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EVALUATION OF THE COOLING TREND IN THE IONOSPHERE
USING FUNCTIONAL REGRESSION WITH INCOMPLETE
CURVES!

BY OLEKSANDR GROMENKO, PIOTR KOKOSZKA AND JAN SOJKA
IBM Research, Colorado State University and Utah State University

We develop a statistical framework to test the hypothesis of the existence
of an ionospheric cooling trend related to the global warming hypothesis;
both are attributed to the same driver, namely the increased concentration of
greenhouse gases. However, the study of a temporal trend in the ionosphere
is easier because there are fewer covariates to be taken into account. The hy-
pothesis that a cooling trend in the ionosphere exists has been an important
focus of space physics research for over two decades. A central difficulty in
reaching broadly agreed—on conclusions has been the absence of data with
sufficiently long temporal and sufficiently broad spatial coverage. Complete
time series of data that cover several decades exist only in a few separated (in-
dustrialized) regions. The space physics community has struggled to combine
the information contained in these data, and often contradictory conclusions
have been reported based on the analyses relying on one or a few locations.
We present a statistical analysis that uses all data, even those with incom-
plete temporal coverage. It is based on a new functional regression approach
that can handle spatially indexed curves whose temporal domain depends on
location and may contain gaps. The test statistic combines spatial and tem-
poral dependence in the data and is approximately normally distributed. We
conclude that a statistically significant cooling trend exists in the Northern
Hemisphere. This confirms the hypothesis put forward in the space physics
community over two decades ago.

1. Introduction. This paper is concerned with a long standing problem of
space physics research. The increased concentration of greenhouse gases in the
upper atmosphere is associated with global warming in the lower troposphere.
Roble and Dickinson (1989) suggested that the increasing amounts of these ra-
diatively active gases, mostly CO, and CH4, would lead to a global cooling in
the thermosphere. Rishbeth (1990) pointed out that this would result in a thermal
contraction of the atmosphere and the global lowering of the ionospheric peak
electron density, both in terms of height and absolute value; see Figure 1. The
F region peak has been observed for many decades by globally distributed ground—
based ionosondes. The ionosonde is a type of radar projecting a spectrum of high-
frequencies (HF) vertically into the ionosphere. In principle, these observations
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FI1G. 1. Typical profile of the electron density in the day—time ionosphere. The curve shows electron
density as a function of height. The right vertical axis indicates the D, E, and F regions of the
ionosphere.

could be used to quantitatively test the hypothesis of Roble and Dickinson (1989).
A long term change in the ionosphere can impact space-based navigation (includ-
ing GPS systems), HF (2-30MHz) radio communication and the operation of low
orbit satellites. It is associated with the global warming hypothesis because a phys-
ical mechanism for the conjectured cooling trend is also attributable to greenhouse
gases.

The ionospheric layer which contains the peak electron density is known as
the F2 region (the right-most peak in Figure 1). Ionosonde measurements allow
us to compute a critical frequency, denoted foF2. This frequency separates the
frequencies returned back to the ionosonde and those that propagate beyond the
ionosphere.

There has been extensive space physics research aimed at determining if a de-
creasing temporal trend in the foF2 frequency indeed exists. Lastovicka et al.
(2012) review some of the relevant literature. Long-term changes in the ionosphere
are usually described using a linear approximation referred to as the trend. The
main problem in its determination is the separation of the solar activity; the so-
lar cycle dominates the shape of the foF2 curves; see Figure 2. A comprehensive
overview of statistical methods proposed in the space physics community is given
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FIG. 2. Gray lines represent all foF2 records analysed in this paper with the scale on the left-hand
side. The black line represents the observed solar radio flux with the scale on the right-hand side.

in Lastovicka et al. (2006). The main problem from which they suffer is their
inability to combine the information from many spatial locations. The usual ap-
proach is to calculate trends separately at a number of locations, often using differ-
ent time periods, and then average these trends to obtain a sense of a global trend;
see Bremer et al. (2012) and Bremer and Mielich (2013) for a recent contribution
and a discussion of previous work. There has, however, long been a sentiment in
the ionospheric physics community, that, in addition to informative exploratory
analyses, an inferential statistical framework should be developed to address the
question of the existence of long term ionospheric trends; Ulich et al. (2003) stress
that to make any trends believable, a suitable statistical modeling, a proper treat-
ment of “errors and uncertainties” is called for.

Our objective is to make a contribution in this direction by developing a sta-
tistical inferential framework which allows us to combine incomplete ionosonde
records from globally distributed locations and take their spatial dependence into
account. The absence of complete records has been a major stumbling block in
space physics research to date. Our approach is developed in the framework of
functional data analysis: the ionosonde records are viewed as spatially indexed
curves which are only partially observed.

There has been an increasing interest in correlated (in particular spatially de-
pendent) functional data. Such data occur in many settings of practical relevance:
meteorological and pollution variables at many locations measured over long peri-
ods of time, records of brain activity at a number of locations within the brain, eco-
nomic or health variables indexed by counties, etc. An interested reader is referred
to Delicado et al. (2010), Giraldo et al. (2010, 2011, 2012), Nerini et al. (2010),
Secchi et al. (2011, 2012), Jiang and Serban (2012), Crainiceanu et al. (2012),
Gromenko et al. (2012), Gromenko and Kokoszka (2012, 2013), and Staicu et al.
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(2010, 2012). The work of Leibl (2013) is also related as it considers functions
whose domain is not fixed. Even though our new functional regression technique
has been developed to solve a specific science problem, it is hoped that it will be
received with interest as a more broadly applicable tool of functional data analysis.

The data used in this paper are spatio-temporal. There are two natural ways
of looking at them: as a collection of time series at fixed locations (the view we
take) or as a time series of geostatistical processes; see, for example, Section 6.4 of
Cressie and Wikle (2011). The specific approach to be taken depends on the prob-
lem at hand. We want to determine if a collection of time series contains a common
linear trend, so the first approach is more appropriate. If, for example, the temporal
evolution of spatial covariances is of interest, the second approach would be more
suitable. The spatio-temporal statistic has been a focus of very intense research
over the last two decades, with hundreds of important contributions, in addition of
the monograph of Cressie and Wikle (2011), Sherman (2011) and Gelfand et al.
(2010) contain very informative chapters with a large number of references.

The remainder of the paper is organized as follows. In Section 2, we introduce
the space physics data we work with. Section 3 is devoted to the new statistical
methodology we developed to solve the problem outlined above. Some technical
aspects of this methodology are explained in the Appendices. In Section 4, we ap-
ply these tools to establish, with statistical significance, the existence of a negative
foF2 trend in the mid-latitude Northern Hemisphere.

2. The data. To conduct the analysis, we prepare a dataset of foF2 obser-
vations. Raw ionosonde data are available at the Space Physics Interactive Data
Resource (SPIDR).? The resulting dataset represent a collection of time series ob-
tained from different spatial locations. The ionosonde data are very new to the
spatio-temporal statistical community, and adequate attention of statisticians may
significantly advance the field of space physics. Due to various reasons, the records
contain long gaps of missing observations. These gaps often appear at the end or
the beginning of the record because some stations started operation a decade or
two later than others, and some were shut down. In some cases, a station was shut
down and reopened many years later. Shorter periods of missing observations are
mostly due to equipment maintenance or replacement. There are also several pre-
possessed ionosonde datasets freely available online; see, for example, Damboldt
and Suessmann (2012).

For the study reported in the paper, we use monthly medians at 12 LT (LT de-
notes local solar time). At noon, the behavior of the ionosphere is completely dom-
inated by the solar radiation; see Figure 2. At night, the behavior of the ionosphere
is complicated, and we postpone the study of the night time data to a more special-
ized space physics paper. Our statistical study requires the assumption of spatial

2http://spidr.ngdclnoaa. gov/spidr/.
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FI1G. 3. Locations of the 81 ionosonde stations used in this study, black discs.

stationarity. To make this assumption reasonable, we focus only on the mid-latitude
region located between 30°N and 60°N geographic latitude. The ionosphere can
be divided into three regions: equatorial, mid-latitude and polar; see Kelly (2009).
It exhibits different electron density profiles in each of these regions, with the pro-
file shown in Figure 1 typical of the mid-latitude region. The reason for choosing
the northern hemisphere, rather than the southern hemisphere, is that it contains
the longest records with the most extensive spatial coverage. The total number of
selected stations is 81; they are shown in Figure 3. The majority of the ionosondes
started to operate in 1957, the international geophysical year. We selected the time
interval from January 1958 to December 2015, so that the total number of months
is 696. While the total number of selected stations is 81, the number of stations
available at any specific month never exceeds 50; see Figure 4.

The foF2 curves are used as responses. The main explanatory variable is the
observed solar radio flux (SRF), which is a well-established proxy for the solar
activity. It is available at SPIDR until the middle of 2012 and at Natural Resources
Canada (NRC)? October 2004 until present. We combine measurements from the
two sources to obtain continuous measurements from January 1958 to Decem-
ber 2015. Other exploratory variables representing different characteristics of the
Earth’s Magnetic Field (EMF) are obtained using the International Geomagnetic

3 http://www.nrcan.gc.ca’/home
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FI1G. 4. Number of available stations in the mid-latitude northern hemisphere.

Reference Field (IGRF), Thébault et al. (2015). Description of predictors is shown
in Table 1 and their summary statistics in Table 2.

3. Statistical model and inference. Let Y (si; 7;) be the original record at
location s, measured from 1958 to 2015, possibly with long gaps. The set of all
locations is {sg, | <k < K}, and the set of time points at which measurements may
be available is {7;, 1 <i < T}. In our study, these are months from January 1958
to December 2015. We postulate the following spatio-temporal model:

3.1 Y (sk; T) = pu(sk; T) +e(ses ) + 0 (sks 1),
where t is continuous time. The most general form of the mean function u is

specified in Section 3.1. In its simplest form relevant to our space physics problem,

TABLE 1
Predictor definitions

Predictor Definition Units of measurement  Data source

SRF Observed Solar Radio Flux w/ m? /Hz SPIDR and
NRC

D Declination of the EMF Deg IGRF

I Inclination of the EMF Deg IGRF

M sin(/) cos(/) - IGRF

F The absolute value of intensity of the EMF nT IGRF

Fy North component of F nT IGRF

Fy East component of F' nT IGRF

F; Down component of F nT IGRF

H Horizontal component of F nT IGRF
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TABLE 2
Predictor summary statistics in corresponding units

Predictor Min 25th percentile Median 75th percentile Max
SRF 65.60 80.40 110.3 157.00 272.30
D —32.68 —5.65 0.66 5.80 23.18
I 43.60 59.52 66.22 70.89 83.14
M 0.12 0.31 0.37 0.44 0.50
F 38,022 42,725 45,050 48,095 54,462
Fyx 6458 15,497 18,370 21,812 29,252
Fy —6681 —2222 189 1700 6223
F, 27,908 37,044 40,602 44,859 54,009
H 6476 15,758 18,610 21,974 29,334
itis

(3.2) n(t) = B1 + P2t + B3SRE(7),

where SRF(7) is the solar radio flux; cf. Figure 2. Our interest lies in the esti-
mation of the mean function w(-), and testing if it contains a linear trend, that is,
testing Hy : B2 = 0. The function w(-) is treated as an unknown deterministic func-
tional parameter. The second term, &(sy; t), describes the spatio-temporal variabil-
ity away from the mean function. Stochastic modeling of this term is needed to
develop inferential procedures, and it will be discussed below. The term 6 (sg; 7)
represents a random error, which can be associated with measurement error. It ex-
ists only at the time of measurement, so using a continuous argument 7 is slightly
misleading.

3.1. Modeling the mean function and the spatio-temporal error field. The
mean function is allowed to take the following general form:

q
(33) u(s;t) =) Bjzj(s; ).
j=1
The covariates z; are observed at all time points at which the response curves
can be potentially observed (in our application, every month from January 1958
to December 2015). Some covariates, like the SRF, are global, that is, they do not
depend on s.

The spatio-temporal field ¢ is allowed to have a different covariance structure
in every year. We split it into annual sections which are denoted by &, (s¢; ;): the
index 1 <n < N denotes year, index #; denotes a month within a year, {f;,1 <
i < 12}. For a generic location s, we thus have ¢,(s; #;) = e(s; 12(n — 1) 4+ 1;).
This approach naturally accommodates the annual periodicity of the records. In
our implementation, we use the usual calendar years. The covariance surface is
then the largest in the middle and tapers off at the edges.
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To simplify notation, we assume that the time within a year is rescaled to cover
the unit interval [0, 1], so that ¢ € [0, 1]. Each function ¢, (sg, -) is assumed to be a
random element of the space L? = LZ([O, 1]) which satisfies

1
(3.4) E|ea(st. )|* = E/ 2 (s, 1) dt < 00.
0

We now state assumptions which specify the stochastic structure of the L2-
valued (functional) spatio-temporal field {e,(sx,-),1 <n < N,1 <k < K}. The
covariance structure of each field g, (-; -) is restricted by the separability assump-
tion, but is allowed to change with year.

ASSUMPTION 3.1. For each year n, E¢, (s,t) =0 and
(3.5) E[en(sk; t)en(ses 1))] = Tk, O)Cu (1, 1)).

The spatial covariances X, (k, £) are assumed to depend only on the distance be-
tween s and s;.

The spatial and temporal covariance functions in Assumption 3.1 are defined up
to multiplicative constants, so we impose the following identifiability condition:

(3.6) [ Cuttnydr =Y i =1,
i=1

where A;; > A, > -- - are the eigenvalues of the temporal covariance function C,,.

While separability can be criticized as an excessively strong assumption [see,
e.g., Stein (2005)], it is often found acceptable and useful in both theoretical and
applied research; see Haas (1995), Genton (2007), Hoff (2011), Paul and Peng
(2011), Sun et al. (2012), among many others. In our research, we strived to de-
velop a practically applicable and computationally feasible procedure, admittedly
at the cost of some simplifying assumptions. We emphasize that the combined er-
ror field (-, -) is not separable. Its covariance structure is determined by our last
assumption.

ASSUMPTION 3.2. We assume that the fields ¢,(-, -),n > 1 are independent
(but not necessarily identically distributed).

It is useful to compare the modeling framework described above with our earlier
work presented in Gromenko et al. (2012) and Gromenko and Kokoszka (2013).
In those papers, the error field ¢ was assumed to be a spatially stationary field
of functions in L2([0, N1); no splitting into individual years was done. Such an
approach leads to the representation:

(3.7 es:7) =Y ¢ (9)v; (D).

j=1
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The new modeling paradigm is dictated by the structure of the data. In Gromenko
et al. (2012) and Gromenko and Kokoszka (2013), only slightly over 30 locations
and a shorter time period were used because extending the spatial and tempo-
ral coverage would include many incomplete records (not just missing values but
missing decades). The methodology available at that time did not allow us to deal
with such records. For example, integrals of the type [ Y (s¢; T)Y (s¢; 7)dt can-
not be computed if the records Y (sy) and Y (si) have practically disjoint supports.
The methodology described in the remainder of this section allows us to deal with
records containing large gaps by using, in a weighted manner, data at neighboring
locations. The methods described in the following sections can be adapted to er-
rors (3.7). The fit of the model curves (3.7) to the observed curves is however poor
at some locations over certain time intervals. As a consequence, the estimation of
the covariance structure, and so the error variances in the trend test, becomes less
precise. In addition to allowing us to deal with large gaps in temporal coverage, the
new approach leads to a more precise evaluation of errors because the covariances
can change with year, a characteristic we observed in the ionosonde data.

Assumption 3.2 is physically unrealistic because it implies, say, independence
of the data in December of year n and January of year n + 1. It is however computa-
tionally convenient. One could consider instead some banded covariance structure
with weakly decaying dependence. Such an approach is feasible but computation-
ally more complex, and would not affect the conclusions. The last statement is
justified by our numerical experiments in which independence over single years
was replaced by independence over periods of two and more years. This impacted
the trends and P-values slightly, but not the significance statements.

We conclude this section by formalizing the assumptions on the measurement
errors. Analogously to the definition of g, (-, -), we define 6,(-, -) to be the field 6
restricted to year n.

ASSUMPTION 3.3. For each n,s, t, Var[6,(s; t)] < oco. The fields 6, (-, -) are
independent (but not necessarily identically distributed). For each n, the random
variables 6, (s, ) are independent and identically distributed across s and ¢. The
field O(-, -) is independent of the field e(-, -).

3.2. Estimation in the presence of incomplete records. The estimation of the
components of model (3.1) proceeds through an iterative process described in Al-
gorithm 3.1, which can however be fully understood only after all the steps of
the estimation have been explained. The central idea is to pool information from
neighboring spatial locations to optimally compensate for the absence of data at
certain time intervals at any specific location. In the first step, we completely ignore
spatio-temporal dependence and estimate the mean function using ordinary least
squares, as explained in Section 3.5. Denoting the resulting estimate by [i(sg, 7),
we next compute the residual curves:

(3.8) X(si,T)=Y(sg, ) — [A(Sk, T).
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They will contain gaps. After that, we estimate the spatial and temporal covari-
ances as explained, respectively, in Sections 3.3 and 3.4. Once these estimates
have been obtained, we update the estimate of u, as explained in Section 3.5.
The process continues until convergence has been reached. For the estimation of
the spatio-temporal covariance, we split X (s; T) into annual sub-records, X, (s; t),
where n denotes a year, and ¢ denotes time within a year.

3.3. Estimation of the spatial covariance. Following Gromenko et al. (2012),
we introduce the functional variogram:

(3.9) 2y (die) = E{ [ Gutses 0= Xatse z))zdt}.

In this paper, di; is the chordal (Euclidean in R?) distance between the locations
sk and s, on the sphere. A natural estimator of 2y, (dy¢) for complete records is

(3.10) 2yn<dke>—— 3 LZ (Xn (s 1) — X (525 1)),

£ P(di)

where P (dy,) is the set of points whose distance to one another is approximately
dre, and pyy is its cardinality. When the records are incomplete, averaging over
time can be a source of a severe bias, especially for short records. Thus, preaver-
aging over time should be avoided. Instead, we perform averaging for all available
squared differences (X, (sg; t;) — X, (S¢; )%, 1 <i < L, for locations which fall
into P (d¢). The resulting estimator is noisy and the corresponding spatial covari-
ance is not necessarily positive definite. We thus fit a valid parametric semivari-
ogram model to the 9, (dy¢), using nonlinear least squares. For the ionosonde data,
we found it sufficient to use the Gaussian model

(3.11) Yu(d) = (0 —o,w)(l—exp( dz/,on))—i—anvl(ooo)(d)
and the Exponential model
(3.12) ya(d) = (07 — 0,,) (1 — exp(=d/ pn)) + 0,7, 1(0,00) ().

Several examples of fitted semivariograms for different years are shown in Fig-
ure 5. The type of a model is selected based on residual sum of squares (RSS)
for each year separately. We also fitted the more complex Matérn model, which
has theoretical advantages; see Stein (1999). However, Matérn and the Gaussian
models produced practically identical ﬁts in terms of RSS.

Once the parameters o2, o2, and p> have been estimated, calculation of the
covariance matrix X, is straightforward. It only requires plugging in the distances
between locations with available observations into the equation for covariance

function:

(3.13) % (d) = o7 exp(—d?/p2) + o, 10y (d),
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FIG. 5. Examples of estimated functional semivariograms for several years. Black lines with dots
represent estimated semivariograms with 95% pointwise confidence intervals, dashed lines. Gray
lines represent fits to the selected parametric model, captions at corners indicate the year. Horizontal
axes represent distance in radians.

for the Gaussian model, and
(3.14) Zn(d) = o, exp(—d/pn) + 0., 1(0)(d),

for the Exponential model. It is important to note that full automation of the above
procedure is quite difficult, since the “noise” in the data could significantly dis-
turb the estimate of the functional variogram and make the subsequent estimation
of the parametric covariance unreliable or impossible at all. One way to stabilize
estimation of the functional variogram is to employ robust (highly robust) vari-
ogram estimators; see Cressie and Hawkins (1980) and Genton (1998). However,
in our case, neither estimator led to a significant improvement. We found that the
main source of instabilities are observations that lie far apart. Adjusting the maxi-
mal value of the distance di, improves stability of estimation. Such an adjustment
affects the estimates only slightly; see Table 4 for details.

We also found that the estimate for the nugget parameter o,%v tends to be smaller
than the actual value. Thus, instead of using 2, from a parametric model we
estimate it using residuals directly:

(3.15) Ghy = Xn(sk.1:)2/(P — 1) =G,
k,i

where P is the total number of residuals, and Er‘nz is the estimate of sill obtained
from a parametric model.

3.4. Estimation of the temporal covariance. To determine the statistical sig-
nificance of the conjectured cooling trend, we need to estimate the temporal co-
variance surface of the incomplete functional field Y. Due to Assumption 3.2, the
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resulting covariance surface is block diagonal: C = diag[Cy, ..., Cy]. Before de-
scribing our method, we comment on the existing covariance surface estimation
procedures. When records are independent and fully observed, the covariance sur-
face is estimated using the sample covariance function; see, for example, Chapter 2
of Horvath and Kokoszka (2012). When records are correlated and complete, one
can use one of the estimators proposed in Gromenko et al. (2012), which use pro-
jections onto some orthonormal basis. When curves are independent and sparsely
observed, the covariance surface may be estimated in a two-step procedure pro-
posed in Yao et al. (2005). The case of independent and identically distributed
functions observed with gaps was addressed by Kraus (2015) None of the above
methods is applicable to our problem which involves incomplete and correlated
curves. However, the methods of Yao et al. (2005) and Kraus (2015) can be ex-
tended to take into account spatial dependence, as we now explain.
For fixed i and j, define the scalar field:

(3.16) Yn(8) = Vn(s;1i, 1) = Xn(8; 1;) Xn(S; 1)).

By Assumption 3.1, the expectation of v, (sx) is approximately equal to X, (k, k)
Cn(t;,tj). The preliminary temporal covariance surface can be estimated up to a
constant [cf. (3.6)], as a weighted average:

K K
(3.17) Coltint)) =Y v Yn(sistit)), Y vk) =1
k=1

k=1

The weights can be selected to minimize the variance of the estimator, which leads
to the following solution:

(3.18) va=X,,1/(1" %, 1),

where X, is the covariance matrix with elements X, (k, £) = Cov(y,(si),
Yn(s¢)). The matrix X,y is difficult estimate due to noisy behavior of the spa-
tial field v, (s). We therefore use the approximation:

(3.19) Cov(Vn(sk), Yn(se)) ~ T2 (k, £)gn(ti, ;).

This approximation immediately follows from Isserlis’ theorem. Indeed,

(3.20) Cov(¥ (sx), ¥ (se)) = E((sp)¥(se)) — E(W (s0) E (¥ (se)).
The second term on the RHS is

(3.21) E(W(s0)E(W (s0) = Sk Y2, 0C2(11.15),
and the first term can be calculated using Isserlis’ theorem:
E(W(s0)¥(s0) = 2k, k)T (€, O)C> (13, 1))
(3.22) + 22k, O)C (4, t)C (), 1))
+ 22(k, OC*(1;, 1))
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This leads to

(3.23) Cov (¥ (s1), ¥ (se)) = Bk, £)g(ti, 1))

with g(t;, ;) = C(t;, t;)C(t, ;) — C*(t;, t)).

In (3.18), the matrix X,y can be replaced by the matrix X} with entries
Eﬁ(k, £). Notice that the multiplication by g, (#;,¢;) in (3.19) plays no role due
to the cancelation in (3.18). The entries X, (k, £) of the matrix X,, are estimated
separately for each year using the method explained above.

3.5. Regression. We introduce vector notation. Let Y be the column vector
comprised of Y (sg; 7;), z; the column vector of exploratory variable with index
JyoL=z1,23,...,24),and B = [B1, B2, ..., ﬂq]T be the vector of fixed unknown
coefficients. The generalized Least Squares (GLS) estimator of 8 is

(3.24) B=Z"x"'z)'2"x" 'Y

with

(3.25) Var[] = (z"z'z)"".

If the errors are uncorrelated, £ = 021, B reduces to the OLS:
(3.26) Bos=2"2)"'27Y,

(3.27) Var[Bo] = (272) " '62.

The responses Y (sk, 7;) could, in the absence of any gaps, be available as
81 x 58 x 12 = 56,376 data points. Thus, the covariance matrix has a very high
dimension: 56,376 x 56,376. Inverting such a large matrix in general is infeasible.
However, the block-diagonal structure of the covariance matrix allows efficient
inversion. Indeed, if © = [Z1, ¥2,...,Zy], then T = [z, 271 ... 23N
Now, the elements in (3.24) and (3.25) can be calculated. Let Z, and Y, be the
covariates and ionosonde frequencies for year n, respectively, then

. N -1/ N
(3.28) B= (Z z,fz;lz,,) (Z Z,{):;W,,)
n=1 n=1
and
N —1
(3.29) Var[8] = (Z zr ):;IZ,,) :
n=1

Formula (3.29) underestimates the true variability of the estimator because we use
an estimated X. Since we use more than 30 years of data, this effect is small.
Using numerical simulations, we found that the estimator ﬁ is approximately
normal even if the functions Y, (sx) are not normally distributed. A heuristic justi-
fication of its normality is that it is a weighed sum of a large number of Y (s, 7;).
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(In the absence of dependence, the weights would be all equal, and the normality
of B would be a consequence of the central limit theorem.) Thus to test 8; = 0, for

a fixed i, we thus assume that the statistic ,3,- / Var[B,-] has the standard normal
distribution. When we incorporate spatio-temporal dependence, we use (3.28) and
(3.29), when spatio-temporal dependence is neglected we use the OLS estimates,
(3.26) and (3.27). In either case, the P-value is calculated as

(3.30) P-value = 2{1 — &(|4; /y/ Var[4:1])},

where ®(-) is the standard normal distribution function. Due to the underestima-
tion of the variability of ,3 , the actual P-values could be smaller than those implied
by formula (3.30). Since the P-values we computed are small and imply the exis-
tence of a trend, the actual evidence for its existence may be actually stronger.

Observe that fS could, in principle, be replicated. Such replications would need
to reflect not only the distributional variability but also variability due to the spatial
and temporal gaps in the data. The latter variability appears difficult to simulate,
but might be feasible. An investigation in this direction might lead to bootstrap
based inference.

Algorithm 3.1 summarizes the estimation and testing which takes spatio-
temporal dependence into account.

ALGORITHM 3.1.

1. Estimate the model coefficient B without taking into account spatio-temporal
dependence using equation (3.26).

2. Produce the residual curves X (s; ) by centering the original records X (s; 7) =
Y(s; 1) — a(s; 7).

3. Estimate spatial covariance as described in Section 3.1 and temporal covariance
as described in Section 3.4.

4. Calculate bloc-diagonal spatio-temporal covariance.

5. Estimate the model coefficients ﬁ taking into account spatio-temporal depen-
dence using equation (3.28).

6. Repeat steps 2-5, until convergence is reached.

7. Calculate the statistical significance using (3.30) [and (3.28), (3.29)].

4. Application to the ionosonde data. Before presenting and discussing our
results, we note that regression analysis has been extensively used in ionospheric
research. In early work, a trend estimate would be obtained at a fixed location
with a relatively complete record extending over several decades. Its significance
would be tested using the usual 7-test. The measurements obtained by the Julius-
ruh (northeastern Germany) ionosonde which started operation in 1961 have been
particularly and extensively studied. It was however soon observed that the sign
and/or significance of the trend coefficient would depend on the location and the
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TABLE 3
Results of applying different models to ionosonde data without incorporating spatio-temporal
dependence. “Trend” is the estimate of the coefficient of z(v) = t. The P-values indicate statistical

significance

Model Trend, Standard error,

ID Model 10~3 MHz/Year 10~3 MHz/Year P-value
1 SRF —2.24 0.68 0.001
2 SRF, F —3.82 0.67 <1074
3 SRE, Fy, Fy, F, -3.61 0.61 <1074
4 SRF, H —4.01 0.62 <1074
5 SRF, F, H —3.48 0.62 <1074
6 SRF, M —4.77 0.63 <1074
7 SRF, M, F —4.09 0.62 <1074
8 SRF, M, Fx, Fy, F; —3.41 0.62 <1074
9 SRF, M, H —-3.36 0.62 <1074

10 SRE, M, F, H —-3.50 0.62 <1074

time period. In a recent, most comprehensive up-to-date study, Bremer et al. (2012)
estimated trend coefficients at practically all available locations and time periods.
Their global analysis uses simple averages of trend estimates available over chang-
ing time periods. This leads to a useful global picture based on an exploratory
analysis, but the significance of such averaged trends is difficult to assess in the
absence of a statistical model.

We now present the results of the application of our spatio-temporal model and
testing procedure. The results of analysis in which we neglect spatio-temporal cor-
relation are summarized in Table 3. The mean function specification (3.3) includes
various predictors representing solar activity and different parameters of the Earth
Magnetic Field (EMF); cf. Table 1. It is difficult to say based on physics which
EMF parameters are most relevant, so we used all possible combinations. The re-
sulting estimated trends range from (—4.77 to — 2.238) - 1073 MHz/Year, and are
all statistically significant.

We now turn to testing under our model which includes spatial correlation, that
is, we use Algorithm 3.1. The results are shown in Table 4. The maximum lag
for variogram estimation affects the results, but the essential conclusion that the
trend in ionosonde data is negative and statistically significant remains the same.
Compared to the trends in Table 3, the trend values computed using the full Algo-
rithm 3.1 are typically over twice as large (in absolute value). As we will see be-
low, for different time periods, the more precise inference based on the full spatio-
temporal model may affect the significance of the trend, and even reverse in sign.
An example of the estimated trend superimposed on partial residuals is shown in
Figure 6.
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TABLE 4
Results of applying different models to ionosonde data with incorporating spatio-temporal
dependence. “Trend” is the estimate of the coefficient of z(v) = t. The P-values indicate statistical
significance. The three panes show the results for three different values of the maximum distance for
functional variogram estimation. The dashes indicate cases in which numerical optimization failed

Model Trend, Standard error,
ID Model 10~3 MHz/Year 10~3 MHz/Year P-value
Maximum distance for functional variogram estimation: 1.4 rad
1 SRF —5.10 0.60 <107%
2 SRF, F - - -
3 SRF, Fy, Fy, F; —10.48 0.46 <1074
4 SRF, H —8.58 0.50 <107%
5 SRF, F, H —8.21 0.47 <1074
6 SRE, M —8.64 0.58 <1074
7 SRF, M, F —8.70 0.49 <1074
8 SRF, M, Fy, Fy, F; -8.54 0.46 <1074
9 SRE, M, H —6.72 0.48 <1074
10 SRE, M, F, H —8.05 0.47 <107*
Maximum distance for functional variogram estimation: 1.6 rad
1 SRF —5.85 0.60 <107%
2 SRF, F —9.60 0.71 <1074
3 SRE, Fy, Fy, F; —11.52 0.46 <1074
4 SRF, H —8.75 0.48 <107*
5 SRFE, F, H —8.19 0.46 <1074
6 SRF, M —10.08 0.55 <107%
7 SRF, M, F —11.94 0.48 <107*
8 SRF, M, Fx, Fy, F; —8.44 0.47 <1074
9 SRF, M, H —8.82 0.46 <107*
Maximum distance for functional variogram estimation: 1.8 rad
1 SRF —4.74 0.65 <107%
2 SRF, F —9.82 0.70 <1074
3 SRE, Fy, Fy, F; —10.36 0.48 <1074
4 SRF, H —9.26 0.48 <107*
5 SRFE, F, H —10.41 0.47 <1074
6 SRF, M —10.37 0.55 <107%
7 SRF, M, F —12.31 0.49 <107%
8 SRF, M, Fx, Fy, F; —11.22 0.48 <1074
9 SRF, M, H —11.83 0.47 <107%
10 SRE, M, F, H - - -

Our conclusion (significant negative trend) agrees with the hypothesis of Roble,
Dickinson and Rishbeth discussed in Section 1. While a negative trend in the foF2
frequency in the mid-latitude northern hemisphere cannot be quantitatively con-
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FIG. 6. Gray lines represent all foF2 partial residuals for model with ID 4 in Table 4,
Y(s;t) — B1 — B3SRF(t) — B4 H. The black line represents the estimated trend together with 95%
confidence intervals (dotted lines). The dashed horizontal line is added for visual convenience.

nected with the magnitude of the hypothesized/observed global warming in the
near surface troposphere, there might be some association due to a common driver:
the increased concentration of greenhouse gases. The study of a temporal trend in
the ionosphere is easier because there are fewer covariates to be taken into account:
the important ones are the solar activity, geomagnetic activity, and regional decadal
changes in the direction and strength of the internal magnetic field. Terrestrial sur-
face temperature measured at specific locations over a hundred years is impacted
by the solar activity but also by many more factors, for example, by urbanization
and deforestation, which may produce spurious trends, if not accounted for.

As Bremer et al. (2012), we now show how the conclusion depends on the total
length of the time interval used in the estimation and testing. To do this, we fix the
interval length, L, and determine the trend for all possible intervals of length L.
Figure 7 shows signs of estimated trends as well as their statistical significance for
model with ID 4 in Tables 3 and 4. Both models, without and with spatio-temporal
correlation, lead to the same conclusion when L is sufficiently large. When the
interval length, L, is less then 30 years, depending on the position one may obtain
positive and negative trends. However, when the interval is more than 30 years,
the estimated trend is consistently negative (except a few points located at the
edge). A similar observation was made by Bremer et al. (2012) using exploratory
analysis. A key difference between the two approaches is that when using the more
recent data, the spatio-temporal modeling approach tends to indicate negative trend
more consistently than the approach which ignores spatial dependence. This lends
further support to the possibility of anthropogenic origin of the trend. Another
useful insight obtained from Figure 7 is that even if the trend is estimated using
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Fi1G. 7. Vertical axes represent the half length (L/2) of a time interval for trend determination in
years, horizontal axes represent the position of the center of a time interval in years. Discs repre-
sent negative statistically significant trends, circles represent negative insignificant trends, crosses
represent positive statistically significant trends, and empty diamonds represent positive statistically
insignificant trends. Left panel: spatio-temporal correlation is neglected. Right panel: spatio-tempo-
ral correlation is included. Empty areas represents regions where model has failed to converge.

a statistical model (rather than by simple averaging of trends), one still obtains
a mixture of positive and negative trends, depending on the time interval used
to assess it. This explains the apparently contradictory findings reported in space
physics literature. Our statistical analysis suggests that the findings of positive,
negative, or no trend based on different spatial regions and time intervals may, at
least to some extent, reflect the sampling variability of the data.

A contribution of this paper is the development of a statistical framework in
which the spatial dependence of ionosonde records and their temporal structure,
whose most pronounced feature is long gaps, are taken into account. Within the
statistical model we formulated, it is possible to test the significance of a global
cooling trend in the ionosphere. In broadest terms, the novelty of our approach
consists in applying a statistical test to the whole data set, rather than separately to
each segment, and then combining the results in some way, approaches which pre-
vail in related space physics research. This paper contributes to a very large body
of space physics research by assessing the cooling hypothesis within this frame-
work. Our conclusions broadly validate those arrived at by many space physics
researchers and support the existence of such a trend. However, this view is not
universally shared, and a longer period of observation may modify this conclu-
sion. Our estimation and testing methodology is relevant in this context. Many
ionosonde observatories have been closed, so gaps in future records may even in-
crease. Our methodology is clearly not the last word in this field, and it is hoped
that the present paper will draw interest from the statistics community to this prob-
lem. For example, Bayesian approaches might provide different tools, and it would
be interesting to see what conclusions they would lead to. While not directly rele-
vant to the space physics problem we have studied, some related recent contribu-
tions are Luttinen and Ilin (2009, 2012), Bakar and Sahu (2015) and Yang et al.
(2016).
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SUPPLEMENTARY MATERIAL

Supplementary material: Evaluation of the cooling trend in the iono-
sphere using functional regression with incomplete curves (DOI: 10.1214/17-
AOAS1022SUPP; .zip). The Supplementary Material contains the code and data
used in this paper.
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