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ROBUST MIXED EFFECTS MODEL FOR CLUSTERED FAILURE
TIME DATA: APPLICATION TO HUNTINGTON’S

DISEASE EVENT MEASURES

BY TANYA P. GARCIA∗,1, YANYUAN MA†,2, KAREN MARDER‡,3 AND

YUANJIA WANG‡,4

Texas A&M University∗, Pennsylvania State University† and
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An important goal in clinical and statistical research is properly mod-
eling the distribution for clustered failure times which have a natural intra-
class dependency and are subject to censoring. We handle these challenges
with a novel approach that does not impose restrictive modeling or distribu-
tional assumptions. Using a logit transformation, we relate the distribution
for clustered failure times to covariates and a random, subject-specific effect.
The covariates are modeled with unknown functional forms, and the random
effect may depend on the covariates and have an unknown and unspecified
distribution. We introduce pseudovalues to handle censoring and splines for
functional covariate effects, and frame the problem into fitting an additive lo-
gistic mixed effects model. Unlike existing approaches for fitting such mod-
els, we develop semiparametric techniques that estimate the functional model
parameters without specifying or estimating the random effect distribution.
We show both theoretically and empirically that the resulting estimators are
consistent for any choice of random effect distribution and any dependency
structure between the random effect and covariates. Last, we illustrate the
method’s utility in an application to a Huntington’s disease study where our
method provides new insights into differences between motor and cognitive
impairment event times in at-risk subjects.

1. Introduction. Clustered failure time data are commonly collected in
biomedical research. Examples include the onset ages among family members
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for neurodegenerative disorders [Marder et al. (2003)] and the time until first signs
appear from an infectious disease in clusters of hospitals [Huang et al. (2010)]. In
these examples and others, a key interest is properly modeling the clustered failure
time distribution which has several challenges: within cluster dependency, right
censoring, and the unknown relationship between covariates and failure times.
We address these challenges with a new estimation framework that is simple and
uses minimal assumptions to reduce the chance of model misspecification. The re-
search focus is often on the failure time distributions themselves instead of hazard
functions, and so, in this regard, we directly model the clustered failure time distri-
bution. We use a time-varying, proportional odds model with functional covariates
and a random effect. The random effect is free of distributional assumptions and
is possibly correlated with some or all covariates. Over a range of time points, we
cast the proportional odds model into an additive logistic mixed effect model using
pseudovalues [Logan, Zhang and Klein (2011)] to handle censoring and splines for
the functional covariate effects. We then develop semiparametric methods to con-
sistently estimate the model parameters without estimating or specifying working
models for the random effect distribution. Our approach thus contributes a flexi-
ble new estimation framework that circumvents the challenges of clustered failure
time data.

1.1. Motivating example. Our work is motivated by an observational study
of Huntington’s disease (HD) that evaluated failure-type events representative of
the disease progression. HD is an autosomal dominant, neurodegenerative disease
caused by an unstable expansion of the cytosine-adenine-guanine (CAG) trinu-
cleotide repeat in the huntingtin gene [Huntington’s Disease Collaborative Re-
search Group (1993)]. More CAG repeats lead to earlier onset of impairments
[Ross and Tabrizi (2010)]. In 2005–2011, the Cooperative Huntington’s Observa-
tional Research Trial (COHORT) study was conducted on genetically predisposed
individuals. For each participant, the study recorded (potentially censored) failure-
type events representative of the disease course: the age when an individual first
experienced a motor sign (i.e., chorea, dystonia, rigidity), and the age when cog-
nitive impairments first impacted daily life. The data are an example of clustered
failure times: for each subject, a cluster is formed by the two event times measured
on that subject. A key interest is comparing the conditional odds of these events
occurring by age t given the subject’s CAG repeat length and gender. Large con-
ditional odds in favor of one event occurring before the other helps to inform the
natural history of the disease. This is critical for planning clinical trials, deciding
the timing of intervention focus, and prognostic counseling.

For cluster i = 1, . . . , n and member j = 1, . . . ,mi , we model the clustered fail-
ure time distribution. Let Tij denote failure times, Xij ∈ R and Zij ∈ R

p1 denote
covariates, and Ri(·) denote a random, cluster-specific effect. In the HD example,
cluster i includes event times from the ith participant: age of first motor impair-
ment (Ti1), and age when cognitive impairments first impact daily life (Ti2). Asso-
ciated covariates are CAG repeat lengths (X) and gender (Z), and a random effect
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Ri(·) is associated with each subject. The clustered failure time distribution is then
modeled as

logit
[
pr

{
Tij ≤ t |Xij ,Zij ,Ri(t)

}] = α(Xij , t) + ZT
ijβ(t) + Ri(t),(1.1)

where logit(p) = log{p/(1 − p)}. The above is a time-varying, proportional odds
model with random effect, and the overall objective is to estimate the functional
parameters α(X, t) ∈ R and β(t) ∈ R

p1 . For the HD example, α(X, t) represents
the time-varying effect of CAG repeats and β(t) the gender effect. Estimating
these functional parameters allows us to compare event times through conditional
odds ratios. For example, with HD, given the subject covariates and random effect,
we may compute the conditional odds of a motor impairment occurring by age t

compared to a cognitive impairment occurring by age t via exp{α̂(X, t) + β̂(t)Z}
(see Section 4). The resulting quantity helps to identify which event in the disease
course has better odds of occurring first.

A few remarks of the model in (1.1) are in order. First, the model is presented for
scalar Xij , but it can easily accommodate vector Xij = (Xij1, . . . ,Xijp)T by re-
placing α(Xij , t) with the summation

∑p
k=1 α(Xijk, t). This generality introduces

more computation, but does not change the essence of the proposed method. Sec-
ond, we separate covariates Xij and Zij to distinguish between assumptions of
their effects. Specifically, for Xij we make nonparametric assumptions and for Zij

we make parametric assumptions where the choice between assumptions is driven
by the application and the flexibility desired. One could consider only nonpara-
metric covariate effects [i.e., only α(X, t) terms] or only parametric effects [i.e.,
only ZTβ(t) terms], but our method does not fundamentally change. Thus, be-
cause these two generalities do not fundamentally change our method, we proceed
under the presentation in equation (1.1).

1.2. Relationship to existing models and methods. Model (1.1) differs from
the existing proportional odds model for univariate censored data [Bennett (1983),
Murphy, Rossini and van der Vaart (1997)] and for multivariate data with random
effects [Zeng, Lin and Yin (2005)]. These models are not designed for time-varying
or functional parameters as is ours, and extensions are nontrivial. A significant
challenge with the model in (1.1) is estimating α(X, t),β(t) in the presence of
the unobserved random effect Ri(t). This same challenge exists for proportional
hazards frailty models [Clayton (1978)], which is another model for clustered fail-
ure time distributions. The standard in proportional hazards frailty models is to
specify a distribution for the random effect (i.e., frailty), such as inverse gaus-
sian [Henderson and Oman (1999)], log normal [Ripatti and Palmgren (2000)],
and gamma [Chen and Lio (2008)] for its mathematical convenience. Empirical
studies have shown that minimal bias and efficiency loss occur under an assumed
gamma frailty when the true frailty distribution is inverse Gaussian or positive sta-
ble [Hsu, Gorfine and Malone (2007)] or specific discrete distributions [Glidden
and Vittinghoff (2004)]. Despite these encouraging robustness results, they do not
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hold for population-averaged proportional hazards models when there is strong
within-cluster dependency or when covariates and random effects are dependent
[Heagerty and Kurland (2001)]. In fact, because it is very difficult to model the
distribution of the random effects conditional on the covariates, random effects are
routinely assumed to be independent of covariates and modeled with a marginal
model. But doing so can bias the subsequent estimation [Garcia and Ma (2016)].

Concerns for misspecification of the random effect (or frailty) distribution have
motivated a range of graphical and numerical goodness-of-fit tests [Chen and
Bandeen-Roche (2005), Shih and Louis (1995)]. Unfortunately, these tests are only
applicable for certain cluster sizes, and no test indicates the correct distribution
when a poor fit is detected. Various approaches have been developed to directly ad-
dress misspecification. These include modeling the random effect as a mixture of
normals [Lesaffre and Molenberghs (2001)], a Student-t [Congdon (1994)], skew-t
[Lee and Thompson (2008)], and other families of parametric distributions [Piepho
and McCulloch (2004)]. None of the parametric approaches, however, solves the
problem completely since parametric forms do not span the entire range of possi-
bilities. Semiparametric or nonparametric methods [e.g., Geerdens, Claeskens and
Janssen (2013)] better handle the misspecification problem, but also require more
intense computation.

All aforementioned methods target at the issue caused by the misspecification of
the random effect distribution. When population average effects are of interest, one
way to bypass the random effect is to consider a different modeling approach and
to work with marginal models [Chen, Chen and Ying (2010)]. A marginal model
does not impose any particular form of dependency. Hence, it is different from
our model (1.1), which is a conditional model that captures dependency by condi-
tioning on the random effect. The interpretation of parameters in marginal models
also differs from that of a conditional model with random effects, and the two are
not comparable for nonlinear models [e.g., logit-link models as in equation (1.1)].
In this work, our parameters of interest are conditional time-dependent log odds
ratios instead of marginal parameters. Last, our approach has some resemblance
with that of Efron (1988) in that we will use logistic regression techniques for
survival curve estimation. However, our approach applies to clustered failure time
data which that of Efron (1988) does not.

1.3. Proposed method. Given the aforementioned limitations of existing
methods, we propose here a new, flexible approach that allows Ri(·) to depend on
covariates and have a distribution that is unknown and unspecified. Our approach
uses pseudovalues to handle censoring and splines for functional covariate effects.
The combination leads to a simple semiparametric estimation framework that cir-
cumvents the challenges of having the random effect distribution be unknown and
unspecified. The remainder of the paper is as follows. Section 2 describes the
main technical results of the proposed method, including asymptotic properties.
Section 3 demonstrates the method’s numerical effectiveness against competing
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approaches in terms of different clustering structures, random effect distributions,
and dependencies between the random effect and model covariates. Section 4 pro-
vides a novel analysis of clinical differences between motor and cognitive impair-
ment event times in individuals genetically predisposed to Huntington’s disease.
Section 5 concludes the paper. All proofs and additional simulations are deferred
to the Supplementary Material [Garcia et al. (2017)]. An R implementation of the
procedure is available upon request.

2. Main estimation.

2.1. Estimation setup. Our main objective is to estimate α(x, t),β(t) in equa-
tion (1.1) in the presence of unobserved random effects Ri(t) with unknown dis-
tribution. At first glance, one may want to place restrictions on α(x, t),β(t), and
Ri(t) to ensure that pr{Tij ≤ t |Xij ,Zij ,Ri(t)} is a nondecreasing function of t .
However, this does not necessarily hold since Ri(t) is random at different t values
and cannot be required to be monotone. Therefore, we do not impose any restric-
tions on α(x, t),β(t), and Ri(t).

We propose to estimate α(x, t),β(t) at different t = t0 values and then use linear
interpolation. The t0 values are chosen to spread evenly across the range of Sij =
min(Tij ,Cij ), where Tij denotes the failure time and Cij the right-censoring time.
(See Step 1 in the algorithm of Section 2.2 for how to choose the number of t0
values.) Throughout, we assume Cij is independent of Tij and covariates Xij ,Zij .
Last, we let �ij = I (Tij ≤ Cij ) denote the censoring indicator.

We will transform the model in (1.1) to an additive logistic mixed effects model
by introducing splines for functional covariate effects and jackknife pseudovalues
to handle censoring as described next.

2.1.1. Splines for functional parameters. At each t0, we approximate the un-
known functional form α(x, t0) using a B-spline of order r with N internal knots.
We let

(2.1) ξ1 = · · · = ξr < ξr+1 < · · · < ξr+N < ξN+r+1 = · · · = ξN+2r ,

where ξr+1, . . . , ξN+r is the sequence of internal knots. We also let the distance
between neighboring knots be hk = ξk+1 − ξk for r ≤ k ≤ N + r , and let h =
maxr≤k≤N+r hk . In practice, the knots are often placed at equally spaced sample
quantiles of the predictor X, and a common order is r = 4 corresponding to a cubic
B-spline. In our empirical examples, we found that this knot selection and order
worked well.

Based on the order and the number of internal knots, the number of B-spline
basis functions is p2 = N + r , and α(x, t0) is approximated by

(2.2) α̃(x, t0) =
p2∑

k=1

Bk(x)ak(t0) = BT(x)a(t0),
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where a(t0) is a p2-dimensional spline coefficient vector, and B(·) are spline basis
functions that do not include the intercept. We can ignore the intercept, as it is
common to all failure times, and thus, by definition, is absorbed into the random
intercept.

2.1.2. Pseudovalue approach for censoring. Pseudovalue regression [Logan,
Nelson and Klein (2008), Logan, Zhang and Klein (2011)] is a simple method to
perform estimation for incomplete data due to right-censoring. In our case, the
response of interest is the binary event status Yij (t0) ≡ I (Tij ≤ t0) motivated by
modeling the distribution function via logistic regression [Efron (1988)]. The bi-
nary event Yij (t0) is observable when �ij = 1, or when �ij = 0 and Cij ≥ t0 for
which I (Tij ≤ t0) = 0 since t0 ≤ Cij < Tij . Otherwise, when �ij = 0 and Cij < t0,
Yij (t0) is unobservable.

To replace the unobservable Yij (t0), the idea is to construct jackknife pseu-
dovalues that seemingly ignore dependencies in the data, but are later related to
covariates and the random effect in a regression model that recaptures the depen-
dency. The construction of the pseudovalues uses Kaplan–Meier estimators de-
signed for independent data, but are consistent even for dependent data [Ying and
Wei (1994)]. We show below that the pseudovalues satisfy properties which allow
us to (i) relate the pseudovalues to covariates and random effect through a regres-
sion model; and (ii) use the regression model to unbiasedly estimate the model pa-
rameters even when pseudovalues are used in place of the unknown binary events.

We now define two types of jackknife pseudovalues depending on the nature of
event type.

EXAMPLE 1. Single event type. Suppose cluster i contains information about
a common event. For example, cluster i corresponds to a family and Tij represents
the time to a common event (e.g., disease-onset age) for each family member j .
Another example is when cluster i corresponds to an individual and Tij are recur-
rent event times (e.g., tumor occurrences) for individual i.

Let M = ∑n
i=1 mi . The jackknife pseudovalue to substitute Yij (t0) is

Y ∗
ij (t0) = MF̂(t0) − (M − 1)F̂−(ij)(t0).

Here, F̂ (t0) = 1 − Ŝ(t0) with Ŝ(t0) the Kaplan–Meier estimator based on all M

events, and F̂−(ij)(t0) is a similar estimator after removing observation j from
cluster i.

The pseudovalue in Example 1 is a special case of pseudovalues constructed for
clustered data with competing risks but there is no competing outcome [Logan,
Zhang and Klein (2011)]. When there is no censoring prior to t0, Y ∗

ij (t0) simplifies
to I (Tij ≤ t0) [Logan, Zhang and Klein (2011), Section 2.3]. Otherwise, under
censoring, Y ∗

ij (t0) satisfies two properties:
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(P1) For clusters, i �= k, pseudovalues Y ∗
ij (t0) and Y ∗

k�(t0) are approximately inde-
pendent as M tends to infinity.

(P2) The conditional expectation of Y ∗
ij (t0) given Xij ,Zij , and Ri(t0) satisfies

limM→∞ E{Y ∗
ij (t0)|Xij ,Zij ,Ri(t0)} = pr{T ≤ t0|Xij ,Zij ,Ri(t0)}.

Justification of (P1) and (P2) is provided in Logan, Zhang and Klein (2011),
and a summary of the key results is in Section S.1.1 (Supplementary Material).
The properties imply that (asymptotically) the relationship between pseudoval-
ues and the covariates and random effect is exactly the conditional distribution
pr{T ≤ t0|Xij ,Zij ,Ri(t0)} in equation (1.1); see property (P2). As shown in Klein
et al. (2014), Chapter 10, this implies that one may construct unbiased estimat-
ing equations using the pseudovalues in place of the unobservable binary event
indicators. The unbiased estimating equations (see Proposition 3) will then lead to
consistent estimators for the model parameters of interest.

EXAMPLE 2. Multiple event types. Suppose cluster i contains information
about multiple event types. For example, cluster i corresponds to an individual and
Tij represents measures of multiple event types j on the same individual (i.e., age
of first motor impairment, age of first cognitive impairment as in the HD applica-
tion, Section 4). The jackknife pseudovalue to substitute the unobservable Yij (t0)

is

Y
†
ij (t0) = nF̂j (t0) − (n − 1)F̂

−(i)
j (t0).

Here, F̂j (t0) = 1 − Ŝj (t0) with Ŝj (t0) the Kaplan–Meier estimator using only in-

formation for event j from all n clusters, and F̂
−(i)
j (t0) is a similar estimator after

removing cluster i.

The setting of Example 2 resembles that for competing risks except that the oc-
currence of one event does not preclude the observation of another. This is exactly
the setting of the HD application (Section 4). One observes the age of first motor
impairment and age of first cognitive impairment as the disease progresses, but the
occurrence of either impairment does not preclude the other. In Example 2, because
the event types are different and noncompeting, it does not make sense to combine
information across event types when computing pseudovalues (as done in Exam-
ple 1). Instead, when handling different, noncompeting event types, pseudovalues
are constructed using event-specific Kaplan–Meier estimators [i.e., 1 − Ŝj (t0)] as
specified in Example 2.

Properties of Y
†
ij (t0) are similar to those for Y ∗

ij (t0) except for the notational
changes to reflect the event-specific Kaplan–Meier estimators. First, when there is
no censoring prior to t0, Y

†
ij (t0) is the binary indicator of whether event type j for

person i occurred prior to t0. Second, Y
†
ij (t0) satisfies the following:
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(P1†) For clusters, i �= k, the pseudovalues Y
†
ij (t0) and Y

†
kj (t0) are approximately

independent as n tends to infinity.
(P2†) The conditional expectation of Y

†
ij (t0) given Xij ,Zij , and Ri(t0) sat-

isfies limn→∞ E{Y †
ij (t0)|Xij ,Zij } = pr{Tj ≤ t0|Xij ,Zij ,Ri(t0)}, where

pr{Tj ≤ t0|Xij ,Zij ,Ri(t0)} denotes the conditional distribution for event
type j .

Justification of properties (P1†) and (P2†) is in Section S.1.2 (Supplementary Ma-
terial) and follows the proof in Logan, Zhang and Klein (2011). As with Exam-
ple 1, properties (P1†) and (P2†) mean that one may construct regression models
relating the pseudovalues to model covariates with pseudovalues appropriately re-
placing the unobservable I (Tij ≤ t0). Estimating equations constructed from these
regression models will also be unbiased, and hence yield consistent estimators
for parameters in the conditional distribution which is linked to pseudovalues by
(P2†).

A few remarks about the pseudovalues in Examples 1 and 2 are in order. Prop-
erties (P2) and (P2†) follow because we assume that censoring does not depend on
covariates. This assumption, however, can be relaxed by constructing pseudoval-
ues that are covariate-dependent [Andersen and Pohar Perme (2010)]. Suppose
censoring depends on a discrete covariate U with values 1,2, . . . ,mu. Then, for
Example 1, in place of the Kaplan–Meier estimator F̂ (t0) = 1 − Ŝ(t0), one would
use 1 − Ŝk(t0), where Ŝk(t0) is the Kaplan–Meier estimate based on subjects with
covariate U = k. Also, in place of M , one would use Mk corresponding to the
number of subjects with covariate U = k. Likewise, for Example 2, let Ŝjk(t0)

be the Kaplan–Meier estimate for event type j based on subjects with covariate
U = k, and let nk be the number of subjects with covariate U = k. Then, in Exam-
ple 2, one replaces F̂j (t0) = 1 − Ŝj (t0) with 1 − Ŝjk(t0) and replaces n with nk .
Andersen and Pohar Perme (2010) showed that this approach corrects the bias in-
troduced when covariate-dependent censoring is ignored, but induces higher vari-
ability than pseudovalues based on the standard Kaplan–Meier estimators. The
approach of Andersen and Pohar Perme (2010) is easy to accommodate when U

is discrete and can be adapted to continuous U via kernel weights. However, the
method quickly becomes onerous when U is multivariate for both discrete and
continuous cases. These cases require a careful and separate investigation that is
beyond the scope of the current paper.

Last, the jackknife pseudovalues as defined in the examples are not guaran-
teed to be in [0,1]. This is important considering that they are ultimately used to
model a conditional distribution function. When the pseudovalues fall outside this
interval, we can round them to the nearest 0 or 1. In our empirical studies, the
proportion of jackknife pseudovalues that fall outside [0,1] was less than 7% (see
Table S.1, Supplementary Material), and consistency appears unaffected. Logan,
Nelson and Klein (2008) made similar observations for identical pseudovalues as
proposed here.
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2.2. Estimation procedure. We now describe how we relate the pseudoval-
ues to the covariates in an additive logistic mixed-effect model. Following Sec-
tion 2.1.2, let Yij (t0) be I (Tij ≤ t0) when the binary indicator is observable and a
pseudovalue otherwise. The computation of the pseudovalue depends on the prob-
lem (see Examples 1 and 2).

For ease in notation, we describe the estimation procedure at a fixed t = t0
so that the notation Yij (t0), α(x, t0), a(t0), β(t0), simplifies to Yij , α(x), a, β ,
respectively. Let θ = (aT,βT)T be a vector of length q = p1 + p2, let Y i =
(Yi1, . . . , Yimi

)T and Xi = (Xi1, . . . ,Ximi
)T be mi -dimensional vectors, and let

Zi = (Zi1, . . . ,Zimi
) be a p1 × mi matrix. Then, under the B-spline model in

(2.2), our model in (1.1) satisfies

E(Yij |Xij ,Zij ,Ri) = exp{η(Xij ,Zij ; θ) + Ri}
1 + exp{η(Xij ,Zij ; θ) + Ri} , j = 1, . . . ,mi,

where η(Xij ,Zij ; θ) = BT(Xij )a +ZT
ijβ . The above expression is the conditional

mean for a logistic mixed effects model, and holds whether Yij is an observed bi-
nary indicator or a pseudovalue. With f denoting (conditional) densities described
by the subindices, the density for the ith cluster is

fY ,X,Z(yi ,xi ,zi; θ) =
∫

fY |X,Z,R(yi |xi ,zi , ri; θ)

× fX,Z,R(xi ,zi , ri) dμ(ri)

=
∫

exp

({
ηT(xi ,zi; θ) + 1T

mi
ri

}
yi

−
mi∑

j=1

log
[
1 + exp

{
η(xij ,zij ; θ) + ri

}])

× fX,Z,R(xi ,zi , ri) dμ(ri).

(2.3)

Here, μ denotes the dominating measure, 1mi
is a mi -dimensional vector of ones,

and η(xi ,zi; θ) = {η(xi1,zi1; θ), . . . , η(ximi
,zimi

; θ)}T. We assume the joint den-
sity fX,Z,R(x,z, r) is a valid, yet unspecified distribution with X,Z, and R not
necessarily independent.

An immediate advantage of the representation in (2.3) is that it reveals the
connection between fY ,X,Z(y,x,z) and generalized linear latent variable mod-
els [Huber, Ronchetti and Victoria-Feser (2004), Conne, Ronchetti and Victoria-
Feser (2010)] with latent variable R. We show in Section S.1.3 (Supplementary
Material) that, for such a model, a consistent estimator for θ results from treating
fX,Z,R(x,z, r) as a nuisance parameter and factoring out its effect with semipara-
metric projection. The result is summarized in the proposition below.
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PROPOSITION 1. For the joint density in (2.3), whether Y i consists of ob-
servable binary indicators or pseudovalues, a consistent estimator for θ is the
root of

∑n
i=1 Seff(Y i ,Xi ,Zi; θ) = 0, where Seff(Y ,X,Z; θ) = Sθ (Y ,X,Z) −

E{h(X,Z,R)|Y ,X,Z}. The q-dimensional score vector Sθ (Y ,X,Z) =
∂ logfY ,X,Z(Y ,X,Z; θ)/∂θ , and h is an unknown q-dimensional function sat-
isfying

(2.4) E
{
Sθ (Y ,X,Z) − E

{
h(X,Z,R)|Y ,X,Z

}∣∣X,Z,R
} = 0.

The proof of Proposition 1 is in Section S.1.3 (Supplementary Material). The
proposition indicates that forming the estimating equation requires solving for h in
(2.4), but this is an ill-posed problem [Tsiatis and Ma (2004)]. Fortunately, Propo-
sition 1 combined with a simple decomposition of Y i allows us to circumvent the
ill-posed problem.

PROPOSITION 2. Define Wi = 1T
mi

Y i = ∑mi

j=1 Yij , V i = (0, Imi−1)Y i =
(Yi,2, . . . , Yi,mi

)T,

Ai =
(

1 1T
mi−1

0 Imi−1

)
.

Under this transformation, Y i = A−1
i (Wi,V

T
i )T and a simpler, consistent estima-

tor for θ is the root of
∑n

i=1 Seff(Y i ,Xi ,Zi; θ) = 0, where

Seff(Y ,X,Z; θ) = E
{
Uθ (Y ,X,Z,R)|W,V ,X,Z

}
− E

{
Uθ (Y ,X,Z,R)|W,X,Z

}
.

Here Uθ (Y ,X,Z,R) = ∂ logfY |X,Z,R(Y |X,Z,R; θ)/∂θ and fY |X,Z,R(y|x,z, r)
is the first product term of the integrand in (2.3).

The construction of W and V comes from how one may isolate the ran-
dom effect terms in (2.3). The isolation comes from two special properties
(proofs are in Section S.1.4 of the Supplementary Material). The first property
is that, given (W,X,Z), the terms R and V are conditionally independent. The
second property is that, for any q-dimensional function g(W,X,Z) whenever
E{g(W,X,Z)|X,Z,R} = 0, we have that g(W,X,Z) = 0. Applying these prop-
erties to the ill-posed equation in (2.4) removes the outer integral with the random
effect and leads to the simplified estimating equation in Proposition 2. A proof of
this result is in Section S.1.4 (Supplementary Material).

The results in Proposition 2 are fundamental to simplifying our method. They
establish that the estimating equation solely involves conditional expectations of
Uθ (Y ,X,Z,R). While such a calculation normally requires integrating out the
unknown random effect, we show next that we can actually bypass this step since
the random effect drops out.
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PROPOSITION 3. With Wi and V i as in Proposition 2, the estimating equa-
tions for the logistic mixed effects model are free of Ri and take the form

n∑
i=1

Seff,a(Y i ,Xi ,Zi; θ) =
n∑

i=1

mi∑
j=1

{
B(Xij ) − B(Xi1)

}
× {

Vij − E(Vij |Wi,Xi ,Zi; θ)
}
,

n∑
i=1

Seff,β(Y i ,Xi ,Zi; θ) =
n∑

i=1

mi∑
j=1

(Zij − Zi1)
{
Vij − E(Vij |Wi,Xi ,Zi; θ)

}
.

The proof for Proposition 3 (Section S.1.5 of Supplementary Material)
follows from the form of fY |X,Z,R , the first product term in the integrand in (2.3).
Specifically, direct calculation shows that Uθ (Y ,X,Z,R) = ∂ logfY |X,Z,R(Y |
X,Z,R; θ)/∂θ is composed of two terms: the first a function of (Y ,X,Z) and
the second a function of (X,Z,R). This separation allows us to eliminate the con-
tribution of R via the special properties of W and V mentioned above. Because
R and V are conditionally independent given (W,X,Z), then, for any function
k(X,Z,R), we have E{k(X,Z,R)|W,V,X,Z} − E{k(X,Z,R)|W,X,Z} = 0.
Hence, the second term in Uθ (Y ,X,Z,R), which is the only one containing R,
does not contribute at all to the estimating equations. For this reason, the estimat-
ing equations in Proposition 3 are free of the unknown R, and the need to integrate
out the random effect is completely eliminated.

The only main computation in Proposition 3 is forming E(Vij |Wi,Xi ,Zi; θ).
In Section S.1.6 (Supplementary Material), we show that this expectation is

E(Vij |Wi,Xi ,Zi; θ) =
∫
R(vi )

vij exp{ηT(Xi ,Zi; θ)A−1
i (wi,v

T
i )T}dμ(vi )∫

R(vi )
exp{ηT(Xi ,Zi; θ)A−1

i (wi,v
T
i )T}dμ(vi )

,

where R(vi ) denotes the range of possible values of vi = (yi2, . . . , yimi
)T such

that
∑mi

i=1 yij = wi . When the event times are not censored, Yij takes values in
{0,1} and the expectation E(Vij |Wi,Xi ,Zi; θ) is a discrete sum. Otherwise, Yij

is a pseudovalue and takes values in the interval [0,1]; the expectation will then
involve a mix of discrete sums and integrations to account for the proper range
of Yij . Determining the appropriate range R(vi ) can be cumbersome if handled
by brute force, especially when mi is large. However, in Section S.1.6 (Supple-
mentary Material), we provide a systematic approach that uses the built-in func-
tion adaptIntegrate in R [Johnson and Narasimhan (2013)] to handle this complex
problem.

A summary of our method to estimate α(x, t),β(t) at each t = t0 is provided
below.
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Algorithm for estimating α(x, t),β(t).

1. Choose t01, . . . , t0L evenly spaced across the range of Sij = min(Tij ,Cij ) for
failure times Tij and censoring times Cij . In general, we recommend choosing
L ≥ 5, as it worked well in our empirical examples. The exact choice of L for
a particular application will influence how smoothly β(t), α(x, t) is approxi-
mated over time t , where larger L will generally lead to more wiggly estimates
of β(t), α(x, t) compared to smaller L.

2. For each t0 in Step 1, do the following:
(a) Set Yij (t0) = I (Tij ≤ t0) when �ij = 1 or �ij = 0 and Cij ≥ t0. Other-

wise, when �ij = 0 and Cij < t0, let Yij (t0) be the pseudovalue Y ∗
ij (t0)

(Example 1) or Y
†
ij (t0) (Example 2) depending on the nature of event type.

(b) Choose a set of spline basis functions B(·) that does not include the inter-
cept and has its knots at equally spaced sample quantiles of the observed
Xij values, i = 1, . . . , n, j = 1, . . . ,mi .

(c) Set η(Xij ,Zij ; θ) = BT(Xij )a + ZT
ijβ .

(d) Set Wi = ∑mi

j=1 Yij and V i = (Yi2, . . . , Yi,mi
)T. Compute E(Vij |Wi,Xi ,

Zi; θ) for all i, j . See Section S.1.6 for a systematic implementation.
(e) Obtain â and β̂ as the roots of the estimating equation in Proposition 3.

Then set β̂(t0) = β̂ and α̂(xk, t0) = BT(xk)â for different xk values evenly
spread along the range of x.

Repeat Step 2 separately for each t0�, � = 1, . . . ,L to obtain estimates α̂(xk, t0�)

and β(t0�). For estimates at other t values within the range of t01, . . . , t0L, use
linear interpolation along t .

A few remarks are in order. First, our model and algorithm currently as-
sume common α(x, t) and β(t). With minor modifications, we can generalize
the method to different functional coefficients such as αj (Xij , t) and βj (t). In
this case, at each t0, Step 2(c) has η(Xij ,Zij , θ) = BT

j (Xij )aj + ZT
ijβj , where

Bj (·) are potentially different sets of B-splines for each event type j . Also, the es-
timating equations in Step 2(e) are now 2m-many with Seff,aj

(Y i ,Xi ,Zi; θ) =
{B(Xij ) − B(Xi1)}{Vij − E(Vij |Wi,Xi ,Zi; θ)} and Seff,βj

(Y i ,Xi ,Zi; θ) =
(Zij − Zi1){Vij − E(Vij |Wi,Xi ,Zi; θ)}.

Second, our method can also adapt to non-event specific covariates with minor
modifications. Consider the case that mi = 2 for all i. One interest is modeling the
effects of non-event specific covariates such as baseline covariates. For example,
we could have Xi1 = Xi2 ≡ Xi,Zi1 = Zi2 ≡ Zi , and so the covariates are the
same for j = 1 and j = 2. Because the covariates are non-event specific, common
functions of Xi,Zi form part of the random effect and must be absorbed into Ri(t).
In this case, our method identifies and estimates the logit differences of covariate
effects; that is, we model

logit
[
pr

{
Ti1 < t |Xi,Zi ,Ri(t)

}] = α(Xi, t) + ZT
i β(t) + Ri(t),

logit
[
pr

{
Ti2 < t |Xi,Zi ,Ri(t)

}] = Ri(t),
(2.5)
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and estimate α(x, t), and β(t) which represent effects of a covariate on the condi-
tional log odds ratio of events Ti1 < t and Ti2 < t given random effects and covari-
ates. The parametrization in (2.5) is seen in some joint modeling of longitudinal
outcomes and censored outcomes literature [Rizopoulos and Ghosh (2011)], where
longitudinal model components enter a survival model through shared random
frailty terms. Such parametrization allows flexible estimates of α(x, t),β(t) which
are important in comparing the odds of events as in the HD application (Section 4).
In terms of estimation, our algorithm remains the same except Step 2(c) uses
ηi1(Xi,Zi; θ) = BT(Xi)a +Ziβ and ηi2(Xi,Zi; θ) = 0, and the estimating equa-
tions in Step 2(e) are Seff,a(Y i ,Xi,Zi; θ) = B(Xi){Vi −E(Vi |Wi,Xi,Zi; θ)} and
Seff,β(Y i ,Xi,Zi ) = Zi{Vi − E(Vi |Wi,Xi,Zi; θ)}.

It is important to note that interpretations of marginal effects in equation (2.5)
are not possible. Because we make no distributional assumptions about the random
effect, we cannot integrate over it to obtain the marginal effect of the covariates.
Therefore, α(x, t),β(t) solely represent the effect of the logit-differences between
the distributions.

Third, asymptotic properties of α̂(x, t) and β̂(t) are developed in the Appendix.
In summary, α̂(x, t) and β̂(t) are shown to be asymptotically consistent and nor-
mally distributed. We establish the asymptotic variability of each, but, in practice,
we recommend a bootstrap variability as described in Section 2.3.

2.3. Features of the proposed estimator. A major advantage of our approach
is that the construction of the score vectors Seff,a and Seff,β in Proposition 3 com-
pletely breaks free of the unknown density fX,Z,R(x,z, r). This means we can
construct the score vectors without estimating the unknown random effect distri-
bution or postulating potentially incorrect parametric forms. Doing so is useful
in practice since it is almost impossible to know the random effect distribution a
priori.

A second advantage is that our approach yields consistent estimators whether
the random effect and covariates are independent or not. Traditionally, the ran-
dom effect is considered independent of the covariates, but such an assumption
can be invalid in biological studies. For example, in a model for repeatedly mea-
sured apathy responses, Heagerty and Kurland (2001) showed that the variability
of the random effect depended on the covariate gender. Govindarajulu, Glickman
and D’Agostino (2007) likewise demonstrated that the random effect in a frailty
model for the Framingham Heart Study depended on patient covariates. An ap-
propriate model should thus accommodate dependency between the random effect
and covariates when necessary.

Testing for dependency between covariates and the random effect can be accom-
plished using the Hausman (1978) chi-squared test which tests the null hypothesis
that the covariates and the random effect are independent. At a single time point
t0, the test involves comparing results from our proposed method which makes
no restrictions on the dependency between (X,Z) and R(·), and a method which



1098 GARCIA, MA, MARDER AND WANG

imposes independence between (X,Z) and R(·). A method that is a competitor
to ours but assumes independence between (X,Z) and R(·) is the generalized ad-
ditive mixed model [Wood (2008), GAMM]. At each t = t0, GAMM views the
model in (1.1) as an additive mixed effects model, and estimates parameters using
a penalized likelihood and automatic selection of multiple smoothing parameters
to capture the functional parameter shapes. We show in Section 3 that when (X,Z)

and R(·) are independent, GAMM estimates are consistent and otherwise they are
not. It is this flip between consistent and inconsistent estimates that drives the re-
sults of the Hausman chi-squared test.

To form the Hausman chi-squared test at t = t0, (i) compute the estimates ob-
tained from our method denoted as ψ̂(X, t0) = {α̂(X, t0), β̂

T
(t0)}T; and (ii) com-

pute the estimates obtained from GAMM denoted as ψ̂ IND(X, t0) = {α̂IND(X, t0),

β̂
T
IND(t0)}T, where the notation IND emphasizes the independence assumption be-

tween (X,Z) and R(·). Under the null hypothesis, both ψ̂(X, t0) and ψ̂ IND(X, t0)

are consistent, and under the alternative, ψ̂(X, t0) is consistent and ψ̂ IND(X, t)

is not. Therefore, a statistically significant difference between ψ̂(X, t0) and
ψ̂ IND(X, t0) is evidence in favor of dependency between (X,Z) and R(·). The
Hausman chi-squared test statistic is {ψ̂(X, t0) − ψ̂ IND(X, t0)}T[var{ψ̂(X, t0)} −
var{ψ̂ IND(X, t0)}]−1{ψ̂(X, t0) − ψ̂ IND(X, t0)}, and it follows a chi-squared
distribution with k degrees of freedom, where k = rank[var{ψ̂(X, t0)} −
var{ψ̂ IND(X, t0)}]; see Hausman (1978) for the derivation of the test statistic.

Extending the Hausman chi-squared test over a range of time points t0 can be
achieved with graphical methods. Plot ψ̂(X, t) from our method and ψ̂ IND(X, t)

from GAMM over t = t01, . . . , t0L using linear interpolation to connect estimates
between the t0�’s, � = 1, . . . ,L. In addition, plot the 95% confidence band asso-
ciated with each estimate. A confidence band for our method is obtained using
a bootstrap approach. For GAMM, it is formed using estimated variances from
Bayesian principles implemented in the mgcv package in R [Wood (2008)]. For
our method, a bootstrap data set is obtained by randomly selecting n clusters (with
replacement), keeping the cluster membership intact; that is, we randomly select
among the cluster groups, not among the individual cluster members. We then ap-
ply our algorithm to each bootstrap data set and obtain the corresponding param-
eter estimates at t01, . . . , t0L. The 95% bootstrap confidence band is then formed
by first computing the percentile bootstrap confidence interval at each t0� (i.e., the
2.5th and 97.5th percentiles of the bootstrap estimates at each t0�), and then con-
necting the bootstrap confidence interval across the t0�’s using linear interpolation.
In our application, we found B = 100 bootstrap data worked well.

After forming the 95% confidence band for estimates from our method and from
GAMM, we then compare the two to asses the null hypothesis that the covariates
and random effect are independent. If the confidence bands overlap, the null hy-
pothesis is not rejected. Otherwise, if the confidence bands do not overlap at least
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at one t , then the null hypothesis is rejected, and thus there is evidence of depen-
dency between the covariates and random effect. We apply this graphical test to
our Huntington’s disease application in Section 4.

Although the Hausman chi-squared test and its graphical version are helpful
for determining dependency between covariates and the random effect, it does not
specify how to model the dependency. Existing methods that do model such de-
pendency involve multiple mixed effects models [Heagerty and Kurland (2001)]
or intensive Monte Carlo Markov Chain computations [Govindarajulu, Glickman
and D’Agostino (2007)], both of which are computationally burdensome. Our ap-
proach is advantageous in this respect in that it is computationally simple and does
not require testing for dependency beforehand.

A last advantage is our method’s simplicity in constructing estimating equa-
tions. The most involved computation is the expectation E(Vij |Wi,Xi ,Zi; θ)

which is, at worst, a combination of discrete sums and numerical integrations that
can be systematically carried out in R with the adaptIntegrate function (see Sec-
tion S.1.6, Supplementary Material).

3. Simulation study.

3.1. Simulation design. We evaluated the performance of our method for dif-
ferent random effect distributions and different dependencies between the random
effect and model covariates. Because at each t = t0 we view the model in (1.1) as
an additive logistic mixed effects model, a competitor is the generalized additive
mixed model [Wood (2008), GAMM] as described in Section 2.3. GAMM is well
developed theoretically [Wood (2008)] and computationally (i.e., mgcv package
in R), but, compared to our method, assumes that the random effect is normally
distributed and independent of model covariates. Our simulation study is designed
to investigate the sensitivity of these assumptions. We show results for clustered
failure times formed from single event types (Example 1) here, and from multiple
event types (Example 2) in the Supplementary Material (Section S.2).

To assess sensitivity to non-normally distributed random effects, we consid-
ered different distributional forms for R(t). We generated R(t) = R, where (i)
R is Normal(0,1); (ii) R is a mixture with 50% from Normal(−1,1) and 50%
from Normal(1,0.252); (iii) R is a mixture with 50% from Normal(−1,1) and
50% from Beta(4,2); and (iv) R is Uniform[−2.5,2.5]. Setting (i) is the standard
assumption in GAMM, while the others strongly deviate from the normality as-
sumption. Covariates Xij were generated from a Uniform[0,1] distribution and
Zij from a Uniform[1,2] distribution.

To assess sensitivity to dependence between covariates and the random effect,
we generated Ri using the distributions (i)–(iv) above and added another complex-
ity. We set Ri(t) = Ri + bi , and set Xij = X∗

ij + bi , where bi is Normal(0,0.052)

and X∗
ij is Uniform[0,1]. Last, we generated Zij from Uniform[Ri − 1,Ri + 1].

Under this setup, both Xij and Zij depend on Ri .
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In all settings, we set n = 500,mi = 3, and simulated 1000 data sets from model
(1.1) with α(x, t) = 3 sin(πx) log(t/50), β(t) = 2 log(t/50), both of which are
nonlinear. At each t , the generated random intercept Ri(t) were centered, in ac-
cordance with the assumptions of GAMM, and event times are 40% censored from
an independent, uniformly distributed censoring time Cij . We applied our method
and GAMM to estimate α(x, t),β(t) across 18 equally spaced times t in [40,50]
and 100 equally spaced x-values in [0,1].

We evaluated bias, empirical variance, estimated variance, and 95% coverages
at specific t- and x-choices (t = 46, x = 0.50), and averaged across t in [40,50]
and x in [0,1]. For bias, we report pointwise bias at t = 46, x = 0.50. We also
report bias over a range of t (or x values) through average absolute bias, calculated
via

∑L
�=1 |β̂(t0�) − β0(t0�)|/L, and similarly for α(x, t). Here, β0(t0�) is the truth

and β̂(t0�) is the average estimate based on 1000 simulations.
Last, estimated variances for our method are bootstrap-based as described in

Section 2.3. For GAMM, estimated variances are obtained using the implemented
Bayesian variance calculations in the mgcv package in R.

3.2. Simulation results. Regardless of the random effect’s distribution or de-
pendency between covariates and random effect, our method unbiasedly estimates
α(x, t) and β(t). This is evident from the negligible average absolute bias of pa-
rameter estimates (Table 1), negligible pointwise bias (Table 2), and Figure 1. In
Figure 1, estimates from our method (red dashed) overlap the true curves (black
solid) when R ∼ Normal(0,1). Similar unbiasedness is observed for different dis-
tributions of R. The estimated bootstrap variances of our method also closely
match the empirical variances (Table 2), and the 95% coverage probabilities match
the nominal levels in all settings. These numerical and graphical results exemplify
that our method is robust to the true and unknown properties of the random effect
and its distribution.

Interestingly, GAMM estimates are not sensitive to deviations from non-
normally distributed random effects. Average absolute biases (top half of Table 1)
and pointwise biases (left half of Table 2) of the estimated parameters remain
negligible for all distributional assumptions of the random effect. The empirical
robustness to non-normal random effect distributions is similar to that seen in
Glidden and Vittinghoff (2004), Hsu, Gorfine and Malone (2007), and Gorfine,
De-Picciotto and Hsu (2012). They observed robustness in gamma frailty models
when the true frailty was not gamma distributed.

Despite this observed robustness to distributional deviations, GAMM is quite
sensitive when X and R are dependent, and Z and R are dependent. (In simula-
tions not shown, dependence between X and Z, but not with R did not appear to
affect the performance of GAMM.) The bias is visually evident in Figure 1 (right
half) where the GAMM estimates (blue dashed–dotted curve) completely miss the
true α(x, t) and β(t) curves (black solid curves) across x and t . The strong biases
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TABLE 1
Average results for clustered failure times with single event types. 40% censoring, 1000 simulations.

Average absolute bias, empirical variance, 95% coverage probabilities, and mean squared error
(MSE) when the true random intercept is as specified. β̂(·) denotes results averaged over t ;

α̂(0.50, ·) is results at x = 0.50 averaged over t ; and α̂(·,46) is results at t = 46 averaged over x

Proposed method GAMM method
̂β(·) α̂(0.50, ·) α̂(·,46) ̂β(·) α̂(0.50, ·) α̂(·,46)

X,Z,R independent
R ∼ Normal(0,1)

abs bias 0.029 0.040 0.034 0.021 0.032 0.014
emp var 0.075 0.354 0.317 0.015 0.043 0.042
95% cov 0.950 0.944 0.948 0.951 0.948 0.951
MSE 0.075 0.356 0.319 0.016 0.044 0.042

R ∼ 0.5 Normal(−1,1) + 0.5 Normal(1,0.252)

abs bias 0.009 0.044 0.021 0.012 0.028 0.005
emp var 0.089 0.391 0.358 0.016 0.046 0.044
95% cov 0.946 0.946 0.948 0.946 0.947 0.951
MSE 0.089 0.393 0.358 0.016 0.047 0.044

R ∼ 0.5 Normal(−1,1) + 0.5 Beta(4,2)

abs bias 0.029 0.037 0.032 0.051 0.050 0.041
emp var 0.082 0.290 0.273 0.014 0.041 0.039
95% cov 0.944 0.948 0.947 0.932 0.945 0.947
MSE 0.083 0.292 0.274 0.017 0.044 0.041

R ∼ Uniform[−2.5,2.5]
abs bias 0.015 0.062 0.055 0.011 0.017 0.005
emp var 0.096 0.426 0.400 0.013 0.036 0.035
95% cov 0.952 0.950 0.950 0.950 0.947 0.950
MSE 0.097 0.430 0.403 0.013 0.037 0.035

(X,Z) and R dependent
R ∼ Normal(0,1)

abs bias 0.026 0.031 0.012 1.260 1.672 1.714
emp var 1.018 1.257 1.161 0.106 0.224 0.230
95% cov 0.949 0.947 0.949 0.010 0.037 0.024
MSE 1.019 1.258 1.162 1.693 3.023 3.377

R ∼ 0.5 Normal(−1,1) + 0.5 Normal(1,0.252)

abs bias 0.090 0.038 0.032 2.002 2.498 2.534
emp var 1.046 1.337 1.264 0.164 0.292 0.304
95% cov 0.944 0.944 0.945 0.000 0.001 0.001
MSE 1.055 1.338 1.265 4.174 6.537 7.179

R ∼ 0.5 Normal(−1,1) + 0.5 Beta(4,2)

abs bias 0.027 0.034 0.020 1.252 1.741 1.800
emp var 0.880 1.201 1.066 0.088 0.207 0.223
95% cov 0.947 0.948 0.946 0.001 0.015 0.014
MSE 0.881 1.203 1.066 1.658 3.251 3.692

R ∼ Uniform[−2.5,2.5]
abs bias 0.028 0.018 0.014 2.104 2.802 2.869
emp var 0.947 1.278 1.134 0.177 0.384 0.411
95% cov 0.948 0.945 0.947 0.000 0.000 0.001
MSE 0.948 1.278 1.134 4.608 8.252 9.225
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TABLE 2
Pointwise results for clustered failure times with single event types. 40% censoring, 1000

simulations. Pointwise bias, empirical variance, estimated variance, 95% coverage probabilities,
and mean squared error (MSE) for β̂(t) and α̂(x, t) at t = 46 and x = 0.50 when the true random

intercept is as specified

X,Z,R independent (X,Z) and R dependent

Proposed method GAMM method Proposed method GAMM method

̂β(46) α̂(0.50,46) ̂β(46) α̂(0.50,46) ̂β(46) α̂(0.50,46) ̂β(46) α̂(0.50,46)

R ∼ Normal(0,1)

bias −0.034 −0.051 0.017 0.016 −0.010 −0.026 1.277 −1.710
emp var 0.078 0.355 0.014 0.040 1.040 1.571 0.107 0.227
est var 0.083 0.367 0.013 0.036 1.037 1.153 0.041 0.092
95% cov 0.953 0.947 0.928 0.942 0.952 0.898 0.000 0.003
MSE 0.084 0.369 0.013 0.036 1.038 1.153 1.672 3.017

R ∼ 0.5 Normal(−1,1) + 0.5 Normal(1,0.252)

bias −0.018 −0.048 −0.004 0.002 0.057 0.018 2.014 −2.534
emp var 0.089 0.393 0.015 0.044 1.094 1.659 0.166 0.301
est var 0.096 0.421 0.014 0.039 1.108 1.254 0.047 0.090
95% cov 0.948 0.959 0.935 0.936 0.936 0.901 0.000 0.000
MSE 0.096 0.424 0.014 0.039 1.111 1.255 4.101 6.511

R ∼ 0.5 Normal(−1,1) + 0.5 Beta(4,2)

bias −0.021 −0.049 0.045 0.042 −0.013 −0.071 1.279 −1.795
emp var 0.080 0.297 0.013 0.037 0.955 1.477 0.091 0.211
est var 0.083 0.369 0.013 0.036 0.925 1.157 0.035 0.091
95% cov 0.953 0.969 0.926 0.936 0.943 0.910 0.000 0.000
MSE 0.083 0.372 0.015 0.038 0.925 1.162 1.671 3.312

R ∼ Uniform[−2.5,2.5]
bias −0.016 −0.098 0.010 0.003 0.030 −0.063 2.137 −2.874
emp var 0.095 0.418 0.012 0.034 1.070 1.509 0.190 0.408
est var 0.102 0.449 0.012 0.034 1.051 1.296 0.040 0.093
95% cov 0.958 0.959 0.956 0.946 0.949 0.923 0.000 0.000
MSE 0.102 0.458 0.012 0.034 1.052 1.300 4.607 8.350

lead to 95% coverage probabilities that are far from the nominal level and lead to
inflated mean squared errors (MSE). In all settings where the covariates and ran-
dom effect are dependent, the MSE for GAMM estimates are nearly twice as large
as the MSE for estimates from the proposed method (Tables 1 and 2). These results
illustrate that GAMM is limited to situations where covariates and random effects
are independent. However, such an assumption is not always valid in biological
studies [Govindarajulu, Glickman and D’Agostino (2007), Heagerty and Kurland
(2001)].

Evident in all settings (Tables 1, 2) is that our method has more variability than
GAMM. This larger variability is expected and is an artifact of our assumption
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FIG. 1. Clustered failure times with single event types and R ∼ Normal(0,1). 40% censoring, 1000
simulations. True parameter functions (black solid curve), mean of 1000 simulation estimates from
our proposed method (red dashed line) and from GAMM (blue dashed–dotted line).
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that the random effect has an unknown and unspecified distribution. The fact that
about 7% of jackknife pseudovalues fall outside [0,1] (Table S.1 in Supplementary
Material) does not contribute to the larger variability. As evidence of this, we re-
performed our simulation study at 0% censoring, in which case all event times are
observed and no pseudovalues are introduced into the estimation process. Results
in Table S.4 (Supplementary Material) show that even without pseudovalues, our
proposed method has larger variability than does GAMM. This indicates that the
unspecified distribution of the random effects drives the increased variability.

Stronger model assumptions such as those in GAMM always reduce the vari-
ability of the parameter estimates. Though GAMM’s efficiency initially appears
advantageous, its effect is actually the opposite, especially when the estimates are
biased. When estimates are biased and have small variability, this leads to a false
conclusion that the researcher treats with great confidence as correct. This is worse
than any method which yields confidence intervals that indeed have a promised
chance of covering the truth. In addition, when GAMM estimates are biased, the
resulting mean squared errors are always larger than those from our method, indi-
cating that the high bias outweighs our method’s larger variability.

4. Application to a Huntington’s disease (HD) study.

4.1. Clinical research problem. We applied our method and GAMM to CO-
HORT, a large observational study of HD that evaluated failure-type events repre-
sentative of the disease course. From 2005–2011, COHORT collected information
from 1293 symptomatic or at-risk adults, including gender, number of CAG re-
peats, and the ages when certain events occurred that most impacted a person’s
normal life. These events include the following:

1. Age when a subject first experiences a motor sign (i.e., chorea, dystonia, rigid-
ity). Reported ages are either from (i) a trained rater, or (ii) the subject if the
rater did not observe a motor sign but the subject did, or (iii) a family member
if neither the rater nor the subject observed a motor sign but a family member
did. Among the 1293 subjects, 774 subjects (59.8%) experienced a first motor
sign during the COHORT study, and 519 did not (i.e., age of first motor sign
had 40.1% censoring). For those who experienced a first motor sign, 75.1% had
the ages of first motor sign determined by a rater, 19.8% were self-determined,
and 5.2% were determined by a family member.

2. Age when cognitive impairments first impact daily life. This age is patient-
reported in response to “At what age did cognitive impairment impact your
daily life?”, and we report the first age of occurrence. Among the 1293 sub-
jects, 385 subjects (29.8%) experienced impacting cognitive impairment and
908 subjects did not (i.e., age of impacting cognitive impairment had 70.2%
censoring).
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The data are an example of clustered failure times where, for each subject, a
cluster is formed by the two event types measured on that subject. For subject
i, we let Ti1 be the age of first motor sign, and let Ti2 be the age of impacting
cognitive impairment. Censoring for both events is largely administrative (i.e., the
study period ends before the event of interest occurs), and so assuming covariate
independent censoring, as our method does, is appropriate here. We let Zi denote
gender (Zi = 1 corresponds to a male) and Xi denote the subject’s CAG repeat
length. Forty-four percent of the subjects were males, and we focused on those
individuals with CAG repeat lengths 39 to 50 since very few had repeats outside
this range (81% of subjects had less than 45 CAG repeats).

Given that the covariates are non-event specific, the data are modeled using
model (2.5). The model will help determine whether a motor sign or cognitive
sign has higher odds of occurring first. Knowing which sign occurs first facili-
tates prioritizing these features as endpoints in clinical trial planning and assists in
disease management.

The parameters α(x, t), β(t) in (2.5) represent the logit-differences between
the distributions for T1, T2; that is, α(x, t) represents the difference in how CAG
repeat length affects the log odds of the dichotomized time T1 compared to that
of T2. Likewise, β(t) represents the difference in how gender affects the same
two log odds of dichotomized survival times. We discuss the importance of these
functional parameters in relation to HD in Section 4.2. Using our approach and
GAMM, we estimated α(x, t),β(t) over the range of CAG repeat lengths and for
t in 35 to 60 (age measured in years) at t0 = 35,40, . . . ,60. CAG repeats (X) were
standardized to be in [0,1], and we estimated α(x, t) at 11 equally spaced points
in this interval. Estimated variances for β̂(t) and α̂(x, t) from our method were
obtained using 100 bootstrap replicates. We found that less than 5% of the pseu-
dovalues computed for the HD data fell outside [0,1] (Table S.5, Supplementary
Material). This observation is similar to pseudovalues computed for simulated data
in Section 3.

4.2. Results. Prior to applying our method to the COHORT study, we con-
firmed that our method performed well at 70% censoring similar to that observed
in COHORT (see Section S.2, Supplementary Material).

We evaluated for dependence between the random effect and covariates by
comparing results from our proposed method and GAMM. As described in Sec-
tion 2.3, dependence is evident if the 95% confidence bands of the estimates from
our method and GAMM do not always overlap. Figure 2 shows results from both
methods for β̂(t) and α̂(x, t) over t in [35,60] and at x = 40 CAG repeats. While
the 95% confidence bands clearly overlap for β̂(t), they do not for α̂(x, t) when
t ≥ 40. The nonoverlapping confidence bands are evidence of dependence between
the covariates and random effect. From our simulation results (Section 3), this
means that results from GAMM will be biased, as it is not designed to handle de-
pendence between covariates and the random effect. We now discuss and compare
results from our method and GAMM.
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FIG. 2. Comparison of α̂(x, t), β̂(t) from our proposed method (red solid curve) and GAMM (blue
dashed–dotted curve) for the COHORT study. 95% confidence bands (dotted lines) overlap for α̂(x, t)

when t ≥ 40 which, from the Hausman test, indicates that the covariates and random effects are
dependent.

Our method found that β(t) is not significantly different from zero (Table 3, left,
upper half). This implies that gender has the same effect on the likeliness of a first
motor sign occurring before age t (35 ≤ t ≤ 60) as it does on impacting cognitive
impairment occurring before age t . The result agrees with earlier studies where no
gender effect was found in the mean survival time of HD patients [Harper (1996)]
and HD progression [Marder et al. (2000)].

Our method estimated α(x, t) to be positive and, for the most part, significantly
different from zero (Table 3, left, lower half). Thus, it is more likely that a first
motor sign occurs before a patient self-reports impacting cognitive impairment.
The implication of the positive α(x, t) is best understood through the conditional
odds ratio comparing the odds of observing a first motor sign before age t to the
odds of impacting cognitive impairment before t given CAG repeat length, gender,
and random intercept. The conditional odds ratios, computed as exp{α̂(X, t) +
β̂(t)Z}, are given in Table 4 (first column), and indicate odds in favor of observing
a first motor sign. For example, for a male with 40 CAG repeats, the conditional
odds of a first motor sign occurring before age 50 is 4.264 (95% CI: 1.671, 12.013)
times the odds of impacting cognitive impairment occurring before age 50. For a
male with 46 CAG repeats and at age 50, the conditional odds ratio increases to
14.171 (95% CI: 4.61, 53.88). This conditional odds in favor of a first motor sign
is similarly observed with females.

These conditional odds highlight the challenges of relying on self-reported cog-
nitive signs. Some clinical studies suggest that cognitive impairments emerge years
before a motor diagnosis and, perhaps, even before first motor impairments [Stout
et al. (2011)]. In contrary, our results estimate odds to favor a first motor impair-
ment. But, progression of cognitive decline is gradual and often too slow to detect
from a subject’s perspective [Stout et al. (2011)]. This means there is often a long
delay before a subject realizes his cognitive impairment is impacting his daily life.
This delay could sensibly lead to observing a motor impairment first. Alternative
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TABLE 3
Parameter estimates for COHORT study when comparing distributions

for age of first motor sign to age when cognitive impairment first
impacts daily life. Estimated β̂(t) and α̂(x, t) and 95% confidence

intervals (in parentheses) for different CAG repeats and ages t in years

CAG Age Proposed method GAMM method

β̂(t)

35 0.147 (−1.729,1.308) 0.399 (0.079,0.72)

40 −0.173 (−1.003,0.453) 0.225 (−0.066,0.515)

45 −0.249 (−1.445,0.424) 0.016 (−0.235,0.268)

50 0.388 (−0.468,1.199) −0.01 (−0.232,0.212)

55 0.135 (−0.552,0.766) 0.019 (−0.189,0.226)

60 0.077 (−0.406,0.604) 0.102 (−0.097,0.302)

α̂(x, t)

40 35 1.527 (−0.771,4.012) −0.604 (−0.817,−0.391)

40 40 0.684 (−0.294,1.869) −0.784 (−0.977,−0.591)

40 45 0.785 (0.022,1.892) −0.764 (−0.921,−0.607)

40 50 1.063 (0.362,1.802) −0.441 (−0.57,−0.312)

40 55 1.37 (0.806,1.899) −0.156 (−0.271,−0.041)

40 60 0.719 (0.168,1.087) 0.043 (−0.065,0.151)

46 35 1.229 (0.455,2.09) 1.075 (0.773,1.378)

46 40 1.424 (0.586,1.964) 1.127 (0.852,1.402)

46 45 1.315 (0.54,2.078) 0.99 (0.731,1.249)

46 50 2.264 (1.303,3.301) 1.227 (0.972,1.482)

46 55 2.601 (1.846,3.344) 1.441 (1.183,1.699)

46 60 2.012 (1.403,2.693) 1.697 (1.433,1.96)

measures that do not focus on the impact of cognitive impairments but rather on
the effect itself include mild cognitive impairment [Duff et al. (2010)]: when a
subject’s cognitive exam score is 1.5 standard deviations below the mean of the
cognitive scores for healthy controls. Examining mild cognitive impairment for
COHORT is difficult, however, since the study is primarily a retrospective one,
and so the cognitive exam scores for subjects are unavailable. Therefore, future
work with prospective studies assessing mild cognitive impairment in addition to
ages of first motor symptom would be of interest.

Results from GAMM (Table 3, right, lower half) generally agreed with our
method, except that α̂(x, t) was at times negative and statistically significant,
and, at other times, positive and statistically significant. Understanding these sign
changes is again best illustrated through conditional odds ratios (Table 4, second
column). GAMM suggests that for a male with 40 CAG repeats, the conditional
odds of experiencing a first motor sign before age 50 is 0.637 times (95% CI:
0.507, 0.766) times the odds of impacting cognitive impairment occurring before
age 50. The result reverses at 46 CAG repeats in that the conditional odds ra-
tio is 3.377 (95% CI: 2.454, 4.3). Similar results are observed for females. Thus,
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TABLE 4
Conditional odds ratio estimates for the COHORT study when

comparing distributions for age of first motor sign (T1) to age when
cognitive impairment first impacts daily life (T2). Estimated odds ratio
(OR) for T1 < t compared to T2 < t conditional on gender, fixed CAG,
and fixed random effect. Estimates shown along with 95% confidence

intervals (in parentheses) for different CAG repeats and ages t in years

CAG Age Proposed method GAMM method

OR for T1 < t compared to T2 < t for females
40 40 1.982 (0.745,6.484) 0.456 (0.368,0.544)

40 45 2.193 (1.023,6.631) 0.466 (0.393,0.539)

40 50 2.894 (1.436,6.064) 0.643 (0.56,0.726)

40 55 3.935 (2.24,6.676) 0.856 (0.757,0.954)

46 40 4.152 (1.797,7.127) 3.086 (2.237,3.935)

46 45 3.724 (1.716,7.99) 2.692 (1.995,3.388)

46 50 9.618 (3.68,27.145) 3.411 (2.54,4.283)

46 55 13.471 (6.335,28.341) 4.227 (3.136,5.318)

OR for T1 < t compared to T2 < t for males
40 40 1.667 (0.779,4.587) 0.571 (0.414,0.729)

40 45 1.709 (0.754,4.959) 0.474 (0.362,0.585)

40 50 4.264 (1.671,12.013) 0.637 (0.507,0.766)

40 55 4.504 (2.653,10.813) 0.872 (0.711,1.033)

46 40 3.492 (1.657,6.928) 3.863 (2.713,5.013)

46 45 2.902 (1.358,6.947) 2.736 (1.967,3.505)

46 50 14.171 (4.61,53.88) 3.377 (2.454,4.3)

46 55 15.422 (7.23,36.989) 4.307 (3.128,5.486)

according to GAMM, having 40 CAG repeats increases the conditional odds of
impacting cognitive impairment occurring, whereas having 46 CAG repeats in-
creases the odds of experiencing a first motor sign. The flip between cognitive and
motor signs having increased conditional odds could be an artifact of the discrep-
ancies observed with GAMM (see Section 3) in that it is sensitive to violations of
independence between covariates and random effects. Or the flip could be due to
an age effect, as subjects with 40 CAG repeats are, on average, 20 years older than
those with 46 repeats.

4.3. Practical impacts on HD research. In summary, results from our method
indicate higher conditional odds of a first motor impairment occuring before im-
pacting cognitive impairment. However, given the nuances of self-reporting mea-
sures, our work highlights the need for better cognitive assessments that are objec-
tive and that can be measured prospectively. This is important for deciding whether
to prioritize cognitive or motor impairments in a clinical trial, as well as deciding
how best to intervene with disease impairments (i.e., whether treatments should
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FIG. 3. Estimated difference effects, α̂(x, t), β̂(t), for age of first motor sign vs. age when cognitive
impairment first impacts daily life in the COHORT study.

target cognitive or motor impairments first). Active work in this area is ongoing
[Duff et al. (2010), Paulsen and Long (2014)].

In addition, the difference effects for CAG repeats, α(x, t), are nonlinear and
vary over x and t (see Figure 3). This result adds a new time component to the
current modeling standard in the clinical literature [Langbehn et al. (2004)] which
models the effect of CAG repeat length independent of time. Our graphical results
can thus supplement the existing findings from Langbehn et al. (2004) to inform
clinicians on the changes CAG repeats have over time.

5. Discussion. To model the distribution of clustered failure times, we present
a novel approach that does not model the intra-class correlation with a parametric
random effect or assume independence between the random effect and covariates.
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The covariates are modeled using unknown functional forms. The random effect is
kept free of any distributional assumptions, and is allowed to correlate with some
or all covariates. The pseudovalue [Logan, Zhang and Klein (2011)] viewpoint al-
lows us to simultaneously handle censoring and derive semiparametric techniques
to bypass estimation that directly involves the random effects.

Our estimation procedure is computationally simple, and does not require es-
timating or positing a working model for the unknown random effect distribu-
tion. Our approach thus circumvents the challenges of modeling dependencies
between covariates and random effects which can be detected with a Hausman
chi-squared test or graphically, but cannot be precisely defined. Standard meth-
ods (e.g., GAMM) assume independence between covariates and random effects,
but they can be severely biased (Section 3) or lead to inconclusive results in real
applications (e.g., whether motor or cognitive signs in HD have higher odds of
occurring first).

Our estimation procedure avoids the problems of modeling the random effect
distribution because the estimating equation in Proposition 3 does not have any
terms that include the random effect. Our model is an example of a generalized
linear mixed effect model which does not include a dispersion parameter or ran-
dom slopes. In the general case where the dispersion parameter is unknown and/or
the model has a random slope, the ensuing estimating equation would have terms
involving the random effect. Forming the estimating equation in this case would
then require a working model for the random effect distribution. The computation
becomes more involved, but Ma and Genton (2010) contain details for potential
working models that can simplify the calculations.

The estimating equations in Step 2(d) of our algorithm are solved separately
for each t0; that is, we do not simultaneously solve L-many sets of estimating
equations formed at t01, . . . , t0L. This is because we do not assume smoothness of
the parameters α(x, t) and β(t) as functions of t . Hence, theoretically speaking,
there is no further information that could be gained by considering all time points
simultaneously.

A potential extension worth pursuing is developing an estimation procedure
when we assume the functional parameters are smooth over time t . Two potential
solutions are the kernel method and the spline method. With the former, we could
combine the current estimation equations or combine the current estimators at each
t via a weighted average, where the weights are formed by kernels centered at t0.
This would allow us to borrow information around t0 in estimating the parameter
values at t0. With the latter, improvement could be achieved by using splines to
express the parameter functions into a linear combination of spline bases, and then
estimating the common parameters across all the different t values.

When implementing these solutions, computational complications may arise.
For example, we would need to consider how best to choose the bandwidth, how
many time points should be considered in the estimation, and how should the distri-
bution of time points be considered to guarantee a gain instead of a loss. We would
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also need to make careful decisions on how to choose the bases spline functions,
as well as how best we could take into account the correlation of the estimators
across the different t’s. These issues require future investigation.

APPENDIX: ASYMPTOTIC PROPERTIES

We describe the asymptotic properties for α̂(x, t) and β̂(t) at any t ; for nota-
tional simplicity, we drop the variable t and use α̂(x), β̂ . Recall that we approxi-
mate α(x) using the B-spline approximation in (2.2) with order r and N internal
knots, denoted as ξr+1, . . . , ξN+r . We have also assumed that the distance between
neighboring knots is hk = ξk+1 − ξk for r ≤ k ≤ N + r and h = maxr≤k≤N+r hk .

To derive the asymptotic properties, we make the following regularity condi-
tions:

(C1) The density function fX(x) of random variable X has a compact support, is
bounded away from 0, and satisfies the Lipschitz condition of order 1 on its
support. Denote the support [a, b], which corresponds to the knot endpoints
in (2.1); that is, a = ξ1, b = ξN+2r .

(C2) The true α(x) function is α0(x) ∈ Cq[a, b] for q ≥ 2, and the spline order r

satisfies r ≥ q . Here, Cq[a, b] denotes functions on [a, b] that have the qth
continuous derivative.

(C3) There exists 0 < ch < ∞, such that

max
r≤k≤N+r

|hk+1 − hk| = o
(
N−1)

and h
/

min
r≤k≤N+r

hk < ch.

Furthermore, the number of internal knots satisfies N → ∞, N−4n → ∞
and Nn−1/(2q) → ∞ as n → ∞.

(C4) The expectation E{ST
eff,β(Y ,X,Z,β, α),ST

eff,a(Y ,X,Z,β, α)}T = 0 has a
unique zero in the neighborhood of the true parameter value. The deriva-
tive of Seff(Y ,X,Z, θ) = {ST

eff,β(Y ,X,Z, θ),ST
eff,a(Y ,X,Z, θ)}T with re-

spect to θ has bounded and nonsingular expectation.

Proofs of the asymptotic properties make use of the estimating equations in
Proposition 3 and derivatives of these terms. For ease in notation, we define
gn,a(β,a) = n−1 ∑n

i=1 Seff,a(Y i ,Xi ,Zi; θ), gn,β(β,a) = n−1 ∑n
i=1 Seff,β(Y i ,

Xi ,Zi; θ), which correspond to the estimating equations for a and β , respectively.
Derivatives of these terms will be denoted by V n,aa(β,a) = −∂gn,a(β,a)/∂aT,
V n,aβ(β,a) = −∂gn,a(β,a)/∂βT, V n,βa(β,a) = −∂gn,β(β,a)/∂aT and
V n,ββ(β,a) = −∂gn,β(β,a)/∂βT. Analogous to these terms, let gn,a(β, α),
gn,β(β, α), V n,aa(β, α), V n,aβ(β, α), V n,βa(β, α), and V n,ββ(β, α) denote the
corresponding quantities when BT(x)a is replaced by α(x) at all x values. Also,
define V aa(β, α), V aβ(β, α), V βa(β, α), and V ββ(β, α) as replacing the av-
erages across n, respectively, in V n,aa(β, α), V n,aβ(β, α), V n,βa(β, α), and
V n,ββ(β, α) by expectations. Let J i = (−1mi−1, Imi−1)

T for i = 1, . . . , n.
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We first investigate the asymptotic properties in estimating α(x) and β in the
situation when no censoring has occurred and the event numbers are identical for
each subject (Theorems 1 and 2). We then proceed to study the large sample prop-
erties under the assumption of censoring and allowing different event numbers
(Theorem 3). Proofs of Theorems 1 and 2 are in Sections S.1.7 and S.1.8 (Supple-
mentary Material).

THEOREM 1. Assume mi = m < ∞ for i = 1, . . . , n, where mi is the number
of events for the ith individual as previously defined. Assume censoring does not
occur. Under regularity conditions (C1)–(C4), the estimators β̂ and α̂(x) satisfy
β̂ − β0 → 0 and ‖BT(x)â − α0(x)‖∞ → 0 as n → ∞. Let β be either the true
parameter β0 or a root-n consistent estimator of β0. Then |α̂(x,β) − α(x)| =
Op{(nh)−1/2 + hq} uniformly in x ∈ [a, b] and, as n → ∞, α̂(x,β) − α(x) con-
verges to a mean zero normal distribution.

The result in Theorem 1 establishes the asymptotic consistency, normality, and
variability of α̂(x). The proof relies on three lemmas (see Section S.1.7) that cal-
culate various quantities explicitly and establish necessary bounds on the B-spline
approximations. These properties combined with results from de Boor (2001), the
Taylor expansion, and the Central Limit Theorem then yield the asymptotic nor-
mality and assess the variability of α̂(x). Given these consistency results in The-
orem 1, we can then apply a Taylor expansion to yield the following asymptotic
normality result for β̂ .

THEOREM 2. Assume mi = m < ∞ for i = 1, . . . , n, where recall that mi

is the number of events for the ith individual. Assume censoring does not occur.
Under regularity conditions (C1)–(C4), ‖β̂ − β0‖2 = Op(n−1/2). When n → ∞,
n1/2(β̂ − β0) → Normal{0p1,�

−1
0 (β0, α0)} in distribution, where

�0(β0, α0) = E
([

Seff,β(Y i ,Xi ,Zi;β0, α0)m

− 

{
Seff,β(Y i ,Xi ,Zi;β0, α0)|Sα

}]⊗2)
.

Here Seff,β(Y i ,Xi ,Zi;β0, α0) is as defined in Proposition 3 except that BT(x)a
is replaced by α0(x) for all x. Additionally, Sα is the functional space defined as

Sα = [{
f (Xi1), . . . ,f (Xii )

}
J i

× diag
{
Vij − E(Vij |Wi,Xi ,Zi;β0, α0), j = 2, . . . ,mi

}
1mi−1

]
,

where f (x) is any arbitrary p1-component function with each component in
Cq[a, b], and 
[Seff,β(Y i ,Xi ,Zi;β0, α0)}|Sα] denotes the orthogonal projection
of Seff,β(Y i ,Xi ,Zi;β0, α0) onto Sα . In addition, �0(β0, α0) can be estimated us-
ing

�(β̂, α̂) = V n,ββ(β̂, α̂) − V n,βa(β̂, α̂)V −1
n,aa(β̂, α̂)TV n,aβ(β̂, α̂).
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COROLLARY 1. Under the same conditions as those required in Theorem 2,
the estimator β̂ obtained from solving the estimating equations in Proposition 3
reaches the optimal semiparametric efficiency bound, given as �0(β0, α0).

The efficiency result stated in Corollary 1 is for β̂ at each t0 and without censor-
ing. The result is immediate following the proof of Theorem 2, and by noting that
Sα is the residual of the tangent space with respect to α after projecting it to the
tangent space with respect to fX,Z,R . In establishing the results in Theorems 1, 2,
and Corollary 1, we have assumed all the subjects experience the same number of
events and all the events are observed. When the number of events mi varies and
when some of the events are censored, similar results hold, as we state in Theo-
rem 3. The derivation of the results in Theorem 3 is almost identical to those in
the proofs of Theorems 1 and 2, except that we are obliged to retain summation
across all the n individuals instead of using a single expectation, and hence we
omit the details of the proof. We emphasize that the �0 here is different from that
in Theorem 2 not only in the additional n−1 ∑n

i=1, but also in the calculation of
expectations E(Vij |Wi,Xi ,Zi ), which is different under censoring and not cen-
soring.

THEOREM 3. Under the regularity conditions (C1)–(C4), the estimators β̂

and α̂(x) satisfy β̂ −β0 → 0 and ‖BT(x)â −α0(x)‖∞ → 0 as n → ∞. For β that
is either the true parameter β0 or a root-n consistent estimator of β0, |α̂(x,β) −
α(x)| = Op{(nh)−1/2 +hq} uniformly in x ∈ [a, b] and as n → ∞, α̂(x,β)−α(x)

converges to a mean zero normal distribution. Further, ‖β̂ − β0‖2 = Op(n−1/2).
When n → ∞, n1/2(β̂ − β0) → Normal{0p1,�

−1
0 (β0, α0)} in distribution, where

�0(β0, α0) = lim
n→∞

1

n

n∑
i=1

E
([

Seff,β(Y i ,Xi ,Zi;β0, α0)

− 

{
Seff,β(Y i ,Xi ,Zi;β0, α0)|Sαi

}]⊗2)
.

Here Sαi
is the functional space defined as

Sαi
= [{

f (Xi1), . . . ,f (Ximi
)
}
J i

× diag
{
Vij − E(Vij |Wi,Xi ,Zi;β0, α0), j = 2, . . . ,mi

}
1mi−1

]
,

where f (x) is any arbitrary p1-component function with each component in
Cq[a, b], and 
[Seff,β(Y i ,Xi ,Zi;β0, α0)}|Sαi

] denotes the orthogonal projec-
tion of Seff,β(Y i ,Xi ,Zi;β0, α0) onto Sαi

. In addition, �0(β0, α0) can be esti-
mated using

�(β̂, α̂) = V n,ββ(β̂, α̂) − V n,βa(β̂, α̂)V −1
n,aa(β̂, α̂)TV n,aβ(β̂, α̂).
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SUPPLEMENTARY MATERIAL

Technical proofs and empirical results (DOI: 10.1214/17-AOAS1038SUPP;
.pdf). The supplementary material contains theoretical derivations, additional sim-
ulation study results, and additional results for the Huntington’s disease applica-
tion.
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