportional hazards
model for peer effects on behavior diffusion. Recent research works in this field
include Gomez-Rodriguez, Leskovec and Krause (2012), who proposed several
probabilistic models and estimated these models with data collected from online
social media, and Gomez-Rodriguez et al. (2016), who proposed a full likelihood
approach to estimating network diffusion with censored data and investigated con-
ditions that guarantee full recovery of the diffusion paths as sample size increases.

In this paper we propose a statistical method for estimating links of a network
from time to event data. In particular we focus on the time to event data in that
event times are vector-valued, and entries of each event time vector are either
observed or right-censored. In Section 2 we provide two data sets: the synthetic
diffusion data generated from a hierarchical model, and the campaign donation
data collected during the 2008 Taiwanese legislative election, to illustrate the data
structure and the problem of estimating links of a network from time to event data.
In Section 3 we develop a hazard network model in that the hazard rate of a node is
a function of event times of other nodes. This setting allows us to parameterize the
hazard rate function in terms of links of the network underlying the dependence
structure of the event occurrences. In Section 4 we develop a partial likelihood-
based method for estimating parameters in the hazard network model. In Section 5
we evaluate our method by applying it to estimate the hazard network model with
the synthetic diffusion data. In Section 6, we apply our method to identify links of
a political cohesion network that drives donation behavior among 146 firms from
the campaign donation data collected during the 2008 Taiwanese legislative elec-
tion. In Section 7 we discuss possible extensions of our method and future research
directions. In Supplementary Materials [Yen et al. (2017)] we describe a numeri-
cal algorithm for carrying out our method, provide details on data aggregation, and
additional results on simulation experiments and real data application.

2. The problem setting and data sets. In this section we first describe the
problem of estimating links of a network from time to event data. We then provide
two data sets to illustrate the problem.
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2.1. The estimation problem. Now consider a situation in which there are m

subjects. Let ti = (ti1, ti2, . . . , tim) denote the event time vector of the m subjects in
instance i, and δi = (δi1, δi2, . . . , δim) denote the indicator vector of the m subjects
such that δij = 1 if subject j experiences an event at time tij in instance i, and
δij = 0 if j is censored at time tij in instance i.

We assume some subjects are more likely to experience the event following a
certain group of subjects, but some others may not. This assumption implies there
may exist a network underlying the dependence structure of event occurrences
among the m subjects. Let H denote the links of the network. Now we have col-
lected n independent instances {(t1, δ1), (t2, δ2), . . . , (tn, δn)}. Can we use the n

instances (ti, δi)’s to estimate H , the links of the network underlying the depen-
dence structure of the event occurrences?

2.2. Synthetic diffusion data. Below we describe a probabilistic model for
generating diffusion data in which the dependence structure is determined by a
user-specified network containing m nodes. In the diffusion data, each observation
is an event time vector of the m nodes. Let Yk(t) denote the number of events oc-
curred for node k in the time interval [0, t]. We assume Yk(t) follows a Poisson
distribution with mean

�k(t) =
∫ t

0
exp

{
ηk(u)

}
du,(2.1)

where

ηk(u) = ∑
j :(j,k)∈H

γjk exp
{−(u − tj )

}
I{u > tj }.(2.2)

In (2.2), γjk is a parameter that measures the impact of node j on node k, tj is the
event time of node j , and H is a set that contains links of the network underlying
the dependence structure of the impacts among the nodes. For practical purposes
we assume γjk is nonnegative-valued. Equation (2.2) implies that node j can only
influence the value of ηk(u) when there is a directed link from j to k, and when
the event time of j is prior to the event time of k.

2.2.1. The data set. To generate the diffusion data, we first need to specify the
network H . One may specify it by asking for expert knowledge, or draw it from
some random graph model. After specifying H , we then determine the nonnega-
tive weight γjk for each link in H . Again, one may consult experts for specifying
the value of γjk or randomly drawing it from a gamma distribution. In our case,
we draw it from Gamma(1,1). Next we select a starting node according to a prob-
ability with the mass function proportional to the out-degree of the node. Under
this probability mechanism, the more the out-links a node has, the more likely the
node will be selected. We then go on to generate random variable Yk(t) for each
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node from the Poisson hierarchical model in (2.1) and (2.2). We use the trape-
zoidal rule to numerically compute the mean function �k(t). The event time for
node k is defined as tk = min{t : Yk(t−) = 0, Yk(t) > 0}. In addition, during the
data generating process, we also randomly generate censoring time for each node
according to a pre-specified censoring probability. The event times and censoring
times generated from the data generating process described above are collected to
form the diffusion data.

Figure 1 shows three instances from the Poisson hierarchical model (2.1) and
(2.2) with censoring probability equal to 0.1 at each time point. On the left hand
side of Figure 1, black dots represent nodes who experienced an event during the
observation period (δij = 1), while white dots represent nodes whose observations
were right-censored (δij = 0). The network underlying the dependence structure
for generating the three instances was generated from the Barabási–Albert model
[Barabási and Albert (1999)] BA(m,w) with m, the number of nodes, equal to
100, and w the value of the exponent of the degree distribution, equal to 1. We
generated the network using R package “igraph” [Csardi and Nepusz (2006)].

2.2.2. Motivation and aims. The synthetic diffusion data contain event times
and censoring indices of 100 nodes, which correspond to ti and δi in our problem
setting, respectively. Here we are interested in using these event times and censor-
ing indices to recover the link set H in (2.2). In addition, the values of the layout
coordinates shown on the right hand side of Figure 1 provide spatial information
about the 100 nodes. Such exogenous information may be useful in estimating H .
We will provide more details on modeling the synthetic diffusion data and estimat-
ing the link set H in Section 5.

2.3. Campaign donation data. In modern electoral politics, campaign dona-
tion plays an important role in influencing election results. While candidates need
donations from firms to run their election campaigns, firms also have a strong inter-
est to build connections and maintain their access to political influence through the
donations. When different firms make donations to the same candidate, they be-
come embedded in a network driven by the donations. Such a donation-driven net-
work of firms reflects political cohesion among the firms [Burris (2005), Mizruchi
(1989)]. Earlier scholarly efforts have been devoted mostly to identify the mech-
anisms that lead to such consensus. Important mechanisms include direct social
interactions among business elites in the boardrooms, or competition among firms
that may impose the conformity pressure and drive firms to imitate each other in
their donations [Burris (2005), Mizruchi (1992)]. Empirical analyses have thus fo-
cused on how donation decisions of firms are influenced by networks generated
by shared board members of firms or market competitions emerged from the same
market niche.
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FIG. 1. Three instances from the simulated data. Left: Event time plots of the nodes. The x-axis
represents the time, and the y-axis represents the nodes. The black dot represents the time when an
event occurred, and the white dot represents the time when the observation was censored. Right:
Scatter plots of the node positions. The number in black color indicates the time when an event
occurred, and the number in gray color indicates the time when the observation was censored.
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2.3.1. The data set. The campaign donation records were collected during the
2008 Taiwanese legislative election. These records were provided by the Control
Yuan of the Taiwanese government. Each record contains the time of the donation,
the name of the firm, and the name of the candidate corresponding to a donation
event. In the original records, some firms were subsidiaries of other firms. Prior
studies [Burris (2005), Mizruchi (1992)] suggested such firms tended to make
their donation decisions collectively. In this sense these individual firms can be
seen as a business group. In Taiwan, such business groups were considered as the
major agents in the local business and political activities [Chu (1994), Lee (2016),
Numazaki (1986)]. Based on the above studies, we treated the business group as
the basic unit in the subsequent analysis. To obtain the grouped donation records,
we aggregated the original records, using the Unified Business Number, a busi-
ness coding system provided by the China Credit Information Service (CCIS) to
identify which business group a firm belongs to. In Supplementary Materials we
provide further details on the data aggregation procedure. In addition, although
by definition a business group is an organization aggregated from individual firms
(or subsidiaries), as it serves as the basic unit in our analysis, it still can be seen
as a firm when making donation decisions. Therefore to avoid confusion, we will
call the business groups as firms in our subsequent analysis. The data aggregation
led to 579 campaign donation records involving 146 firms (business groups) and
133 candidates. The first record occurred on April 20, 2007, and the final record
occurred on January 28, 2008.

Among the 579 campaign donation records, a small fraction of them (33 events,
or 5.7 percent) were recurrent events of donations between the same firm (busi-
ness group) and the same candidate. Excluding these recurrent events leads to 546
campaign donation records. For practical purposes, we will only use records on
the first donation for analysis. However, we will discuss issues on modeling the re-
current events in Section 7.1. Figure 2 shows event time plots of the 546 campaign
contribution records. The plots suggest that events occurred sporadically during
the first few months and became intensive during the final two months.

2.3.2. Motivation and aims. Here we are interested in recovering the network
underlying the dependence structure of the donation events of the 146 firms. We
call this network the “event-time-driven political cohesion network of the firms”,
or simply the “political cohesion network” since it reflects the fact that donat-
ing money to a certain candidate is a kind of behavior collectively made by these
firms. To investigate this question, we may treat the campaign donation records
as the data set that contains 133 observed event time vectors corresponding to the
133 candidates. In addition, each event time vector is a 146-dimensional vector
containing event times of donations from the 146 firms to the corresponding can-
didate. These event time vectors are shown in the plot at the bottom of Figure 2.
We will discuss further modeling and estimation issues relating to the campaign
donation data in Section 6.



LINK ESTIMATION 1435

FIG. 2. Event time plots of the campaign donation records. Top: The plot of the number of donation
events against time. The x-axis represents time, and the y-axis represents the number of events.
Bottom: The plot of time when a candidate received a donation. The x-axis represent time, and the
y-axis represents the candidate. Each square dot point represents the time when the corresponding
candidate received a donation.
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3. The model. Let θik(t) denote the hazard function of event time for node
k in instance i. Since our aim is to estimate links of a network underlying the
dependence structure of event occurrences among the m nodes, it is intuitive to
model θik(t) as a function of event times of other nodes. We model the hazard
function θik(t) by

θik(t) = ϑi exp
{
ηik(t;α,γ )

}
,

(3.1)
ηik(t;α,γ ) = αkkgikk(t) + ∑

j �=k

γjkgijk(t, tij ),

where α = (α11, α22, . . . , αmm) and γ = {γjk : j �= k, j, k = 1,2, . . . ,m}, ϑi is a
baseline hazard function specified for instance i, gijk(t, tij ) is a user-specified co-
variates function that contains information about event time of node j in instance i,
and γjk is a parameter that measures the impact of node j on node k. Note that al-
though the covariate function gijk(t, tij ) mainly contains information about event
time of node j in instance i, one may modify it by including information about at-
tributes of nodes k and j if such information is available in instance i at time t . We
will discuss how to choose gijk(t, tij ) in Section 3.1. In addition, it is the parame-
ter set γ that quantifies the links of the network we are interested in. Formally we
define the link set H as H = {(j, k) : γjk �= 0 for j �= k, and j, k = 1,2, . . . ,m}.
This definition implies that if dyadic pair (j, k) ∈ H , then γjk �= 0, and event time
of node j will have an impact on the hazard function for node k via the term
γjkgijk(t, tij ).

3.1. Choices of the covariate function. The covariate function gijk(t, tij ) is a
function of event time of node k and event time of node j . It should be context-
dependent, relying on further assumptions from researchers and information re-
lating to research issues. For example, consider a situation in which a disease is
transmitted among the nodes. We want to know the network underlying such trans-
mission. After knowning the properties of the disease, we may assume: (a) Only
the infected node can transmit the disease to non-infected nodes; (b) Once a node
is infected, the chance that it makes non-infected nodes get infected will decrease
over time. Under these assumptions, we have several choices of gijk(t, tij ). We
may let

gijk(t, tij ) = exp
{−(t − tij )+

}
I{t > tij }I{δij = 1},(3.2)

or

gijk(t, tij ) =
[

1

(t − tij )+

]
I{t > tij }I{δij = 1},(3.3)

where I{A} is an indicator function such that I{A} = 1 if A is true and I{A} = 0
otherwise, and δij is an indicator function such that δij = 1 if node j experiences
an event at time tij in instance i, and δij = 0 if j is censored at time tij in instance i.
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The covariate functions (3.2) and (3.3) are non-increasing functions of t and only
take nonnegative values. In addition, g(t, tij ) → 0 as (t − tij )+ → ∞. If tij is
censored, i.e. δij = 0, then g(t, tij ) = 0, and the impact of node j on the hazard
function of node k will vanish.

In practice, researchers should choose the covariate function gijk(t, tij ) based
on the research question they want to address. For example, if the transmitted
disease is subject to a delay mechanism under which the infected node is unable
to transmit the disease to other nodes until at least d days after the infection, then
we may modify the covariate function as

gijk(t, tij ) = exp
{−(t − tij − d)+

}
I
{
(t − tij )+ > d

}
I{δij = 1}.

Under the above covariate function, we have gijk(t, tij ) = 0 for (t − tij ) ≤ d , which
implies even node j has been infected with the disease at time tij , it will be unable
to transmit the disease to node k within d days after the infection. This setting
provides a delay mechanism for modeling disease transmission with an extra pa-
rameter d , which may be specified by researchers.

On the other hand, if we have information about node attributes, we may define

gijk(t, tij ) = exp
{
−(t − tij )+ − ‖xk − xj‖2

2

2σ 2

}
I{t > tij }I{δij = 1},(3.4)

gijk(t, tij ) =
[

1

(t − tij )+

]
exp

{
−‖xk − xj‖2

2

2σ 2

}
I{t > tij }I{δij = 1},(3.5)

where xk and xj are covariates containing information about attributes of node j

and node k, respectively, and σ 2 is a user-specified scaling parameter. Here the
function exp{−‖xk − xj‖2

2/(2σ 2)} is used to measure similarity between node k

and node j . Such a formulation is based on the idea of homophily [McPherson,
Smith-Lovin and Cook (2001)] in that a node may have a higher chance of getting
the disease from another inflected node if the two nodes are similar to each other.

4. Estimation. Under model (3.1), parameters γjk’s quantify the link set H .
Below we develop an estimation procedure for estimating γjk’s. This estimation
procedure is based on maximization of a partial likelihood function. To derive the
partial likelihood function, we first pool all n instances together and assume events
in the n instances occurred at q time points 0 ≤ u1 ≤ u2 ≤ · · · ≤ uq < ∞. For
notation simplicity, let θisk = θik(us). The probability that node k will experience
an event in instance i around the time point us is

pisk = θisk∑
k′∈Ris

θisk′
,(4.1)

where Ris is the risk set associated with instance i at time us . Note that in
model (3.1) the hazard function θik(us) is defined conditional on the event times
of other nodes, and therefore the probability (4.1) is a probability conditional on
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the event times of other nodes observed in instance i until the time point us . With
pisk , we can derive a conditional likelihood function of θ = {θisk}i,s,k given data
observed in instance i until the time point us . This conditional likelihood function
is

Lis(θ) =
m∏

k=1

p
I{k∈Dis}
isk = ∏

k∈Dis

θisk∑
k′∈Ris

θisk′
,

where Dis is the event set associated with instance i at the time point us . With
Lis(θ), we can go further to derive the conditional likelihood function of θ given
all observed data. Let l(θ) denote logarithm of the conditional likelihood function
given all observed data. The conditional likelihood function is the multiplication
of Lis(θ) over instances i’s and event time points us ’s:

l(θ) = log

[
n∏

i=1

q∏
s=1

Lis(θ)

]
(4.2)

= log

{
n∏

i=1

q∏
s=1

( ∏
k∈Dis

θisk∑
k′∈Ris

θisk′

)}
.

Now let ηisk(α, γ ) = ηik(us;α,γ ). Following model (3.1) we have θisk =
ϑi exp{ηisk(α, γ )}, and then (4.2) becomes

l(α, γ ) = log

{
n∏

i=1

q∏
s=1

exp{∑k∈Dis
ηisk(α, γ )}

[∑k′∈Ris
exp{ηisk′(α, γ )}]|Dis |

}
,(4.3)

where the instance-specific baseline hazard function ϑi is canceled out. We esti-
mate α and γ by

(α̂, γ̂ ) = arg max
α∈Rm,γ∈C

{
1

n
l(α, γ ) − λ

m∑
k=1

pen(γk)

}
,(4.4)

where C is a convex set, and pen(γk) is a function used to regularize estimated
values of γk = {γjk}j �=k , and λ is a tuning parameter used to control the impact of∑m

k=1 pen(γk) on the estimation. We then estimate the link set H by

Ĥ = {
(j, k) : γ̂jk �= 0

}
.

In practice we may estimate γ by setting C = Rm(m−1) or C = {γ : γ ≥ 0}, and
pen(γk) = ‖γk‖1. We provide an algorithm for numerically solving the estimation
problem (4.4) in Supplementary Materials.

4.1. Tuning parameter selection. We adopt the following steps to select tun-
ing parameter λ. We first run estimation with different values of λ chosen from
interval [λmin, λmax]. We evaluate an information criterion using estimates based
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on different values of λ. We then select the one that minimizes the information
criterion as the optimal value of λ. In practice we use

BIC(λ) = −2l
(
α̂(λ), γ̂ (λ)

) + |Ĥλ| logn(4.5)

to select the value of λ. Here α̂(λ) and γ̂ (λ) are estimates of α and γ at λ, respec-
tively, Ĥλ = {(j, k) : γ̂jk(λ) �= 0}, and |Ĥλ| is the number of elements in Ĥλ.

4.2. Stability selection. Information-based model selection criteria like BIC
are unable to provide meaningful risk control such as those on the number of false
positives in the estimation. Currently there exist several methods for risk control in
high-dimensional model estimation. One of the methods is the Stability Selection
method proposed by Meinshausen and Bühlmann (2010) [see also Shah and Sam-
worth (2013)]. The Stability Selection is a subsampling-based method that controls
the number of false positives by applying an explicit upper bound for the expected
number of false positives. It estimates link set H by

Ĥ stable =
{
(j, k) : max

λ∈�
(�λ,(j,k)) ≥ πthr

}
,(4.6)

where � = [λmin, λmax], πthr is a threshold value specified by researchers,
maxλ∈�(�λ,(j,k)) is the selection probability corresponding to dyad (j, k), and
�λ,(j,k) = EI [P{(j, k) ∈ Ĥλ,I }], where I is a random subsample with size �n/2�,
and Ĥλ,I is an estimate of H using subsample I at λ.

To explain how the Stability Selection method works, first let Ĥ FP,stable denote
the index set of false positives in the estimator Ĥ stable. According to Meinshausen
and Bühlmann (2010), under some regularity conditions, the expectation of the
number of false positives h = E(|Ĥ FP,stable|) is bounded by

h ≤ 1

(2πthr − 1)

q2
�

[m(m − 1)] ,(4.7)

where πthr is the same as defined above, q� = EI (|Ĥ�,I |), Ĥ�,I = ⋃
λ∈� Ĥλ,I ,

and m(m − 1) is the number of parameters in the estimation.
A main advantage of the Stability Selection method is that it does not require

researchers to specify a value for the tuning parameter λ in the estimation. In addi-
tion, by fixing the number of false positives h and q�, one can use inequality (4.7)
to obtain a value for the threshold probability πthr in terms of h and q�. On the
other hand, one can also fix πthr and q�, and use the inequality (4.7) to obtain an
upper bound for h.

In practice, we estimate q� and �λ,(j,k) as follows. We first draw a se-
quence {λb}Bb=1 such that λmin ≤ λ1 ≤ λ2 ≤ · · · ≤ λB ≤ λmax from the interval
[λmin, λmax]. We estimate the link set H at each λb using subsample I with size
�n/2� from the original sample. We run such estimation for several times using dif-
ferent subsamples. Let I denote the set of the subsamples. We estimate q� by q̂� =
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|I|−1 ∑
I∈I |⋃λ∈{λb}Bb=1

Ĥλb,I |, and �λ,(j,k) by �̂λb,(j,k) = |I|−1 ∑
I∈I I{(j, k) ∈

Ĥλb,I }. Because we only use λ ∈ {λb}Bb=1 to compute these estimates, therefore we
replace � with {λb}Bb=1 when computing the selection probability maxλ∈� �λ,(j,k)

in (4.6). With �̂λb,(j,k), the Stability Selection estimator of H in (4.6) becomes

Ĥ stable =
{
(j, k) : max

b∈{1,2,...,B}(�̂λb,(j,k)) ≥ πthr

}
.

In later sections we will combine our method with the Stability Selection for model
selection.

5. Application to the synthetic diffusion data. We first demonstrated our
method by estimating the hazard network model with the synthetic diffusion data
described in Section 2.2. We then conducted several simulation experiments to
evaluate performance of our method when combining it with the Stability Selection
method for controlling the number of false discovered links.

5.1. Model estimation and the results. We estimated model (3.1) with the syn-
thetic diffusion data described in Section 2.2. We used (3.4) as the covariate func-
tion in our model, with σ 2 = 50, and xj and xk being the two-dimensional vectors
corresponding to the coordinates of nodes j and k in the scatter plots on the right
hand side of Figure 1. In these plots each node was positioned according to the
layout coordinates computed by the Fruchterman–Reingold algorithm. In addition,
we selected the tuning parameter by using the Bayesian information criterion (4.5).
The results are shown in Figure 3. The plot on the top left hand side of Figure 3
shows the true network underlying the dependence structure of event occurrences.
From these plots we can see that when λ decreases to a certain value, the method
eventually recovers most of the true links (TPR = 0.95). However, such recovery
is done at the expense of a rapid increase in the number of false discovered links
(FDR = 0.59).

We further investigated whether using a different covariate function gij (t, tj )

will have an impact on the estimation result. In addition to the covariate func-
tion (3.4), we also considered covariate functions (3.2), (3.3) and (3.5). Note that
since we had used covariate function (3.2) to generate the data, and therefore the
model with covariate function (3.2) can be viewed as the true model. We labeled
this model as the “exponential time” model in our analysis. On the other hand,
models with other covariate functions (3.4), (3.3) and (3.5) may be viewed as the
candidate models. We labeled these models in our analysis as the “exponential
time with covariate” model, “inverse time” model and “inverse time with covari-
ate” model, respectively. We estimated these models with the synthetic diffusion
data and plotted ROC curves for the corresponding estimation results. The ROC
curves are shown on the bottom right hand side of Figure 3. From the ROC curve
plot we can see the inverse time model has an ROC curve similar to the exponential
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FIG. 3. Estimation results from the synthetic diffusion data. Top left: The network underlying the
dependent structure of the synthetic diffusion data. Nodes are positioned according to the layout
coordinates computed by the Fruchterman–Reingold algorithm. Top right: The estimated links. Here
BIC is the Bayesian information criterion, FDR is the false discovery rate, and TPR is the true
positive rate. Bottom left: The BIC against the tuning parameter. The x-axis represents the value of
tuning parameter, and the y-axis represents the value of the BIC. The red dash line indicates the BIC
corresponding to the estimated links. Bottom right: ROC curves for estimations with the true model
(the exponential time model) and candidate models (the exponential time with covariate model, the
inverse time model and the inverse time with covariate model). The x-axis represents the false positive
rate, and the y-axis represents the true positive rate.

time model (the true model), while the exponential time with covariate model has
an ROC curve similar to the inverse time with covariate model. The ROC curves
imply that models with information about the layout coordinates performed better
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than those without such information, suggesting our estimations may have bene-
fited from incorporating exogenous information in the covariate function.

5.2. Further simulation experiments. We further evaluated our method under
two scenarios when the network underlying the dependence structure of event oc-
currences was generated from (a) the Watts–Strogatz model WS(m,w1,w2) [Watts
and Strogatz (1999)], where m = 40 is the number of nodes, w1 = 1 is the num-
ber of neighbors on one side, and w2 = 0.04 is the rewiring probability, and (b)
the Barabási–Albert model BA(m,w), where m = 50 is the number of nodes, and
w = 1 is the value of the exponent of the degree distribution. In each scenario, we
generated 100 networks. Each of the 100 networks was further used to generate
a sample of n = 100 instances of m-dimensional event time vectors according to
the Poisson hierarchical model (2.1) and (2.2). During the data generating process,
each node had censoring probability equal to 0.05.

Under each scenario, we considered three estimations. The first one was the
estimation using BIC for tuning parameter selection. The second one was the esti-
mation using the Stability Selection with the expected number of false discovered
links h controlled at a level less than or equal to 1/10 of the number of the true
links. The last one was the estimation using stability selection with h controlled at
a level less than or equal to half of the number of the true links. We carried out the
first estimation for each network using samples with sizes n ranging from 10 to
100. For estimations with the Stability Selection, we only carried out them using
samples with sizes ranging from 50 to 100.

To evaluate the three estimations, we considered the following three measures:
(1) the true positive rate; (2) the false discovery rate; and (3) the ratio between the
number of realized false discovered links and the number of controlled false dis-
covered links h. We calculated the three performance measures for each estimation
under different sample sizes and then averaged the performance measures over the
100 estimations.

Figure 4 shows estimation results from data generated from the Watt-Strogatz
models WS(40,1,0.04) and the Barabási–Albert model BA(50,1). These results
imply that our method could recover more and more true links as the sample size
increased. However, our method based on BIC yielded excessive numbers of false
discovered links. In contrast, when combined our method with the Stability Selec-
tion method, our method was able to find fewer false discovered links, and the true
positive rates increased steady as the sample size increased while the false discov-
ery rates remained at a low level. But it also came with a trade-off. Our method
yielded fewer true links when the number of false discovered links was controlled
at a low level. Nevertheless it was able to yield more and more true links as the
false discovery control was loosened. Results for other simulation experiments can
be found in Supplementary Materials.
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FIG. 4. Estimation results from simulated data. The x-axis represents the sample size, and the
y-axis represents the true positive rate or the false discovery rate. Top: Estimation results for
WS(40,1,0.04). Bottom: Estimation results for BA(50,1). Left: Plots of the true positive rate against
the sample size. Center: Plots of the false discovery rate against the sample size. Right: Plots of the
ratio between the realized number of false discovered links and the nominal number of false discov-
ered links against the sample size.

6. Application to the campaign donation data. Below we analyze the cam-
paign donation data described in Section 2.3. We discuss the modeling strategy
and the model fitting procedure before showing the results.

6.1. Modeling the political cohesion network. We were mainly interested in
understanding the political cohesion network that drives the firms to donate fol-
lowing other firm’s donations. To model links of the political cohesion network
underlying the firms’ donation behavior, we assumed that logarithm of the hazard
function of donation made by firm k to candidate i at time t is a function of event
times of donations made by other firms to candidate i prior to time t . We modeled
the hazard function by

log θik(t) = ςi + αkk + ∑
j �=k

γjkgijk(t, tij ),(6.1)

where

gijk(t, tij ) = exp
{−(t − tij )+

7

}
I

{
0 <

(t − tij )+
7

≤ d

}
I{δij = 1},
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and tij is the event time of the donation made by firm j to candidate i. Model (6.1)
has a candidate-specific term ςi and a firm-specific term αkk . From Figure 2 we
can see that donation events occurred intensively in the last two month of year
2007, indicating that a firm’s donation behavior might be influenced by factors
such as the seasonal effect or those not generated from the network underlying
firms’ donation behavior, for example, candidate’s attributes. Therefore in order
to account behavioral differences between firms due to non-network effects, we
included the terms ςi and αkk in the model. Note that model (6.1) is the same as
model (3.1) with ςi = logϑi and gikk(t) = 1. In addition, the covariate function
exp{−(t − tij )+/7} is a decreasing function of t , meaning that influences from
other firms on firm k will decrease over time. Here the influences are measured on
a weekly basis as the term (t − tij )+ has been scaled by 7. In addition, the quantity
d controls the duration of such influences. Moreover, influences from other firms
on firm k are restricted to those who had made donations to candidate i prior to
the time when k makes a donation to candidate i. The setting of gijk(t, tij ) implies
that such influences can only exist up to d weeks and will decrease exponentially
as time gap (t − tij )+ increases.

6.2. Model estimation. In our analysis each candidate’s donation record was
treated as an instance, and therefore we had n = 133 instances. In addition, each
firm was treated as a node, and therefore we had m = 146 nodes in our model.
We let the influence limit d = ∞. This allows the impact of nodes j on the hazard
function of node k diminishes to zero as the time gap (t − tij )+ increases to infin-
ity. We defined January 31, 2008 as the censoring time as the last observed event
occurred on January 28, 2008. We then estimated parameters in model (6.1) by
applying our method with the Stability Selection method. To carry out the estima-
tion, we first formed a subsample by randomly selecting �n/2� data points from
the data. We estimated parameters in model (6.1) using the subsample with pre-
specified tuning parameter values in interval [λmin, λmax] = [0.01,2]. We then run
the procedure for 100 times, collecting 100 subsample-based estimates. We used
the 100 subsample estimates to calculate the selection probability of each link. Fi-
nally we set criteria to include links in our model according to each link’s selection
probability.

6.3. The results. The top left plot of Figure 5 shows the selection probabil-
ities of the estimated links of the political cohesion network of firms. This plot
shows when the threshold value for the selection probability is 0.5, the number of
estimated links in the network is 549. However, such a number decreases to 11
when the threshold value increases to 0.9. Figure 6 shows the graph of the politi-
cal cohesion network of the firms based on the estimation result with the threshold
value equal to 0.6, a value suggested by Meinshausen and Bühlmann (2010). We
plotted nodes with different colors to show whether the corresponding firms are
members of the National Association of Industry and Commerce (NAIC), an elite
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FIG. 5. Estimation results for the campaign donation data. Top left: Selection probability of the
link when d = ∞. Here we only show the estimated links with selection probabilities greater than or
equal to 0.5 since 0.5 is the theoretical lower bound of the selection probability under the Stability
Selection method. Top right: Scatter plot of degree of the firm against asset of the firm based on the
estimation results when d = ∞ and πthr = 0.6. Here pink and purple-colored nodes represent those
with either in-degree or out-degree great than zero, while grey-colored nodes represent those with
both in-degree and out-degree equal to zero. Bottom left: Plot of the logarithm of the odds ratio for
out-links. Bottom right: Plot of the logarithm of the odds ratio for in-links. The x-axis represents the
logarithm of the odds ratio, and the y-axis represent the attributes of firms.

organization that holds a wide range of political influence on domestic politics in
Taiwan. We also plotted nodes with different sizes to show how large the asset that
the corresponding firm has. We provided more graphs based on estimation results
with other threshold values in the Supplementary Materials.
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FIG. 6. Graph based on the estimation results when d = ∞ and πthr = 0.6. The size of the node
represents the asset of the corresponding firm measured at the logarithm scale. In addition, pink
and purple-colored nodes represent those with either in-degree or out-degree great than zero, while
grey-colored nodes represent those with both in-degree and out-degree equal to zero.

6.4. Further analysis. Based on the estimation result given above, we further
investigated the relationship between a firm’s asset and its degree in the political
cohesion network. We provided a scatter plot of the two variables on the top right
hand side of Figure 5. The Kendall rank correlation coefficient between the two
variables is 0.264 (p-value = 4.268 × 10−5), suggesting a moderate dependence
relationship between a firm’s asset and its degree in the political cohesion network.

We were also interested in whether firms with a certain attribute would influ-
ence or be influenced by firms without such an attribute. To investigate this ques-
tion, we computed logarithm of the odds ratio with respect to the numbers of links
between firms with a certain attribute and firms without such an attribute. We con-
sidered the following six attributes: (1) whether a firms is a member of the Na-
tional Association of Industry and Commerce (NAIC); (2) whether a firm belong
to a monopoly industry; (3) whether a firm belongs to the information technology
industry; (4) whether a firm belongs to the finance industry; (5) whether a firm lo-
cates its headquarters in Taipei; (6) whether a firm is family-controlled. We defined
the probability that there is an out-link from a firm with attribute K by

pK = P(A firm has an out-link | The firm has attribute K).(6.2)
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We estimated pK by

p̂K = #{(j, k) : (j, k) ∈ Ĥ , j has attribute K}
mK(m − 1)

,

where Ĥ is the estimated link set, mK is the number of firms with attribute K, and
m is the number of firms in the network. The estimated logarithm of the odds ratio
with respect to the numbers of out-links between firms with attribute K and firms
without attribute K is

̂log ORK = log
(

p̂K(1 − p̂Kc )

p̂Kc (1 − p̂K)

)
.(6.3)

We computed the standard error of (6.3) using the following formula:

Std err.( ̂log ORK) =
(

1

mK(m − 1)p̂K
+ 1

mK(m − 1)(1 − p̂K)
(6.4)

+ 1

mKc (m − 1)p̂Kc
+ 1

mKc (m − 1)(1 − p̂Kc )

)1/2
.

For the in-link cases, we followed a similar way to define the probability (6.2) and
computed the corresponding logarithm of the odds ratio.

The results are shown in the bottom plots of Figure 5. The results imply that
if firms are affiliated with the National Association of Industry and Commerce
(NAIC), or belong to a monopoly industry, or are family-controlled, then they will
be more likely to diffuse the donation behavior. On the other hand, firms with
headquarters in Taipei are more likely to follow other firms to donate to the same
candidate. In contrast, firms in the information technology industry are more likely
to make independent decisions on campaign donations.

7. Discussion. We have developed a statistical method for estimating links of
a network from time to event data under the right-censoring mechanism. When ap-
plying to the synthetic diffusion data, our method can reduce the number of false
discovered links when combining with the Stability Selection method, and yield
more and more true links as the false discovery control is loosened. When applying
to the campaign data, our method has recovered the network underlying the depen-
dence structure of donation events among 146 firms. By computing logarithm of
the odds ratio with respect to the numbers of links between firms with a certain
attribute and firms without such an attribute, we found that if firms are affiliated
with the National Association of Industry and Commerce (NAIC), or belong to a
monopoly industry, or are family-controlled, then they will be more likely to dif-
fuse the donation behavior. On the other hand, firms with headquarters in Taipei
are more likely to follow other firms to donate to the same candidate. In contrast,
firms in the information technology industry are more likely to make independent
decisions on campaign donations.
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7.1. Modeling recurrent events. When analyzing the campaign donation data,
we only used the first campaign donation between a firm and a candidate and dis-
carded subsequent donations involving the same firm and the same candidate from
analysis. Such recurrent events are important since they may reflect the structure
of the political cohesion network of the firms. However, modeling the recurrent
events and assessing their impacts on the estimation result are challenging. One
possible way to model the recurrent events is to allow firms to appear repeatedly
in the risk set in the likelihood function, and at the same time assume each regres-
sion coefficient as a time-varying function. Estimating such a model may require
large amounts of data since modeling each regression coefficient as a time-varying
function needs extra parameters. Despite these difficulties, it is worth to including
modeling recurrent events in the list of future research directions.

7.2. Extensions. Although in this paper our method was applied to recover the
political cohesion network of firms from the campaign donation data, it can also
be applied to other research areas in the social network analysis. It has a potential
to deal with various arrays of empirical social phenomenon. In contrast to earlier
studies, which usually saw the firm-to-firm network as observable and paid atten-
tion to identify how political cohesion among firms are achieved by influences
from the pre-existing links, our goal in this paper is different. Similar to the classi-
cal event-based strategy for network boundary delimitation [Homans (1950)], our
method aims to identify the regularized network structure with information from
event records. We can push one step further and assume that the pre-existing links
are unobservable and only information about event activities (i.e., campaign do-
nations of the firms) is available. With the statistical method we proposed, we are
able to estimate the pivotal network structure of cohesion to which a social group
or a community are able to achieve. Researchers have long noted when a network
is not appropriately defined, research findings corresponding to the network will
be seriously biased. Our method may provide a methodological solution to this
classical boundary specification error that social network researchers may easily
commit [Laumann, Marsden and Prensky (1982)].

Our method can also be used to deal with data in which the temporal order
of events or behaviors is clearly documented [Rogers (1995), Strang and Soule
(1998)]. For example, consider the online social media data in which users fol-
low other users to click the “like” button on posts. In this situation, there is a time
delay between the “like” stamps. Researchers may see the users as the firms and
the posts as the candidates, and the goal is to identify links of the user-to-user
network. With these links, researcher can further investigate issues such as who
influences who, and who is the “hub” in the user-to-user network. Another exam-
ple is the stock trading data in which a buyer may follow other buyers to buy a
certain stock. In this setting, researchers may see the buyers as the firms and the
stocks as the candidates, and the goal is to identify links of the buyer-to-buyer
network.
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SUPPLEMENTARY MATERIAL

Supplementary Materials for “Estimating links of a network from time to
event data” (DOI: 10.1214/17-AOAS1032SUPP; .pdf). Supplementary Materials
contain an numerical algorithm for obtaining estimator (4.4), further details on
aggregation of the campaign donation data, additional results for simulation study
and additional results for real data application.
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