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GENERALIZED MAHALANOBIS DEPTH IN POINT PROCESS AND
ITS APPLICATION IN NEURAL CODING

BY SHUYI L1U AND WEI WU
Florida State University

In this paper, we propose to generalize the notion of depth in temporal
point process observations. The new depth is defined as a weighted prod-
uct of two probability terms: (1) the number of events in each process, and
(2) the center-outward ranking on the event times conditioned on the number
of events. In this study, we adopt the Poisson distribution for the first term
and the Mahalanobis depth for the second term. We propose an efficient boot-
strapping approach to estimate parameters in the defined depth. In the case of
Poisson process, the observed events are order statistics where the parameters
can be estimated robustly with respect to sample size. We demonstrate the use
of the new depth by ranking realizations from a Poisson process. We also test
the new method in classification problems using simulations as well as real
neural spike train data. It is found that the new framework provides more ac-
curate and robust classifications as compared to commonly used likelihood
methods.

1. Introduction. In this paper, we introduce the notion of “depth” for point
process data and apply it to neural coding problems in computational neuroscience.
Point process Ross (1983) is a random collection of points falling in some space.
In most applications, each point represents the time or location of an event, for
example, lightning strikes over a period of time or earthquakes across a region.
The most commonly used point process is the temporal Poisson process. Neural
spike trains are time-dependent firing activities from neurons, which can be natu-
rally treated as random realizations from a temporal point process. Parametric and
semiparametric point processes have been the dominant models for neural spike
trains. Many important and useful tools have been built for appropriate represen-
tations and efficient inferences in various neural systems [Box, Hunter and Hunter
(1978), Brown et al. (2001), Kass, Ventura and Brown (2005)].

A point process model can be used to measure the probabilistic likelihood of any
given spike train. However, such method only focuses on representations at each
given time and, therefore, has a limited use in evaluating nonparametric statistics
in the space of spike trains. Given a set of spike train samples, one may naturally
pose questions such as: (1) “What is the central tendency or a representative tem-
plate of the sample?” or more ambitiously, (2) “What is a center-outward ranking
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on the sample?” These questions are fundamentally important for nonparametric
analysis on point process data, but are still underexplored in the statistics literature.
The first question was partially addressed by recent investigations on the “aver-
age” of neural spike trains by Diez, Schoenberg and Woody (2012), Julienne and
Houghton (2013), Mateu et al. (2015), Wu and Srivastava (2011). A comparison
of these averages was recently given in Wesolowski, Contreras and Wu (2015).

Our goal in this paper is to address both questions. We will particularly focus on
Question 2 because when a ranking is known, the sample point process observation
with the highest rank represents the median, a natural choice of central tendency
in the data. When the observations are ranked in a center-outward manner, the
central one would be a template and those on borderlines could be outliers. This is
actually the classical approach with regards to “depth” in multivariate data, where
the value of depth represents how close a given observation is from the center.
The depth has been extensively studied in nonparametric statistics, where various
forms of depth have been developed to provide an center-outward ranking, such
as location depth as in Tukey (1975), simplicial depth in Liu (1990), Mahalanobis
depth in Liu and Singh (1993), Zonoid depth in Dyckerhoff, Koshevoy and Mosler
(1996), projection depth in Zuo and Serfling (2000), expected convex hull depth
in Cascos (2007) and geometrical depth in Dyckerhoff and Mosler (2011). The
notion of depth was recently extended to functional data in Lépez-Pintado and
Romo (2009), Mosler and Polyakova (2012).

However, the depth in multivariate statistics is for a given dimension. Therefore,
the above definitions cannot be directly applied to point process data because the
number of events in each process observation varies. To the best of our knowl-
edge, depth in the point process observations is still an under-explored area. In this
paper, we propose to introduce the notion of depth for point process data, which
generalizes depth in the multivariate case. This is a challenging task since there are
two types of randomnesses in point process realizations: (i) the number of events,
and (ii) the distribution of these events given that the number of events is known.
We represent the depth of an observation s based on:

1. the probability of having |s| (the cardinality of s) events, and
2. the conditional depth of s given |s|.

We propose the depth of a point process as a weighted product of the above two
terms. Therefore, a typical point process realization should satisfy two important
properties: (1) the number of events in the process has reasonable likelihood, and
(2) the distribution of these events is typical or representative.

In this paper, we will provide a model to characterize both the number of events
and their distribution in a point process. The latter one is certainly more challeng-
ing. In principle, when the number of events is known, any multivariate depth can
be adopted to characterize the conditional depth. As an exploratory study on the
ranking for point process, we propose to use a classical Mahalanobis depth for the
conditional depth. The Mahalanobis-depth has some apparent benefits: (1) it is the
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only depth based on mean and covariance in the multivariate data, (2) it provides
an effective framework to describe central tendency as well as co-variability in the
data, and (3) it properly ranks each observation with respect to the center based on
a Gaussian kernel measurement.

This new notion of depth is desirable for data-driven studies on point process
data. To build an effective depth, we need to answer several important questions:

e Definitions: What are the proper definitions of conditional mean and covariance
in the point process data?

e Computations: How to estimate the conditional mean and covariance for a given
set of observations?

e Robustness: If the estimated covariance is singular, how can we still effectively
compute the depth value?

e Simplification: Is there any simplification on the representation and estimation
for the commonly used Poisson process model?

In this paper, we will address each of these challenges. At first, we provide a def-
inition on conditional mean and covariance. This is based on a recent work on
Euclidean metric and summary statistics in point process [Wesolowski, Contreras
and Wu (2015)]. A bootstrapping procedure is then proposed to estimate these
summary statistics. If the estimated covariance matrix is singular, we provide a
principal-component-based approach to robustly estimate the conditional depth
value. Finally, we demonstrate that when the observations are from Poisson pro-
cess, the precision matrix (inverse of the covariance) is tri-diagonal. The summary
statistics can even have closed-forms when the Poisson process is homogeneous.
We emphasize that the conventional likelihood method Drazek (2013) cannot
be used for the definition of the depth. We here point out the problems by us-
ing the following example: Suppose we get a realization of a sequence of events
X1,...,xy from a Poisson process on the interval [0, 1] with intensity function
A(t) and total intensity A = fol A(t)dt. Then the likelihood of this sequence is

N
(1.1 Lxi,....xny) =e *[]r(x).

i=1
We point out that this likelihood would be inappropriate to describe the repre-
sentiveness of an observation in the Poisson process for the following reasons:
1. The likelihood will change w.r.t. the number of the events N. If A > 1, then
more events would have larger likelihood, but that does not imply the observation
is more representative. 2. Template realization and outlier realization may have
the same likelihood. This is true, for example, when the process is homogeneous
where evenly distributed events (more representative) and any distribution with the
same number of events will have the same likelihood. 3. The likelihood is sensitive
to the noise. See Figure 1 for an example. A Poisson process has intensity func-
tion A(#) =8 - 1{0.25<s<0.75), Where 1y.) is an indicator function. We can easily see



GENERALIZED MAHALANOBIS DEPTH IN POINT PROCESS 995

A B C
8 10 10
8 8
4 6 6
4 4
2 2

o e P
0 025 05 075 1 0 025 05 075 1 0O 025 05 075 1

F1G. 1. Nonrobustness of the likelihood method with respect to noise. (A) Intensity function of
a Poisson process. (B) 10 simulated point processes. Each horizontal line indicates a process. (C)
The simulated point processes with a Gaussian noise added at each event.

that when a realization has noise out of the range [0.25,0.75], the likelihood in
equation (1.1) will become O.

In this paper, we introduce the notion of depth in point process data and propose
a novel framework to define and compute this depth. The rest of the manuscript
is organized as follows: In Section 2, we elaborate on the definition of the depth
and provide computational procedures to effectively estimate it. We also study the
asymptotics of the estimated depth with respect to sample size. In Section 3, we
provide a thorough analysis for data from a Poisson process. The new method is
illustrated with various simulations in Section 4. We then demonstrate its applica-
tion using two neural spike train datasets. Finally, we discuss and summarize the
work in Section 5.

2. Methods. We will at first provide the definition of the generalized Maha-
lanobis depth for point process. This definition is based on conditional mean and
covariance in the data. We will then propose an algorithm to estimate these statis-
tical terms.

2.1. Definition of the generalized Mahalanobis depth. Let S denote the set of
all point processes in the time domain [0, 1]. We use [0, 1] to simplify the no-
tion. The method applies to any other finite interval. For any s € S, its cardinality
|s| is a nonnegative integer and s can be treated as a vector in [0, 1]/, Let E =
UgZolO, 11%. The depth on the point process is a function D : E — R, s — D(s).

We represent the depth of a point process s based on: (1) the probability of
having |s| events, and (2) the conditional center-outward ranking D(s | |s|). In this
framework, we take the distribution of |s| as Poisson and the conditional depth
D(s | |s]) using the Mahalanobis depth, that is, our definition of the depth function
D(-) is given as follows.

DEFINITION 1. Given a point process s, its generalized Mahalanobis depth is
defined as a weighted product:

D(s) := P(Isl)" D(s | Is]),
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with weight power r > 0. Here, the first term in the product is a normalized Poisson
mass function, that is,

s

Pls) = ot

where A > 0 is the total intensity and | -] denotes the floor function. For |s| > 0,
1

L+ (s = DT B (s — )

D(s||s]) =

is the Mahalanobis depth with mean j|;| € R and covariance X5 € RI¥/*IsI. For
|s| =0, we simply let D(s | |s|) = 1.

In Definition 1, both the normalized Poisson term, P(|s|) and Mahalanobis
term, D(s | |s|), are positive and can reach maximal value at 1 with |s| = |A]
and s = |, respectively. Therefore, D(s) € [0, 1] for any s € E. The parameter
r > 0 is a weight power for the normalized Poisson term. A larger r indicates more
importance on the number of events for the depth on s.

The depth of a point process s depends on three parameters: A, j|s and 2.
In general, these parameters are unknown and should be estimated from given
observations.

The scalar parameter A is easy to estimate with the classical maximum like-
lihood method: Given a collection of independent point process observations
$1,82,...,8k € S, the estimate A is % Zf:l |sk|. We will study the estimation
of 1|5 and X in Section 2.2.

According to the definition, D(s | |s|) describes the depth of a point process ob-
servation when the number of events is fixed. This conditional depth corresponds
to the classical Mahalanobis depth and has all important properties in a multivari-
ate depth [Liu (1990), Zuo and Serfling (2000)] such as time-shift invariant, linear
invariant, monotone on rays, upper semicontinuous, etc.

2.2. Estimation of conditional mean and covariance. In this section, we pro-
vide estimation details for the conditional mean |5 and conditional covariance
>|s|- We at first review the sample statistics in point process realizations.

2.2.1. Definitions. Sample mean in point process has been defined for a set
of realizations with the generalized Victor—Purpura metric in Wesolowski, Con-
treras and Wu (2015), Wu and Srivastava (2011), that is, for point processes
S1,82,...,8k € S in the time interval [0, 1], their sample mean is defined as

K
W = argmin Z Dgyplal(sk, 5)7,
SES 1
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where Dgyp[-] is the generalized Victor—Purpura metric between two processes
and o > 0 is the weight coefficient for matching event times between two pro-
cesses.

In general, the defined mean does not have a closed-form because different point
processes can have different numbers of events. An efficient and convergent algo-
rithm has been proposed to conduct the estimation [Wesolowski, Contreras and
Wu (2015)]. If all processes s1, s2, ..., Sk have same number of events, then (for
«a sufficiently small) the sample mean has a conventional closed-form average, that
is, if all processes s1, 2, ..., Sk € Sq, where S; denotes the set of all point pro-
cesses on [0, 1] with d(> 0) events, their sample mean is given in the following
form:

1 K
(2.1) ﬂd=—zsk-

K

k=1
Based on this sample mean, the sample covariance can be defined as
5 1 &
(22) Sa = 2k = R sk — pa)'
=1

where T indicates transpose in matrix operation. It is apparent that the sample
mean [iz and covariance f]d are consistent estimators for parameters puy and g,
respectively.

Once conditional mean and covariance are estimated, we can estimate the con-
ditional depth of any process s given |s| in the following form:

1
~ T 2, _1 A *
L4 (s = g™ 2y (5 = fags))
Finally, the depth of the process s is computed as

(2.4) D(s) := (M)rﬁ(s |1s1)
' — \AL/A] ’

(2.3) D(s||s]) =

where A = % S°K | Isk| is the estimated total intensity.

2.2.2. Bootstrapping estimation. The above closed-forms on mean and co-
variance are certainly desirable. However, it is impractical to assume that all point
process realizations have the same number of events in a given data set. We pro-
pose a bootstrapping approach to address this issue.

Given point process realizations s1, s2, ..., Sk, our goal is to compute condi-
tional mean g € R? and covariance ¥, € R4*¢. Each process s; is a vector in
RIsil i =1,...,K.In general, these vectors do not have the same length, so it is
not possible to directly apply the average formula in equation (2.1). To solve this
problem, we propose to apply a bootstrap method [Efron (1979)] to resample each
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Algorithm 1 Compute conditional mean and covariance
Require: Given a sequence of point processes sy, 52, ..., Sk
for d =1to N (N is pre-determined as max{|s;|}) do
for k=1to K do
If |sk| > d, then uniformly randomly delete |si| — d events in s.
Otherwise, add d — |s| events to s; by uniformly resampling from sy.

end for
Denote the K resampled realizations as 1|4, 2|4, - - - Sk|4- Then
1 K
=— Z Skid
K k=1
. 1 &K
Xig=——— Z(Sk|d — fia) (swja — )"
K- k 1
end for

return {14}, {Sa))_,

process s; such that the resampled process s;|4 has d events. Then the conditional
mean gy and covariance ¥, can be efficiently estimated. The detailed steps are
given in Algorithm 1.

In the given set, the number of events in each process is up to max{|s;|}. There-
fore, we let d vary from 1 to max{|s;|} in our estimation (although, in principle,
the algorlthm can be used for any d > 0). One can also see the precision matrix

(not the covariance Z| s) 1s actually needed in the depth computation. There-
fore we should work on the precision matrix directly if it has more convenient or
efficient form. We will emphasize this point on the classical Poisson processes in
Section 3.

2.2.3. Depth estimation for singular covariance. We have provided a compu-
tational approach in Section 2.2.2 to estimate the conditional mean and covariance.
However, due to limited sample size the estimated covariance matrix can be sin-
gular and, therefore, the conditional depth, é(s | |s]), in equation (2.3) may not be
directly obtained. We propose a solution to this problem in this subsection.

In general, let xq,...,x, € R" be a set of i.i.d. multivariate normal random
vectors with mean . € R” and singular covariance ¥ € R"*" of rank k < n. The
likelihood cannot be estimated by the normal density function because the covari-
ance is not invertible. This is a classical problem and can be addressed by a dimen-
sional reduction approach as follows [Berrar, Dubitzky and Granzow (2009)]: Let
> =USUT be the Singular Value Decomposition (SVD) of the covariance, where
U € R™" is an orthogonal matrix and S = diag(oy,...,0%,0,...,0) e R"*" is a
diagonal matrix with k nonzero entries oy, ..., ox. Then U Txy,...,UTx,, areii.d.
normal random vectors with mean U 1 and singular covariance S. For any vector
X, we use X (ki : k) to denote a vector with the kjth entry to the kpth entry in
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Algorithm 2 Compute conditional depth when the covariance is singular
Require: Point process s with p number of events, conditional mean 1, € R?, and conditional
covariance matrix X, € RP*? with rank d < p.
1: Apply SVD on X, such that ¥, = UX*U T where U is orthogonal and * is a diagonal
matrix with first d diagonal entries being nonzero.
2: Let Uy € RP*4 be the matrix of U’s first d columns.
3: The conditional depth can be computed as

1
L+ (U s = )T (5D UT (s = 1p))

return conditional depth D(s | |s| = p)

D(s |Is|=p) =

X. Itis easy to see that WUTx)(1:k),...,(UTx,)( : k) are i.i.d. normal random
vectors with mean (U7 p)(1 : k) and nonsingular covariance diag(oy, ..., ox), and
WTx)(k+1:n),...,(UTx,)(k + 1:n) are i.i.d. normal random vectors with
mean (UT ) (k + 1 : n) and zero covariance. Note that, in practice, the random
vectors for the (k + 1)th to the nth entries may not be exactly constant (although
the covariance is zero). Such variability can be treated as noise in finite sample
and these entries should be excluded from the likelihood computation. There-
fore, the likelihood of x1, ..., x, € R" can be computed using the likelihood of
WUTx)A:k),...,(UTx,) : k) with the classical multivariate formula.

Algorithm 2 shows the detailed steps to compute the conditional depth for a
given point process realization when the corresponding conditional covariance is
not full rank.

2.3. Consistency theory. In this subsection, we study the asymptotic property
of the estimated depth of a point process. For any s € S, |s| is a nonnegative integer
and the depth on the point process s is the function D(s) given in Definition 1.

In general, the parameters conditional mean (5|, conditional covariance Xy,
and total intensity A in Definition 1 are unknown and need to be estimated from
a training set of independent point process realizations Ty = {s1, 52, ..., Sk }. Let
Tis) = {si € Tu, Isil = Isl,i = 1,..., K} denote all processes in Ty that have |s|
events. We can estimate conditional mean ;) and covariance X5 using equa-
tions (2.1) and (2.2) based on this subset Tjs|. The estimated depth ﬁ(s) can then
be obtained using equation (2.4), where A= % 215:1 |sx| is the estimated total

intensity. The following result shows that ﬁ(s) converges to D(s) (a.s.) when the
sample size K increases.

THEOREM 1.  Under the conditions given above, if (1) the covariance matrix
Xs| is nonsingular, and (2) P(|s;| = |s|) > 0, then D(s) converges to D(s) almost
surely with error bound.

) loglog K
|D@)-D@)|=0<J%).
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The proof of this theorem follows standard procedure in large sample theory
Ferguson (1996). We omit the details in this manuscript.

3. Depth in Poisson process. We have defined the notion of depth for point
processes and provided algorithms for its estimation. It is well known that the
Poisson process is the most classical point process. In this section, we will examine
the proposed generalized Mahalanobis depth for a Poisson process. This study
will illustrate the important properties of depth and provide insights for practical
applications.

3.1. Estimation in nonhomogeneous Poisson process. In a Poisson process,
given the number of events, d, the unordered event times are independent with each
other, that is, let {x; }?:1 be unordered events times in a Poisson process realization
with intensity function A(¢) on [0, 1]. Then {x;} are a set of i.i.d. random variables
with density function f(r) = 2, where A = f) A(r)dt [Karlin (1966)]. As a
process is always ordered, the observation s = (x(1), ..., x(d))T is simply the order
d_and has the joint p.d.f. in the following form:

statistics of {x;}*
d d—1
fs(t, . tq) =d![1‘[ f(ti)} [1‘[ lt,.<t,.+1}.

i=l1
i=1 i=1

Based on this p.d.f., the conditional mean and covariance are given as

na=E@),  Ta=E((s—pa)s—pna)’).

It is well known that the order statistics of independent realizations have Marko-
vian property [Karlin (1966)]. In a Markovian chain, the past and future are in-
dependent given the present. Hence, the conditional precision matrix, E;l, is tri-
diagonal [see Lauritzen (1996) for details]. This sparse structure assures the pa-
rameters in the covariance are essentially in the linear order of d, which can make
the estimation of the precision matrix accurate and robust.

For a general nonhomogeneous Poisson process, there is no closed-form solu-
tion for the mean and precision matrix. However, once the intensity function is
estimated, we can simulate more Poisson process realizations from it and then
those statistical terms can be accurately estimated using a Monte Carlo method.
Our computational approach is given in Algorithm 3.

3.2. Estimation in homogeneous Poisson process. Here, we study the es-
timation for a more special case—homogeneous Poisson Process. It turns out
that the population conditional mean and covariance have closed-form estimates
[Moghadam and Pazira (2011)]. Let {x; }l‘.l=1 be unordered events times in a homo-
geneous Poisson process with constant intensity A on [0, 1]. Then {x;} are a set
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Algorithm 3 Compute conditional mean and precision matrix in a Poisson process
Require: Poisson process realizations s1, s2, ..., Sk
for k=1to K do
Adopt the truncated Gaussian kernel smoothing method Robert (1995) on s to get a

smooth density function on [0, 1], denoted as f;.
end for

Take cross sectional mean of A = % Z,f: 1 fke
ford =1to N (N is pre-determined as max{|s;|}) do
1. Adopt A as intensity function and simulate K Poisson process realizations with d

number of events. Denote them as s1|4, $2/4, - - - , SK|d-
2. Then
1 K
== Zslqd,
K k=1
. 1 K
Ya=——— (Skid — Aa)(Skja — aa)’.
K — k=1

3. Take inverse of 34 as C. To get a tri-diagonal precision matrix, adopt the middle three
diagonals of C and let other elements equal zero. We denote this new matrix as b d .
end for

~ &—1
return {{4))_;, {210,

of i.i.d. uniform random variables. The observed process s = (x(1), ..., x(d))T has
the joint p.d.f. in the following form:

d—1
s, ... ta) Zd!|:1_[ 1li<li+1:|-

i=1

Based on the result from order statistics, we have

i
3.1 E(xi) = ——, i=1,...,d,
(3.1) (x(@)) d+1 i
and
e
(3.2) Covixy, 1) = — ot 1)) <i<j<d.

d+1)2d+2)’

Hence, the mean and precision matrix have the following closed-forms, respec-
tively:

_( 12 d )T
,de— d—i—l’d—i—l”d—i—l 9
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2 -1 0 0 0

-1 2 -1 0 0

. -1 2 0 0
5l =@+ D +2) ,
0 0 o - 2 -1

0 0 o ... -1 2

4. Results. In this section, we will illustrate the use of depth in point pro-
cesses with simulated and real experimental data. We will rank realizations from
a homogeneous Poisson process in one simulation. We will also apply the depth
value to classify non-Poisson processes in another simulation. In the real experi-
ments, we will test the classification performance using depth in neural spike trains
from motor cortex and geniculate ganglion.

4.1. Ranking Poisson processes. Given a set of realizations from a Poisson
process, we can use the generalized Mahalanobis depth to rank the data. For ex-
ample, we randomly generate 50 realizations from a homogeneous Poisson pro-
cess with A =3 on [0, 1]. In each process, let p; denote the probability that there

are k events. As the process is homogeneous Poisson, py = e_kﬁ For example,
po=0.05, p1 =0.15, p» =0.22, p3 =0.22, p4 =0.17, ps =0.10, pg = 0.05 and
> re7 pk = 0.04. Therefore, realizations should most likely have 2 or 3 events, but
other number of events are also possible.

Figure 2(A) shows the 50 simulated realizations and each row denotes one pro-
cess. Figure 2(B) shows the first five (1st-5th) ranked and last five (46th—50th)
ranked processes based on the depth values when the weight power » = 1. It is ap-
parent that the 1st ranked process has 3 (approximately) evenly distributed events
on [0, 1], which characterizes the homogeneous nature of the process and is a
proper template. The 2nd to 5th ranked processes all have typical 2 or 3 events,
and the events are also approximately evenly distributed. In contrast, the 46th to
50th ranked processes have nontypical number of events (>6) and the distributions
are highly uneven.

We also show the ranking result (first five and last five) in Figure 2(C) for r =
0.1. With less weight on the normalized Poisson term, the number of events in
each process is less important in ranking. We find that the first three processes
are still the same as those in Figure 2(B) (for r = 1), but the fourth and fifth ones
only have 1 event each. Note that these two single events are among the center
of the interval [0, 1], which represents typical homogeneous poisson process with
one event. Overall, results in Figure 2 show that the depth values do provide a
reasonable ranking among all observations.

4.2. Important role of conditional covariance in the generalized Mahalanobis
depth. Inthis simulation, we generate point process observations from two differ-
ent models. These two models share the same conditional mean but have different
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F1G. 2. (A) 50 independent realizations from a homogenous Poisson process on [0, 1] with A = 3.
Each row represents one realization. (B) The first and last 5 ranked realizations based on the depth
value when the weight power r = 1. (C) Same as B except that r =0.1.

conditional covariances. We will test this difference by conducting classification
task based on the proposed depth values and will illustrate the importance of co-
variance in the depth value definition.

100 point processes are simulated from each of the following two models:

e Model 1: generate m(i) ~ Poisson(10), and then generate process x; =

{ﬁ +e+e1i, ﬁ +e€+e2i,. .., m'zgﬂ)rl +e +temayit,i = 1,...,
100.

e Model 2: generate n(i) ~ Poisson(10), and then generate process y; = {n(i)ﬁ-i—
€1,i + 61, Wzﬂ +e2i+82,..-, ngg% +€n(i),i +0n@),i},i=1,...,100.
Here, ¢, ~ N(0,0.1), €;; ~ N(0,0.1) and ¢;;,8;; ~ N(0,0.05), j =1,2,...,
n(i),i=1,...,100. Note that in Model 1, same noise ¢; is used for each event.

In contrast, different noises €;; are used for events in Model 2. The simulated
processes from the two models are shown in Figure 3(A) and (B), respectively.
The processes look very similar across the two models.

Over the 100 point processes from each model, 50 of them are used as the
training data and other 50 are used as the test data. We use the training samples
to calculate sample conditional mean and covariance when the number of events
varies from the minimum to the maximum in the training data by Algorithm 1. The
estimated conditional means are shown in Figure 3(C) and (D) for the two models,
respectively. We can see there is no significant difference on means between the
two models for each conditional number of events. Figure 3(E) and (F) show the
grayscale images of the covariance matrices conditioned on 10 events for both
models. We can observe apparent differences. Basically, all covariance values in
Model 1 are in the range 0.005 to 0.03, but values in Model 2 are in the range —0.01
to 0.025, that is, all event times in Model 1 are positively correlated, whereas some
event times in Model 2 are negatively correlated.

Once conditional means and covariances are obtained, we can estimate the gen-
eralized Mahalanobis depth values of the 50 training processes in each model us-
ing equation (2.4). For each of the 100 testing processes (50 from each model),
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F1G. 3. (A) Simulated 100 point processes from Model 1. Each row denotes one realization.
(B) Same as A except for Model 2. (C) Estimated sample conditional means from Model 1 when the
the number of events varies from 2 to 10. Each row denotes a mean under one condition. (D) Same
as C except for Model 2. Here, the number of events varies from 2 to 11. (E) Grayscale image of the
covariance matrix conditioned on 10 events in Model 1. (F) Same as E except for Model 2.
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we compute its depth value and then rank the value with respect to the 50 training
values in each model. Finally, we classify this process to one of the two models in
which the rank is relatively higher.

In the definition of generalized Mahalanobis depth, the conditional depth in
equation (2.3) depends on conditional mean and covariance. To emphasize the im-
portance of the covariance term, we can compute the mean-based depth by simply
taking covariance as the identity matrix. Then the same ranking and classifica-
tion procedure can be conducted on the testing processes. A third classification
approach is the traditional likelihood method. Based on the Poisson process as-
sumption, we can estimate the likelihood of each testing process and label it to the
model in which the likelihood value is larger.

We compare the classification performance of the above three methods over all
100 testing processes in both models. The results are shown in Table 1. We can see
that the classification performance using generalized Mahalanobis depth is supe-
rior to the other two methods: The averaged accuracy is 67% for the generalized
Mahalanobis depth method, whereas the other two methods have around 47% to
59% accuracy. This indicates the proposed depth does provide useful quantifica-
tion on the importance of each realization and the conditional covariances play a
critical role in depth value formulation.



GENERALIZED MAHALANOBIS DEPTH IN POINT PROCESS 1005

TABLE 1
Classification accuracy comparison

Method Model 1 Model 2
Generalized Mahalanobis depth 0.54 0.80
Depth with mean only 0.54 0.64
Likelihood method 0.16 0.78

4.3. Application in spike train data. Here, we will apply the notion of depth
in two real neuronal spike train datasets. Spike trains can be naturally treated as
point process observations and we will use the proposed depth to conduct neural
coding on the given spike trains.

4.3.1. Motor cortical spike trains. The first set of neural data was previously
used in Wu and Srivastava (2011, 2013). Briefly, a microelectrode array was im-
planted in the arm area of primary motor cortex (MI) in a juvenile male macaque
monkey (Macaca mulatta). Signals were filtered, amplified and recorded digitally
using a Cerebus acquisition system (Cyberkinetics Inc.). Single units were man-
ually extracted using Offline Sorter (Plexon Inc.). The subject was trained to per-
form a closed Squared-Path (SP) task by moving a cursor to targets via contralat-
eral arm movements in the horizontal plane. Each sequence of 5 targets defined a
path, and there were four different paths in the SP task (depending on the starting
point). In this experiment, we recorded 60 trials for each path, and the total number
of trials was 240. The recording time was normalized to 5 seconds. Figure 4 shows
5 example spike trains for each path.

Based on the proposed framework, we can compute the conditional means and
covariances in each path. Figure 5 shows the estimated conditional means for four
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FIG. 4. 5 example neural spike trains in each path: Trains 1-5 are for Path 1, trains 6-10 are for
Path 2, trains 11-15 are for Path 3 and trains 16-20 are for Path 4.
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F1G. 5. 30 conditional means in each path. (A) means conditioned on 14 to 43 spikes in path 1.
(B) means conditioned on 13 to 42 spikes in path 2. (C) means conditioned on 12 to 41 spikes in
path 3. (D) means conditioned on 17 to 46 spikes in path 4.

paths using Algorithm 1. The difference among different paths is visually appar-
ent for each conditional number of events. As compared to the example trains in
Figure 4, these means properly represent the typical pattern in each path. Analo-
gously to the simulation example, we compare the classification performance using
the generalized Mahalanobis depth, depth with mean only and classical likelihood
method. The results are shown in Table 2, where the classification rate of the gener-
alized Mahalanobis depth method is 0.87, that of the depth with mean only is 0.75
and that of the likelihood method is 0.73. These results show that the proposed
generalized Mahalanobis depth still has superior classification. We emphasize that

our classification performance is robust to the parameter r, in a wide range of
[0.1, 100].
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TABLE 2
Comparison of classification performance

Method Classification accuracy
Generalized Mahalanobis depth 0.87
Depth with mean only 0.75
Likelihood method 0.73

4.3.2. Geniculate ganglion spike trains. This spike train dataset of rat genicu-
late ganglion neurons was previously used in Lawhern et al. (2011). Briefly, adult
male Sprague-Dawley rat’s geniculate ganglion tongue neurons were stimulated
with 6 different solutions: KCI (salty), CA (sour), NaCl (salty), QHCI (bitter),
MSG (umami) and Sucr (sweet). Each stimulus was presented 10 times. Stimulus
trials were divided into three time regions: a 2-second pre-stimulus period, a 2.5-
second stimulus application period and a 2-second post-stimulus period. We take
two typical neurons for illustration: one is an electrolyte generalist, and the other
is an acid generalist. The neural spike train data with respect to 6 different tastes
from these two neurons are shown in Figure 6.

For the purpose of classification, we take 5 spike trains in each taste stimulus as
training data to calculate mean spike numbers, conditional means and conditional
covariance matrices by Algorithm 2. For the other 5 spike trains in each taste, we
conduct classification based on the depth values. The classification results over the
aforementioned three methods on each cell are shown in Table 3.

We can see from the results that the proposed Generalized Mahalanobis depth
still has the best accuracy compared with the other two methods in both neurons.
These results indicate again that the proposed depth provides a proper framework
for measuring importance of each spike train in the given dataset. However, we also
note that the improvement of our proposed method over depth-with-mean-only is

A B
acid generalist cell
s e e L L .
e e+ KCl =t SR
CA AT L, ._*:&.
Nacl [, NaCl wos [ e .

QHCI (5% "o v QHel ¢

. . o0
. CFEY
MSG MSG ST R

Sucr Sucr - ™

Time (sec) Time (sec)

F1G. 6. Single cell response by geniculate ganglion neurons to lingual stimulation with 6 basic
tastes. (A) Neural spike trains in an electrolyte generalist (Cell 1). (B) Neural spike trains in an acid
generalist (Cell 2).
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TABLE 3
Classification performance

Method Cell 1 Cell 2
Generalized Mahalanobis depth 0.70 0.76
Depth with mean only 0.70 0.70
Likelihood method 0.47 0.33

marginal. This is expected as the number of training spike trains in each taste
stimulation is only 5. With such an extremely small sample size, the covariance
would not play an important role in neural decoding.

5. Summary. We have proposed a novel generalized Mahalanobis depth for
point process observations. To the best of our knowledge, this is the first measure-
ment of depth in point processes. The new framework extends the notion of depth
on multivariate case, and it has three main advantages: (1) We can use depth to
rank point process observations and identify the template and variability. We have
shown this point in the Results section, where we rank the point process data by
the values of depth. (2) For the Poisson process, the precision matrix is tri-diagonal
and the estimation can be robust with respect to sample size. In the homogeneous
case, we have the closed-forms to calculate the conditional mean and conditional
precision matrix. (3) The new framework provides a more accurate classification
than the depth-with-mean-only method and classical likelihood method in one sim-
ulation and two neural spike train data sets. This indicates the effectiveness of the
new depth in practical application and importance of the covariance term.

We have used relative rank to classify point process observations. In the fu-
ture, we will apply the same approach to conduct outlier detection. Based on the
fact that depth is a statistical measure, we can plot depth control charts to observe
pattern variation in the observed point processes. We will also explore the clus-
tering of point process observations using the estimated summary statistics (i.e.,
conditional mean and covaraince). Finally, the conditional mean in this paper is
given in the form of “mean” spike train with a generalized Victor—Purpura metric
[Wesolowski, Contreras and Wu (2015)]. In principle, other spike train templates
such as “consensus” in Victor and Purpura (1997), “prototype” in Mateu et al.
(2015) and “average” in Julienne and Houghton (2013), can also be used. In the
future, we will explore to adopt these templates in the definition of depth.
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