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STOCHASTIC MODELLING AND INFERENCE IN ELECTRONIC
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The combination of genetic information with electronic patient records
promises to provide a powerful new resource for understanding human dis-
ease and its treatment. Here we develop and apply a novel stochastic com-
partmental model to a large dataset on Clostridium difficile infection (CDI)
in three Oxfordshire hospitals over a 2.5 year period which combines genetic
information on 858 confirmed cases of CDI with a database of 750,000 pa-
tient records. C. difficile is a major cause of healthcare-associated diarrhoea
and is responsible for substantial mortality and morbidity, with relatively little
known about its biology or its transmission epidemiology. Bayesian analysis
of our model, via Markov chain Monte Carlo, provides new information about
the biology of CDI, including genetic heterogeneity in infectiousness across
different sequence types, and evidence for ward contamination as a signifi-
cant mode of transmission, and allows inferences about the contribution of
particular individuals, wards or hospitals to transmission of the bacterium,
and assessment of changes in these over time following changes in hospital
practice. Our work demonstrates the value of using statistical modelling and
computational inference on large-scale hospital patient databases and genetic
data.

1. Introduction. The increasingly widespread linkage of electronic patient
records, which document aspects of clinical care and of patient response, offers
an unprecedented opportunity for in silico studies of human health and disease
on very large scales. Analyses in these biomedical “big data” settings are also
challenging on several levels, not least in the need to develop scalable statistical
or stochastic models which capture central features of the application and yet are
amenable to inference.
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One particular opportunity is for the study of infectious disease transmission
within hospitals. In spite of stringent hospital anti-infection protocols, hospital-
acquired infections of bacteria such as methicillin-resistant Staphylococcus aureus
(MRSA) and Clostridium difficile represent major public health challenges, are
sources of considerable public anxiety, and incur very substantial costs to health-
care systems. The combination of hospital records on patient location and move-
ment within hospitals and their infection status, together with genetic information
on the infecting bacteria, offer an opportunity to better understand both the basic
biology of the pathogens and the epidemiology of infection transmission within
hospitals.

Infection events can never be observed directly, and so must be inferred from
circumstantial evidence, including patient proximity and similarities between the
genetic types of their infecting pathogens. Our approach is to introduce a novel
stochastic compartmental model for infection within, and transmission from, an in-
dividual, and then to fit this model to multiple individuals in the available hospital
record data. The modelling challenge is to capture enough of the features of the
real infection and transmission process whilst still allowing tractable inference on
large datasets. A major advantage of this framework is that it not only allows in-
ference about “biological” parameters such as infectious rates, incubation periods
and recovery times, but it also allows probabilistic inference about transmission
events. Individually, these transmission inferences can potentially resolve partic-
ular events, but collectively they allow assessment of the major modes of hospi-
tal transmission. They also have a second important benefit. Changes in hospital
practices aim to reduce hospital transmission of infections, but their efficacy is
currently not easy to assess exactly because transmission events are unobserved.
Approaches such as the one we develop here, which allow (probabilistic) infer-
ence of transmission events, provide a much more direct route to assessing the
consequences of changes in hospital policy and practice.

In this paper we focus on a particular infectious bacterium, Clostridium difficile,
in the three main hospitals in Oxfordshire, UK. C. difficile is a Gram-negative obli-
gate anaerobe carried in the gut of between 2% and 7% of adults and up to 30% of
infants [McFarland et al. (1989), Rolfe (1988)]. Since its recognition as a human
pathogen in the late 20th century [Bartlett et al. (1978)], healthcare-associated out-
breaks of C. difficile infection (CDI) have been reported worldwide [Health Protec-
tion Agency (2010)]. Attributable mortality is estimated at 8% [Karas, Enoch and
Aliyu (2010)]. It is thought that symptoms, which range from diarrhoea to severe
pseudomembranous colitis, result from the exposure to antibiotics of an individual
carrying C. difficile: the antibiotics disrupt healthy gut flora and allow C. difficile
to proliferate; the bacteria produce toxins, and when the size of the C. difficile pop-
ulation in the gut increases, so does the amount of toxin, which in turn induces the
symptoms. As well as antibiotic use, risk factors for developing CDI include ad-
vanced age and extended periods of hospitalisation (which may partly be explained
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by contact with other infectious CDI patients) [Loo et al. (2011)], with asymp-
tomatic carriage suggested as a possible protective factor [Loo et al. (2011)]. In
2003, a highly pathogenic strain (known as variously as Ribotype 027/NAP1/ST1)
emerged in Canada and spread rapidly [McDonald et al. (2005)], accounting for
55% of cases in the United Kingdom in 2007/8. Although the UK incidence has de-
clined from its 2005 peak of 50,000 reported cases to approximately 23,000 cases
in 2010 [Health Protection Agency (2009)] (with the prevalence of ST1 declining
to 12%), CDI remains a significant problem, and identifying effective measures to
control its spread remains a priority. Devising, implementing and assessing such
strategies is challenging, in part because its biology and transmission epidemiol-
ogy is not fully understood, and in part because transmission events are not directly
observed.

Oxford University Hospitals (OUH) NHS Trust provides more than 90% of all
inpatient care, including all acute services, for approximately 600,000 people in
Oxfordshire, UK. Briefly, there are 3 main hospital sites with, respectively, 77,000,
14,000 and 13,000 admissions/year. Further details are given in Table 1. During
the study period of 1 September 2007 to 31 March 2010, the routine microbiol-
ogy laboratory tested all samples sent for C. difficile diagnostics from OUH, lo-
cal doctors’ practices and smaller specialist hospitals in the county. Local policy
was that any OUH inpatient with diarrhoea should have samples sent for test-
ing for CDI using an enzyme immunoassay (EIA) for C. difficile toxins A and B
(Meridian Bioscience Inc., Cincinatti, Ohio). Most (96%) EIA positive samples
were retrieved for confirmatory testing by culture, a gold-standard method for di-
agnosis [Planche et al. (2008)]. If culture established the presence of C. difficile,

TABLE 1
Details of the 3 Oxfordshire hospitals included in this study, which ran from September 2007 to

March 2010 inclusive (31 months). The Oxford University Hospitals (OUH) NHS Trust provides all
acute services for 600,000 people in Oxfordshire. We included in this study all patients with at

least one OUH admission. Of these, 858 had at least one C. difficile infection (CDI) [defined as an
enzyme immunoassay (EIA) positive, culture positive faecal sample]. All CDI were strain typed

using MLST. There were an additional 73 CDI cases who had no overnight admissions to the John
Radcliffe, Churchill or Horton hospitals in OUH during the study period. These were excluded

from the analysis

Hospital Wards Overnight admissions Patients CDI cases

John Radcliffe 100 193,641 99,149 639
Churchill 48 36,978 19,098 277
Horton 21 33,800 24,692 257
Miscellaneous1 36 2514 2439 0
Total 163 269,419 131,597 858
OUH catchment – – ∼600,000 931

1Including “take” rounds where patients are admitted to hospital.
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genetic information on the isolated bacteria was collected by genotyping them us-
ing multi-locus sequence typing (MLST), a robust and moderately discriminating
genetic typing system which in effect reads the DNA sequence in seven prespeci-
fied small regions of the C. difficile genome [Griffiths et al. (2010)]. The result of
this genotyping is the classification of the bacteria into so-called sequence types
(ST). As of 2016/12/18, there are 360 MLSTs of C. difficile recorded in the C. dif-
ficile MLST database http://pubmlst.org/cdifficile/. In our dataset there are few
instances of mixed infections, where bacteria from more than one MLST sequence
type are recovered from an individual, and, as described below, these had limited
impact on inference. A total of 858 individuals who had at least one overnight
hospital stay were confirmed culture-positive during the study period.

Admission records and microbiology laboratory records were electronically
linked and anonymized [Finney et al. (2011)] within the Infections in Oxfordshire
Research Database (IORD) approved by the Oxford Research Ethics Committee
(09/H0606/85) and the National Information Governance Board (5-07(a)/2009).
Amongst other information, the database records all admissions of each patient to
the hospital together with their subsequent movement around the hospital between
different wards, and contains a total of around 750,000 patient records which cover
the study period.

Figure 5 aims to give a sense of the complexity and structure in the dataset by
illustrating a subset of those parts of the database which are relevant to our study.
(The figure also represents transmission events inferred under our model; see be-
low.) For each patient the database records the periods of time for which they were
in the hospital system and the specific wards in which they were housed during
each stay. For individuals who tested positive for CDI, the date of the positive test,
and the associated MLST, is also recorded. The figure only shows hospital stay
information for those individuals (each of which is represented horizontally) who
tested positive with a particular subset of the MLST types during the study period.
[See Figure 1 of Cule and Donnelly (2017) for all such individuals.] For simplic-
ity, ward information is not shown in the figure. The full dataset can be thought
of as a much larger set of timelines like those in the figures, with one for each of
the 131,597 patients who visited at least one of the hospitals over the 31 month
study period, augmented by information as to which ward they are in at each time.
Although none of these individuals is represented in the figure, we note below that
knowledge of transmission events which could have, but in fact did not, occur is
informative about infection rates and epidemiology.

A published informal analysis of this data [Walker et al. (2011)] suggested that
most C. difficile disease cannot be explained by contact with symptomatic indi-
viduals within the hospital, challenging conventional beliefs that most disease is
transmitted within the hospital. The informal analysis ignored the information in
much of the data and was unable to investigate heterogeneity between individu-
als, wards and bacterial strains. Interpretation is complicated by the fact that there

http://pubmlst.org/cdifficile/
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was no underlying statistical model and the consequences of various underpinning
assumptions are difficult to assess.

Here we present a reanalysis of this data by introducing and fitting a stochastic
model for CDI to the electronic patient records. In addition to learning about the bi-
ology and epidemiology of C. difficile infection, and assessing changes in hospital
practice, both of which have important public health benefits, we see our approach
more generally as a test case for the potential of combining genetic information
and electronic patient records through principled statistical analyses.

In the next section we describe and motivate our stochastic compartmental
model for C. difficile infection. Section 3 describes the fitting of the model in-
cluding various diagnostic checks (though mathematical details are deferred to the
Appendix). In Section 4 we give the results of our analysis, first for the biology
of C. difficile, and then for the epidemiology and transmission dynamics of CDI.
The final section provides a discussion of our approach and results, and potential
further work.

Stochastic compartmental models have been applied before to hospital transmis-
sion of infectious disease, typically in simulation studies, or only been on relatively
small datasets (one or two wards), with inference performed in both maximum
likelihood and fully Bayesian frameworks [Cooper et al. (2008, 2012), Kypraios
et al. (2010), Lanzas et al. (2011), Starr and Campbell (2001), Starr et al. (2009)].

2. Stochastic compartmental model for C. difficile infection. The starting
point for our analysis is a novel stochastic compartmental model designed to cap-
ture the main features of CDI and its spread. The model is illustrated by the dia-
gram in Figure 1.

Informally speaking, individual patients at a point in time are modelled as sus-
ceptible (not carrying C. difficile), colonized (carrying C. difficile but not yet ei-
ther symptomatic or infectious), symptomatic and infectious, or removed from the
model. Infectious patients may transmit C. difficile to susceptible individuals at a
rate which depends on the nature of the interaction between them. Transmission
may occur due to direct contact (patients are in the same ward at the same time),
inter-ward contact when the patients are in different wards at the same time, or
via ward contamination after the infectious patient has left the ward [Best et al.
(2010)]. When such a transmission occurs, the C. difficile in the newly infected
individual will have the same MLST as that in the individual responsible for the
transmission event. We also allow susceptible individuals to acquire C. difficile
from sources other than the known CDI cases, and refer to these as background
transmissions. The MLST of background transmissions is drawn at random from
a distribution (which we learn from the data).

We now give formal description of the model and its parameters.
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FIG. 1. Diagram showing model for C. difficile infection (CDI). Patients enter in a susceptible
state and are colonized at a rate which depends on (1) whether the patient is inside or outside the
hospital; (2) the number of infectious patients in the same ward; (3) the number of infectious patients
within the same hospital; (4) the number of infectious patients who have been discharged from the
same ward (post-discharge contamination). Once colonized, they become infectious at a rate which
depends on whether they are in or outside the hospital. Once infectious, they are tested, and then
recover at one of two rates corresponding to different rates of recovery.

2.1. States of the stochastic compartmental model. In this section we describe
in detail the states and transitions of the compartmental model of C. difficile infec-
tion.

At the start of the study, all individuals are assumed to be susceptible. We ignore
the possibility that some individuals are infected at the start of the study; however,
given the length of the study, impact on parameter estimates and inferred transition
events is small.

Upon exposure to C. difficile (via an infected patient or environmental con-
tamination), susceptible patients may become colonized. Colonized patients carry
C. difficile but are not infectious. We assume all patients who become colonized
eventually (within the timescale of the study) become infectious. Our use of a
separate colonised state between the susceptible and infectious states allows us to
model (albeit imperfectly) the period between becoming colonized with C. difficile
and the triggering of CDI, for example, after administration of antibiotics. We were
unable to incorporate antibiotic use explicitly, as this information is not present in
our database. As the level of antibiotic use is much higher inside the hospital than
outside, we allow the rate of movement from colonized to infected states to differ
according to whether the patient is inside or outside the hospital.

Once colonized, patients become infectious at a rate which differs depending on
whether they are inside or outside the hospital. The infectious state is further subdi-
vided into Infectious 1, Infectious 2 and Infectious 3. For convenience, Infectious
2 period is fixed at a window (in days) around the diagnosis time T . Infectious 1 is
a period before diagnosis in which the patient is infectious. Infectious 3 is a period
after the test, where the patient may well be isolated but may continue to infect
other patients. For our main analysis, we fixed a = 2 and b = 1. These numbers
were chosen through consultation with infectious disease physicians, taking into
account the typical timeline from onset of symptoms to test result and treatment.
A sensitivity analysis is given in Section 3.1 of Cule and Donnelly (2017).
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Note that the period of infectiousness before the patient is tested could cover
both asymptomatic and symptomatic transmissions, and our model has no method
to distinguish between them.

When two patients are visiting the same ward, we assume that an infected pa-
tient is equally likely to infect any other patient within the ward. They are also
equally likely to infect any other patient within the same hospital site (but on a
different ward), at a different rate from those in the same ward.

Some patients are observed to have recurrent relapses of disease for several
months following initial infection [Johnson (2009)]. We therefore allow in our
model two rates of recovery for the patients, one corresponding to a relatively
rapid recovery and one to a longer period of infectiousness.

Sensitivity analysis assuming similarly persisting contamination after a patient
left “Infectious 3” while on a ward produced similar results (data not shown).

C. difficile can form highly resilient spores which are known to persist in the en-
vironment for many months after the initial infection. Asymptomatic colonization
of healthcare workers is another possible cause of post-discharge transmission.
We therefore model post-discharge contamination as follows. If a patient leaves
the ward in one of the Infectious” states, they may continue to infect other patients
who visit that ward.

Where one patient infects another (either within the same ward, within the same
hospital or via post-discharge contamination), we assume that the newly infected
patient has the same MLST as the infecting patient.

2.2. Transitions between states of the stochastic compartmental model. We
model transitions between these states as a (nonconstant) Poisson process, whose
waiting times are governed by parameters to be estimated.

We assume a susceptible patient becomes colonized at a time-dependent rate,
which depends on (1) whether the patient is inside or outside the hospital, and (2)
if inside, other infectious individuals to whom the patient was exposed. There are
two basic background rates, while the patient is in the hospital and while the pa-
tient is outside the hospital. Transmission from infectious individuals occurs at a
rate which depends on which state (Infectious 1, 2 or 3) the infectious individual
is in and whether the contact is direct, hospital-wide or via post-discharge contam-
ination. In summary,

(1) β(t) =
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In this expression,
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• Iw
i (t) is the number of patients in infectious state i in the same ward as the

susceptible patient at time t .
• Ih

i (t) is the number of patients in infectious state i in the same hospital (different
ward) as the susceptible patient at time t .

• D
{w}
i (t) [resp., D

{h}
i (t)] is the number of patients causing ward contamination

who were discharged in state i from the same ward (resp., a different ward in
the same hospital building).

• β0 is background pressure not associated with any particular infected patient.
• β1 is the rate of infection of patients in the same ward, before testing.
• β2 is the rate of infection of patients in the same ward within a window [−2,1]

of the test.
• β3 is the rate of infection of patients in the same ward after testing.
• β−1 is the background pressure when between hospital visits.
• ψ is a “contamination multiplier” such that the rate of infection for patients who

have been discharged in state Ij is ψβj of these states.
• η is a “hospital-wide multiplier” such that the rate of infection for patients in the

same hospital, but different ward, due to a patient in state Ij is ηβj .

The transition from colonized to infectious occurs at rate λout outside the hos-
pital and λin inside the hospital. We distinguish between the two possibilities in
order to capture the heterogeneity in risk for C. difficile infection within and out-
side the hospital system. While infectious, the patient infects others in the same
ward at rate β1 and in different wards in the same hospital at rate ηβ1.

The transition from state infectious 1 to infectious 2 is assumed to occur at
rate λ3 regardless of whether the patient is in or outside the hospital. The patient
remains in the infectious 2 (acute symptomatic) state for 3 days, with the test
assumed to occur on day 2.

After this, the patient remains infectious. With probability θ , the patient pro-
gresses to the removed state at rate μ1a ; otherwise, the patient progresses at rate
μ1b. This distinction allows for the empirical observation that a small number of
patients experience recurrent disease (which we do not model explicitly). Identifi-
ability is ensured by the prior assumption that μ1b < μ1a . Note that this does not
necessarily imply that the patients have been symptomatic for the entire period.

2.2.1. Modelling post-discharge contamination. C. difficile is known to form
highly resilient spores which can persist in the hospital environment for a long
time. These are assumed to occur at a rate ψβi if an infectious patient is discharged
from a ward in state Ii . These spores persist for an Exp(μ2) time.

3. Fitting the model. We adopted a Bayesian framework in order to fit this
model to the available data using Markov chain Monte Carlo methods to sample
from the posterior distribution. Encouragingly, even for our nontrivial stochastic
model and a hospital database of hundreds of thousands of patients, inference was
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TABLE 2
Parameters of the model and their priors, with references for the values where appropriate

Description (rate of exponential distribution, Prior Prior
Parameter unless otherwise specified) Prior mean std. dev.

β0 Transmission from background Gamma 0.001 0.001
β1 Transmission from pre-test infectious CDI cases Gamma 0.001 0.001
β2 Transmission from near test infectious CDI cases Gamma 0.001 0.001
β3 Transmission from post-test infectious CDI cases Gamma 0.001 0.001
β−1 Transmission from CDI cases outside the hospital Gamma 0.001 0.001
η Hospital-wide multiplier on rate of transmission

from infectious CDI cases
Gamma 1 1

ψ Contamination multiplier on rate of transmission
from infectious CDI cases

Gamma 1 1

λ1 C to I1 outside hospital Gamma 0.23 0.151

λ2 C to I1 inside hospital Gamma 0.23 0.151

λ3 I1 to I2 Gamma 0.23 0.151

μ0 I3 to R (long) Gamma 0.14 0.122

μ1 I3 to R (short) Gamma 0.14 0.122

μ2 Spore duration Gamma 0.14 0.12
θ Proportion of CDI cases with fast recovery (fast

loss of infectivity)
Beta 0.5 0.29

1Health Protection Agency (2010).
2Bobulsky et al. (2008).

computationally tractable (e.g., a run of 100,000 iterations of the MCMC took 7
days on a 3 GHz processor).

3.1. Prior distributions for parameters. Information from the literature about
parameters in the model, including transmission rates and incubation periods, was
incorporated via diffuse prior distributions (Table 2). Sensitivity analyses subse-
quently showed that conclusions were robust to details of these prior assumptions,
which is unsurprising given the amount of data available (see Appendix).

3.2. MCMC diagnostics and model assessment. A common concern in infer-
ence for complex models is assessing the mixing of the Markov chain used to
explore the parameter space, that is, whether the space has been fully explored.
Since we update the (unknown) source and time of transmission, a particular con-
cern is that we could get stuck in one particular transmission direction and never
explore the other direction of “donor” and “recipient.”

3.2.1. Assessing mixing of the Markov chain. We used several standard tech-
niques to assess mixing of the Markov chain [Gilks, Richardson and Spiegelhalter
(1998)] including the following:
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• Running the chains for 300,000 iterations, storing every 10th to reduce autocor-
relation in the stored samples.

• Discarding the first half of each run to ensure the Markov chain has converged
to its stationary distribution.

• Visual inspection of trace plots, shown in Figure 3 of Cule and Donnelly (2017).
• Starting multiple chains from 3 dispersed starting points, and pooling the sam-

ples for inference. The marginal posterior distribution of each parameter is
shown in Figure 4 of Cule and Donnelly (2017).

• The Brooks–Gelman–Rubin statistic, shown in Figure 5 of Cule and Donnelly
(2017).

3.2.2. Assessing sensitivity to prior information. A priori plausible priors
were chosen for the epidemiological parameters by reference to the literature on
C. difficile transmission (Table 2). However, sensitivity to prior information is al-
ways a concern in complex models. Figure 6 of Cule and Donnelly (2017) shows
the posterior parameter distributions when the prior means are respectively halved
and doubled (keeping the prior variances the same as in the main model). For most
of the parameters, the posterior distributions are quite robust to such changes in
prior information. The exception is the infectivity prior to testing, which is strongly
influenced by the prior. The short duration of the period, revealed by the lack of
transmissions occurring before diagnosis is confirmed, means that there is little
information on the rate to be obtained from the data, and thus the posterior value
is strongly influenced by the prior. The remaining parameters are more strongly
influenced by the data (equivalently, the likelihood).

3.2.3. Assessing sensitivity of results to the presence of mixed infections. Mul-
tiple strains have been isolated from a small proportion of cases (∼5%). Since
these were only identified if there were morphologically distinct colonies (in which
case multiple colonies were typed, and did not always yield distinct strains), we
did not explicitly model this possibility. Rather, we tried two approaches:

1. Pick one of the types at random (used in the main analysis).
2. Split into two psuedo-patients behaving as independent infections.

Both yielded extremely similar results.

3.2.4. Assessing robustness to missing samples. 4% of EIA-positive samples
were not retrieved for culture. Two approaches have been used to account for miss-
ing EIA positive samples: First, assuming they are negative and, second, assuming
they are positive with unknown MLST (used in the main analysis). Neither of
these extreme assumptions led to a significant change in conclusions, from which
we conclude that our results are robust to a small amount of missing data.
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3.3. Simulation study. To investigate the sensitivity of our approach to various
modelling assumptions, we undertook several simulation studies. We first simu-
lated data according to the generative model described above, in each case using
the same hospital visit schedule as the original dataset (since admissions and dis-
charges from hospital are not modelled explicitly).

In order to make our simulation realistic, we set each parameter to its posterior
mean for this simulation. We then additionally simulated data under several differ-
ent scenarios by modifying the parameter values. These scenarios are described in
detail below. For each simulated dataset, we re-fit the model using the procedure
described above.

3.3.1. Removing routes of transmission. Our first set of simulations elimi-
nated one of the routes of transmission in the model. We simulated three new
datasets with the following characteristics:

1. No person-to-person transmission within hospitals.
2. No post-discharge contamination.
3. No between-ward transmissions.

The posterior distributions for key parameters are shown in Figure 2. The in-
ferred parameters under the posterior mean simulation are shown by a solid line.
For the data with no person-to-person transmission within hospitals (shown in a
dashed line), the inferred transmission parameters were smaller before, near, and
after the test. The dataset generated without post-discharge contamination (dotted
line) shows a much smaller estimate for the relevant multiplier (labelled contami-
nation multipler). The data generated with no between-ward contamination, shown
in a dot-dashed line, shows a much smaller value for between-ward transmission.
The unmodified parameters for background transmission show relatively similar
values for all four datasets.

3.3.2. One recovery rate. Our model allows for both “slow” and “fast” recov-
ery. We simulated data with one recovery rate only. The posterior distributions for
the transmission rate parameters are illustrated in Figure 3. Note that the probabil-
ity of a fast recovery is inferred to be close to 0 in this case.

Neither dataset shows a fast recovery time distribution which is significantly
different from the prior distribution, indicating that this parameter may not be iden-
tifiable from the data.

3.3.3. Much higher rates of transmission. Finally, we simulated a dataset with
between-person transmission 10 times higher than the baseline dataset. Figure 4
shows the posterior distribution for key parameters.

As well as having higher estimated transmission rates, the correspondingly
larger number of transmissions in the resultant synthetic dataset leads to narrower
posterior distributions for other parameters (not shown).
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FIG. 2. Figure showing distribution of key parameters from simulated data under the posterior
mean (solid), with no person-to-person transmission (dashed), with no post-discharge contamination
(dotted) and with no between-ward transmission (dot-dash). The prior distribution is shown in grey.

4. Results. The Bayesian approach allows inferences to be drawn from the
data about parameters in the model, and also about unobserved events (such as
whether patient A transmitted C. difficile to patient B) and times (e.g., for how long
did patient C incubate the disease before their test). In each case these inferences
are in terms of posterior probabilities (of events) or distributions (for times and
parameters).

Before turning to detailed results, we first illustrate some of the inferences made
by the model (Figure 5) for a subset of the patients [Figure 1 of Cule and Donnelly
(2017) for all other CDI patients]. These figures depict the sequence of hospital
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FIG. 3. Figure showing distribution of key parameters from simulated data under the posterior
mean (solid) and a simulation with one recovery rate only (dashed).

visits by a subset of patients who went on to test positive for C. difficile, the time of
their positive test, and illustrate the inferred transmission events and their posterior
probabilities (above a certain posterior probability threshold).

4.1. Biology of C. difficile disease. The posterior distributions of the parame-
ters in the model are shown in Figure 7. Note that in all cases these posteriors differ
substantially from the prior distributions for the parameter, reflecting the substan-
tial information in the data. In this section, we focus on parameters related to the
biology and epidemiology of C. difficile.

Our model allowed for the possibility of different rates of transmission in the
period before, around or after the positive test for C. difficile, which could reflect
biology or possibly changes in hospital practice, such as isolation of the affected
patient after the clear onset of symptoms. An infectious individual transmits C. dif-
ficile to a particular susceptible individual in the same ward at a mean rate of 4.4,
3.6 and 7.9 infections per 10,000 bed-days before, around and after their positive
test, respectively [see Figure 6(d) for full posterior distributions]. While there is
some evidence that transmission rates may be higher after the test than in the pe-
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FIG. 4. Figure showing distribution of key parameters from simulated data under the posterior
mean (solid) and a simulation with 10 times the between-person transmission rate within hospitals
(dashed). As well as higher point estimates, note the narrower posterior distributions due to the
larger amount of data in the high-transmission simulation. The grey vertical lines in each case show
the simulated value.

riod around the test, the data are also consistent with no change in transmission
rates in these different periods. Notwithstanding possible differences in rates, it is
noteworthy that most (75%) transmissions from infected patients actually occurred
after the diagnosis of CDI, even though the study hospitals had in place aggressive
infection control measures throughout the study period, which included isolation
of infected individuals.

We estimate that, per unit exposure, post-discharge contamination, that is,
colonisation of one patient with the bacteria carried by another patient in a par-
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FIG. 5. Data and inferred transmissions for 183 of the 931 infected patients, chosen from 8 example
multi-locus sequence types. Periods during hospital admissions are shown in grey. First positive tests
are shown with a blue vertical tick mark. Inferred direct transmissions by any route are shown with
arrows, with darker red corresponding to a higher posterior probability (only transmissions with
P > 0.2 are shown). Overall, there are relatively few direct transmissions within the hospital.

ticular ward after the infected patient has left the ward, causes infection at a rate
of roughly 70% [interquartile range (IQR) 56%–85%] of that of direct contact.
Further, the time period after discharge from the ward over which transmission
via contamination can occur is not small: the median duration is 14 days (IQR
5.9–29.9 days).
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(a) (b)

(c) (d)

FIG. 6. Distributions of quantities related to biology of CDI. (a) Posterior distribution on transmis-
sion rates for pre-, around- and post-test (curves in solid, dashed and dotted, respectively). The grey
curve indicates the prior distribution on these rates. There is limited data on pre-test rates because
the inferred infectious time prior to the test is short. (b) Distribution across individuals of their pos-
terior median time from infection to when the individual becomes infectious for individuals inferred
to be infected during a hospital stay. Only individuals who become infected after at least one hos-
pital visit are included. (c) Distribution across individuals of their posterior median recovery times.
This distribution was modelled as a mixture of two recovery-time distributions, one for “quick re-
coverers” and one for “slow-recoverers.” The posterior distribution of recovery times for the “quick
recoverers” is shown as a dashed line, and that for slow recoverers” as a dotted line. Around 70%
of individuals are “quick recoverers.” (d) Posterior distributions of transmission rates (per 10,000
days exposure) by sequence type, shown only for sequence types with more than 10 cases. The thick
horizontal line marks the median of the posterior, the vertical box shows its inter-quartile range, and
the dashed vertical lines delimit its 5th and 95th percentiles. The number of cases for each sequence
type is shown above the representation of the posterior.
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FIG. 7. Marginal posterior distribution of each parameter from the main analysis. Prior distribu-
tions are shown in grey. Distributions are obtained by combining 15,000 saved draws from each of
3 runs of the MCMC after burn-in from different starting points and thinned to every 10th iteration.
From top left, across successive rows, the panels relate to the following: colonization rate within
the hospital; colonization rate outside hospital; rates of transmission from infectious patients before,
near to and after diagnosis; multipliers for contamination and hospital-wide transmission; rate of
progressing from colonized to infectious state inside and outside the hospital; rate of progressing
to near-test state; rate of recovery (slow recovery); rate of recovery (quick recovery); proportion of
patients recovering quickly; duration of contamination.

Inter-ward transmission occurs at a rate of only 3% that of direct contact (IQR
2.5%–4.0%) per pair of infective and susceptible individuals, but because of the
much larger number of potential infective-susceptible pairs between wards, we will
see below that the overall contribution of inter-ward transmissions is significant,
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totalling around half that of each of direct contact within wards and post-discharge
ward contamination.

Figure 6(b) shows the posterior distribution of the time from colonization until
the start of the infectious period, and illustrates that some patients are infected
a long time before becoming infectious. This is probably because, unlike many
other infections, CDI (and the accompanying dramatic increase in infectiousness)
is primarily precipitated by antibiotic use.

The data support two different paths to recovery from CDI (and with it removal
from our model). Most patients (70%, IQR 64%–75%) recover relatively quickly
(posterior median of parameter for mean recovery time 2.4 days, IQR of mean
1.8–3.1 days), while the remainder can remain infected for substantial periods (1–
6 months) [Figure 6(c)]. Although most patients recover relatively quickly, most
transmissions (73%, IQR 68%–77%) are attributed to those who recover more
slowly. This has consequences for infection control since it implies that careful
management of CDI cases with ongoing or recurrent infection could have the
greatest impact on reducing transmission.

From the perspective of a particular susceptible individual, averaged over their
likely ward movements and composition and with no direct contact with infectious
patients, colonization which leads to CDI in hospital is inferred to occur at a rate of
4.86 (IQR 4.69–5.03) per 10,000 bed-days inside the hospital, and 0.00970 (IQR
0.00906–0.01040) per 10,000 days outside the hospital. The estimated overall risk
of colonization from spending an extra day in the hospital is slightly higher than
the risk specifically due to spending a day in the same ward as an infectious patient
(5:3 ratio).

To investigate potential heterogeneity between STs, we refitted the model to al-
low transmissibility to vary. We see evidence of heterogeneity in the infectiousness
of different MLSTs, with ST1 (Ribotype 027/NAP1) being more transmissible
[Figure 2(d)]. It is responsible for 50% (IQR 49%–52%) of inferred transmissions,
but only 13% (IQR 12.6%–13.9%) of new introductions (that is, instances of CDI
not involving transmission from another patient). There is some evidence in our
data that ST42 may also be more transmissible than others sequence types, and we
note that this strain (Ribotype 106) has dominated in other areas of the UK [Health
Protection Agency (2010)].

4.2. Differences between transmission routes, individuals, wards and hospitals.
One advantage of our approach is that it provides probabilistic assignment of likely
transmission routes for each transmission leading to CDI. These assignments can
be aggregated to compare different routes of transmission, and differences between
individuals, wards or hospitals.

There has been considerable interest in understanding the routes by which
C. difficile transmission occurs, not least so as to develop and refine hospital man-
agement and infection control plans for reducing CDI. Our analyses show that the
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(a) (b)

(c)

FIG. 8. Posterior distributions on the number of transmissions attributable to routes, patients and
wards. (a) Posterior distribution represented as in Figure 6(d) of the number of infections by different
routes. (b) Observed versus expected (i.e., mean number averaging over parameter values in the
posterior distribution) number of transmissions attributed to each infectious patient. (c) Posterior
distribution represented as in Figure 2(d) of the rates of direct transmission per 10,000 days exposure
across different wards in the study (data shown only for top 38 wards).

majority (∼75%) of infections cannot be explained by contact with symptomatic
patients in the hospital [Figure 8(a)].

We infer that about 10% of colonisation events occur through direct transmis-
sion from an infected to a susceptible patient within the same ward, with a further
10% occurring through ward contamination. The remaining 5% of colonisation
events are inferred to be between patients in different wards, plausibly through
carriage of bacteria on hospital personnel or equipment. In terms of absolute num-
bers, estimated transmissions through within-ward contact, ward contamination
and inter-ward transmission were 82, 89 and 40, respectively. Although there can
be considerable uncertainty over the transmission route for an individual coloni-
sation event, these overall estimates average over the uncertainty across all CDI
cases, and are themselves reasonably precise (Figure 8).
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Single individuals have played critical roles in some historical outbreaks of in-
fectious disease. Referred to as “superspreaders,” the most famous is probably so-
called “typhoid Mary,” an asymptomatic cook who was reputed to have infected
over 50 people with typhoid in early 20th century New York [Bourdain (2001),
Lloyd-Smith et al. (2005)]. We see no evidence for individuals responsible for a
large number of transmissions in our data: Figure 8(b) compares the observed and
expected numbers of direct transmissions per individual, with no single individual
responsible for more than five transmission events, and none greatly exceeding the
number of transmissions expected for their period of infectiousness. (To be con-
servative, expected numbers of transmissions are calculated assuming all MLST
types have the same transmission rate, and so the excess of observed to expected
for individuals carrying ST1 is to be expected.)

Comparison across wards reveals considerable heterogeneity in the number of
transmission events [Figure 8(c)]. However, it is important to note when interpret-
ing these findings that no attempt was made to control for case mix (e.g., some
wards, such as gerontology, containing patients more likely to develop CDI) or
other factors which may be responsible for the differences between wards. While
in principle such covariates could be explicitly modelled, we leave that as the sub-
ject of future studies.

We also observe differences in transmission rates between the three hospitals in
our study (Figure 9). Again, care is needed in their interpretation because of dif-
ferences in case mix between hospitals. Our approach also allows comparisons be-
tween time periods within hospitals, for example, to investigate the consequences
of changed infection control protocols. These within-hospital comparisons will
largely control for case mix (which does not greatly change over time), making
them easier to interpret. In all three hospitals transmission rates dropped markedly,
as did inter-hospital differences, between the first and second half of our study pe-
riod (Figure 9).

5. Discussion. We have developed a stochastic model for C. difficile infec-
tion and applied it to a large database of electronic patient records, augmented by
genetic information in the form of MLST. Stochastic modelling and inference is a
powerful tool for improving our understanding of key questions relating to biology,
epidemiology and healthcare management which were not previously tractable be-
cause of the complex nature of the disease process. Crucially, the model makes
probabilistic assessments of likely transmission events. Aggregation across the 858
CDI cases with at least one overnight hospital stay in our data provides consider-
able information on questions of interest, and natural measures of uncertainty in
estimated quantities, even when there are relatively few transmission events whose
provenance can be assigned with high confidence.

It is encouraging that the combination of MLST data and patient records proves
so powerful in studying the disease process. As higher resolution whole-genome
data becomes widely available, we anticipate a greatly improved understanding of
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FIG. 9. Posterior distribution represented as in Figure 8(c) of number of transmissions attributed
to infectious patients, broken down by hospital and into early and late periods (first and second half
of study), and ST1 only, and all non-ST1 MLSTs.

infectious disease transmission. However, we have established that even the rel-
atively course level of resolution afforded my MLST, combined with electronic
patient records, allows inferences of transmission, and of other aspects of the epi-
demiology of hospital-based infectious disease, which are quite informative.

Our analyses established or confirmed several key features of C. difficile trans-
mission and disease. We estimated transmission rates and showed that these are
similar before, around or after an individual”s positive test. There can be a signif-
icant time lag between acquisition of C. difficile from a symptomatic patient and
the onset of symptoms, presumably at least partly explained by the interaction with
antibiotic use. Whilst most patients recover quickly from CDI, a sizeable minority
(30%) can take months to recover. For these “slow recoverers,” there is the po-
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tential for onward transmission to occur a long time (weeks or months) after the
initial positive test, and we found that they are responsible for 73% of transmission
events from symptomatic patients. In spite of the infection control procedures in
place in the hospitals, many of which only come into play when an individual dis-
plays symptoms of CDI, we found that the majority (70%) of transmissions from
symptomatic patients occur after the diagnosis of CDI has been confirmed. We
also saw clear evidence for a higher rate of transmission for a particular MLST
sequence type, the known hypervirulent strain ST1/NAP1/RT027, with a median
transmission rate roughly double that for most other sequence types.

The statistical approach taken here has several additional advantages. It allows
us to compare patients, wards and hospitals in a sensible way, automatically tak-
ing into account the amount of exposure. We demonstrate the absence of C. diffi-
cile “superspreaders” (a small number of patients responsible for a large number
of transmissions) more convincingly than simply looking for clusters of disease,
which does not take into account the relative background frequency of the different
sequence types and the different levels of exposure to susceptible patients.

More generally, our approach allows inferences about transmission events them-
selves. Transmission is the key endpoint for many important questions, including
the consequences of changes in infection control procedures, but it cannot be ob-
served directly so that previous approaches have necessarily focussed on surro-
gates for transmission, such as disease incidence. We provided an example of the
value of learning directly about transmission events in comparing hospitals be-
tween different time periods.

In the hospitals studied, only 25% of CDI cases were explained by contact with
symptomatic patients, leaving the majority unexplained, in agreement with the
original published analysis of a subset of the data [Walker et al. (2011)]. We refer
to that paper for discussion and implications of the finding.

In contrast to the earlier report, our analysis revealed an important role for trans-
mission after patients had left a ward, in what we have referred to as ward contam-
ination. We inferred slightly higher numbers of transmissions overall via this route
than from direct transmission within wards, with the rate of infection per unit of
exposure due to contamination around 70% of that for patients in the same ward.
The time period after discharge from the ward over which transmission via con-
tamination can occur has a median duration of 14 days, with 25% lasting more
than 28 days. C. difficile is known to produce highly resilient spores [Donskey
(2010), Wilcox and Fawley (2000)], and so, given the relative importance of this
transmission route, it will be important to better understand this mechanism.

We also established a significant role for transmission between individuals in
different wards. Even though individual-to-individual transmission rates across
wards are low, leading to less emphasis in infection control policies, collectively
they account for about 20% of the transmission events from other established CDI
cases, demonstrating the clinical importance of these routes overall.
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Our model does not allow the possibility of individuals carrying and transmit-
ting C. difficile whilst remaining asymptomatic [Loo et al. (2011)]. (We do allow
asymptomatic carriage, but assume that all such individuals will eventually be-
come symptomatic, for example, after antibiotic use, potentially after a long incu-
bation time.) Whilst this could, in principle, be handled in the modelling frame-
work by treating C. difficile carriage status as missing data, inference would be
computationally intractable because of the need to average over the unobserved
states in hundreds of thousands of individuals. The impact on transmission of
asymptomatic carriage remains an important unanswered question, best addressed
through a longitudinal study of both asymptomatic carriage and transmission in
the same group of patients.

The current analysis is computationally tractable, but a 7-day turnaround may
be insufficient for clinical application. We leave as a potential topic for further
research the development of new computational methodology for improving this.
A particularly intriguing possibility is the application of online or sequential meth-
ods to update parameter estimates online, as new data becomes available, in real
time during an outbreak.

In addition to information about the transmission and epidemiology of C. dif-
ficile infection, we see our analysis as a proof of principle of the value in using
stochastic epidemic models to study linked electronic hospital records and data
documenting genetic variation of bacterial pathogens. With the collection of ge-
netic data on pathogens and access to anonymised hospital records both likely to
become widespread, we see considerable potential for these approaches more gen-
erally.
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