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In this paper, we introduce a multilevel specification with stochastic
volatility for repeated cross-sectional data. Modelling the time dynamics in
repeated cross sections requires a suitable adaptation of the multilevel frame-
work where the individuals/items are modelled at the first level whereas the
time component appears at the second level. We perform maximum likeli-
hood estimation by means of a nonlinear state space approach combined with
Gauss–Legendre quadrature methods to approximate the likelihood function.
We apply the model to the first database of tribal art items sold in the most im-
portant auction houses worldwide. The model allows to account properly for
the heteroscedastic and autocorrelated volatility observed and has superior
forecasting performance. Also, it provides valuable information on market
trends and on predictability of prices that can be used by art markets stake-
holders.

1. Introduction. The investigation of the relationship between the art market
and financial markets has important implications for institutions as well as for auc-
tion houses, art merchants and individuals. In fact, also due to the recent financial
crisis, there has been a sharp increase in the so-called alternative investments that
comprise funds specialising in art. These appear to offer a highly beneficial diver-
sification strategy with a complex correlation with traditional assets. Hence, the
study of the features of this new asset class is important and cannot disregard the
differences with respect to traditional stocks. For instance, art items are exchanged
a few times and the transaction costs are considerable. Moreover, there is the so-
called aesthetic dividend which plays a crucial role [see, e.g., Candela, Castellani
and Pattitoni (2013), and references therein, Goetzmann (1993)].

The study of price determination and price indexes for art items is fundamen-
tal to auction houses and art merchants. Besides estimating the price of individual
items, price indexes can be used to understand market trends, to assess the main
social and economic factors that influence the art market, to understand whether
investing in art would diversify risk in a long-term investment portfolio. For art
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objects, the traditional view of a long run price related to the cost of production
does not hold anymore. Some authors argue that the art market is inherently un-
predictable since it is dictated by collectors’ manias [Baumol (1986)]. However,
there is an ever growing consensus, backed by empirical evidence, on the idea
that “price fundamentals” can be objectively identified. The hedonic regression,
also known as the grey painting method, is one of the most used approaches for
modelling art prices. It was first proposed in Rosen (1974) and further investigated
and applied in Agnello and Pierce (1996), Chanel (1995), Chanel, Gérard-Varet
and Ginsburgh (1996), Collins, Scorcu and Zanola (2009), Ginsburgh and Jean-
fils (1995), Locatelli Biey and Zanola (2005). According to this method, the price
of an artwork item depends both on market trends and on a set of characteristics
of the item itself. Such dependence is modelled through a fixed effect regression
and the estimated regression coefficients can be interpreted as the price of each
feature, the so-called shadow price. Hence, it is possible to predict the price of a
given object by summing the prices of its features. Also, a time-dependent inter-
cept can represent the value of the grey painting in that period, that is, the value of
an artwork created by a standard artist, through standard techniques, with standard
dimensions, etc. [Locatelli Biey and Zanola (2005)]. Eventually, the price index is
built from the prices of the grey painting in different periods.

Despite its potential, the hedonic regression model has several shortcomings.
First, as also remarked in Goetzmann, Mamonova and Spaenjers (2014) only a
small fraction of the great variability of the price dynamics is explained. Second,
most of the features are categorical so that the regression equation contains many
dummy variables and the resulting models are not parsimonious. Most importantly,
the time dynamics is not modelled directly but through dummy variables so that
it is not possible to use the model to forecast the prices. Moreover, since it is
practically impossible to follow the selling price of each artwork item over time,
the available datasets have a structure of a repeated cross-section where at each
time point a new sample is observed.

There is an increasing interest in modelling data that have the structure of re-
peated cross sections due to their ubiquitous appearance. Examples of social sur-
veys with such structure are the British Social Attitudes Survey2 and the UK Fam-
ily Expenditure Survey,3 the EU Eurobarometer Surveys,4 and all opinion surveys.
They are both easier and cheaper to gather than panels and do not suffer from
some of the problems that affect the latter, such as unbalance due to attrition or
mortality. Even if in repeated cross sections it is not possible to follow specific
individuals over time, the (spatio-) temporal dynamics is important and cannot be

2http://natcen.ac.uk/our-research/research/british-social-attitudes/.
3https://discover.ukdataservice.ac.uk/series/?sn=200016.
4http://ec.europa.eu/COMMFrontOffice/publicopinion/index.cfm/General/index.

http://natcen.ac.uk/our-research/research/british-social-attitudes/
https://discover.ukdataservice.ac.uk/series/?sn=200016
http://ec.europa.eu/COMMFrontOffice/publicopinion/index.cfm/General/index
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disregarded in that it allows to track trends and social changes. A first, straightfor-
ward solution to account for the time dynamics is to use some form of aggrega-
tion. For instance, many authors simply compute and work with averages over time
[e.g., Box-Steffensmeier, De Boef and Lin (2004), MacKuen, Erikson and Stim-
son (1992), Scott and Smith (1974)]. Also, aggregations can be performed over
cohorts of individuals as to obtain pseudo panels; see, for example, Deaton (1985).
A sensitive issue in pseudo-panel models is the nonunique choice of the individual
features used to construct the cohorts, in that it affects the consistency of estima-
tors. This corresponds to the ‘weak instruments’ problem discussed, for example,
in Bound, Jaeger and Baker (1995), Moffitt (1993). We argue that a more appro-
priate solution is the multilevel approach that accounts directly for the observed
heterogeneity and avoids the loss of information due to aggregation also known as
ecological fallacy [Goldstein (2010), Skrondal and Rabe-Hesketh (2004)]. How-
ever, the treatment of repeated cross-sectional data requires the extension of the
classical multilevel specification by considering individual heterogeneity within
time at the first level, and the variability over time at the second level. This spec-
ification has been adopted for the first time by DiPrete and Grusky (1990) and
Browne and Goldstein (2010) in the frequentist and Bayesian frameworks, respec-
tively. Along this line, Lebo and Weber (2015) adopt a simple two-step approach
where, at the first step, a time-series model is applied to pooled data; at the sec-
ond step, the individual heterogeneity is captured by means of a multilevel model
applied to the “time-corrected” responses.

Motivated by the construction of a price index for auctioned items of tribal
artworks, Modugno, Cagnone and Giannerini (2015) extended the multilevel ap-
proach for repeated cross sections by incorporating an autoregressive component
at the second level of the mixed effects model. They implemented an EM itera-
tive algorithm that allows to obtain full maximum likelihood parameter estimates
and prediction of random effects simultaneously. This avoids data pooling and
the loss of efficiency due to considering separate specifications for the individual
heterogeneity and the time component. They found a considerable improvement
over classical models in terms of prediction and forecasting but the assumption
of normality of level-1 errors was violated, probably due to the presence of het-
eroscedasticity and kurtosis. They devised an ad hoc solution for deriving robust
standard errors through the wild bootstrap scheme for multilevel models intro-
duced in Modugno and Giannerini (2015). Similar findings concerning the nonnor-
mality and the heteroscedasticity were reported for other specifications for the art
market in Bocart and Hafner (2012) and Hodgson and Vorkink (2004). In Bocart
and Hafner (2012), the problem was addressed by estimating a semiparametric
time-varying volatility and Student’s t error with skewness, whereas Hodgson and
Vorkink (2004) did not assume any parametric form for the disturbances but re-
tained the assumption of serial independence of random effects. Also, Bocart and
Hafner (2015) modeled the volatility of price indexes by means of a smooth func-
tion of time as a component of an unbalanced panel model with AR(1) time effects.
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They implemented a linear Gaussian state-space representation and estimated it
through maximum likelihood combined with a Kalman filter, and as above, they
found a violation of the normality assumption. The evidence reported in literature
indicates that the volatility of prices plays a pre-eminent role; assuming it constant
is not realistic and might cause estimation problems.

In this paper, we extend the model proposed in Modugno, Cagnone and Gian-
nerini (2015) by including a stochastic volatility component at the second level
by means of a nonlinear state-space approach. The specification is motivated by
the analysis of the first world database of tribal art prices. This allows to account
properly for the heteroscedastic and autocorrelated volatility of level-1 error terms
and brings in several advantages. Stochastic volatility (SV) models are based on
the assumption that the conditional variance of the observed variable depends on
a latent variable that captures the flow of information arriving from the market.
Similar to ARCH-type models for financial time series, SV models allow to ac-
count properly for fat tailed distributions, white-noise-type dependence, high and
lag-decreasing autocorrelations of squared observations. We opt for a stochastic
volatility component since ARCH-type models assume that the volatility is af-
fected by past information through a deterministic function. Such a specification
is not viable for repeated cross-sections.

Model estimation is performed through maximum likelihood via a non-linear
Gaussian filtering process in the spirit of Kitagawa (1987) and Tanizaki and Mar-
iano (1998). The task poses several computational challenges related to the pres-
ence of time-varying latent variables that must be integrated out from the like-
lihood function so that there is no analytical solution. To this aim, Fridman and
Harris (1998) proposed a nonlinear Kalman filter algorithm by expressing the like-
lihood function as a nested sequence of one-dimensional integrals approximated
by the Gauss–Legendre numerical quadrature. Bartolucci and De Luca (2001) ex-
tended this approach by computing analytical first and second derivatives of the
approximated likelihood. They applied a rectangular quadrature to approximate
the integrals. More recently, Cagnone and Bartolucci (2017) approximated such
integrals by using an adaptive Gauss–Hermite quadrature method. Here, we ex-
tend the procedures discussed in Fridman and Harris (1998) and Bartolucci and
De Luca (2001) by implementing both the Gauss–Legendre quadrature and the
rectangular quadrature methods to approximate the integrals involved in the likeli-
hood. Eventually, we chose the Gauss–Legendre method for the application.

2. The first database of tribal art prices. The first database of tribal art
prices was created in 2006 from the joint agreement of the department of Eco-
nomics of the University of the Italian Switzerland, the Museum of the Extra-
European cultures in Lugano, the Museo degli Sguardi in Rimini, and the Faculty
of Economics of the University of Bologna, campus of Rimini. For each artwork
item, there are 37 variables recorded from the catalogues released before the auc-
tions. The variables include physical, historical, and market characteristics. Some
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TABLE 1
Subset of variables classified by type: Physical, Historical, and Market

Variable Categories

Physical Type of object Furniture, Sticks, Masks,
Religious objects, Ornaments,
Sculptures, Musical instruments,
Tools, Clothing, Textiles,
Weapons, Jewels

Material Ivory, Wood, Metal, Gold,
Stone, Terracotta, ceramic,
Silver, Textile and hides,
Seashell, Bone, horn, Not indicated

Patina Not indicated, Pejorative,
Present, Appreciative

Historical Continent Africa, America
Eurasia, Oceania

Region Central Africa, Southern Africa,
Western Africa, Eastern Africa,
Australia, Indonesia,
Melanesia, Polynesia,
Northern America, Northern Africa,
Southern America, Mesoamerica,
Far East, Micronesia,
Indian Subcontinent, Southeastern Asia,
Middle East

Illustration on the catalogue Absent, Black/white, Coloured,
Illustration width Absent, Miscellaneous,

Quarter page, Half page,
Full page, More than one page,
Cover

Description Absent, Short visual, Visual,
Broad visual, Critical, Broad critical

Specialized bibliography Yes, No
Comparative bibliography Yes, No
Exhibition Yes, No
Historicization Simple certification,

Absent, Museum certification,
Relevant museum certification

Market Venue New York, Paris,
Auction house Sotheby’s, Christie’s

of these are shown in Table 1 and most of them are categorical. After the auction,
the information on the selling price is added to the record.

Figure 1 shows the boxplots of logged prices aggregated by semester; the num-
ber of items sold in each semester is reported inside the boxes. The structure of



MULTILEVEL MODELS WITH STOCHASTIC VOLATILITY 1045

FIG. 1. Boxplots of prices in (natural) logarithmic scale of the tribal art market by semester. The
amount of items sold in a given semester is reported inside the boxes.

the dataset emerges clearly from the graph: in every semester a different group
of artworks is sold, for example, 407 items were auctioned in 1998-1, 915 ob-
jects different from the first set were sold in 1998-2, and so on. Hence, tribal art
data has a structure like that of repeated cross-sectional surveys and the medians
(black lines) give an idea of the trend of prices over time. In particular, note the
consistent reduction in the number of auctioned items starting from 2009. Despite
this, the overall turnover did not drop since the average price rose. This might in-
dicate the adoption by market agents of hedging strategies against the economic
crisis. Overall, we have T = 28 semesters, and nt , the number of items sold in
the semester t , varies between 73 (2011-2) and 915 (1998-2); the total sample size
of sold items (n = ∑T

t=1 nt ) is 13,955. There are several reasons to aggregate the
data in semesters rather than auction dates. First, auction dates are not equally
spaced in time and, in our approach, this feature is essential to model time depen-
dence. Treating auction dates as equally spaced would produce a severe bias on
model identification as well as parameter estimation. Notice that unequally spaced
observations could be modelled by adopting a completely different approach, for
example, the continuous time framework described in Jones (1993), Chapter 3 for
longitudinal data. Second, the art market of auction houses is naturally organized
in semesters, and this is why the most important art indexes (e.g., artprice index,
Mei and Moses fine art index) are semi-annual. The tribal art market makes no ex-
ception as the auction sessions are mostly concentrated in May/June and Novem-
ber/December and each session contains two to four auctions quite close in time.
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The aggregation in semesters respects naturally this organization so that the re-
sults are meaningful from the economics point of view. It would be interesting to
estimate the trend and other components at a monthly or quarterly frequency. Un-
fortunately, the tribal art database does not allow to consider a finer time scale. In
fact, by organizing the data set in quarters we found out that, with few exceptions,
there are no data both in Q1 and in Q3.

3. The model. In Section 3.1, we briefly review the model proposed in
Modugno, Cagnone and Giannerini (2015) while in Section 3.2 we extend it by
introducing the mixed effects model with stochastic volatility.

3.1. A multilevel model with autoregressive random effects. Let yit be the
natural logarithm of the observed price for item i = 1, . . . , nt at time-point t =
1, . . . , T and let xit be a corresponding column vector of k covariates. Since tribal
art data can be thought to have a two-level structure where items represent level-1
units, and time points represent level-2 units, we consider the following random
intercept model:

yit = β0 + ut + x′
itβ + εit , εit |xt ∼ NID

(
0, σ 2)

,

where ut are time-specific random intercepts whose variance accounts for the un-
observed heterogeneity between items within each time point; β is a vector of fixed
slopes and β0 is the overall mean. In repeated cross-sectional data, yit and yi(t+1)

are not the price of the same item i observed at successive time points since the
two objects are physically different. Conditionally on the vector of covariates xt ,
level-1 errors εit (the error term for a given individual at a given time point) fol-
lows a normal distribution with constant variance. In other words, the art market
is assumed to have a constant volatility over time. Note that εit is conditioned on
the vector of the covariates xt for all the individuals, that is, we assume strict ex-
ogeneity on the explanatory variables [Wooldridge (2010)]. Different from panel
data, in repeated cross-sectional data the strict exogeneity assumption implies that,
for each item, the covariates are uncorrelated with the error terms.

The dynamics of ut can be modelled at the second level by extending the above
multilevel models as follows:

ut = ρut−1 + ηt , ηt |xt ∼ NID
(
0, σ 2

η

)
,

where ηt ⊥us and ηt ⊥ εit for all s < t and for all i. In this specification, the ran-
dom effects follow an autoregressive process of order 1. We denote this model as
Autoregressive Random Effects (ARE). Modugno, Cagnone and Giannerini (2015)
introduced a full maximum likelihood estimation method via the EM algorithm to
fit the ARE model to the tribal art data. The ARE model improves considerably
over classical models in terms of prediction and forecasting. However, as it will
be shown in the Application section, the assumption of normality of level-1 errors
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is violated, probably due to the presence of heteroscedasticity and kurtosis. As
mentioned above, the assumption of a constant volatility of prices of art assets is
not realistic and might cause severe inference problems. In the following, we ex-
tend the ARE model by including a stochastic volatility component that accounts
properly for the heteroscedastic and autocorrelated volatility of the level-1 error
process.

3.2. A multilevel model with autoregressive random effects and stochastic
volatility. We include a stochastic volatility component at level-1 of the ARE
model as follows:

yit = β0 + ut + x′
itβ + exp (ht/2)εit ,(1)

ut = ρut−1 + ηt ,(2)

ht = α + δht−1 + σννt ,(3)

for i = 1, . . . , nt and t = 1, . . . , T . As before, ut is the time dependent random
effect whereas ht is the latent variable that represents the volatility component at
time t . Both ut and ht follow a stationary autoregressive process, so that |ρ| < 1
and |δ| < 1. Moreover, we assume that εit , ηt and νt are mutually independent,
with εit ∼ NID(0,1), ηt ∼ NID(0, σ 2

η ), and νt ∼ NID(0,1), respectively. Note
that we ruled out the random walk assumption for the random effects as this corre-
sponds to the weak efficiency assumption for the art market, that is, it is not possi-
ble to predict future prices on the basis of the filtration that contains past informa-
tion. In the literature, there is some evidence against this assumption [Ballesteros
(2011), Goetzmann (1995)]. It seems that the art market tends towards greater effi-
ciency over time and this might be ascribed to the increasing availability of auction
information to prospective art buyers and sellers; still, it shows windows of (non-
trivial) predictability.

The assumption of stationarity for ut and ht allows to avoid the problems of
unknown initial values so that we do not have to use, for instance, a diffuse ini-
tialization. As also described in Durbin and Koopman (2012) (Chapters 5.6.2 and
9.5), the stationary unconditional distributions are taken as initial conditions for
the two processes: u1 ∼ N(0, σ 2

u ) and h1 ∼ N(μh,σ
2
h ) with σ 2

u = σ 2
η /(1 − ρ2),

μh = α/(1 − δ) and σ 2
h = σ 2

ν /(1 − δ2). Under these assumptions, the conditional
densities result:

yit |xit ∼ NID
(
β0 + x′

itβ, σ 2
u + σ 2

h∗
)
,

ut |ut−1 ∼ NID
(
ρut−1, σ

2
η

)
,(4)

ht |ht−1 ∼ NID
(
α + δht−1, σ

2
ν

)
,

where σ 2
h∗ = Var(exp(ht/2)εit ) = exp(μh + 0.5σ 2

h ) is the variance of the level-1
error term, assuming the stochastic volatility model for it. Thus, the sum of the
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variance components σ 2
u + σ 2

h∗ in (4) is the variability of the responses due to the
random part of the model. The overall unconditional variability of Y is the sum of
all the variance components of the model:

Var(Y ) = σ 2
x∗ + σ 2

u + σ 2
h∗,

where σ 2
x∗ = T −1 ∑

t n
−1
t β ′(x̃′

t x̃t )β , being x̃t the centered variables. The specifica-
tion also implies that the associations among different items are explained through
the autoregressive process ut . Indeed, the covariances of the response variable
within and between time result:

Cov(yit , yjt |xt ) = σ 2
u , i �= j,

Cov(yit , yjs |xt ,xs) = ρt−sσ 2
u , i �= j, s < t.

We call the new specification Stochastic Volatility and Autoregressive Random
Effects (SVARE) model. The system (1)–(3) is a nonlinear state-space representa-
tion. Hence, model estimation can be performed by using maximum likelihood via
a non-Gaussian filtering process and poses several non-trivial challenges that we
describe and address in the following section.

4. Model estimation.

4.1. The likelihood function. We perform maximum likelihood estimation
based on the following likelihood function:

L(θ |y,x) =
∫

h

∫
u
f (y|u,h,x)f (u,h)du dh

=
∫

· · ·
∫ [

T∏
t=1

f (yt |ut , ht ,xt )f (ut |ut−1)(5)

× f (ht |ht−1)

]
duT · · ·du1 dhT · · ·dh1,

where θ = {β0,β
′, ρ, ση,α, δ, σν} is the vector of parameters, f (yt |ut , ht ,xt ) =∏nt

i=1 f (yit |ut , ht ,xit ) for t = 1, . . . , T , f (u1|u0) = f (u1) and f (h1|h0) = f (h1).
The computation of L(θ |y,x) requires solving a 2T -dimensional integral which

is computationally unfeasible. We address the issue by applying an iterated nu-
merical integration procedure introduced by Kitagawa (1987) for non-Gaussian
filtering problems. The procedure is based upon rephrasing the likelihood (5) as

L(θ |y,x)

=
∫ ∫

f (y1|u1, h1,x1)f (u1)f (h1)

∫ ∫
f (y2|u2, h2,x2)f (u2)f (h2)(6)

· · ·
∫ ∫

f (yT |uT ,hT ,xT )f (uT )f (hT )duT dhT · · · du2 dh2 du1 dh1.
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The resulting bivariate integrals can be approximated by using numerical quadra-
ture techniques. The most used techniques for stochastic volatility models are the
rectangular quadrature (RQ) [Bartolucci and De Luca (2001)] and the Gauss–
Legendre quadrature rule (GL) [Fridman and Harris (1998)]. The choice between
the two methods should be closely related to the data analyzed. In fact, the results
of existing literature [see, e.g., Cagnone and Bartolucci (2017)] indicate that the
two methods perform similarly when the squared coefficient of variation of the
volatility is equal or greater than 1, whereas the rectangular quadrature outper-
forms the Gauss–Legendre for squared coefficient of variation equal to 0.1. The
application of the two quadrature based methods to equation (6) produces the fol-
lowing approximated likelihood function:

L̃(θ |y,x) = (rurh)
T

nu∑
i1

wui1

nh∑
j1

whj1f
(
y1|u∗

i1
, h∗

j1
,x1

)
f

(
u∗

i1

)
f

(
h∗

j1

)

×
nu∑
i2

wui2

nh∑
j2

whi2f
(
y2|u∗

i2
, h∗

j2
,x2

)
f

(
u∗

i2
|u∗

i1

)
f

(
h∗

j2
|h∗

j1

)
(7)

· · ·
nu∑
iT

wuiT

nh∑
jT

whiT f
(
yT |u∗

iT
, h∗

jT
,xT

)
f

(
u∗

iT
|u∗

iT −1

)
f

(
h∗

jT
|h∗

jT −1

)
,

where, using the Gauss–Legendre quadrature method, {u∗
i }, with i = 1, . . . , nu,

and {h∗
j }, with j = 1, . . . , nh, are sets of Gauss–Legendre quadrature points, wui

and whj are the corresponding weights. The constants ru and rh are defined as

ru =
(

b − a

2

)
; rh =

(
e − d

2

)
,

where [a, b] and [d, e] are finite integration limits which replace the infinite ones
for the random effects and the volatility process, respectively. With the rectangular
quadrature method, the quadrature points are chosen as equidistant in the ranges
[a, b] and [d, e] and the weights wui and whj are set equal to 1 [Bartolucci and
De Luca (2001)].

Under both methods, the choice of the grids and the number of evaluation points
is crucial for numerical precision. First, as proposed in Fridman and Harris (1998),
the grids for the two latent processes are centered on μu = 0 and μh = α/(1 − δ)

with a width of 3σu = 3ση/(

√
1 − ρ2) and 3σh = 3σν/(

√
1 − δ2); this allows the

grids to cover the support of the unconditional distributions with nonnegligible
mass. Second, the number of quadrature points, nu and nh, are chosen according
to the degree of smoothness of the integrands, that is, the average distance between
two points is less or equal to ση/2 for the random effect process and σν/2 for the
volatility process. As we will discuss in Section 5, in our case we chose the Gauss–
Legendre quadrature method.
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Estimation via the non-Gaussian filtering process consists in maximizing the
approximated likelihood of equation (7) and it is based on a recursive algo-
rithm described in the supplementary material [Cagnone, Giannerini and Modugno
(2017)]. We also derive optimal estimators for the unobserved-state vectors u and
h by performing filtering and smoothing, which differ in the conditioning informa-
tion set. These procedures, together with one-step-ahead prediction, are described
in detail in the supplementary material.

5. Application to tribal art prices. In this section, we illustrate the applica-
tion of our model to the first database of ethnic artworks. The responses are the
logged prices for 28 semesters for the overall sample size of 13,955 items. As is
customary with prices, we take the natural logarithm as to linearize the effects and
obtain distributions closer to the Gaussian. We take the fixed effects hedonic spec-
ification (FE) as the benchmark model. For the selection of covariates, we applied
stepwise (forward and backward) techniques combined with parsimony and art
economics arguments. First of all, note that tribal art is considered an anonymous
art in that the geographic/ethnic provenance plays the role that the artist’s name has
in Western art and strongly characterizes the object. However, the variables Con-
tinent, Region and Ethnic group are nested so that they are collinear. Given that
there are 17 regions and 361 ethnic groups, we decided to include the Region as
a reasonable compromise between fitting capability and parsimony. Then we pro-
ceeded by applying stepwise forward and backward methods with both the AIC
and BIC criteria. Whilst the AIC criterion did not rule out any variable, the BIC
criterion kept 10 variables out of 14 both in forward and backward procedures.
Among the excluded variables there was Historicization, which art economics ex-
perts consider an important feature. For this reason, we added it to the model.

Table 2 reports the parameter estimates for the three models: fixed effects (FE),
autoregressive random effects (ARE) and stochastic volatility with autoregressive
random effects (SVARE), fitted on the same data set with the same set of covari-
ates. The asymptotic standard errors for the FE and SVARE models are derived
from the Hessian matrix of the likelihood functions. The robust standard error for
the ARE model are derived by means of the wild bootstrap for multilevel models
introduced in Modugno and Giannerini (2015).

As mentioned above, we chose the Gauss–Legendre quadrature method to ap-
proximate the likelihood of the SVARE model. In our application, the squared
coefficient of variation of the volatility is greater than 1 and, in agreement with the
results on the classical stochastic volatility models, we found that GL and RQ per-
form similarly, also in terms of both computational time and number of iterations
to convergence. This is shown in Table 2 of the supplementary material [Cagnone,
Giannerini and Modugno (2017)] where we have estimated the SVARE model by
varying the number of quadrature points for the two methods. According to the rule
given in Section 4.1, we first set nu = nh = 21 and then increased them up to 61.
The estimates indicate a robust fit for all the parameters, with the exception of α.
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TABLE 2
Significant parameter estimates for models FE, ARE, and SVARE with standard errors in

parentheses. The complete set of estimates is available in the supplementary material [Cagnone,
Giannerini and Modugno (2017)]. For each categorical variable, the baseline category is indicated

FE ARE SVARE

σ 1.073 (0.006) 1.074 (0.008) –
ση – 0.326 (0.057) 0.324 (0.044)
ρ – 0.833 (0.148) 0.862 (0.084)
α – – −0.018 (0.006)
δ – – 0.910 (0.055)
σν – – 0.414 (0.059)
β0 – 6.793 (0.652) 7.018 (0.112)
Type of object: baseline Furniture
– Sticks −0.143 (0.069) −0.144 (0.075) −0.238 (0.064)
– Masks 0.270 (0.057) 0.269 (0.063) 0.253 (0.052)
– Ornaments −0.306 (0.063) −0.306 (0.074) −0.232 (0.058)
– Sculptures 0.149 (0.054) 0.147 (0.058) 0.142 (0.049)
– Tools −0.173 (0.055) −0.175 (0.062) −0.167 (0.050)
– Weapons −0.240 (0.069) −0.240 (0.074) −0.212 (0.065)
Material: baseline Ivory
– Wood 0.279 (0.054) 0.280 (0.065) 0.194 (0.051)
– Gold 0.231 (0.082) 0.231 (0.101) 0.332 (0.077)
– Bone, horn −0.413 (0.091) −0.412 (0.121) −0.344 (0.089)
Patina: baseline Not indicated
– Pejorative 0.446 (0.104) 0.445 (0.106) 0.365 (0.104)
– Appreciative 0.183 (0.029) 0.182 (0.035) 0.149 (0.028)
Region: baseline Central Africa
– Southern Africa −0.473 (0.075) −0.474 (0.105) −0.462 (0.074)
– Western Africa −0.273 (0.029) −0.274 (0.032) −0.278 (0.026)
– Eastern Africa −0.355 (0.071) −0.355 (0.083) −0.382 (0.065)
– Indonesia −0.359 (0.071) −0.361 (0.073) −0.323 (0.069)
– Polynesia 0.477 (0.045) 0.477 (0.053) 0.441 (0.041)
– Northern America 0.525 (0.047) 0.525 (0.055) 0.418 (0.042)
– Mesoamerica 0.245 (0.053) 0.243 (0.061) 0.155 (0.047)
– Indian Subcontinent 0.824 (0.285) 0.815 (0.283) 0.760 (0.242)
Illustration width: baseline Absent
– Col. miscellaneous 0.979 (0.048) 0.980 (0.066) 0.964 (0.046)
– Col. quarter page 1.825 (0.048) 1.825 (0.063) 1.567 (0.046)
– Col. half page 2.224 (0.056) 2.223 (0.071) 1.943 (0.053)
– Col. full page 2.564 (0.060) 2.565 (0.077) 2.319 (0.056)
– Col. more than one 3.060 (0.065) 3.063 (0.086) 2.857 (0.061)
– Col. cover 3.375 (0.171) 3.376 (0.242) 3.122 (0.168)
– b/w miscellaneous 1.116 (0.107) 1.114 (0.092) 0.920 (0.085)
– b/w quarter page 0.834 (0.067) 0.835 (0.070) 0.673 (0.057)
– b/w half page 1.403 (0.138) 1.403 (0.129) 1.223 (0.106)
– b/w full page 2.204 (0.542) 2.204 (0.642) 1.876 (0.431)
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TABLE 2
(Continued.)

FE ARE SVARE

Description on the catalogue: baseline Absent
– Short visual descr. −0.182 (0.085) −0.184 (0.102) −0.257 (0.076)
– Broad visual descr. 0.784 (0.094) 0.784 (0.110) 0.675 (0.084)
– Critical descr. 0.774 (0.094) 0.772 (0.113) 0.652 (0.084)
– Broad critical descr. 1.668 (0.103) 1.666 (0.120) 1.487 (0.092)
CABS (Yes vs. No) 0.249 (0.031) 0.248 (0.033) 0.227 (0.028)
CABC (Yes vs. No) 0.332 (0.024) 0.332 (0.027) 0.306 (0.022)
CAES (Yes vs. No) 0.204 (0.034) 0.205 (0.038) 0.205 (0.030)
Historicization: baseline Absent
– Simple certification 0.083 (0.025) 0.083 (0.029) 0.102 (0.023)
Paris (vs. New York) −0.307 (0.030) −0.302 (0.035) −0.197 (0.026)
Christie’s (vs. Sotheby’s) −0.253 (0.026) −0.255 (0.030) −0.335 (0.025)

This is in agreement with the results in literature that show a high mean square
error for the estimator for α [see, e.g., Bartolucci and De Luca (2001)]. Also, the
RQ with 61 quadrature points did not converge so that we chose the GL method
with 51 points. This is the solution with the highest log-likelihood and the best
forecasting performance among the GL results (see Table 3 of the supplementary
material). Moreover, 51 points should be enough to ensure an accurate approxima-
tion of the standard errors. Alternative estimation methods, like the EM algorithm
or Markov chain Monte Carlo techniques in the Bayesian context, could also be
used and will be subject of further investigations.

In order to assess whether the specifications proposed manage to model satis-
factorily the time dynamics and the heterogeneity observed, we have implemented
a series of diagnostic tests. Table 3 reports information on the goodness of fit of
the models. In particular, we have computed a version of the R2 coefficient for
mixed effects models, with and without stochastic volatility. The R2 for the ARE

TABLE 3
Log-likelihood, number of parameters, information criteria, and
coefficient of determination R2 for the hedonic regression (FE),

ARE, and SVARE models

FE ARE SVARE

loglik −20,788.86 −20,855.52 −20,167.98
n. par 93 68 70
AIC 41,763.73 41,847.05 40,475.96
BIC 42,465.28 42,360.01 41,004.01
R2 0.65 0.61 0.70
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TABLE 4
p-values of the Shapiro–Wilk test and indexes of skewness and kurtosis

for the FE, ARE, and SVARE (level-1) residuals

FE ARE SVARE

Shapiro–Wilk p-value <2.2e−16 <2.2e−16 8.9e−08
Skewness −0.157 −0.161 0.021
Kurtosis 1.102 1.111 0.497

and SVARE models has been generalized with respect to the classical R2 (for fixed
effects regression) to account properly for the proportion of variability explained
by the different components of the models. Following the lines of Xu (2003), the
R2 for the ARE model can be obtained as follows:

(8) R2 = 1 − σ̂ 2

σ̂ 2
u + σ̂ 2

x∗ + σ̂ 2
.

It expresses the proportion of the variability of Y explained by both the random
intercept and the covariates. In the same way, the coefficient of determination for
the SVARE model can be defined as

(9) R2 = 1 − σ̂ 2
h∗

σ̂ 2
u + σ̂ 2

x∗ + σ̂ 2
h∗

.

In this case, the R2 can be interpreted as the proportion of variability of Y ex-
plained by the random intercept and the covariates, assuming the stochastic volatil-
ity model for the level-1 error term. As for the FE model, we consider the classical
adjusted R2.

In Table 4, we present the results of some diagnostic tests and indicators on the
residuals. In particular, the first row of Table 4 shows the p-values for the Shapiro–
Wilk test for normality of the residuals of the three models; the shapiro.test
function in R limits the sample size to 5,000. The results presented are the median
p-values over 20,000 random subsamples of size 5,000 drawn from the original
sample. The last two rows show the indexes of skewness and kurtosis b1 and b2 as
in Joanes and Gill (1998) computed on level-1 residuals. We derive the standard-
ized residuals for the ARE model from the best linear unbiased predictors (BLUP)
of the random effects whereas for the SVARE model we use the smoothed values
for both the random effects and the volatility. Their expressions are reported in the
supplementary material [Cagnone, Giannerini and Modugno (2017)].

As concerns the time dynamics we assess the adequateness of the models
by computing the sample global and partial autocorrelation functions over time-
varying quantities such as level-2 residuals. Moreover, we use the metric entropy
measure Sk defined as

(10) Sk = 1

2

∫ ∫ [{
f(Xt ,Xt+k)(x1, x2)

}1/2 − {
fXt (x1)fXt+k

(x2)
}1/2]2

dx1 dx2,
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TABLE 5
Prediction/forecasting performance of the three models over 100
out-of-sample units within the time span 1998–2011 (rows 2–4)

and over 73 units of the out-of-sample semester, 2011-2 (rows 5–7)

FE ARE SVARE

Prediction MAE 0.66 0.66 0.63
RMSE 0.82 0.82 0.79
MAPE 7.4 7.4 7.1

Forecast MAE 1.20 0.87 0.83
RMSE 1.55 1.21 1.15
MAPE 10.7 7.9 7.6

where fXt and f(Xt ,Xt+k) denote the probability density function of Xt and of the
vector (Xt ,Xt+k), respectively. The measure is a particular member of the family
of relative entropies, which includes as a special case nonmetric entropies often
referred to as Shannon or Kullback–Leibler divergence. It can be interpreted as
a nonlinear autocorrelation function and possesses many desirable properties. We
use Sk as in Giannerini, Maasoumi and Bee Dagum (2015) to test for nonlinear se-
rial dependence and as in Granger, Maasoumi and Racine (2004) to test for serial
independence (see the supplementary material for more details). The tests are im-
plemented in the R package tseriesEntropy [Giannerini (2015)]. In the spirit
of time-series analysis, if the specification is appropriate then the residuals behave
as a white noise process and diagnostic tests can suggest directions to improve the
existing model.

Finally, Table 5 compares the prediction/forecasting capability of the three mod-
els under scrutiny. It reports the prediction error over 100 (out of sample) items
within the time span 1998–2011, and the forecasting performance over all the
73 observations of semester 2011-2. Such observations have not been included
in the model fit so that the measures reflect a genuine forecasting performance The
aggregate measures of prediction error are the Mean Absolute (Prediction) Error
(MAE), the Root Mean Square (Prediction) Error (RMSE), and the Mean Absolute
Percentage Error (MAPE), given by

MAE = 1

n∗
n∗∑
i=1

|ei |; RMSE =
√√√√ 1

n∗
n∗∑
i=1

e2
i ; MAPE = 1

n∗
n∗∑
i=1

∣∣∣∣100ei

yi

∣∣∣∣;
where ei = yi − ŷi is the forecasting/prediction error for item i, and n∗ is the num-
ber of predicted responses. The MAPE is scale independent and allows to compare
the performance of different models and also different data sets. It is meaningful
if the scale has a meaningful origin and it is best suited to data sets without zeroes
and without values close to zero. In our case, these conditions are fulfilled. More-
over, the MAPE takes values in the interval [0,∞], where the minimum value zero
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indicates perfect fit/forecast. Hence, it provides also a measure of absolute perfor-
mance and a value below 10% is usually taken as an indication of a very good
fit.

5.1. FE and ARE models. The parameter estimates of the FE and ARE models
are very similar (first two columns of Table 2), still there are some differences: first,
the ARE fit is more parsimonious and results in a smaller BIC (see Table 3); also,
it provides a decomposition of the total variability of the response in between-time
and within-time variability. Furthermore, in the FE model the time dynamics is
modelled through 28 dummy variables while in the ARE model the time dynamics
is fully captured through the AR(1) specification with the two parameters, ρ and
ση; see Figures 1 and 2 of the supplementary material. The same tests performed
on level-2 residuals of the ARE model show no structure (see Figures 3 and 4 of
the supplementary material). Finally, the ARE model provides a superior one-step-
ahead forecasting of the price whereas the prediction performance is the same as
that of the FE model (see Table 5). Note that the R2 for the ARE model (0.61) is
lower than that of the FE model (0.65) and this could be due to the impact of the 28
time dummies on the coefficient which is notoriously biased towards overfitting.
Interestingly though, the better performance of the FE model in terms of explained
variability does not imply a better forecast as the ARE specification manages to
model the time dynamics with the autoregressive component.

The Shapiro–Wilk test (see Table 4) points to a deviation from normality in
level-1 residuals of the ARE model (whereas it does not reject the assumption of
normality for level-2 residuals). As discussed above, this is consistent with the
findings in literature and might be due to heteroscedasticity. In fact, similarly to
other assets, level-1 residuals show a leptokurtic behaviour as shown in Figure 4
and by looking at the kurtosis index in Table 4. Furthermore, we reject the assump-
tion of homogeneity of the variance across time points, tested through a nonpara-
metric version of the Levene (1960) rank-based test.

The plot of sARE
t , the standard deviations of level-1 residuals ε̂it in Figure 2(left)

provides a visual evidence of volatility patterns. The entropy measure Sk shown
in Figure 2(right) confirms the presence of a linear serial dependence (the test
for nonlinearity does not reject, see Figure 6 of the supplementary material) and
the correlograms of Figure 3 indicate a AR(1)-type dependence structure for the
volatility. In the following subsection, we account for the observed heterogeneity
by fitting the multilevel model with autoregressive random effects and stochastic
volatility (SVARE).

5.2. SVARE model. The point estimates of the SVARE model are in agree-
ment with those of the FE/ARE models. In most cases, the significance of the
parameters does not change and this indicates the overall consistency of the mul-
tilevel approach. Nevertheless, there are important differences. In fact, SVARE
estimates account properly for the volatility and reflect more closely the impact
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FIG. 2. Standard deviations of ARE level-1 residuals sARE
t : time plot (left) and entropy measure of

dependence (right). The confidence bands correspond to the null hypothesis of serial independence
at levels 90% and 95% up to 10 lags/semesters.

of the covariates on artwork prices. This is reinforced by the standard error of the
estimates which are invariably the lowest among the three models. The most no-
ticeable differences can be found in the coefficient of the category Material-Gold:
from 0.231 for the FE/ARE model to 0.332 for the SVARE model. Gold and wood
are still the materials with the highest estimated coefficients, which in the hedonic
regression framework, are interpreted as the prices of each feature, the so-called
shadow prices. Also, the absolute impact of the venue reduces from 0.302 (ARE)

FIG. 3. Global (left) and partial (right) empirical autocorrelation functions of standard deviations
of ARE level-1 residuals.
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to 0.197 (SVARE) while the auction house effect increases from 0.255 (ARE) to
0.335 (SVARE). This might indicate that the auction house is more likely to have a
significant effect on the selling price rather than the venue. In any case, the shadow
price of the auction house confirms the international leadership of Sotheby’s in the
tribal art market as in other art markets; this is known among operators as Sotheby’s
effects. Analogously, the reduced shadow price of Paris with respect to New York
is not unexpected and reflects its more recent entrance in this market. Moreover,
the most appraised objects result masks and sculptures and these are also the most
traditional. The patina, especially when it worsens the object appearance, is a val-
ued feature of some tribal objects, since in many cases, it would derive from the
settling of organic liquids during sacrificial rites, and thus its presence would wit-
ness its real usage [Biordi and Candela (2007)]. Also, the use of catalogues as
a marketing tool by auction houses appears important in fetching good prices. In
fact, the shadow prices tend to increase as the importance given to the object on the
catalogue through illustrations and descriptions increases. Finally, investors tend
to pay more for objects with a relevant pedigree, for example, for those boasting
either object-specific (CABS) or just comparative (CABC) citations and for those
that have been previously exhibited (CAES).

The SVARE model provides also the key information deriving from the volatil-
ity parameter δ̂ = 0.910, which agrees with those of models for financial time
series reported in literature and indicates a nonnegligible volatility persistence. In-
deed, the goodness of fit of the SVARE model increases noticeably as witnessed
by both the information criteria and from the R2 in Table 3.

Also for the SVARE model, the Shapiro–Wilk test of normality of level-1 resid-
uals rejects the null hypothesis (Table 4). Nevertheless, the leptokurtic behaviour
of residuals is considerably reduced with respect to both the ARE and FE mod-
els. This is shown in Table 4 (the skewness disappears and the kurtosis is more
than halved) and in Figure 4 where we show the densities of level-1 residuals for
the ARE and SVARE models. Note the agreement of SVARE residuals with the
standard Normal density (dotted in the figure). See also Figures 11 and 12 of the
supplementary material for a normal qq-plot of level-1 residuals and a log-density
plot for the two models. As in the FE/ARE case, we compute the diagnostic tests of
dependence on level-2 residuals η̂t and ν̂t . Both the correlograms and the entropy
measure Sk indicate the absence of any dependence structure (see Figures 7–10
of the supplementary material) so that we may argue that the SVARE specifica-
tion manages to capture the volatility dynamics. Finally, from Table 5 it emerges
clearly that the SVARE specification performs best among competitors in terms of
both prediction and forecasting. In particular, besides allowing comparisons, the
MAPE for the SVARE model (7.1%) is also an indication of a good fit in absolute
terms.

6. Conclusions. The SVARE specification provides a natural and convenient
framework for modelling the trends in the mean and in the volatility of artwork
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FIG. 4. Density of level-1 residuals. The right panel is a zoomed detail of the peak that highlights
the kurtosis.

prices. The model does not assume that the observations form a panel, which is
clearly not the case for auction data, nor it needs repeated sales data. The stochastic
volatility component accounts (to some extent) for the deviation from normality
observed in the residuals of models without it, especially regarding the skewness
and the kurtosis. As witnessed by the modified R2 measure, there is a gain in
the explained heterogeneity with respect to the ARE model. Also, we observe a
superior forecasting ability. Of course, the dynamic of art prices still retains a
proportion of unexplained, maybe unexplainable, variability. For instance, there
might be complex interactions with the buy-in phenomenon [Collins, Scorcu and
Zanola (2009)] or with the selling probability [Candela, Castellani and Pattitoni
(2012)]. Moreover, modelling the so-called superstars would require a different
class of models, possibly rooted in extreme value theory. Last but not least, the
values of tribal artworks are deemed to be private rather than public since are
more dictated by the personal judgements of passionate collectors rather than the
common consensus of some community and this complicates the modelling task.
Still, the multilevel model with stochastic volatility provides important additional
information on the predictability of the prices, and hence, on investment risks, that
can be exploited by art market stakeholders for informed decision making. This
can be best appreciated by looking at Figure 5 where we show the biannual price
indexes obtained through the FE, ARE, and SVARE fits (left panel), together with
the predicted volatility values of the SVARE model, exp(ĥt /2) (right panel). The
indexes are computed with fixed base in semester b = “1-1998” as

It = eβ̂0t

eβ̂0b

× 100,
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FIG. 5. (left panel) Price index of the tribal art market for the FE, ARE, and SVARE models, to-
gether with the S&P500 index (base: “semester 1-1998”). (right panel) Plot of the estimated volatil-
ity of the SVARE model. The semesters with lowest and highest volatility are indicated with coloured
triangles and the associated prediction errors are reported in the box.

where, for multilevel models, the β̂0t s are the best linear unbiased predictors
(BLUP values) β̂0 + ût . With the exceptions of few time points, the indexes for
the three models are similar. However, by performing a prediction exercise with
the SVARE fit on the prices of items sold in semesters 1-2001 (lowest volatility)
and 1-2004 (highest volatility), we obtain a MAPE of 6% and 33%, respectively
(see the right panel of Figure 5). This shows that the information deriving from
the volatility is essential to the prediction of price dynamics and to the character-
ization of its complexity. The price indexes and the volatility shown in Figure 5
also highlight the peculiarity of the tribal art market. Indeed, both the traditional
art market and financial markets showed a level drop and clusters of high volatility
after the financial crisis of 2008; see the behaviour of the S&P500 index reported
in Figure 5(left). This is not the case with the tribal art market. In fact, the tribal
art index reached both its minimum level and highest volatility in 2004. Moreover,
after 2008, it showed a sharp increase together with mild volatility. Note also the
drop in volatility in semester 1-2009. There is no apparent dependence/correlation
between the tribal art market and other market segments (e.g., traditional art, fi-
nancial, gold). Hence, tribal artworks can be counted among the alternative in-
vestments that contribute to the diversification of a portfolio and enhance its per-
formance.
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SUPPLEMENTARY MATERIAL

Supplement to “Multilevel models with stochastic volatility for repeated
cross-sections: An application to tribal art prices” (DOI: 10.1214/17-
AOAS1035SUPP; .pdf). The online supplement contains six technical Appendices
with detailed material on the following topics:

1. Recursive algorithm for computing the likelihood;
2. Filtering, Smoothing, and Prediction;
3. Application to Tribal Art prices: full table of the estimates;
4. Application to Tribal Art prices: choice of the quadrature based method;
5. Application to Tribal Art prices: entropy based diagnostic tests for serial inde-

pendence and nonlinearity;
6. Software implementation.
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