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Understanding how housing values evolve over time is important to pol-
icy makers, consumers and real estate professionals. Existing methods for
constructing housing indices are computed at a coarse spatial granularity,
such as metropolitan regions, which can mask or distort price dynamics ap-
parent in local markets, such as neighborhoods and census tracts. A challenge
in moving to estimates at, for example, the census tract level is the scarcity
of spatiotemporally localized house sales observations. Our work aims to ad-
dress this challenge by leveraging observations from multiple census tracts
discovered to have correlated valuation dynamics. Our proposed Bayesian
nonparametric approach builds on the framework of latent factor models to
enable a flexible, data-driven method for inferring the clustering of correlated
census tracts. We explore methods for scalability and parallelizability of com-
putations, yielding a housing valuation index at the level of census tract rather
than zip code, and on a monthly basis rather than quarterly. Our analysis is
provided on a large Seattle metropolitan housing dataset.

1. Introduction. The housing market is a large part of the global economy.
In the United States, roughly half of household wealth is in residential real es-
tate [lacoviello (2011)]. Understanding how housing value changes over time is
important to policy makers, consumers, real estate professionals and mortgage
lenders. Valuation is relatively straightforward for commoditized sectors of the
economy, such as energy or nondiscretionary spending. By contrast, valuation of
residential real estate is intrinsically difficult due to the individual nature of houses
and the changing composition of houses sold from one time period to the next.
Consequently, economists and public policy researchers have devoted consider-
able effort to developing a meaningful index to measure the change in housing
prices over time.

The most common approach to constructing a housing price index is the repeat
sales model, first proposed by Bailey, Muth and Nourse (1963) and then extended
in numerous ways over the years [cf. Case and Shiller (1987, 1989), Gatzlaff and
Haurin (1997), Shiller (1991), Goetzmann and Peng (2002)]. The main idea is to
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use a pair of sales for the same house to model the price trend over time, largely cir-
cumventing the problem caused by the change in composition of houses sold. The
repeat sales model is the basis for the Case—Shiller home value index, published
by Core-Logic and widely disseminated by the media.

One drawback of a repeat sales model is that houses with only a single sales
transaction get discarded from the dataset. In growing metropolitan areas, single
sales can make up a vast majority of sales; for example, 93%—-97% during the 16-
year period studied by Case and Shiller (1987). Furthermore, repeat sales proper-
ties tend to be older, smaller and more modest than single-sale properties [Englund,
Quigley and Redfearn (1999), Meese and Wallace (1997)], presenting a sampling
selection bias. Case and Quigley (1991) instead propose a hybrid model that com-
bines repeat sales with house-level covariates (hedonics) to make use of all sales.
More recently, Nagaraja, Brown and Zhao (2011) propose an autoregressive re-
peat sales model that also utilizes all sales data, but without the need for hedonic
information.

However, even repeat sales models that use all of the transactions are only ap-
propriate when fit to relatively large areas. This is due to the fact that—despite
the large number of house sales observations in aggregate—there are very few
spatiotemporally-localized sales. For example, in our dataset described in Sec-
tion 2, most census tracts (114 out of 140) have fewer than 5 sales per month on
average and more than 10% of tracts have fewer than 1 sale on average per month
(see Table 1). The scarcity of transactions makes it challenging to obtain stable
parameter estimates for small regions, and thus repeat sales models lack predictive
accuracy. Even the advanced approach of Nagaraja, Brown and Zhao (2011) only
produces an index estimated quarterly at the zip code level rather than monthly
at the census tract level. This is a significant limitation: the value of real estate is
intrinsically local and coarse-scale estimates may mask or distort key phenomena.

The main contribution of this paper is developing a model-based approach to
creating housing indices on a finer spatiotemporal granularity than current meth-
ods. The indices are valuable for direct analysis and also as input to house-level
models. Our formulation is based on a dynamic model that introduces a latent pro-
cess to capture the census-tract-level housing valuation index on a monthly basis.
[The ideas scale to finer spatiotemporal resolutions, as demonstrated in Supple-
ment G.5 of Ren, Fox and Bruce (2017).] This latent process is informed by all

TABLE 1
Number of census tracts in Seattle City that have less than single digit
transactions per month on average

Average monthly sales <1 <3 <5 <7 <9

Number of tracts 16 58 114 136 139
Proportion of tracts 0.11 041 0.81 0.97 0.99
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F1G. 1. (a) Map of inferred tract-specific latent price dynamics, where the color shows how differ-
ent the local trend is from the global trend, measured in L2 distance over time. (b) The University
District’s latent price dynamics (black), which vary significantly from its neighboring census tracts
(other colors). More details are in Section 6.

individual house sales within the census tract, including detailed information of
sales prices and house hedonics. To overcome the sparseness of sales within a cen-
sus tract, we inform the latent price trends based on sales in multiple census tracts
discovered to have correlated dynamics.

Unlike many spatiotemporal processes, modeling the between-track correla-
tions as a function of Euclidean distance is not appropriate since spatially disjoint
regions can behave quite similarly while neighboring census tracts can have signif-
icantly different value dynamics. Indeed, our analysis of house sales in Seattle (fur-
ther described in Section 6) indicates such structure. Figure 1(a) shows a map of
deviations of each census tract’s inferred local price dynamics from a global trend.
We clearly see spatially abrupt changes between neighboring regions. One exam-
ple is the University District (U-District). Figure 1(b) shows that the price trend
in the U-District behaves differently compared to its neighboring census tracts.
This census tract is heavily populated by University of Washington students and
has a higher crime rate than neighboring tracts. Instead of relying on an explicit
spatial model, we develop a Bayesian nonparametric clustering approach to infer
the relational structure of the census tracts based solely on observed house sales
prices (after accounting for associated hedonics). Within a cluster, the latent value
dynamics are correlated whereas census tracts in different clusters are assumed
to evolve independently. By leveraging Bayesian nonparametrics—specifically a
Dirichlet process prior on the factor process of a latent factor model—our for-
mulation enables a flexible, data-driven method for discovering these clustered
dynamics, including the number of clusters.
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Our formulation represents a fundamentally different approach to clustering
time series. Standard methods are based on similarities in the observed processes,
or based on sharing dynamical model parameters in a way that results in each se-
ries being a noisy version of a canonical series; see [Liao (2005)] for a survey.
We instead cluster based on structure in a latent process—critical to handling our
multiple and missing data structure—and furthermore define clusters based on cor-
relation. A cluster can then capture, for example, one latent trend rising as another
decreases.

The approach taken also offers several advantages over existing housing index
methods. Our hierarchical Bayesian nonparametric model efficiently shares infor-
mation between clustered series—a critical feature to attain high resolution. In
particular, our approach provides a form of multiple shrinkage, improving stability
of our estimates in this data-scarce scenario. Likewise, the joint Bayesian frame-
work considers all uncertainties together in the clustering, latent price inference
and model parameter estimation.

Our paper is organized as follows. Section 2 introduces our Seattle house trans-
action data and an exploratory data analysis to motivate our modeling choices.
Section 3 describes the dynamical model for each census tract individually, and
then the correlation structure introduced to couple the tract dynamics. The prior
distributions are also specified. Section 4 provides an outline of the posterior sam-
pling steps, and Section 4.5 discusses some of the computational challenges and
a strategy to implement the algorithm in parallel. A simulation study is provided
in Section 5 and a detailed analysis of our Seattle housing dataset is in Section 6.
Section 7 details how the global nonstationary trend can be jointly modeled and
estimated.

2. Exploratory analysis of house transaction data. Our house sales data
consists of 124,480 transactions in the 140 census tracts of the City of Seattle from
July 1997 to September 2013. Foreclosure sales are not included. For each house
sale, we have the jurisdiction of the house (i.e., census tract FIPS code, zip code),
month and year of the sale, the sales price and house covariates; the latter are
commonly referred to as hedonics in the housing literature. Our hedonic variables
include number of bathrooms, finished square feet and square
feet of the lot size.

The scarcity of data localized in space and time is summarized in Table 1, here at
the granularity of census tracts and months. To motivate the importance of consid-
ering related tracts jointly in this data-scarce regime, we performed the following
data analysis. Using the per-tract dynamical model of equations (3.3)—(3.4), we in-
dependently analyzed each tract (whereas in Section 3 the focus is on joint model-
ing of tracts). The latent state sequence represents the underlying price evolution of
a given region—our desired index—and the observations are the individual house
sales in terms of log price. For this exploratory analysis, we infer the latent state
sequence jointly with the model parameters using a Kalman smoother embedded in
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an expectation maximization (EM) algorithm. We compare the performance of this
independent, per-tract analysis to that of jointly analyzing related tracts. For the
sake of exploratory analysis, the latter is determined here by a hierarchical cluster-
ing approach based on a variance-adjusted L, distance between the independently
Kalman-smoothed estimates of the latent state sequences. Specifically, the Kalman
smoother generates the mean and variance processes for the latent state sequence,
denoted as u;; = E(X; ;|Y1.7.;) and V; ; = Var(X; ;|Y1.7,;) for census tract i. The
variance-adjusted L, distance between latent state sequences for census tracts i

2
and j is defined as ), % After performing the hierarchical clustering and

cutting the tree by specifying the number of clusters, we consider a multivariate
latent state model as in equation (3.3) where all tracts i falling in the same cluster
have correlated innovations, &;;; that is, z-:;k) ~ N (0, ) for Xy full, where egk)
is the vector of ¢ ; for tracts i in cluster k. The observation model remains as in
equation (3.4). We then applied a Kalman-smoother-within-EM algorithm to the
resulting collection of cluster-specific multivariate state space models. Unsurpris-
ingly, without sharing observations from similar tracts, the baseline independent
approach does not perform well when the observations are sparse, as shown in Fig-
ure 2(a). In contrast, by leveraging observations from other tracts, the hierarchical
clustering-based latent price dynamics are smoother and with narrower intervals,
as shown in Figure 2(b).

Tract 53033030902 in Cluster 1, #obs/month = 4.9 Tract 53033030902 in Cluster 1, #obs/month = 4.9

1996-01 1998-01 2000-01 2002-01 2004-01 2006-01 2008-01 2010-01 2012-01 1996-01 1998-01 2000-01 2002-01 2004-01 2006-01 2008-01 2010-01 2012-01
Tract 53061041601 in Cluster 1, #obs/month =7.2 Tract 53061041601 in Cluster 1, #obs/month = 7.2

1996-01 1998-01 2000-01 2002-01 2004-01 2006-01 2008-01 2010-01 2012-01 1996-01 1998-01 2000-01 2002-01 2004-01 2006-01 2008-01 2010-01 2012-01
Tract 53033026802 in Cluster 1, #obs/month = 3.5 Tract 530. in Cluster 1, =35

1996-01 1998-01 2000-01 2002-01 2004-01 2006-01 2008-01 2010-01 2012-01 1996-01 1998-01 2000-01 2002-01 2004-01 2006-01 2008-01 2010-01 2012-01

F1G. 2. lllustrating the importance of joint modeling: (left) univariate Kalman smoother applied in-
dependently to time series of each census tract, (right) multivariate Kalman smoother applied jointly
to tracts in the same cluster inferred using hierarchical clustering.
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Although this exploratory analysis motivates the importance of considering re-
lated tracts jointly, the hierarchical clustering approach considered in this section
is ad hoc since it divides the clustering and estimation into three stages rather than
one a unified framework. For example, errors in the independent state estimation
stage can propagate to the clusterings inferred at the second stage, which are used
for the multivariate analysis in the third stage. Additionally, the proposed mul-
tivariate model does not scale well to large clusters due to the associated large
number of parameters represented by ;. In Figure 2(b), we simply consider a
cluster with 3 tracts. Moreover, the approach requires the user to specify the num-
ber of clusters (tree level) and distance metric used in the hierarchical clustering.
Regardless, the insights and intuition from this exploratory analysis—clustering
and correlating time series—motivates the unified statistical model for relating
multiple time series presented in Section 3.

3. A local-level housing index model. Our modeling strategy for handling
the scarcity of data locally in space and time is to discover price dynamics shared
between region-specific data streams, allowing us to leverage observations from
related regions. We first describe a model for the individual housing valuation in-
dices and then describe a clustering-based framework for correlating these indices
across regions. Throughout, we will assume that our geographic unit of interest is
a census tract.

3.1. Per-region dynamics. We model the dynamics of the log house sales
prices within a census tract via a state space model. Each census tract i may have
multiple house sale observations y; ;; (log price) at time ¢, t =1,...,T. We as-
sume that these sales are noisy, independent observations of the latent census tract
value X, ; after accounting for house-level hedonics Uy (e.g., square feet):

(3.1 Xi=8g +tai(Xi—1;— &—1)+&is eri ~N(0,07),
(3.2) Veig =Xe,i + fi(Up) + v i, Vit ~ N0, Rp).

Our discrete-time model is indexed monthly and g; is the global market trend
that captures overall, nonstationary behavior of the time series. To account for the
hedonics, we use a census tract-specific regression f;(-).

To focus and simplify the discussion on capturing dynamics in small geographic
regions, in this section we assume that the global trend g; is known or precalcu-
lated based on all transactions in the market. We turn to the modeling and joint
estimation of the global trend in Section 7. To specify our model of the deviation
of the latent dynamics of census tracts from the global market trend, we define
Xii =X;; — g and y; ;1 = ¥, — & For simplicity, we assume the house feature
function f;(-) is composed of linear basis functions. The resulting model is given
by

3.3) Xt =aiXi—1,i +&1is eri ~N(0, Uiz)’
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FI1G. 3. Graphical model associated with equations (3.3)—(3.4) for census tract i’s data stream.

H
(3.4) Yoid =Xui+ Y BinUih + viit, vrit ~ N (O, Ry).
h=1

It is worthwhile noting that if the goal is to perform house-level predictions, a
more sophisticated hedonic regression model would be appropriate. For example,
[Brunauer, Lang and Umlauf (2013)] consider a multilevel structured additive re-
gression model to leverage the hierarchical structure of neighborhood attributes in
addition to house-level hedonics. The model also incorporates nonlinear effects,
smooth spatial effects and interaction terms. Models, such as these, that more
fully account for hedonic effects would be straightforward to incorporate into our
methodology.

We refer to the latent x;; order 1 autoregressive process [AR(1)] in equa-
tion (3.3) as the intrinsic price dynamics for each census tract. Since we are mod-
eling the deviation from the global trend, the choice of a stationary process is
reasonable. Equations (3.3) and (3.4) are akin to a standard linear-Gaussian state
space model, but with a varying number (potentially 0) of observations y; ;; of a
given state x; ;, as illustrated in Figure 3.

3.2. Clustering region-specific data streams. The evolution of intrinsic price
dynamics are correlated across tracts, which can be captured by treating the
&, jointly rather than independently across i. Let &; be the vector of & ; for
i =1,..., p. The most general correlation structure would assume &; ~ N (0, X)
for ¥ a full p x p positive semidefinite matrix.> However, both statistically and
computationally, we cannot handle a model with an arbitrary p x p covariance
matrix X: we have insufficient data to estimate such a large matrix, and even if
we could, the resulting computations involved in estimating the intrinsic price dy-
namics would involve prohibitively costly O (p3T) operations. One alternative is
to assume conditional independencies between tracts based on spatial adjacencies
(sparsity in £~ 1). However, as depicted in Figure 1, Euclidean distance is not the
right metric for describing relationships between tracts in this application.

Instead, we seek to discover clusters of correlated latent time courses. This cor-
relation structure is induced by a latent factor model, leading to a low-rank co-
variance decomposition within clusters, and assumed independence of dynamics

2Note that our focus here is on the instantaneous or conditional covariance 3., rather than directed
relationships determined by the a; ; relating x; 1 ; to x; ;. In this application, we imagine synchrony
in market changes across tracts driven by external factors rather than price changes in one tract
leading to price changes in another.
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between clusters. The idea for clustering multiple data streams has two justifica-
tions. From a data generating perspective, housing price dynamics are naturally
clustered due to a number of factors, including the composition of homes, number
of foreclosures, school district boundaries, crime rate, and the proximity to parks,
waterfront and other amenities. From a statistical inference perspective, clustering
census tracts increases power and precision in parameter estimation by pooling the
observations from grouped data streams. In essence, this is what real estate agents
commonly do: If there are no recent house sales in a given neighborhood, they
look to house sales occurring in other neighborhoods they deem related.

To arrive at a model of clusters of correlated time series, we take egk) ~
N (0, ) for T nondiagonal and egk) the vector of innovations ¢, ; for census

tracts i in cluster k. We assume e?k) is independent of efj ) for all J # k. Stacking

up all e,(k), k=1,..., K, into a large &; vector of length p (the number of census
tracts), our model is equivalent to &; ~ N (0, X) for X block diagonal with blocks
2. A key question is how to discover this clustering structure from data. This
equates to the challenging task of inferring the number of blocks, size of blocks
and ordering of census tracts in &;.

Both for a parsimonious specification of the correlation structure within
clusters—crucial to our data-scarce scenario—and to yield a framework in which
to discover the cluster memberships, we assume a latent factor model for egk). In
particular, for all tracts i in cluster k, we specify

(3.5 e =i+ Eni &,i ~N(0,07). nx ~NQO,1).

Here, n;"’ « 1s the latent factor associated with cluster k at time 7, A;x is the factor
loading for census tract i assuming it is in cluster k, and &, ; is idiosyncratic noise
drawn independently over time and tracts. We can then write &; = (A - Z)3} + &,
where A is a p x K real-valued matrix, Z is an indicator matrix with (i, k)th
entry equal to 1 if tract i is in cluster k and O otherwise, ¥ ~ Nk (0, ) and &, ~
N, (0, 0021 ). Here, A - B represents the element-wise product. Conditioned on the
factor loading matrices A and Z, the covariance for &; is ¥ = (A - Z)(A - 2T +
0021 . Equivalently,

Aighir 25(i,i'), kst Zix=Zin =1,
(3:6)  covler,enplh. Z) = | hvET o001 Sk =
’ 0, otherwise.

Here, §(i,i") = 1 if i =i’ and zero otherwise. From equation (3.6), the conditional
covariance for &, is a block-diagonal matrix defined by the clusterings specified
by Z; that is, data streams within the same cluster will have correlated dynamics,
and those in different clusters will evolve independently. This model, along with
our prior specification of Section 3.3, is related to that of Palla, Ghahramani and
Knowles (2012), but specified here for the time series domain.
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3.3. Bayesian nonparametrics for discovering the clustering structure. 'To in-
fer the clustering of tract-specific data streams, we propose a Bayesian non-
parametric approach using a Dirichlet Process (DP) prior on the parameters of
a mixture model. This approach leads to an adaptive, data-driven clustering al-
lowing for an unknown number of blocks (clusters) in the covariance. As de-
scribed in Section 3.2, the quantity defining each cluster is the latent factor process
nT:T,k = (nT?k, . n?k), with n,’"k as in equation (3.5). Our mixture model is then
defined in terms of an infinite set of mixture weights & = (71, 73, ...) and cluster
centers O =nj.r, fork=1,2,.... We specify a DP prior on these parameters.

A DP [Blackwell and MacQueen (1973), Ferguson (1973)] is a distribution over
countably infinite discrete probability measures. A draw G ~ DP(«a, Go), with
concentration parameter « and base measure G, can be constructed as

o
(3.7) G=) mdy, 6~ Go,
k=1
where 1 are sampled via a stick breaking construction [Sethuraman (1994)]:
k—1
(3.8) me=wv [[(1—=vj), v ~Beta(l, ).
j=1

We denote the stick breaking process as ® ~ GEM(«). The DP prior produces
clusters of 6; ~ G, i =1,..., p, due to the fact that G is a discrete probability
measure (i.e., multiple 6; are sampled with identical values 6,°). Equivalently, we
can introduce cluster indicators z; ~ & such that z; = k implies that 6; takes the
unique value 6;; that is, 6; = 67 . Recall that in our housing application, the cluster-
specific parameter 6;° equates with ny.7 .

Integrating out the stick breaking measure &, the predictive distribution of z;

given the memberships of tracts zy, ..., z;—1 iS
— Rk , fork=1,...,K,
(3.9) Pz =Klz—j o) o | P 7 bF
_ fork=K + 1,
p—l+a
where K indicates the number of unique values in zy, ..., z;—1 and nj the num-

ber assigned to cluster k; that is, tract i joins an existing cluster with probability
proportional to the size of the cluster, ng, or starts a new cluster with probability
proportional to «. The resulting sequence of partitions is referred to as the Chinese
Restaurant Process (CRP) [Pitman (2006)].

In summary, our Bayesian nonparametric clustering model defines mixture
weights m ~ GEM(«), cluster-specific parameters ”T:T, « ~ Go, and cluster indi-
cators z; ~ m. The base measure G is specified as a multivariate normal distri-
bution N7(0, I) such that r]t*k ~N@O,1)fort=1,...,T,k=1,2,.... Note that
the cluster indicators z; fu11y7 specify the matrix Z of equation (3.6). The result of
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this model specification is the ability to learn an unknown number of clusters of
correlated time series, with cluster-specific correlation structure specified in equa-
tion (3.6). In contrast, the Bayesian nonparametric time series clustering model
of Nieto-Barajas and Contreras-Cristdn (2014) clusters based on the underlying
state sequence (our x1.7 ;) and observation covariate effects (our §; 1.y) in a state
space model similar to equations (3.3)—(3.4). The result is that time series within
a cluster are assumed to be noisy versions of the same underlying process, which
represents a fundamentally different notion of time series clustering. For example,
our model can capture negatively correlated series, which would not be identified
as similar according to the model of Nieto-Barajas and Contreras-Cristan (2014).
One could also imaging including the AR parameters a; in our clustering. How-
ever, from an exploratory data analysis using the hierarchical clustering approach
of Section 2, we did not see evidence of the AR parameters being distinguished
between clusters.

3.4. Prior on other model parameters.

Latent AR parameters. The latent AR(1) process in equation (3.3) governing
the intrinsic price dynamics—using the innovation structure of equation (3.5)—
has an autoregressive parameter a;, factor loadings Xk, and the idiosyncratic noise
variance 002. We place conjugate priors on these parameters, respectively:

(3.10) ai ~N(pa,02),  i=1,...,p,
(3.11) Ak~ N, o), i=1...,p k=12,
(3.12) o ~ 1G(atc0. Be0)-

The hyperparameters (., auz, Wi af are also given priors. These hyperpriors and

settings for hyperparameters o, B¢0 are provided in Supplement E.1 of Ren, Fox
and Bruce (2017).

Emission parameters. Recalling the emission process in equation (3.4), we
place conjugate priors on the tract-specific hedonic parameters f;  and observa-
tion variance R;:

(3.13) Bin~N(un,of), i=1,....p,h=1,...,H,
(3.14) R; ~1G(ago, Bro), i=1,...,p.

We further assume priors on w; and a,%. These hyperpriors and the values of the
hyperparameters ago and Sgo are provided in Supplement E.2 of Ren, Fox and
Bruce (2017).

Figure 4 shows the graphical model representation of the resulting model.
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FIG. 4. Graphical model of our Bayesian nonparametric dynamical model. Boxes indicate repli-
cation of random variables and shaded nodes the observations. Note that x.T ; forms a length T
Markov chain; our box here is an abuse of notation used for compactness.

4. MCMC posterior computations. Our posterior computations are based
on a Gibbs sampler, with steps outlined below and detailed derivations in the sup-
plemental article [Ren, Fox and Bruce (2017)]. Scaling this sampling strategy to
our large housing dataset is discussed in Section 4.5.

Let © = {a={a;},A = {Aix}, R=(R;}, B = {Bi.n}, 02} and W the associated
subset of parameters corresponding to the kth cluster based on assignments z =
{zi}. Throughout, we use ¢_; to denote the removal of tract i’s contribution to
some set ¢. Our Gibbs sampler iterates between:

1. Sample z; = k|z—;, o, y, @. We marginalize the stick-breaking random mea-
sure 7, the latent housing valuation processes x*) and the cluster latent factor
processes §*®).

2. Impute x and 5™ as auxiliary variables. Specifically, block sample x, p* as
x®z, y® @W and y*|z, x, O.

3. Sample G(k)lz, y(k), x| n*(k).

4. Discard x, n* and sample hyperparameters conditional on @, z.

4.1. Step 1: Sampling the cluster membership. The full conditional for the
cluster indicator z; marginalizing &, * = {n’sz’k} and x = {x.7,;} is

P(Zl =k|Z—i5y13T7 ®7a)
“4.1) B B ® ®
X P(zi =klz—i, @) P(y1.1.ilzi =k, 2, Yir—i»© )-

The first factor represents the CRP prior of equation (3.9) (using exchangeability
of the z;). The second factor is the likelihood of the data stream for tract i assuming
membership to cluster k. The marginalization over X and ™ results in a dependence
upon all other data streams in cluster k, yik)T7 ;- Note that O™ includes parameters

for tract i when conditioning upon z; = k.
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A message passing scheme along the entire sequence of length T is required
to compute the likelihood of the ith data stream conditioned on all others in clus-
ter k, integrating over the intrinsic dynamics ng)T This algorithm is essentially a
Kalman filter, but allows for a varying number of observations per time step, in-
cluding no observations for some time periods. The detailed algorithm is provided
in Supplement B.1 of Ren, Fox and Bruce (2017).

For the special case of census tract i creating a new cluster, that is, z; = K + 1,
the prior belief follows the CRP prior of equation (3.9). The likelihood becomes
simply P(yi.7.ilz, a;, »K+D R, Bi.n), where T K+ — )\-1'271(+1 + 0'02, having
sampled A; g1 ~ N (ua, of) for all tracts, but marginalizing nT:T’ K4l This rep-
resents a variant of Neal’s Algorithm 8 for sampling from DP models [Neal
(2000].

4.2. Step 2: Block-sampling the intrinsic price dynamics X and cluster latent
factor processes n*. To block sample (x, #*), we first sample the intrinsic price
dynamics ng; jointly for all tracts in cluster k, analytically marginalizing #*. To do
this, we use a forward-filter backward-sampler (FFBS) outlined in Supplement C.1
of Ren, Fox and Bruce (2017). We then sample #* given x. By conjugacy, we
sample the cluster-specific latent factor n; i for time period t =1,...,T and K
existing clusters as follows:

1
Q—(A- )T (x¢ — Ax¢-1),
99

-1
Q= [IK + %(A -)T(A - Z)]
%0

(42)  nfnzxa,08 ~ Nk

The derivation is provided in Supplement C.2 of Ren, Fox and Bruce (2017).

4.3. Step 3: Sampling the dynamic model parameters. Having sampled x, we
can form & ; = x;; —a;x;—1,; [see equation (3.3)]. Assuming in Step 1 we sampled
zi = k, we have T “covariate/response” pairs (n;‘" x» €1,i) from which to inform
the full conditional of Ajg, as if it were the regression coefficient in a standard
Bayesian regression model; see equation (3.5). Via conjugacy, this full conditional
is a normal distribution specified in Supplement C.4 of Ren, Fox and Bruce (2017).
For j # k, we sample A;; from its normal prior.

The full conditional from which a; is sampled follows similarly via conju-
gacy: Combining equations (3.3) and (3.5), we can form “covariate/response” pairs
(Xt —1,i5 X1.i — Mig; n;’" Z ), and treat a; as the regression coefficient. The resulting full
conditional (again a normal distribution) is in Supplement C.4 of Ren, Fox and
Bruce (2017). For the variance o*g, we have Tp “observations” x; ; — a;jx;—1,; —
Aiz; n;“,Zi distributed as N (0, ag) that inform the inverse gamma full conditional
specified in Supplement C.4 of Ren, Fox and Bruce (2017).
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Finally, the emission parameters R and § can be sampled straightforwardly by
treating y; ;1 — X;,; as the response in a regression model with covariates U; ;. The
full conditionals, which are inverse gamma and normal distributions, respectively,
are specified in Supplement C.5 of Ren, Fox and Bruce (2017).

4.4. Step 4: Sampling hyperparameters. The hyperparameters u;, Gf, Has %2
and wp, O’}% for h =1, ..., H can be sampled straightforwardly via conjugacy re-
sults; see Supplement C.6 of Ren, Fox and Bruce (2017). We additionally assume
a hyperprior for the DP concentration parameter o ~ Gamma(oy, By) and follow
the sampling procedure of Escobar and West (1995); see Supplement C.7 of Ren,

Fox and Bruce (2017).

4.5. Computational challenges and strategies. Although marginalizing &, X,
and n*—that is, considering a collapsed sampler—reduces the dimensionality of
the posterior we explore in our sampling, the marginalization of & induces depen-
dencies between the cluster z;. As such, we must rely on the CRP-based sequential
sampling described in Section 4.1. Involved in this sampling is a computationally
intensive likelihood evaluation. In particular, for each census tract i we must con-
sider adding the tract to each existing cluster k, each of which involves a Kalman-
filter-like algorithm. Naively, just harnessing the Woodbury matrix identity yields
a computational complexity of O((min{n®, p®1)3T), where n® is the maxi-
mum number of observations at any time ¢ aggregated over census tracts in cluster
k and p® is the number of census tracts in cluster k. In most cases, we have
n® > p®).

To address the computational challenge of coupled z;—which at first glance
seems to imply reliance on single machine serial processing—we adopt the clever
trick of Williamson, Dubey and Xing (2013) for parallel collapsed MCMC sam-
pling in DP mixture models (DPMM). A similar approach was proposed by
MacLaurin and Adams (2014). The conventional DPMM assumes that observa-
tions x; with emission distribution F'(-) are drawn as

G ~ DP(a, Gy),
4.3) 0,1 G~ G,
xi | 0; ~ F(6;).

In order to do exact but parallel MCMC sampling for the DPMM on some P
processors, Williamson, Dubey and Xing (2013) proposed the following auxiliary
variable representation:

i | ¢ ~ Multinomial(¢),
0i 1 G,yi ~ Gy,
xi | 0; ~ F(6).

@4 " ~ Dirichlet(@/P. ....a/P),
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The auxiliary variable y; assigns data point i to processor y;. Williamson, Dubey
and Xing (2013) proves that for ¢ and G; defined as in equation (4.4), G :=

>, 6,G; ~DP(X; /P, %) — DP(, Go). Therefore, the marginal dis-
J

tributions for 6; and x; remain the same as in the original DPMM representa-
tion. Importantly, conditional on the processor allocations yp, the data points are
distributed as independent DPMMs on P machines, which enables independent
sampling of cluster indicators in parallel. In our case, we leverage this auxiliary
variable framework in order to allocate entire data streams to multiple machines.
The resulting steps of parallel MCMC sampling of the cluster indicators z; are
described in Supplement D of Ren, Fox and Bruce (2017).

Beyond parallelizing the sampler, we also ameliorate the computational burden
associated with the likelihood evaluations by deriving a simplified Kalman filter
exploiting the specific structure of our model. In particular, for each data stream
we only need two sufficient statistics (1},, i» Lt ;) instead of all of the house-level
transactions, where v ; ; is the adjusted sales price for the /th sale in tract i at time
t after removing the hedonic effects. The sufficient statistic 1/_/t,,- is the mean of the
adjusted individual sales prices and L, ; the number of sales for tract i at time ¢. We
can think of the simplified Kalman filter as a filter with observation sequence given
by the p®-dimensional vector of mean sales prices for census tracts in that cluster.
This algorithm then has complexity O ((p®)3T'). Although the complexity of the
algorithm has not changed (assuming p® < n®), the practical implementation
details are simplified leading to significant runtime speedups. We experimented on
empirical data that has one cluster of 21 census tracts, with 15,855 observations
over 195 months. We repeat the likelihood evaluation 1000 times. The Kalman fil-
ter utilizing the Woodbury identity takes 499 seconds, while the simplified Kalman
filter with sufficient statistics only takes 232 seconds, saving more than half of the
compute time. This optimized Kalman filtering algorithm for performing likeli-
hood evaluations using sufficient statistics is provided in Supplement B.2 of Ren,
Fox and Bruce (2017).3

5. Model validation by simulation.

5.1. Settings. We first validate our model using simulated data with aspects
set to match our real data analysis of Section 6. Specifically, we simulated 20 data
streams corresponding to sales in 20 census tracts from January 1997 to September
2013, a period of 213 months. The 20 tracts are pre-assigned to four clusters of size
4, 4, 4 and 8 census tracts, respectively. First, we generated latent price processes,
x1.1.i, for each tract according to equations (3.3) and (3.5) (see Figure 5). Note
that the tracts within each cluster have similar price dynamics, as intended by our

3Code is available at: https://github.com/shirleyuw/hyperlocalHouselndex. See Supplement B.2
of Ren, Fox and Bruce (2017) for further details.
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F1G. 5. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within each
plot correspond to specific census tracts in each cluster.

model. Second, we generated the observed sales prices, y; ;;, according to equa-
tion (3.4). The sales dates and house hedonics are taken from 20 randomly sampled
tracts in the City of Seattle, so as to match the real-data frequency of observations
and house characteristics. We repeat this process of generating latent price pro-
cesses and house sales observations 50 times, resulting in 50 replicate time series.
One replicate of generated sales prices is shown in Figure 6. For each replicate, the
clustering structure and pattern of houses sold is kept fixed. See Supplement F.2
of Ren, Fox and Bruce (2017) for an experiment with a different clustering setup
where all tracts are in one cluster and show that we can recover this structure.

5.2. Results. For each replicate, we ran the MCMC sampler for 1200 iter-
ations. We used normalized Hamming distance to assess the clustering perfor-
mance, which measures the proportion of tracts assigned to incorrect clusters after
an optimal mapping of estimated to ground truth labels [Munkres (1957)]. Figure 7
demonstrates that we successfully recover the underlying clusters, with trends in-
dicating that our sampler converges very rapidly. As further evidence of conver-
gence, we ran three chains with different initializations, and the scale reduction
factor of Gelman and Rubin (1992) indicated convergence of the chains after 1200
iterations.
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FI1G. 6. For a randomly selected replicate, simulated latent processes (solid lines) and sales prices
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FI1G. 7. For each replicate (gray traces), normalized Hamming distance between posterior samples
of cluster indicators and true cluster memberships (after an optimal mapping) as a function of Gibbs
iteration. The mean and 95% intervals are indicated in black and dashed-black lines, respectively.
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FI1G. 8. Forthe selected replicate of Figure 6, plots of the estimated intrinsic price dynamics relative
to the true x; ; (green) for the 4 census tracts in Cluster 1. Compare the posterior mean (red) and 95%
posterior intervals (shaded gray) of our proposed model to the independent Kalman-smoother-with-
in-EM baseline approach (blue), which performs poorly when the number of observations per month
(average indicated by #obs/m) is low.

Given sparse (simulated) observations per month at the census tract level, Fig-
ure 8 demonstrates that our posterior estimate of the intrinsic price dynamics nicely
tracks the true latent dynamics for each tract. As a baseline comparison, we con-
sidered applying a Kalman-smoother-within-EM algorithm independently on each
tract, as in our exploratory data analysis of Section 2. Unsurprisingly, without shar-
ing observations from similar tracts, the baseline approach fails when the observa-
tions are sparse; see Supplement F.2 of Ren, Fox and Bruce (2017) for results on
the other census tracts.

An alternative baseline is our hierarchical Bayesian dynamical model, but as-
suming each tract is in its own cluster. Implementation-wise, we simply fix z; =i
and do not resample these cluster indicators in our MCMC. Figure 9 shows the
RMSE for the estimated latent trends x as a function of the number of observa-
tions in the census tract. For tracts with fewer observations, the clustering method
provides a substantial reduction in error. As expected, when observations are abun-
dant, the improvement diminishes. These experiments confirm the benefits of the
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FI1G. 9. For the replicate of Figure 6, RMSE of estimated latent trend per tract using clustering
(red) or no clustering (green) as a function of the number of observations.

DP-based clustering beyond just hierarchical modeling in structured, data-scarce
scenarios.

We also experimented with other simulation scenarios, summarized in Table 2.
When the latent factor processes have relatively large factor loadings (large ;)
leading to large noise variance on the intrinsic price dynamics, the benefits of us-
ing clustering for predicting latent trends x are very significant compared to the
model without clustering. However, even under such scenarios, the improvement
in predicting the log sales prices y; ; ; themselves is not as large since the hedonic
effects dominate the observed price. Importantly, we note that house-level predic-
tion is not our goal; instead we are interested in the intrinsic price dynamics X
themselves, which form our fine-resolution index.

TABLE 2
For three simulated scenarios and 50 replicates per scenario, results on out-of-sample prediction of
latent trends x1.T ; and house prices y; ; |. We compare our proposed Bayesian model both with
and without the DP-based nonparametric clustering component

No clustering Clustering Improvement
(Mean) (Mean) (Mean) (95% interval)
a =0.99 RMSE in x 0.0258 0.0235 8.7% [6.1%, 11.4%]
my =0.015 RMSE in y 0.1032 0.1029 1.2% [—0.6%, 2.9%]
a =0.99 RMSE in x 0.0747 0.0348 53.5% [51.0%, 56.0%]
uy =0.15 RMSE in y 0.1147 0.1051 12.8% [9.9%, 15.7%]
a =0.60 RMSE in x 0.0800 0.0333 58.4% [56.0%, 61.0%]

), =0.15 RMSE in y 0.1155 0.1060 11.9% [7.5%, 18.0%]
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F1G. 10. Estimated global trend (black line) using the seasonality decomposition approach of
Cleveland et al. (1990), after adjusting for hedonic effects. See Supplement G of Ren, Fox and Bruce
(2017) for further details. The posterior mean (blue, solid) and 95% credible intervals (blue, dashed)
for our jointly estimated trend (see Section T) are shown for comparison.

6. Housing data analysis. We now turn to our housing data analysis based
on the City of Seattle data described in Section 2. To focus on our main modeling
contributions, here we assume the global trend is separately estimated and removed
as a preprocessing step. Computing a fairly good estimate of a global trend is
relatively straightforward since we have sufficient data in aggregate. The estimated
global trend is shown in Figure 10, with details in Supplement G of Ren, Fox
and Bruce (2017). We notice a small but significant seasonal effect, which can be
mostly attributed to the changing supply of houses during the year: very few homes
are listed in November and December so that transactions that occur in that period
are leftover inventory or have other special circumstances. In Section 7, we return
to joint estimation of the global trend to properly account for uncertainty in this
estimate.

To assess our model, we randomly split the sales per census tract into a 75%
training and 25% test sets. On the training set, we ran three MCMC chains for
15,000 iterations from different initial values, discarding the first half as burn-in
and thinning the remaining samples by 5. We used the scale reduction factor of
Gelman and Rubin (1992) to check for convergence.

Figure 11 provides an illustration of the resulting 16 census tract clusters asso-
ciated with the maximum a posteriori (MAP) sample (i.e., the sample with largest
joint probability). The log intrinsic price dynamics associated with each of these
clusters, averaged over census tracts assigned to the cluster, are shown in Figure 12.
Clusters 15 and 16 have the most dramatic trend. They include census tracts from
the downtown Seattle area where the houses are almost exclusively condos and
have unique supply and demand dynamics. Clusters 11 and 13 are mostly low-
income areas with less expensive housing where the housing recovery has been
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FI1G. 11.  Map of cluster assignments under the MAP sample. Cluster labels and associated colors
are ordered based on the deviance of the cluster’s average (across tracts) latent trend from the global
trend, with blue (1) representing smallest and red (16) largest.

slower. The biggest difference between the clusters occurs during the 2006-2012
time period which spanned the housing boom followed by the bust. Intuitively, dif-
ferent regions were affected differently by this highly volatile period. Supplement
G of Ren, Fox and Bruce (2017) shows the cluster average index in raw price scale.

For the MAP clustering depicted in Figure 11, the University District (U-
District) census tract highlighted in Section 1 gets assigned to Cluster 3—the
largest cluster—driven by “the rich get richer” property of the CRP prior. How-
ever, when examining all collected posterior samples, 57% of the time the U-
District does not share a cluster with any of its neighbors and 86% of the time
it does not share a cluster with more than one neighbor. The lack of a hard-coded
spatial structure in our model is what enables such heterogeneous spatial effects to
appear; instead, our DP-based cluster model allows for a flexible dependence struc-
ture by discovering regions with correlated price dynamic patterns. Importantly, in
forming our index, we average over the uncertainty in the clustering structure. In
particular, instead of using a single sample as in the visualizations of Figures 11—
12, we compute the posterior mean trend per tract by averaging the tract-specific
intrinsic price dynamics across MCMC samples.

6.1. Comparison with other methods. We compared our Bayesian nonpara-
metric approach with the Case—Shiller housing index [Case and Shiller (1987)]
described in Section 1. Even though our goal is not house-level prediction, it is
one metric by which we can assess our fit. Since the Case—Shiller method is based
on repeat sales only and does not include hedonics, it is not well suited to predict-
ing house-level prices. In order to fairly compare our approach with Case—Shiller,
we treated the Case—Shiller index as the intrinsic price process with the global
trend X in our model, and then fit a regression model with tract-specific hedonic
effects as in equation (3.4) using observations y; ; ;. The estimated hedonic effects
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F1G. 12. For the MAP sample, cluster-average intrinsic price dynamics computed by averaging
X1.7,; over all i with z; =k for k=1, ...,16. The color scheme is as in Figure 11.

together with Case—Shiller index are then used to predict the house prices. The
Case—Shiller index also does not model seasonal effects, so for a fair comparison
we remove the seasonal component from our estimated global trend and simply
use the resulting smooth trend when forming our predictions. We note that all of
our predictive performance numbers are better with the seasonal component, as
displayed in Table 7.

Due to the scarcity of repeat sales localized at tract level, the Case—Shiller index
can only be computed at 8 of the 140 tracts. To maintain a tract-level comparison, if
the Case—Shiller index is not available for a given tract, we continue up the spatial
hierarchy examining zip code and city levels until there is a computable index
that can serve as x;; in our prediction; that is, we use the finest resolution Case—
Shiller index available at any house location to predict house prices. In Table 3,
we summarize the number of house-level predictions that are based on the Case—
Shiller city, zip code or tract level indices; we also include the number of tracts for
which our analyses relied on city and zip code levels, or were able to use tract-level
indices directly.

Our Bayesian model can successfully produce value indices for all tracts. To
predict house-level prices, we use the posterior predictive distribution approxi-
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TABLE 3
For our predictive performance comparison summarized in Table 4, the number of tracts
and individual houses (in test set) that rely on using city, zip code or tract-level indices with
the Case—Shiller method. Our Bayesian method always uses a tract-level index

Case-Shiller Bayesian
City Zip code Census tract Census tract
# tracts using 11 121 8 140
# observations using 1294 26,576 3248 31,118

mated by our MCMC posterior samples:

M
(6.1) P(y;;1Y) =f0P(y:i,-|9)P<e|Y>d9 ~ Y p(yri 16™),
m=1

where y™* is the new data point, Y denotes the training data and 0 represents pa-
rameters with 6 the mth MCMC sample. Since p(y;’" i | 6™ does not have an

analytic form, we simulate a set of y;", ; for each 6™ using equation (3.4). We then
use the mean of these posterior predictive samples as the prediction for any house
in the test set.

For all of our comparisons, we used the same training and test split. In Table 4,
we summarize the out-of-sample predictive performance with five metrics: root
mean squared error (RMSE) in price, mean/median/90th percentile of absolute
percentage error (Mean APE, Median APE, 90th APE), and the popular indus-
try metric of proportion of house sales within 10% error (P10). Importantly, we
highlight again that house sales predictions are largely hedonics driven. Since we
constructed all methods using the same hedonics model, we do not expect to see
large differences in numbers. Regardless, we see notable improvements using our
proposed index, with uniformly better predictive performance as compared to the
Case—Shiller index at the finest resolution available. Over all houses in the test set,
our method has an 11.2% improvement in RMSE and about 5% improvement in
other metrics.

We then look at the breakdown of the analysis by deviation of the inferred la-
tent trend from the global trend. For the 5% of census tracts with the most dramatic
intrinsic price dynamics (as measured by L2 norm of posterior mean latent trend
over time), we see even larger improvements over Case—Shiller: a 15.5% decrease
in RMSE and 21.7% in 90th percentile APE. The latter measure indicates a sig-
nificant reduction in the tail of the error distribution; that is, not only are we better
able to capture these more volatile tracts, we are also having the most dramatic
improvements on the hardest-to-predict houses. These effects can be explained as
follows. By not hard-coding spatial relationships via adjacencies of tracts, we see
in Figure 1 that certain regions (e.g., the U-District) do not get shrunk to trends in
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TABLE 4
Predictive performance comparison of index methods using various measures: root mean squared
error (RMSE), mean absolute percentage error (Mean APE), median absolute percentage error
(Median APE), 90th percentile absolute percentage error (90th APE) and proportion within

10% error (P10)
Case-Shiller index Bayesian index
at finest resolution at census tract
wi/tract hedonic effects level Improvement

All observations in test set (31,118 data points)

RMSE 137,600 122,139 11.2%
Mean APE 0.1734 0.1636 5.6%
Median APE 0.1294 0.1236 4.5%
90th APE 0.3607 0.3427 5.0%
P10 0.3985 0.4190 5.1%
Top 5% tracts with most dramatic latent trends (1111 data points)
RMSE 91,627 77,399 15.5%
Mean APE 0.2045 0.1748 14.5%
Median APE 0.1403 0.1259 10.3%
90th APE 0.4699 0.3679 21.7%
P10 0.3816 0.4113 7.8%

neighboring tracts. At the same time, our hierarchical Bayesian model with cluster-
ing still enables sharing of information to improve estimates, as we see in Table 4.
It is not surprising to see the most significant improvements for the most highly
volatile tracts: These are the tracts for which providing a robust fine-scale index is
so important in order to capture the deviation from the global trend.

Table 5 lists the improvement in predictive performance of our Bayesian tract
index over the Case—Shiller index when the latter index is computed at a city or zip
code level. The analysis is further broken down by the level of data scarcity in the
tract. Not surprisingly, the most significant improvement is for houses in tracts with
fewer sales; for example, we see a 16% improvement in 90th percentile APE for
these data-scarce tracts, for which the tail of the error distribution is important and
hard to characterize. We might expect that our method provides less improvement
over the Case—Shiller index at the zip code than city level. Interestingly, as the
spatial resolution goes finer from city to zip code level, the Case—Shiller index
suffers from worse predictive performance in most cases. This result validates that
this popular index method is ill-suited to the task of constructing a housing index
for small regions where transactions are scarce.

We now examine the impact of our Bayesian model over alternative approaches
using the same tract-specific dynamical model of equations (3.3)—(3.4), both with
and without hedonics. In particular, we compare against a Kalman-smoother-
within-EM algorithm applied independently to each census tract (again, as in Sec-
tion 2). The results are summarized in Table 6. (Note that the last column of Table 6
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TABLE 5
Predictive improvement of our Bayesian tract index over Case—Shiller city and zip code
indices for tracts of different sales frequency using Mean APE and 90th APE metrics

Improvement over Improvement over
Case-Shiller city index Case-Shiller zip code index

Top 5% tracts with most sales (3569 data points)

Mean APE 3.1% 4.8%

90th APE 1.2% 2.9%
Middle 50% tracts (14,507 data points)

Mean APE 4.6% 7.2%

90th APE 5.1% 7.1%
Lower 5% tracts with least sales (188 data points)

Mean APE 8.5% 5.4%

90th APE 15.5% 16.0%

coincides with the second column of Table 4, and is repeated for readability.) We
see the benefit of incorporating hedonics, but that gain is actually not as large as the
improvements seen from our Bayesian approach to joint modeling of the tracts, de-
spite the clear importance of hedonics in driving house predictions. Additionally,
as motivated by the results of Table 2, we would expect even larger improvements
in the estimation of the target index x, though such an evaluation is not feasible
here since we do not have the true index value.

6.2. Qualitative assessment of the indices. 'We now turn to the central focus of
the paper and assess the quality of the index itself. Since there is no ground truth or
direct performance metric, we use the Zillow Home Value Index (ZHVI®) [Zillow
(2014)] as a reference for comparison of the indices. The ZHVI is a bottom up,
empirical approach to computing an index:

TABLE 6
Predictive performance comparison of independent Kalman-smoother variants to the
proposed Bayesian nonparametric model using the same metrics as in Table 4

Univariate Univariate
Kalman smoother Kalman smoother Bayesian
without hedonics with hedonics clustering
RMSE 262,075 194,562 122,139
Mean APE 0.3698 0.2746 0.1636
Median APE 0.2854 0.2238 0.1236
90th APE 0.7634 0.5584 0.3427

P10 0.1907 0.2346 0.4190
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1. Using recent house sales data, the value of each home is estimated using a
hedonic regression model (known popularly as a Zestimate®).

2. The ZHVI for a given region is defined as the median of the Zestimate for
all homes in a region.

ZHVI is appealing due to its straightforward and intuitive nature. Unlike weighted
repeat sales methods, the ZHVI is not impacted by the changing composition in
types of homes that are sold over different periods of time. In addition, the ZHVI
is stable for even very small geographic regions, such as a census tract. The ZHVI
can be viewed, informally, as a semi-supervised approach: the index is based on
all the data by inferring the value from the smaller set of labeled data (house trans-
actions). The Zestimate is based on a proprietary, sophisticated regression model
using a variety of data sources including user-edited data, house listings, tax as-
sessments, transactions, parcel information and geographical features (e.g., prox-
imity to waterfront). The Zestimate is unbiased and in Seattle, the median absolute
error of the Zestimate is around 6% (see http://www.zillow.com/zestimate/#acc
for published accuracy of the Zestimate). Due to the high accuracy of the Zesti-
mate, and the empirical nature of the approach, the ZHVI provides a valuable basis
against which to compare the Bayesian and Case—Shiller indices.*

In addition to comparing our Bayesian index to Case—Shiller, we also consider a
model in which the the DP-based clustering is removed, treating each census tract
as its own cluster, as in Section 5.2. Recall that this model still represents a hierar-
chical Bayesian dynamic model. Since the Case—Shiller method is not computable
for most of the census tracts, we focus our analysis at the zip code level. For the
Bayesian index with or without DP-based nonparametric clustering, the zip code
index is constructed by averaging the census tract indices within a zip code.

Figure 13 shows that the Bayesian indices with and without the DP-based non-
parametric clustering component have significantly different performance during
the 2006-2007 period, and to a lesser extent in 2010-2011. In 2006-2007, the
Seattle housing market was in a boom period with high sales and volatility [see
Figure 6 in Supplement G.3 of Ren, Fox and Bruce (2017)]. After the bust, the
housing market started to stabilize in 2010-2011. The market boom and subse-
quent stabilization were manifested in the different housing sectors in disparate
ways. The DP clustering-based index is more closely aligned with the ZHVI, es-
pecially in the highly volatile year of 2007, since it is better able to capture the
dynamics of the change in value for different housing sectors. This is because
the nonclustering Bayesian hierarchical model shrinks the census tracts with few
observations toward a global mean, whereas our clustering model allows atypical
census tracts to be shrunk toward a more informed structure, such as the one shown
in Figure 12.

4One of the motivations for this paper is to achieve the properties of the ZHVI using a rigorous,
model-based approach, which opens up new opportunities for statistical inferences and further model
development.
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F1G. 13. Differences of various index methods relative to the ZHVI at the zip code level. Examining
performance across zip codes, the mean absolute difference (black line) and 90% interval (shaded
dark gray) of our proposed Bayesian index is compared to that of the Bayesian index without clus-
tering (short dash and shaded medium gray) and the Case—Shiller zip code index (long dash and
shaded light gray). The differences for the Bayesian methods are based on posterior mean estimates.
A 3-panel figure separating these components is in Supplement G.4 of Ren, Fox and Bruce (2017).

Figure 13 also compares the zip code Case—Shiller index, which differs much
more significantly from the ZHVI at all times than the proposed Bayesian index.
Without any kind of sharing information and shrinkage across different regions,
the Case—Shiller index has the widest interval among the three methods. Further-
more, the beginning and the end of the study periods are extremely challenging for
Case—Shiller index due to lack of repeated sales available at these boundaries. In
the middle of the series, during the highly volatile period of 2007, the difference
between Case—Shiller and the ZHVI is especially large.

Digging into this volatile 2007 period, Figure 14 provides a more detailed com-
parison of the differences in Figure 13 during 2007. We see that Case—Shiller has
a long-tailed distribution of absolute differences of individual zip code indices rel-
ative to ZHVI, in addition to a hump at this right tail. The shrinkage provided
by the other two Bayesian methods leads to much lighter tails and removes this
high-error hump, with the clustering approach clearly the closest match to ZHVI.
In particular, looking at the cumulative distribution of Figure 14(b), we see that
the Bayesian model without clustering has a lighter tail than Case—Shiller, improv-
ing these outlying estimates via shrinkage induced by the hierarchical Bayesian
model. However, this model also has fewer small-error zip codes relative to the
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FIG. 14. A more detailed examination of the differences in Figure 13 during 2007. (Left) Estimated
density and (right) cumulative distribution of the absolute differences. A 3-panel figure separating the
components is in Supplement G.4 of Ren, Fox and Bruce (2017).

Case-Shiller baseline. By contrast, our proposed Bayesian nonparametric cluster-
ing index has as many small-error zip codes as Case—Shiller, but also has many
fewer large-error zip codes than either of the comparison methods. Thus, we see
the importance not only of a hierarchical Bayesian approach, but one that leverages
structured relationships between regions.

7. Joint model with the global trend. Instead of a fixed, pre-calculated
global trend extracted from the data as a preprocessing step, in this section we
propose to jointly model and estimate the nonstationary global market trend with
the stationary local price dynamics. This unified Bayesian framework properly ac-
counts for all parameter uncertainties jointly, including uncertainty in the global
trend. We describe the global trend model, modification to the MCMC, and asso-
ciated housing results below. Further details on the global trend model selection,
prior specification and posterior computations are in Supplement H of Ren, Fox
and Bruce (2017).

7.1. A nonstationary global trend model. Similar to many economic time se-
ries, the overall housing market trend is nonstationary; this is clearly demonstrated
in the estimated Seattle City global trend of Figure 10. The time series clustering
model of Nieto-Barajas and Contreras-Cristan (2014) described in Section 3 mod-
els the nonstationary trend with a quadratic form. Such simple polynomial forms
may not be flexible enough to capture long-term housing market trends such as
boom, bust and recovery periods. To promote smoothness while allowing flexi-
bility to capture the complex global market dynamics, we instead use natural cu-
bic splines (NCS) [Smith (1979)] with monthly effects. In particular, the natural
cubic splines interpolation process specifies np interior knots, which generates
Np = np + 2 basis functions including an intercept, piecewise cubic splines be-
tween knots and linear splines at the boundaries. More specifically, we propose the
following model for the nonstationary global trend:

(7.1) g =wiB1(t) + -+ wny Bng (1) +s0ma(t) + - - - + s10m12(1),
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where B; for j =1,..., Ng are the basis functions and m (t) = I(t = j) for
j =2,...,12 denote the monthly effects.

7.2. Modification to the MCMC. Recall the definition X; ; = g; + x; ;. Based
on an sample of the intrinsic price dynamics x;; and hedonic effects §; 1.y at a
given iteration of our MCMC described in Section 4, we can use our observation
model of equation (3.2)—combined with the simple linear model for the hedonic
effects in equation (3.4)—to define pseudo-observations:

H

(7.2) Frid = Yrid — Xit — 2 BinUnn
h=1

such that

(7.3) Tril = & + Vr,ils vr,i1 ~ N(O, R;),

that is, r; ;; provides a noisy observation of the global trend since it represents
the residual of each house sales observation (log price) after accounting for the
local intrinsic dynamics and house hedonics. Equation (7.3) simply represents a
standard regression setting with time as the predictor; that is, from data points
(t,1:.i.1), the NCS-based global trend can be fit straightforwardly if the number of
knots is known. We use a model selection procedure based on Bayesian Informa-
tion Criterion (BIC), as outlined in Supplement H of Ren, Fox and Bruce (2017),
which suggests using 9 interior knots.

The modification to the overall MCMC is then as follows. Examining the
MCMC overview at the beginning of Section 4, we simply condition on g; and
y in place of y in Steps 1-3. Those steps remain identical since y; ;; is computed
as yr.i1 — & We then add a step after Step 3 to sample g, given everything else,
as described above [i.e., fitting a NCS to pseudo-observations (z, r;; ;)]. The final
step of the MCMC (Step 4 previously), remains unchanged. Further details are in
Supplement H of Ren, Fox and Bruce (2017).

7.3. Housing data analysis with joint inference of global trend. We now ex-
amine the impact of jointly estimating the global trend together with the other
latent variables and model parameters. Figure 15 shows the posterior of the
smoothed Bayesian global trend (after removing the monthly effects), along with
the Case—Shiller index and ZHVI computed at the Seattle City level. The poste-
rior mean of our global trend is more in alliance with ZHVI, which we believe
provides a better estimate than the Case—Shiller index; ZHVI is calculated based
on monthly-estimated house values for all houses in Seattle, whereas the Case—
Shiller index is computed using only repeat sales data. The posterior global trend
with monthly effects is shown in Figure 10. The predictions computed below in-
clude these monthly effects.
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F1G. 15. Comparison of the Bayesian global trend posterior with Case—Shiller index and ZHVI
computed at the Seattle City level. For the Bayesian trend, the seasonal component depicted in Fig-
ure 10 is removed for direct comparison (since ZHVI is not available with a seasonal component).

We compare the predictive performance of the full method that jointly estimates
the global trend with the method of Section 6 that uses a pre-computed global
trend. Table 7 shows that the predictive performance associated with the two mod-
els are quite close according to all metrics.

8. Discussion. We presented a method for constructing a housing index at
fine-scale geographical units, with better space—time adjustment and specificity
than existing approaches. In particular, the extreme scarcity of transactions at a
fine spatiotemporal granularity poses a significant modeling challenge. Our pro-
posed dynamical model utilizes a Bayesian nonparametric approach for flexible
structure learning to correlate regions that share similar underlying price dynam-
ics. This model leverages information from the region-specific time series within

TABLE 7
Predictive performance comparison of the Bayesian housing index using a precalculated
global trend, as in Section 6, with the global trend joint estimation of this section

Bayesian index

Pre-calculated global trend  Global trend joint estimation = Change

RMSE 122,026 122,083 0.05%
Mean APE 0.1633 0.1635 0.12%
Median APE 0.1231 0.1237 0.49%
90th APE 0.3422 0.3414 —0.23%

P10 0.4183 0.4198 0.35%
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TABLE 8
Predictive performance of the Bayesian nonparametric housing index
computed at the census tract lever versus the finer-granularity
neighborhood level. See Supplement G.5 of Ren, Fox and Bruce (2017)

Bayesian
Census tract index Neighborhood index
RMSE 122,026 120,198
Mean APE 0.1633 0.1565
Median APE 0.1231 0.1165
90th APE 0.3422 0.3208
P10 0.4183 0.4392

the discovered clusters, providing a form of multiple shrinkage of individual trend
estimates for each region.

We demonstrated that our methods provided a reliable monthly housing index
at the census tract level. Furthermore, our methods can robustly scale to even finer
spatial granularities. For example, using heuristically defined neighborhoods at
a finer spatial granularity than census tracts [see Supplement G.5 of Ren, Fox
and Bruce (2017)], our predictive performance can even improve. The results are
summarized in Table 8. This is in contrast to the worsening performance of the
Case—Shiller index with increasing spatial granularity, as demonstrated in Table 5.

Our clustering-based dynamical model avoids a reliance on repeated sales, pro-
viding an ability to track price changes in local housing markets. In contrast, con-
strained by few observations of multiple sales for the same house, classic repeat
sales methods are usually only robustly estimated over larger regions, such as zip
code or city, which may lack spatial specificity. Although sole reliance on repeated
sales can be problematic for the reasons described above, one could imagine incor-
porating a similar idea within our model via a longitudinal trend for the same house
in the model. Other extensions include considering longer memory processes with
a higher order autoregressive model for the latent trend. We could also add side in-
formation, such as crime rate, road network information and school district ratings,
to better inform the clusters of local areas. Finally, one could consider a prespec-
ified geographic model combined with our cluster-induced heterogeneous spatial
structure as a model of the residuals.

Acknowledgments. We would like to thank Stan Humphries, Yeng Bun, Bill
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guidance on the data.

SUPPLEMENTARY MATERIAL

Supplement to “Clustering correlated, sparse data streams to estimate a
localized housing price index” (DOI: 10.1214/17-AOAS1019SUPP; .pdf). We
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detail aspects of our MCMC sampler, including: (i) the required likelihood calcu-
lation via Kalman filtering variants and (ii) a parallel implementation of sampling
the cluster memberships. We also include further synthetic data experiments and
results from our Seattle City analysis, and specify the various settings used in our
experiments. Finally, we provide additional details on our model selection, spec-
ification, and computations for the joint global trend analysis. A link to our code
base and related housing data sources is included.
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